
Improving Machine Translation Systems via
Isotopic Replacement

Zeyu Sun
Key Laboratory of High Confidence

Software Technologies, MoE
School of Computer Science,

Peking University
szy_@pku.edu.cn

Jie M. Zhang∗
University College London

jie.zhang@ucl.ac.uk

Yingfei Xiong
Key Laboratory of High Confidence

Software Technologies, MoE
School of Computer Science,

Peking University
xiongyf@pku.edu.cn

Mark Harman
Meta platforms and

University College London
mark.harman@ucl.ac.uk

Mike Papadakis
University of Luxembourg
michail.papadakis@uni.lu

Lu Zhang
Key Laboratory of High Confidence

Software Technologies, MoE
School of Computer Science,

Peking University
zhanglucs@pku.edu.cn

ABSTRACT
Machine translation plays an essential role in people’s daily interna-
tional communication. However, machine translation systems are
far from perfect. To tackle this problem, researchers have proposed
several approaches to testing machine translation. A promising
trend among these approaches is to use word replacement, where
only one word in the original sentence is replaced with another
word to form a sentence pair. However, precise control of the im-
pact of word replacement remains an outstanding issue in these
approaches.

To address this issue, we propose CAT, a novel word-replacement-
based approach, whose basic idea is to identify word replacement
with controlled impact (referred to as isotopic replacement). To
achieve this purpose, we use a neural-based language model to
encode the sentence context, and design a neural-network-based
algorithm to evaluate context-aware semantic similarity between
two words. Furthermore, similar to TransRepair, a state-of-the-art
word-replacement-based approach, CAT also provides automatic
fixing of revealed bugs without model retraining.

Our evaluation on Google Translate and Transformer indicates
that CAT achieves significant improvements over TransRepair. In
particular, 1) CAT detects seven more types of bugs than TransRe-
pair; 2) CAT detects 129% more translation bugs than TransRepair;
3) CAT repairs twice more bugs than TransRepair, many of which
may bring serious consequences if left unfixed; and 4) CAT has
better efficiency than TransRepair in input generation (0.01s v.s.
0.41s) and comparable efficiency with TransRepair in bug repair
(1.92s v.s. 1.34s).

∗Corresponding author.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510206

KEYWORDS
machine translation, testing and repair, machine learning testing,
neural networks

ACM Reference Format:
Zeyu Sun, Jie M. Zhang, Yingfei Xiong, Mark Harman, Mike Papadakis,
and Lu Zhang. 2022. Improving Machine Translation Systems via Isotopic
Replacement. In 44th International Conference on Software Engineering (ICSE
’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3510003.3510206

1 INTRODUCTION
Machine translation systems, such as Google Translate, translate a
text from a source language into a target language automatically.
They play an essential role in overcoming communication barriers
across the globe, providing translation services to millions of end
users every day. In 2018, Facebook reported its deployment of ma-
chine translation supporting approximately 2,000 language pairs,
serving approximately 4.5 billion translated post impressions every
day, thereby allowing 600 million people to read translated posts
in their mother tongue [14]. By January of 2021, Google Translate
has been reported to support 109 languages, with more than 100
billion words translated per day [34].

Poor translations have been known to be a serious problem for
a considerably long period of time. For example, mistranslations of
Article 17 of the Treaty of Uccialli led to a war [9], while mistrans-
lation of the Japanese government’s response may have influenced
American Government’s decision to use the atom bomb during
World War II [1]. These problems predate the advent of machine
translation, but are arguably exacerbated by the apparent ease with
which machines may now translate natural languages.

The profound consequences of mistranslation prior to automa-
tion are concerned with situations where there is a clear imperative
for accurate translation and plenty of humans are involved in the
translation process. How much more pernicious could such a situ-
ation become, as we rely more and more on automated machine
translation; currently with translation processes that afford few
checks and corrections?

https://doi.org/10.1145/3510003.3510206
https://doi.org/10.1145/3510003.3510206

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

As we move to a scenario in which machines routinely translate
natural language sentences, the potential for misunderstandings
may become magnified. This makes automated translation an im-
portant new application for testing and evaluation. Furthermore,
given that machine translation is typically used in scenarios where
there is no human in the loop, and thus no time to respond to
failed test cases, it is also highly important that we have in place
techniques for automated repair.

Machine translation systems currently have far more frequent
mistranslations than human translations, causing problems in eco-
nomics and safety, becoming a source of international tension, and
also potentially violating human rights [32]. These issues highlight
the importance of automatic improvement of machine translations.

Recently, quite a few approaches (e.g., SIT [15], TransRepair [32],
and PathInv [12]) have been proposed for testing machine transla-
tion systems. In particular, approaches based on word replacement,
where only one word in the original sentence is replaced with an-
other word, have received intensive attention. Intuitively, since
only one word in the original sentence is changed, the prediction
of the corresponding change on the translation is thus easier than
the situation where multiple words in the original sentence are
changed. However, precise control of the impact of word replace-
ment in word-replacement-based approaches is still difficult due to
the fuzzy semantics of natural language words.

In this paper, we propose a novel word-replacement-based ap-
proach (named CAT1) to machine translation testing. Given a sen-
tence in the source language, CAT performs isotopic replacement,
which is a special type of word replacement, to generate new sen-
tences. The goal of isotopic replacement is to control the impact
of word replacement so that the translation of the sentence after
word replacement should very likely be similar to the translation
of the sentence before word replacement. Our insight is that the
key to control the impact of word replacement is to control the
semantic difference between the two words. In a typical natural
language, the semantics of a word is comparatively stable, but the
semantics may also vary to some extent in different sentences [8].
Therefore, it is necessary to consider the impact of contexts on the
semantics of words when performing isotopic replacement. As a
result, we design an algorithm to calculate context-aware semantic
similarity between each pair of words. Our algorithm uses a neural
architecture to encode the sentence context during replacement,
thereby making the replacement context-aware. On top of context
encoding, our algorithm further performs neural-based semantic
evaluation to guarantee that the semantic difference between the
words under replacement is small enough. Following TransRepair,
our approach is also able to repair bugs revealed during testing.

We empirically evaluated CAT together with TransRepair on two
state-of-the-art machine translation systems, Google Translate [10]
and Transformer [33]. The translation is between the top two most
widely used languages, English and Chinese, with 2,001 sentence
pairs. Our experimental results show that CAT significantly out-
performs TransRepair in both effectiveness and efficiency: CAT
detects seven more types of bugs than TransRepair. It detects
129%/129%more bugs and repairs 199%/238%more bugs than Tran-
sRepair on Google Translate/Transformer, respectively. Over half

1Context-Aware replacement for improving machine Translation.

of the detected mistranslations can be automatically fixed by CAT.
Furthermore, CAT has better efficiency than TransRepair in input
sentence generation (0.01s v.s. 0.41s) costs 80% and competitive
efficiency with TransRepair in repairing (1.92s v.s. 1.34s).

To summarise, this paper makes the following contributions: A
novel approach (named CAT) to improving machine translation
based on isotopic replacement, where the key technique is a novel
algorithm for calculating context-aware semantic similarity to iden-
tify isotopic replacement. An extensive evaluation to demonstrate
the effectiveness and efficiency of CAT, indicating that CAT signifi-
cantly outperforms the state-of-the-art approaches.

The implementation code, the data we used, together with the
full experimental results of this paper are available at https://github.
com/zysszy/CAT.

2 RELATEDWORK
We divide the related work of our paper into two parts: machine
translation testing in Section 2.1 and machine translation repair in
Section 2.2.

2.1 Machine Translation Testing
There are different properties to test in machine translation testing.
Heigold et al. [17], Belinkov and Bisk [2], and Zhao et al. [39]
focused on testing robustness, i.e., whether machine translators are
influenced by minor errors, typos, or noises in the input sentences.

More approaches focus on testing the correctness of machine
translators. The major differences lie in the heuristics adopted in
these approaches.

