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ABSTRACT
Much research on software testing makes an implicit assumption
that test failures are deterministic such that they always witness
the presence of the same defects. However, this assumption is not
always true because some test failures are due to so-called flaky
tests, i.e., tests with non-deterministic outcomes. To help testing re-
searchers better investigate flakiness, we introduce a test flakiness
assessment and experimentation platform, called FlakiMe. FlakiMe
supports the seeding of a (controllable) degree of flakiness into the
behaviour of a given test suite. Thereby, FlakiMe equips researchers
with ways to investigate the impact of test flakiness on their tech-
niques under laboratory-controlled conditions. To demonstrate the
application of FlakiMe, we use it to assess the impact of flakiness on
mutation testing and program repair (the PRAPR and ARJA meth-
ods). These results indicate that a 10% flakiness is sufficient to affect
the mutation score, but the effect size is modest (2% - 5% ), while it
reduces the number of patches produced for repair by 20% up to
100% of repair problems; a devastating impact on this application of
testing. Our experiments with FlakiMe demonstrate that flakiness
affects different testing applications in very different ways, thereby
motivating the need for a laboratory-controllable flakiness impact
assessment platform and approach such as FlakiMe.
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1 INTRODUCTION
Test flakiness is the property of a test case and system under test,
that the test can pass on one occasion, yet fail on another, without
the tester changing anything other than the fact that the test is
executed on two different occasions. This behaviour has a number
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of causes, such as non-determinism in the system under test, in-
stability in the infrastructure that provides the test environment,
and variability in the results produced by services and components
upon which the system under test depends.

Flakiness has a profound impact on all applications of software
testing because it increases test signal uncertainty; the tester can
never be sure that a failure is genuine and this may waste effort
(investigating false positives) or lose important signals (from switch-
ing off flaky tests). Companies such as Google and Facebook have
highlighted the problem of test flakiness [14, 20, 26, 30], indicating
that it is one of their primary concerns for software testing. Some
companies have also launched specific challenges to the research
community to tackle this problem [15].

Flakiness impacts each form of testing in different ways. E.g.
in mutation testing, the mutation score will vary, dependent on
flakiness, confounding this variability with the influence of the
quality of the test that the score seeks to assess. In automated
program repair, the certainty we have that a repair is correct will be
affected by flakiness, as will be the ability of the repair technique
to localise the point at which to attempt a patch. Indeed, it has
been argued that all forms of testing need to be reformulated to
take account of flakiness in order to find techniques that can cope
well in the presence of unavoidable flakiness [2, 14, 23]. This means
that testing techniques need to be re-investigated under flakiness
conditions to assess their robustness on varying degrees of flakiness.

In order to address the problems posed by flakiness, researchers
need ways to investigate the impact of flakiness. Naturally, studies
should be conducted on real-world systems to explore this impact
[26, 29]. However, researchers also need the ability to experiment
with flakiness in laboratory-controlled conditions. Such laboratory
control would circumvent the limited number, availability, and
reproducibility of flaky test datasets, and allow researchers to report
results on the impact of varying degrees of flakiness on the test
techniques they propose and introduce.

To address this need, we introduce FlakiMe, a tool that allows
researchers to seed a controlled degree of flakiness into a given
test suite and system under test. FlakiMe equips researchers with a
laboratory-controllable environment in which they can simulate a
rich set of flakiness scenarios and conditions. Specifically, FlakiMe
can:
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• be seamlessly integrated into any Java project as a Maven
plugin, without requiring any modification to the code of
the project;

• trigger flaky failures during test executions, at any point
during these executions;

• rely on user-defined flakiness prediction models to associate
tests with a likelihood to be flaky;

• control the degree of injected flakiness via a parameter that
defines the probability threshold above which execution of
any flaky test results in a flaky failure.

This paper introduces FlakiMe and illustrates its application to the
assessment of flakiness impact on mutation testing – implemented
in PIT [6] – and “generate and validate” automated program repair
(G&V APR) – more precisely on the PRAPR [11] and ARJA [43]
repair methods.1

To demonstrate the capability and the usefulness of FlakiMe, we
combine it with a state-of-the-art flakiness prediction approach
[5, 13, 34] that identifies tests that could be flaky based on their
code similarity to real flaky tests. That is, the approach predicts the
probability that a test is flaky based on the terms (tokens) this test
contains. Previous studies have demonstrated that these vocabulary-
based approaches can effectively predict flaky tests, with an F1 score
greater than 90%.

In FlakiMe, we use this flakiness prediction approach to build
a theoretical model of flakiness that identifies candidate tests to
inject realistic flakiness into. We, therefore, obtain the following
benefits:

• Each test has a different probability to trigger a flaky failure.
• Tests that execute similar pieces of code have a dependent
probability to trigger a flaky failure.

• Flaky failures can occur at any location in the tests and this
occurrence depends on the code of the test.

There is, to date, no evidence that this model matches the actual
behaviour of real flaky tests and, for this reason