Pesu et al. [27] proposed an approach based on cross-reference.
In particular, this approach focuses on checking whether the direct
translation (from a source language to a target language) and the
indirect translation (from the source language to an intermediate
language and then from the intermediate language to the target
language) of the same sentence produce the same results. Cao et
al. [3] proposed a similar approach, where they check whether
the translation between different translation systems produce the
similar translation results.

The mainstream approaches test correctness via the combination
of input mutation and metamorphic relation [38]. They adopt the
strategy of controlled input generation of new sentences or phrases
in the source language. Given a sentence in the source language,
such an approach generates a related sentence or phrase; then the
original sentence and the generated sentence (phrase) are fed into
the translator under test; and the approach compares the translation
results of the two to determine whether a bug is found. In particular,
Purity [16] breaks the original sentence into phrases and checks
whether some phrases alone have different translations compared
with their translations for the original sentence.

Except for Purity, other approaches based on controlled input
generation adopt word replacement. That is to say, these approaches
generate a new sentence via replacing one word in the original
sentence with another related word. Gupta et al. [12] detect a trans-
lation bug by replacing a word with another word with completely
different meaning, and expect that the word replacement should
yield different translations. Sun and Zhou [31] replace a human

https://github.com/zysszy/CAT
https://github.com/zysszy/CAT

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

BERT Model

Probability Filter

Candidate Words
Vectors

Vector

Semantic
Evaluation

Input Sentence

Mutants

Automatic Testing

Test Inputs

Automatic Repair

Is Isotopic?

Isotopic

Word

Figure 1: Overview of CAT.

name before “like” or “hate” with another human name. They ex-
pect that the translations of the sentences before and after word
replacement should be similar. He et al. [15] replace one word in
the original sentence with another word that would also fit into
the structure of the original sentence, and expect that the two
translations of the original sentence and the generated sentence
should also have a similar structure. In particular, this approach
(named SIT) adopts the masked language model (MLM) [5] to deter-
mine which words are likely to fit into the structure of the original
sentence. Note that the word replacement in SIT is primarily syn-
tactical without explicit consideration of semantics. Furthermore,
since MLM considers the context of the original sentence when gen-
erating the replacement, many syntactically suitable replacements
are excluded. For example, when facing Make it a requirement that
only half is to be used in polling stations (except in Wales)., SIT gen-
erates a sentence by replacing “half” with “English”. The approach
(named TransRepair) to machine translation testing proposed in
Sun et al. [32] replaces a word with another semantically similar
word (e.g., girls−→boys), and expect the generated sentence may
lead to a similar translation with the original translation for the
unchanged part in the sentence. In particular, TransRepair adopts
vector representation of words [26, 29] to calculate the similarity
of each pair of words. Since the vector representation of each word
is calculated on the basis of all sentences containing the word in a
corpus, the similarity values between words used in TransRepair
do not consider the specific context of the original sentence.

Our approach (named CAT) to machine translation testing gener-
ally falls into the category of word-replacement-based approaches.
Similar to SIT [15] and TransRepair [32], our approach also ex-
pects that the change of one word would not result in substantial
difference in the translations. However, our approach is based on
the concept of isotopic replacement, where one word is replaced
with only words that differ subtly from the original word. Then
we propose a specially designed algorithm to determine whether
a word replacement is an isotopic replacement. In particular, our
algorithm is based on calculating context-aware semantic similar-
ity, for which to our knowledge no straightforward combination
of MLM and vector representation of words are able to achieve
our purpose. Another distinct merit of our approach is that iso-
topic replacement is applicable to all parts of speech, while existing
word-replacement-based approaches are specific to only few parts
of speech. For example, word replacement in SIT is specific to nouns
and adjectives; and word replacement in TransRepair is specific to
nouns, adjectives, and numbers.

There have been word replacement research for other tasks, such
as attacking/testing/defending models on different classification
tasks [11, 19, 20, 24, 28, 37]. The requirement of their word replace-
ment is to keep the classification result unchanged. As a result, the
replacement may lead to grammar errors, have completely different
context, or affect the translation of the unchanged part in a sen-
tence, thereby not being applicable for machine translation testing.
For CAT, we use the isotopic replacement and the basic idea is to
identify word replacement with controlled impact to the translation
of the whole sentence.

2.2 Machine Translation Repair
To repair the revealed bugs and improve machine translation, exist-
ing approaches are typically based on data augmentation. Heigold
et al. [17], Sperber et al. [30], and Belinkov and Bisk [2] proposed
to add the generated sentences (noises) used for robustness testing
to the training data and retrain the model. Cheng et al. [4] and
Ebrahimi et al. [7] used the gradient-based approach to generating
sentences for model retraining. Different from these approaches,
there are also some approaches improving robustness of machine
translation by designing some additional neural components. Cheng
et al. [4] added a component to distinguish the noises from the
training set, while Belinkov and Bisk [2] used a character-level
representation.

The above approaches need model retraining. To our knowledge,
the only approach that is able to repair machine translation without
model retraining is TransRepair by Sun et al. [32]. In particular,
TransRepair adopts a post processing based strategy for repair. For
a bug-revealing sentence, TransRepair generates several similar
sentences via the same word replacement strategy in its testing
phase; and then combines the translations of these similar sentences
and the original sentence to repair the bug. Our CAT adopts a similar
strategy with TransRepair for repair, but the generation of similar
sentences for repair in CAT is also based on isotopic replacement.
According to our evaluation results, the repair effectiveness of CAT
significantly outperforms that of TransRepair.

3 APPROACH
3.1 Overview
Our approach (named CAT) follows the general process of word-
replacement-based approaches: Given an input sentence 𝑠 and a
word𝑤 in 𝑠 , our approach identifies a set of words (denoted as𝑊𝑤),
each of which can be used to replace𝑤 in 𝑠 . For eachword𝑤 𝑓 ∈𝑊𝑤 ,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

e1

[MASK] the past

e2 e3 e4

decades

a1 a2 a3 a4

b1 b2 b3 b4

h1 h2 h3 h4

Classifier
Within
Over
During replace

…

…

Figure 2: BERT-based context-aware word replacement.

our approach further ensures that the replacement of 𝑤 with 𝑤 𝑓

in 𝑠 is isotopic replacement, which only subtly impacts 𝑠 . The key
idea to realise isotopic replacement is to evaluate context-aware
semantic similarity between 𝑤 and each candidate replacement
word𝑤𝑟 ∈ 𝐶𝑤 in the context of 𝑠 .

Figure 1 depicts an overview of CAT. There are two stages in
CAT for conducting isotopic replacement. In the first stage, CAT
generates a set of word replacement candidates 𝐶𝑤 for each word
𝑤 in the input sentence 𝑠 . In the second stage, CAT identifies the
final set of words𝑊𝑤 from word candidates 𝐶𝑤 to achieve iso-
topic replacement via evaluating context-aware semantic similarity
between each word in𝑤𝑟 ∈ 𝐶𝑤 and the word𝑤 in sentence 𝑠 .

This section mainly introduces these two parts (candidate word
generation in Section 3.2 and semantic evaluation in Section 3.3).
The remaining steps of translation testing and repair are similar
to the corresponding steps in TransRepair. To make our presen-
tation self-contained, we provide some necessary information in
Section 3.4 for convenience.

3.2 Candidate Word Generation
In order to realise isotopic replacement, we first generate a set of
candidate words𝐶𝑤 for each word𝑤 in the input original sentence
𝑠 , where𝑊𝑤 ⊂ 𝐶𝑤 , based on the context for further evaluation of
context-aware semantic similarity.

Given an input sentence 𝑠 , CAT generates such candidate words
𝐶𝑤 by ensuring that each word in𝐶𝑤 is also suitable for the context.
To realise our idea, we use the Bidirectional Encoder Representa-
tions from Transformers (BERT) [5] to encode the sentence context
and check which words are suitable for the context.

Figure 2 shows the overview of context-aware word replacement
in CAT. As a Transformer [33] based pre-trained model, BERT takes
an input sentence and outputs a real-valued vector for each word
within the sentence based on the context. When performing a word
replacement, a word to be replaced in the input sentence is first
masked by a special mark “[MASK]”. For example, in Figure 2, the
word “Within” is masked for the input sentence “Within the past
decades...”. The sentence with the masked word is then fed to the
BERT model, which extracts a set of real-valued vectors. To conduct
word replacement, BERT feeds the vector of the word “[MASK]” to
a pre-trained linear classifier and gets a set of predicted words with
different prediction probability.

Given an input sentence 𝑠 with a word sequence𝑤1,𝑤2, · · · ,𝑤𝑁 ,
where 𝑁 is the total number of words, we mask the words in the
sentence in turn (one word being masked each time) and feed each
masked sentence into BERT.

The outputs of BERT are a set of vectors 𝒉1,𝒉2, · · · ,𝒉𝑁 , which
denotes the context-aware vector representation of the input words.
Then, a pre-trained linear classifier takes the vector of the masked
word 𝒉mask as an input, and outputs a set of initial candidate words
𝐶𝑖 . Each word in 𝐶𝑖 has a predictive probability. The sum of the
probabilities of all the candidate words is 1.0. We then use a prob-
ability filter to discard the words with low predictive probability
(we set the threshold as 0.05 to remove the words that are most
unlikely to be qualified). In addition, if the word is the same as the
original word we masked, we discard this word. Finally, we treat
the remaining words as word candidates 𝐶𝑤𝑚𝑎𝑠𝑘

for the masked
word𝑤𝑚𝑎𝑠𝑘 , each of which can be used to fill the masked word in
the original input sentence for replacement.

Note that, the above procedure for word generation is context-
aware, because BERT predicts the masked word based on exactly
the remaining parts of the sentence.

3.3 Semantic Evaluation
Isotopic replacement aims to identify a set of words𝑊𝑤 for each
word𝑤 in input sentence 𝑠 such that each word in𝑊𝑤 only subtly
differs from𝑤 in the context of 𝑠 . In candidate word generation, we
generate a set of candidate words𝐶𝑤 for the word𝑤 in 𝑠 . However,
there are occasions that BERT predicts a masked word that has
similar context with the original word, but with different meanings.
Therefore, we next compute the context-aware semantic similarity
and use it to discard the inappropriate words in 𝐶𝑤 for identifying
the final word set𝑊𝑤 .

To achieve our purpose, we propose a novel neural-based mech-
anism for the evaluation of context-aware semantic similarity. The
key step to compute the context-aware semantic similarity in CAT
is to measure the word vector similarity between the original word
and its replaced word. In our approach, we again use BERT to get
the output word vectors, which is the most widely used word2vec
approach in natural language processing [5, 21, 40]. Unlike the us-
age of BERT in candidate word generation in the previous section,
we do not feed BERT with a masked sentence, but directly take the
whole tokenised sentence as its input. In this manner, BERT first
represents a word as a vector trained from the training corpus. The
vector indicates the semantics of this single word. BERT further
considers the sentence context and computes a context-aware se-
mantic representation. In this way, we get a series of word vectors
for each word in each sentence, as the final word vectors.

Then, we measure the context-aware semantic similarity be-
tween the word 𝑤 in 𝑠 (denoted by 𝒉𝑎) and the candidate word
𝑤𝑟 ∈ 𝐶𝑤 in 𝑠𝑟 , which is generated via replacing 𝑤 in 𝑠 with 𝑤𝑟 ,
(denoted by 𝒉𝑏) by using the cosine similarity CosSim of their word
vectors:

CosSim(𝒉𝑎,𝒉𝑏) =
𝒉𝑎𝒉𝑏

|𝒉𝑎 | |𝒉𝑏 |
. (1)

The overall process of our semantic evaluation is detailed by
Algorithm 1. For an input sentence 𝑠 , a word𝑤 in 𝑠 , and the set of
the candidate words 𝐶𝑤 generated via candidate word generation,
we aim at getting a final word set𝑊𝑤 . We first define an empty set

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

𝑊𝑤 for collecting the words after evaluation (Line 1). For the word
𝑤 in 𝑠 , we further extract its word vector 𝒉𝑎 via BERT (Lines 2).
Next, for each candidate word𝑤𝑟 ∈ 𝐶𝑤 , we use it to replace𝑤 in
𝑠 and generate a mutant sentence 𝑠𝑟 (Lines 3 and 4). For the word
𝑤𝑟 in 𝑠𝑟 , we extract its word vector 𝒉𝑏 (Line 5). Then, to capture
the context-aware semantic similarity of the above two words, we
compute the introduced cosine similarity 𝐶𝑜𝑠𝑆𝑖𝑚 of their word
vectors 𝒉𝑎 and 𝒉𝑏 (Line 6). If the similarity is above the predefined
threshold 𝑆𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (we set the threshold to be 0.85), it passes
the evaluation (Line 7). Thus, we add the word𝑤𝑟 to the set𝑊𝑤 as
a final generated one (Line 8). After we have evaluated all words
automatically, we output the final word set𝑊𝑤 for word𝑤 in 𝑠 (Line
11). This process ensures that the replacement of𝑤 with𝑤 𝑓 ∈𝑊𝑤

in 𝑠 is isotopic.
Finally, we in turn use the word𝑤 𝑓 ∈𝑊𝑤 to replace the word

𝑤 in 𝑠 and repeat this process for each word in 𝑠 to generate a final
set of sentences 𝑀𝑓 . We refer to each of these finally generated
sentences as a mutant [18, 25]. This generated set of mutants is
further used for automatic testing (each mutant is paired with the
original sentence as one test input pair) and repair.

Algorithm 1: Process of semantic evaluation
Data: 𝑠 : the input sentence; 𝑤 the word in the input sentence 𝑠 ;𝐶𝑤

the set of the candidate words for the word 𝑤 (the output of
the candidate word generation)

Result:𝑊𝑤 : the final set of words, each of which can be used to
replace 𝑤 in 𝑠

1 𝑊𝑤 = {}
2 𝒉𝑎 = BERT(𝑠, 𝑤)
3 for each candidate word 𝑤𝑟 ∈ 𝐶𝑤 do
4 𝑠𝑟 = Replace(𝑠, 𝑤, 𝑤𝑟)
5 𝒉𝑏 = BERT(𝑠𝑟 , 𝑤𝑟)
6 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = CosSim(𝒉𝑎,𝒉𝑏)
7 if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 >= 𝑆𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8 𝑊𝑤 =𝑊𝑤 ∪ 𝑤𝑟

9 end
10 end
11 return𝑊𝑤

3.4 Testing and Repair
The process of test oracle generation and black/grey-box repair in
CAT is the same as TransRepair. We briefly introduce the details in
this section.

3.4.1 Test Oracle Generation. For each test input (𝑠,𝑚), where𝑚 ∈
𝑀𝑓 , let 𝑟 (𝑠) and 𝑟 (𝑚) be the translation results of input sentences
𝑠 and its mutant 𝑚. Mutant 𝑚 is generated by replacing a word
𝑤1 in 𝑠 with another word 𝑤2. CAT generates the test oracle by
computing the similarity between 𝑟 (𝑠) and 𝑟 (𝑚) excluding the
translation changes caused by𝑤1 and𝑤2. To remove the context
changes, we computes the similarity of the subsequences of 𝑟 (𝑠)
and 𝑟 (𝑚) and further selects the largest similarity to approximate
the similarity of 𝑟 (𝑠) and 𝑟 (𝑚). When the similarity is below the
predefined threshold, CAT reports an inconsistency bug.

3.4.2 Black/Grey-box Repair. Black-box and grey-box repair trans-
form the original translation based on the best translation among
the translations for mutants. There are two ways of choosing the
best translation, one using predictive probability (grey-box), the
other using cross-reference (black-box).

In detail, CAT first repairs the translation of the original sen-
tences in a bug-revealing test case and then it seeks to find a trans-
lation for the mutant, which passes the consistency test.

For the original sentence, CAT generates a set of mutants and
gets their translations. It further ranks these translations based
on the predictive probability of the machine translation or cross-
reference in decreasing order. CAT maps back the translation with
the highest ranking to the translation of original sentence via word
alignment [23]. If the mapping back fails, it selects the translation
with a lower ranking.

For the mutant, CAT uses the same repair process as the original
sentence but marks the output as a candidate solution. We then
checks whether the candidate solution passes the testing with the
repaired translation of the original sentence as test input. If not,
CAT proceeds by checking other candidate solutions.

4 EXPERIMENTAL SETUP
In this section, we introduce the procedure we follow to evaluate
CAT.

4.1 Research Questions
To evaluate CAT we begin by investigating the extent to which iso-
topic replacement brings value in testing, i.e., helps the construction
of test cases. Thus, we ask:
RQ1: How effective is CAT in generating test inputs?
To answer this question, we consider the quantity, distribution,
validity, and diversity of the test inputs generated with isotopic
replacement. To ensure validity, we conduct a manual check on
whether the replaced word in the mutant leads to grammatical
errors, whether the semantic meaning of the mutant sentence is
reasonable, and whether the mutant ought to have consistent trans-
lations with the original sentence.

By showing that CAT helps designing test inputs, we then turn
our attention to the actual value of interest, bug detection and bug
repair. We first focus on bug detection and ask:
RQ2: How effective is CAT in bug detection?
Here, we focus on the bug-revealing ability of CAT. To this end, we
test Google Translate (GT) and Transformer with the test inputs
generated in RQ1 to investigate: 1) the number of inconsistency
bugs reported by automated test oracles; 2) the diversity of the de-
tected inconsistency bugs; 3) the precision, recall, and F-1 measure
of bug detection based on manual inspection.

Having presented the bug-revealing ability of CAT, we turn our
attention to its repairing ability. Hence, we ask:
RQ3: How effective is CAT in bug repair?
To answer this question, for each reported bug on Google Translate
(GT) and Transformer, we use CAT to repair the bug automatically
(with both black-box and grey-box repair). We thus follow the same
procedure as in RQ2 and investigate: 1) the repair effectiveness mea-
sured by automated test oracles; 2) the diversity of repaired bugs;
and 3) the validity of reported fixes based on manual inspection.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

Up to this point, in our analysis, we only investigated test and
repair effectiveness. However, this analysis tells nothing about the
time required to conduct the testing and repair tasks. Therefore,
we ask:
RQ4: What is the efficiency of CAT?
To answer this question, we repeat the experiments of CAT in RQ1-
3 and record the time cost. Then, we investigate: 1) the time cost
of isotopic replacement; 2) the time cost of bug detection for each
sentence; 3) the time cost of repairing a bug.

Since CAT follows TransRepair for improving machine trans-
lation, for each research question, we set TransRepair [32] as a
baseline, and report the improvement of CAT over TransRepair
under identical configuration. The comparison with other testing
approaches can be referred to the extended analysis in Section 6.1.

4.2 Machine Translators
The same as TransRepair, we consider the following two state-of-
the-art machine translators: 1) Transformer [33], the most widely
studied machine translation system by the research community; 2)
Google Translate [10], the most widely used end-to-end machine
translation system developed by Google.
Transformer:Transformer is an attention-based sequence-to-sequence
model designed for natural language processing tasks. It have been
shown to be effective in various areas including machine trans-
lation [33], question answering [5], and others [6]. In this paper,
we used identical parameters Transformer model used in [32]2 to
achieve a fair comparison.
Google Translate: Google Translate is a neural machine trans-
lation system developed by Google. We select Google Translate
due to it being a mainstream translation system, which has over
500 million total users with more than 100 billion words translated
daily [34].

4.3 Implementation Settings
The implementation of CAT is based on the standard BERT that is
publicly available [36]. The BERT model contains 24-layers, 1024
hidden size, 16 heads. The model was trained on 16 TPU chips for
one million steps with a batch size of 256. For TransRepair, we
implement it with the same setting according to the paper [32]. To
perform a fair comparison, we follow the setting of the previous
approach [32] and generate at most 5 valid mutants for each input
sentence during testing and at most 16 valid mutants for each
sentence in a each buggy test case during repair. We perform an
additional experiment in Section 6.2 to study the influence of this
mutant number upper bound.

We conduct experiments on Ubuntu 16.04 with 256GB RAM
and four Intel E5-2620 v4 CPUs. The neural networks (BERT and
Transformer) are all trained and inference on 8 Nvidia Titan RTXs.

4.4 Dataset
For ease of comparison, we use the same dataset as TransRepair [32],
the News Commentary dataset [35]. This dataset has been adopted
as a standard benchmark for translator evaluation [13]. It contains

2We use the same hyper-parameters, random seeds, deep learning library and trained
the model for the same epochs.

2,001 parallel sentences that are different from the training set and
validation set used for Transformer training.

5 RESULTS
In this section, we introduce the results of our experiment to answer
the research questions.

5.1 Effectiveness of Test Generation (RQ1)
To answer this question, for each test sentence in our dataset (2,001
all together), we generate mutants with CAT and TransRepair. Each
mutant is paired with the original sentence to form a test input.
We then record the quantity (i.e., total number of test inputs), dis-
tribution (i.e., the number of generated test inputs per sentence),
validity (i.e., whether the mutant and the original sentence in a test
input should yield consistent translations for bug detection), and
diversity (i.e., the types of generated mutants).
Quantity: For the 2,001 input sentences, 11,045 candidate words
are generated by isotopic replacement, and 1,103 are further dis-
carded by candidate filtering (using automatic semantic evaluation).
In total, CAT generates 9,942 mutants that could be paired with the
original sentences as test inputs for translation testing. For Tran-
sRepair, it generates 21,960 mutant candidates by word replacement
with 17,268 discarded by candidate filtering (using Standford parser).
It finally yields 4,692 test inputs.

These results show that CAT generates significantly more test
inputs than TransRepair. In particular, CAT’s isotopic replacement
increases candidates’ possibility of passing semantic evaluation.
For CAT, 90% of the mutant candidates pass the filtering; for Tran-
sRepair, only 21% mutant candidates pass the filtering due to its
ignorance of the context information of the original input sentences.

In the following, we dig deep into the distribution, diversity, and
validity of the generated mutants.
Distribution: We use violin graphs to demonstrate the entire dis-
tribution of test inputs generated for each sentence. Figure 3 shows
the results. In this figure, we observe that the number of test inputs
generated by CAT reaches 5 (the upper bound, more details in Sec-
tion 4.3) for most of the input sentences. However, for TransRepair,
many sentences have fewer than 5 test inputs.

In particular, the isotopic replacement enables CAT to generate
test inputs for almost all the sentences (with only three sentences,
i.e., 0.15%, having no generated test inputs). However, for Tran-
sRepair, it fails to generate test inputs for as many as 43.7% of
the sentences. Consequently, TransRepair is not able to detect any
translation bugs for those sentences.
Diversity: We further compare CAT and TransRepair from the as-
pect of mutant diversity, i.e., the type of generated mutants in terms
of part-of-speech of the replaced word. The part-of-speech types
include Noun, Adj. (Adjective), Adv. (Adverb), Num. (Numeral),
Verb, Deter. (Determiner), Conj. (Conjunction), Pron. (Pronoun),
Prep. (Preposition), and Others.

Figure 4 shows the number of mutants belonging to each type.
Overall, we observe that most mutants TransRepair generated are
for nouns, adjectives, and numerals as mentioned in Section 1.

By contrast, CAT generates mutants for seven more types of
part-of-speech. This demonstrated diversity is important because

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0

1

2

3

4

5

CAT TransRepair

N
um

be
r

of
 m

ut
an

ts
 p

er
 s

en
te

nc
e

Figure 3: Distribution of the generatedmutants for each sen-
tence. CAT generates 5 test inputs (the upper bound) for al-
most all the input sentences, while TransRepair fails to gen-
erate any test inputs for 43.7% of the sentences.

different types of test inputs reveal different types of inconsis-
tency bugs. For example, TransRepair will miss the detection of
inconsistency bugs aroused by verbs, which plays a key role in the
understanding of the sentence translation.

0

1000

2000

3000

Noun Verb Prep. Num. Adj. Deter. Adv. Pron. Conj. Others

N
um

be
r

of
 te

st
 in

pu
ts

CAT TransRepair

Figure 4: Number of generated test inputs (𝑦-axis) per mu-
tant type (𝑥-axis). This figure shows that CAT generates
more diverse mutants than TransRepair.

Validity:The validitymeasures the proportion of the generated test
input sentences that are qualified for translation testing. The first
two authors manually check the validity separately. If a generated
mutant is 1) grammatically correct; 2) semantically reasonable; and
3) ought to yield semantic-identical translation with the original
sentence (excluding the replaced word), we deem the test input to
be valid. We randomly sample 200 test cases for each approach.

Our manual inspection3 indicates that 96.5% of the test inputs
generated by CAT are valid. Invalid mutant examples are 1) Greater
(protection−→priority) should be given to whistleblowers, Sir Eric says;
2) The (Supplement−→Suppression) of Public Sports Facilities;. For
TransRepair, 93.0% of its test inputs are valid. These results show
that CAT not only generates more test inputs, but also generates
more qualified test inputs for inconsistency bug detection.

3The Cohen’s Kappa is 0.96 on average, which indicates that our manual inspection
results are highly consistent.

Remember that we use semantic evaluation to filter word can-
didates to improve mutant validity. Thus, we are interested to in-
vestigate the effectiveness of semantic evaluation. It turns out that
without semantic evaluation, 10.0% of the test inputs are invalid4.
With semantic evaluation, this proportion is reduced to 3.5%. Thus,
semantic evaluation removes (10% - 3.5%) / 10% = 65% invalid test
inputs.

We further investigate the validity of test inputs on different
types ofmutants. Table 1 shows the results. In each cell, the first/second
number is for the valid/total number of inputs belonging to the
corresponding type. The ratio in brackets is the proportion of valid
inputs. Interestingly, we observe that the “Adj.” mutant type has
the lowest validity for both CAT and TransRepair. This observation
shows possibilities for further validity improvement for test input
generation in machine translation testing.

Overall, for RQ1, we have the following conclusion:

Answer to RQ1: CAT outperforms TransRepair in the
quantity, distribution, diversity, and validity of the gen-
erated test inputs. In particular, CAT generates 9,942 test
inputs, covering 99.9% of the input sentences and 10 types
of mutants, with a validity score of 96.5% based on man-
ual inspection. For TransRepair, these numbers are 4,692,
66.3%, 3, and 93.0%, respectively.

5.2 Effectiveness of Bug Detection (RQ2)
To answer RQ2, for each test input generated by CAT or Tran-
sRepair, we feed it into Google Translate and Transformer to get
its translations, then apply the similarity metrics to automatically
decide the test input reveals a bug.

Table 2 shows the number of bugs reported by CAT and TransRe-
pair with each similarity metric. We observe that CAT significantly
outperforms TransRepair in the number of reported bugs. On aver-
age, CAT detects 129% more bugs than TransRepair on both Google
Translate and Transformer.

We further investigate the diversity of the reported bugs. The
results are shown in Figure 5, where we select the reported bugs
on the LCS similarity metric as an example. We observe that CAT
reports diverse bugs aroused by 10 types of part-of-speeches. Tran-
sRepair can only detect the bugs for nouns, adjectives, and numerals
but could hardly detect bugs aroused by the words in other part-of-
speeches.

The overall results are as expected because as shown by RQ1,
CAT generates a larger quantity of, more diverse, and more widely
distributed mutants than TransRepair, which contributes to its
overall bug detection ability.

Using the similarity metric as an approximation of test oracles,
as mentioned by Sun et al. [32], may have difference with human
oracles (i.e., human judgement about whether the translations are
consistent). To investigate such a threat, Sun et al. [32] sampled
sentences and conducted manual inspection to get the performance
of oracle approximation. In this paper, following their work, we

4The Cohen’s Kappa is 0.86.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

Table 1: Validity of test inputs on different types of mutants based on part-of-speech (RQ1).

Method Noun Adj. Adv. Num. Verb Deter. Conj. Pron. Prep. Others

TransRepair 83/92 (90%) 16/20 (80%) 0/0 (0.0%) 86/87 (99%) 0/0 (0.0%) 0/0 (0.0%) 0/0 (0.0%) 0/0 (0.0%) 1/1 (100.0%) 0/0 (0.0%)
CAT 65/69 (94%) 11/14 (79%) 11/11 (100%) 18/18 (100%) 29/29 (100%) 18/18 (100%) 6/6 (100%) 5/5 (100%) 24/24 (100%) 6/6 (100%)

Table 2: Number of reported bugs (RQ2).

Metric TransRepair CAT

GT

LCS 2,198 5,109
ED 2,210 5,128
TFIDF 2,430 5,381
BLEU 2,126 4,852

Transformer

LCS 1,957 4,545
ED 1,963 4,573
TFIDF 2,146 4,798
BLEU 1,897 4,325

0

500

1000

1500

Noun Verb Prep. Num. Adj. Deter. Adv. Pron. Conj Others

N
um

be
r

of
 d

et
ec

te
d

bu
gs

CAT (GT) CAT (Transformer) TransRepair (GT) TransRepair (Transformer)

Figure 5: Number of reported bugs (𝑦-axis) per mutant type
(𝑥-axis). This figure shows that CAT reports more diverse
bugs than TransRepair.

uniformly sampled5 100 test inputs for each approach. For each
sampled test input and its translation results, the first two authors
manually check whether the test input and their translations reveal
inconsistency bugs6, then compare the human judgement with the
judgement of similarity metrics. The purpose is to check whether
using the similarity metric to report bugs is a threat to the superi-
ority of CAT over TransRepair shown by Table 2.

We present the precision, recall, and F1-score of the manual
inspection results. When calculating these metrics, false positive
(FP) means that the similarity metric judges the translations as
inconsistent (buggy) but manual inspection judges them as con-
sistent (non-buggy); false negative (FN) means that the similarity
metric judges the translations as consistent (non-buggy) but manual
inspection says they are inconsistent (buggy).

The results show that for CAT, similarity metric has a precision
of 0.72, a recall of 0.90, and an F1 score of 0.80 on average. For
TransRepair, similarity has a precision of 0.70, a recall of 0.95, and an
F1 score of 0.80 on average. These results indicate that the validity
of the bugs reported by CAT is similar to that by TransRepair.
TransRepair has slightly better recall than CAT. This is because

5We sample the test case that reveals a bug and the test case that fail to reveal a bug
with equal probability.
6The Cohen’s Kappa is 0.97 on average.

manymutants TransRepair generated are via numerals replacement
(as shown by Figure 4), which influence the translation consistency
less than other mutant types.

Overall, our manual inspection demonstrates that the validity of
the bugs reported by CAT is similar to those reported by TransRe-
pair. Thus, using the similarity metric to report bugs is not a threat
to the superiority of CAT over TransRepair shown by Table 2.

Answer to RQ2: CAT detects seven more types of bugs
than TransRepair in diversity, as well as 129% more bugs
than TransRepair in quantity.

5.3 Effectiveness of Bug Repair (RQ3)
For ease of comparison, we let CAT and TransRepair fix the same
set of detected bugs, i.e., the bugs detected by CAT. For each bug,
we let CAT and TransRepair generate at most 16 mutants (the
mutant number upper bound for repair introduced in Section 4.3)
on both the original sentence and the mutant in the test case to
conduct automatic translation repair. For Transformer, we use cross-
reference to conduct black-box repair, and predictive probability
to conduct grey-box repair. The predictive probability of Google
Translate is inaccessible, we thus only conduct black-box repair.

To answer RQ3, we first present the number of repaired bugs
accessed by similarity metrics. Then, we present the diversity of
repair bugs aroused by the words in different part-of-speeches.
Finally, we present the translation improvement accessed bymanual
inspection.
Repair effectiveness accessed by similarity metrics. The re-
sults are shown in Table 3. Each cell presents the number of repaired
bugs based on the similarity metrics, as well as the proportion of
repaired bugs (against the total number of bugs detected by CAT).
The upper rows are for Google Translate (GT), the bottom rows are
for Transformer.

We observe that CAT repairs much more bugs than TransRepair.
For example, for Google Translate with the LCS similarity metric,
CAT repairs 53% of the reported bugs, while TransRepair only re-
pairs 17%. On average, CAT repairs 199% / 238% more bugs than
TransRepair on Google Translate/Transformer with black-box re-
pair (using cross-reference), and 190% more bugs than TransRepair
on Transformer with grey-box repair (using probability).
Diversity of repaired bugs. We further investigate the effective-
ness of CAT in different types of repaired bugs detected by the word
replacement in different part-of-speeches. Since different types have
different numbers of reported bugs, we focus on the proportion of
repaired bugs against the number of reported bugs for each type.

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Number and proportion of repaired bugs (RQ3).

Approach Metric Probability Cross-reference

TransRepair (GT)

LCS - 890 (17%)
ED - 890 (17%)
TFIDF - 980 (18%)
BLEU - 886 (18%)

CAT (GT)

LCS - 2,729 (53%)
ED - 2,730 (53%)
TFIDF - 2,741 (51%)
BLEU - 2,719 (56%)

TransRepair (Transformer)

LCS 738 (16%) 684 (15%)
ED 744 (17%) 689 (15%)
TFIDF 810 (17%) 748 (16%)
BLEU 739 (17%) 708 (16%)

CAT (Transformer)

LCS 2,193 (48%) 2,399 (53%)
ED 2,196 (48%) 2,399 (52%)
TFIDF 2,231 (47%) 2,415 (50%)
BLEU 2,176 (50%) 2,344 (54%)

0

20

40

60

Noun Verb Prep. Num. Adj. Deter. Adv. Pron. Conj. OthersP
ro

po
rt

io
n

of
 r

ep
ai

re
d

bu
gs

 (
%

)

CAT (GT) CAT (Transformer) TransRepair (GT) TransRepair (Transformer)

Figure 6: Proportion of repaired bugs against the number of
reported bugs (𝑦-axis) per bug type (𝑥-axis).

The results are shown in Figure 67. We observe that CAT achieves
a larger proportion of repaired bugs than TransRepair among all
bug types. Furthermore, we find that CAT repairs 42%-64% / 43%-
68% of bugs on Transformer / Google Translate among all bug types.
TransRepair repairs 45% / 50% of bugs among numerals but only
5%-14% / 7%-18% of bugs among other bug types on Transformer /
Google Translate. TransRepair generates mutants for nouns, adjec-
tives, and numerals, but it can still repair bugs in other types. This
is because the semantics of the unchanged part yielded by different
types of replacement could be the same.
Validity of repaired translations. The first two authors manu-
ally check the bug fixes on the LCS similarity metric with cross-
reference on Transformer. The purpose is to check whether a bug
fix based on the similarity metric indeed improves the translation
consistency.

Although CAT aims to repair translation inconsistency, it has a
“bonus” benefit of improving translation acceptability, which cap-
tures the property that a translation meets human assessment of a
reasonable (aka acceptable) translation. Thus, the manual inspec-
tion considers two aspects: 1) the consistency of translations before
and after repair; 2) the acceptability of the translations for the orig-
inal sentence as well as the mutants before and after repair. For
7We present the proportion of bugs repaired by cross-reference on the LCS similarity
metric as an example

each dimension, we set up three labels “Improved”, “Unchanged”,
and “Decreased”. We randomly sampled 100 reported fixes. For
acceptability, it checks the translation improvement of both the
original sentence and the mutant, thus all together 200 inspections
are conducted.

Table 4: Manual inspection results on reported fixes (RQ3)

Aspect Improved Unchanged Decreased

TransRepair Consistency 87 12 1
Acceptability 32 149 19

CAT Consistency 93 7 0
Acceptability 32 153 15

Table 4 shows the results8. From this table, for consistency
improvement, CAT successfully improves the consistency for 93
(93%) fixes, the remaining 7 (7%) fixes have unchanged consistency.
Whereas for TransRepair, it improves the consistency for 87 (87%)
fixes, 12 (12%) fixes have an unchanged consistency, 1 (1%) case has
a dropped consistency. For the improvement in translation accept-
ability, CAT improves the translation acceptability for 32 (16.0%)
sentences, with 15 (7.5%) sentences’ acceptability being dropped
(due to possible trade-off between quality and consistency as well
as the incorrect alignment from the word alignment tool during
repair). TransRepair improves acceptability for the same number
of sentences (32), but leads to decreased acceptability for 19 (9.5%)
cases.

Table 5 shows some examples of translations that could be re-
paired by only CAT (TransRepair could repair none of them). In
this table, the first column is the input sentence. The second col-
umn is the Chinese translation of the input as well as the detected
translation bug (explained in blue text). The last column shows the
repaired translations.

Answer to RQ3: CAT repairs twice more bugs than Tran-
sRepair. For diversity, CAT repairs approximately half
of the bugs under each bug type, whereas TransRepair
achieves competitive performance on only numerals (53%
for CAT v.s. 47% for TransRepair), failing to repair 89% of
the bugs under other types.

5.4 Efficiency (RQ4)
To answer RQ4, we record the time cost of CAT and TransRepair
during the process of mutant generation, bug detection, and bug
repair. The results are shown in Table 6. Overall, both CAT and
TransRepair have good efficiency under our configuration (see more
details in Section 4.3) in their automatic testing and repair tasks.
This high efficiency is important to guarantee that end users do
not need to wait for a long time to get the final repaired translation
while using machine translators on line.

Specifically, for mutant generation, the mean time cost is 0.01s
per mutant for CAT and 0.41s for TransRepair. The reason is that
8The Cohen’s Kappa score of the translation acceptability and translation consistency
are 0.96 and 0.97, respectively.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

Table 5: Examples of buggy translations that CAT can repair whereas TransRepair cannot.

Original input sentence Original translation and the bug (explained in blue
text)

Repaired translation

Around 140,000 people have a heart attack in Eng-
land every year, and a quarter of these go on to have
another attack or a stroke.

每年在英国约有140万人心脏病发作，其中四分之一
继续发作或中风。 [Bug: “140,000” is incorrectly trans-
lated to “1.4 million”]

每年在英国约有140,000人心脏病发作，其中四
分之一继续发作或 中风。 [“140,000” is correctly
translated to “140,000”.]

Your patience never fails to disappoint me. 你的耐心永远不会让我失望 [Bug: “never fails to” is
incorrectly translated to its opposite meaning “永远不
会”, which means “never”.]

你的耐心总是让我失望 [“never fails” is correctly
translated to “总是”.]

There he managed presidential protocol and govern-
ment staff, the Kremlin website says (in Russian).

克里姆林宫网站说，他在那里管理着总统协议和政
府工作人员。 [Bug: “in Russian” is not translated.]

那里，他管理了总统协议和政府工作人员，克里
姆林宫网站说（俄文）。 [“in Russian” is correctly
translated to “俄文”.]

TransRepair uses Stanford Parser to parse each sentence for apply-
ing word replacement as well as filtering mutant candidates. CAT
directly uses the inference of the BERT model. It avoids the parsing
process, thereby greatly improving the efficiency.

Table 6: Efficiency of CAT and TransRepair (RQ4).

Approach TransRepair CAT

Mutant generation 0.41s 0.01s
Bug detection 0.99s 0.27s
Bug Repair 1.34s 1.92s

The lower cost of CAT in mutant generation also contributes
to its lower cost in bug detection: CAT needs 0.27s on average for
examining each sentence to report bugs, while TransRepair needs
0.99s.

For each reported bug, CAT spends 1.92s to conduct the auto-
matic repair, TransRepair spends 1.34s. The reason is that Tran-
sRepair is not able to generate many mutants when fixing a bug,
yet each mutant requires a fetch of translation from Google Trans-
late/Transformer for the repair process. Consequently, its time spent
on each bug is lower than CAT. However, this lower time comes at
a significant cost: most bugs could not be repaired successfully (as
we have observed in RQ2) due to the insufficiency of mutants.

The overall results lead to the following conclusion:

Answer to RQ4: CAT is significantly more efficient than
TransRepair in mutant generation (0.01s v.s. 0.41s) and bug
detection (0.27s v.s. 0.99s). CAT has comparable efficiency
(slightly worse) with TransRepair in bug repair (1.92s v.s.
1.34s), which is attributed to the larger number of mutants
that it employs.

6 EXTENDED ANALYSIS
In this section, we provide an analysis beyond the scope of our
research questions that can improve the understanding and better
explain the effectiveness of CAT.

6.1 Comparison with Other Testing
Approaches

As introduced in Section 2, apart from TransRepair, there are also
some other testing approaches. Those approaches employ different
test oracles for bug detection. They do not focus on inconsistency
bugs nor conduct automatic bug repair. Nevertheless, a comparison
with them in the overall bug detection quantity and quality is
deemed interesting. Thus, we compare CAT (with LCS metric) with
TransRepair as well as twomost recently published testing methods:
SIT [15], PatInv [12], and Purity [16]. For SIT, PatInv, and Purity
we used their released code and parameterise them according to
their best performing parameters, as shown by their papers. Table 7
presents the number of bugs detected by these four approaches on
Google Translate (GT) and Transformer. As can be seen by these
results, CAT and SIT detect many more bugs than TransRepair,
PatInv, and Purity.

Table 7: Number of reported bugs for different testing meth-
ods.

Translator TransRepair SIT PatInv Purity CAT

GT 2,198 5,576 82 3,459 5,109
Transformer 1,957 5,368 99 3,518 4,545

Since all these approaches report suspicious cases based on
heuristic test oracles, they are likely to produce false positives.
We therefore, need to check our results so that we can conclude
on the actual bug detection and accuracy of the heuristics. To this
end, the first two authors manually inspected9 the reported bugs
and checked whether they actually exposed translation issues. The
results of this analysis are recorded in Table 8. In this table, false
positive (FP) means that the approach reports the translations as
problematic (buggy) but the manual inspection actually finds out
that it is correct, i.e., it is not a bug. False negative (FN) means that
the approach reports the translations as non-buggy but the manual
inspection reveals that it is actually problematic (it is a bug). We
observe that CAT achieves a significantly higher F1-score than SIT,
PatInv, and Purity. This is because SIT primarily focuses on bugs
related to translation structures, which results in many false posi-
tives in cases of correct translations that have different structures.
The test inputs generated by PatInv often have similar semantics,
9The Cohen’ Kappa score of SIT / PatInv / Purity is 0.94 / 0.89 / 0.92, respectively.

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

which is good but they fail to capture the cases of sentences with
different semantics leading to the same translation. Purity often
breaks an entire phrase by mistake, yielding invalid input sentences
which may bring changes that affect the accuracy of test oracles.

Table 8: Validity of reported bugs for different testing meth-
ods.

Approach TN FN FP TP Precision Recall F1

TransRepair 0.48 0.02 0.15 0.35 0.70 0.95 0.80
SIT 0.28 0.22 0.33 0.17 0.34 0.44 0.38
PatInv 0.27 0.23 0.47 0.03 0.06 0.12 0.08
Purity 0.42 0.08 0.29 0.21 0.42 0.72 0.53
CAT 0.46 0.04 0.15 0.35 0.70 0.90 0.79

6.2 Influence of Mutant Number on Bug
Testing and Repair

In our experiment, following the previous work, we set the maxi-
mummutant number to 5 for bug detection, and to 16 for bug repair.
Here we investigate the influence of this bound on the number of
detected and repaired bugs.

For bug detection, we repeat the experiments with at most 1 or 3
mutants per sentence. Table 9 shows the number of bugs detected by
CAT and TransRepair when using different upper bounds (number
of mutants) on the four metrics. We find that a higher number of
mutants leads to a higher number of detected bugs for both CAT
and TransRepair. Notably, CAT detects approximately twice the
bugs as those detected by TransRepair for all the three different
bounds we examined.

Table 9: Influence of the upper bound of mutant number in
bug detection.

Metric TransRepair CAT

1 3 5 1 3 5

LCS 575 1,385 1,957 1,032 2,707 4,545
ED 576 1,389 1,963 1,036 2,728 4,573
TFIDF 627 1,511 2,146 1,049 2,861 4,798
BLEU 553 1,340 1,897 1,001 2,577 4,325

For bug repair, we repeat the experiments with a maximum
number of 4 or 8 mutants. Table 10 records the related results. As
can be seen, no matter what upper bound we use, CAT repairs
more than three times the number of bugs repaired by TransRepair.
Interestingly, we observe that even with 4 mutants, CAT can still fix
143% more bugs than TransRepair with 16 mutants. This is because
TransRepair fails to generate mutants for many sentences (as we
have observed from Figure 3), thus it is not able to repair any of
the bugs falling into these cases.

7 THREATS TO VALIDITY
Threats to external validity mainly lie in the evaluation dataset
and the models we used. First, though our approach applies to
different datasets and translation models, so far, we follow Tran-
sRepair [32] and have only implemented and evaluated it on the

Table 10: Influence of the upper bound ofmutant number in
bug repair.

Metric TransRepair CAT

4 8 16 4 8 16

LCS 516 605 684 1,724 2,117 2,399
ED 526 611 689 1,728 2,141 2,399
TFIDF 584 678 748 1,747 2,139 2,415
BLEU 536 635 708 1,667 2,053 2,344

same 2,001 sentences and two translation models. So future work
is needed to understand the performance of CAT on other datasets
and models. Second, though we only use BERT model [5] to extract
the context-aware word embeddings, our approach is still compati-
ble with other context-aware embedding models(e.g., Roberta [22]).
This is a future work to be explored.
Threats to internal validitymainly lie in our manual assessment.
We follow TransRepair [32] and use the same human evaluation
criteria. To further reduce the bias when comparing different meth-
ods, we randomised the sentences/test inputs to guarantee that
the method each sentence belongs to remains unknown to the
authors. The high kappa scores indicate that the bias in human
evaluation is minor. We also release the details of human labelling
on Github (available at https://github.com/zysszy/CAT) to improve
the transparency and replicability.

8 CONCLUSION
We propose CAT, an isotopic replacement based approach to im-
proving machine translation. As a special type of replacement, iso-
topic replacement subtly controls the impact when replacing words.
This is achieved by using a neural-based language model to encode
the sentence context and designing another neural-network-based
algorithm to evaluate context-aware semantic similarity between
two words. Such replacement is then used in a similar way as Tran-
sRepair to detect and repair translation bugs. The experimental
results on Google Translate and Transformer show that CAT suc-
cessfully detects 129%/129% more bugs and repairs 199%/238% more
bugs than TransRepair on Google Translate/Transformer.

For future work, we plan to investigate other oracle approxi-
mation techniques to further improve CAT’s performance in bug
detection and repair.

ACKNOWLEDGMENTS
Zeyu Sun, Yingfei Xiong, and Lu Zhang are sponsored by the Na-
tional Key Research and Development Program of China under
Grant No. 2019YFE0198100, the Innovation and Technology Com-
mission of HKSAR under Grant No. MHP/055/19, and National
Natural Science Foundation of China under Grant No. 61922003. Jie
M. Zhang and Mark Harman are supported by the ERC advanced
grant with No. 741278. Mike Papadakis is supported by the Lux-
embourg National Research Fund (FNR) through the CORE project
C17/IS/11686509/CODEMATES.

https://github.com/zysszy/CAT

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Sun and Zhang, et al.

REFERENCES
[1] [n.d.]. The worst translation mistake in history. https://pangeanic.co.uk/

knowledge/the-worst-translation-mistake-in-history/
[2] Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break

neural machine translation. In Proc. ICLR.
[3] Jialun Cao, Meiziniu Li, Yeting Li, Ming Wen, and Shing-Chi Cheung. 2020.

SemMT: A Semantic-based Testing Approach for Machine Translation Systems.
CoRR abs/2012.01815 (2020). arXiv:2012.01815 https://arxiv.org/abs/2012.01815

[4] Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019. Robust Neural Machine
Translation with Doubly Adversarial Inputs. In Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers. 4324–4333. https://www.aclweb.org/
anthology/P19-1425/

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. CoRR
abs/2010.11929 (2020). arXiv:2010.11929 https://arxiv.org/abs/2010.11929

[7] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-
Box Adversarial Examples for Text Classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics, Melbourne, Australia, 31–36.
https://doi.org/10.18653/v1/P18-2006

[8] Silvia P Gennari, Maryellen C MacDonald, Bradley R Postle, and Mark S Seiden-
berg. 2007. Context-dependent interpretation of words: Evidence for interactive
neural processes. Neuroimage 35, 3 (2007), 1278–1286.

[9] Carlo Giglio and Richard Caulk. 1965. Article 17 of the Treaty of Uccialli. Journal
of African History (1965), 221–231.

[10] Google. 2021. Google Translate. http://translate.google.com.
[11] Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. 2021.

Gradient-based Adversarial Attacks against Text Transformers. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 5747–5757.
https://aclanthology.org/2021.emnlp-main.464

[12] Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su. 2020. Machine
translation testing via pathological invariance. In ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 863–875.
https://doi.org/10.1145/3368089.3409756

[13] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark,
Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William
Lewis, Mu Li, et al. 2018. Achieving human parity on automatic chinese to
english news translation. arXiv preprint arXiv:1803.05567 (2018).

[14] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 24th International Symposium on High-Performance
Computer Architecture (HPCA 2018), February 24-28, Vienna, Austria.

[15] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for
machine translation. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 961–973.

[16] Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing Machine Translation
via Referential Transparency. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 410–422.

[17] Georg Heigold, Stalin Varanasi, Günter Neumann, and Josef van Genabith. 2018.
How Robust Are Character-Based Word Embeddings in Tagging and MT Against
Wrod Scramlbing or Randdm Nouse?. In Proceedings of the 13th Conference of
the Association for Machine Translation in the Americas, AMTA 2018, Boston, MA,
USA, March 17-21, 2018 - Volume 1: Research Papers. 68–80. https://aclanthology.
info/papers/W18-1807/w18-1807

[18] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[19] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT Really
Robust? A Strong Baseline for Natural Language Attack on Text Classification
and Entailment. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,

AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, 8018–8025. https://aaai.org/ojs/index.php/AAAI/article/view/6311

[20] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020.
BERT-ATTACK: Adversarial Attack Against BERT Using BERT. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu (Eds.). Association for Computational Linguistics, 6193–6202.
https://doi.org/10.18653/v1/2020.emnlp-main.500

[21] Xin Li, Lidong Bing, Wenxuan Zhang, and Wai Lam. 2019. Exploiting BERT for
End-to-End Aspect-based Sentiment Analysis. In Proceedings of the 5th Workshop
on Noisy User-generated Text (W-NUT 2019). 34–41.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[23] Yang Liu and Maosong Sun. 2015. Contrastive unsupervised word alignment with
non-local features. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

[24] John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi.
2020. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and
Adversarial Training in NLP. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, EMNLP 2020
- Demos, Online, November 16-20, 2020, Qun Liu and David Schlangen (Eds.).
Association for Computational Linguistics, 119–126. https://doi.org/10.18653/
v1/2020.emnlp-demos.16

[25] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[26] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[27] Daniel Pesu, Zhi Quan Zhou, Jingfeng Zhen, and Dave Towey. 2018. A Monte
Carlo Method for Metamorphic Testing of Machine Translation Services. In 3rd
IEEE/ACM International Workshop on Metamorphic Testing, MET 2018, Gothenburg,
Sweden, May 27, 2018. ACM, 38–45. http://ieeexplore.ieee.org/document/8457612

[28] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. 2021. Turn the
Combination Lock: Learnable Textual Backdoor Attacks via Word Substitution.
In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021,
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association
for Computational Linguistics, 4873–4883. https://doi.org/10.18653/v1/2021.acl-
long.377

[29] SpaCy. 2019. SpaCy. https://spacy.io/.
[30] Matthias Sperber, Jan Niehues, and Alex Waibel. 2017. Toward robust neural

machine translation for noisy input sequences. In International Workshop on
Spoken Language Translation (IWSLT).

[31] Liqun Sun and Zhi Quan Zhou. 2018. Metamorphic testing for machine trans-
lations: MT4MT. In 2018 25th Australasian Software Engineering Conference
(ASWEC). IEEE, 96–100.

[32] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic testing and improvement of machine translation. In ICSE. 974–985.
https://doi.org/10.1145/3377811.3380420

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. Curran Associates Inc., 6000–6010.

[34] Wikipedia. 2014. Wikipedia. https://dumps.wikimedia.org/.
[35] WMT. 2018. News-Commentary. http://data.statmt.org/wmt18/translation-task/.
[36] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

[37] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and
Maosong Sun. 2020. Word-level Textual Adversarial Attacking as Combinatorial
Optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational
Linguistics, 6066–6080. https://doi.org/10.18653/v1/2020.acl-main.540

[38] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning
Testing: Survey, Landscapes and Horizons. arXiv preprint arXiv:1906.10742 (2019).

https://pangeanic.co.uk/knowledge/the-worst-translation-mistake-in-history/
https://pangeanic.co.uk/knowledge/the-worst-translation-mistake-in-history/
https://arxiv.org/abs/2012.01815
https://arxiv.org/abs/2012.01815
https://www.aclweb.org/anthology/P19-1425/
https://www.aclweb.org/anthology/P19-1425/
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.18653/v1/P18-2006
http://translate.google.com
https://aclanthology.org/2021.emnlp-main.464
https://doi.org/10.1145/3368089.3409756
https://aclanthology.info/papers/W18-1807/w18-1807
https://aclanthology.info/papers/W18-1807/w18-1807
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
http://ieeexplore.ieee.org/document/8457612
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://spacy.io/
https://doi.org/10.1145/3377811.3380420
https://dumps.wikimedia.org/
http://data.statmt.org/wmt18/translation-task/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.540

Improving Machine Translation Systems via
Isotopic Replacement ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[39] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017. Generating Natural
Adversarial Examples. CoRR abs/1710.11342 (2017). arXiv:1710.11342 http:
//arxiv.org/abs/1710.11342

[40] Wangchunshu Zhou, Tao Ge, Ke Xu, FuruWei, and Ming Zhou. 2019. BERT-based
lexical substitution. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. 3368–3373.

https://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine Translation Testing
	2.2 Machine Translation Repair

	3 Approach
	3.1 Overview
	3.2 Candidate Word Generation
	3.3 Semantic Evaluation
	3.4 Testing and Repair

	4 Experimental Setup
	4.1 Research Questions
	4.2 Machine Translators
	4.3 Implementation Settings
	4.4 Dataset

	5 Results
	5.1 Effectiveness of Test Generation (RQ1)
	5.2 Effectiveness of Bug Detection (RQ2)
	5.3 Effectiveness of Bug Repair (RQ3)
	5.4 Efficiency (RQ4)

	6 Extended Analysis
	6.1 Comparison with Other Testing Approaches
	6.2 Influence of Mutant Number on Bug Testing and Repair

	7 Threats to validity
	8 Conclusion
	References

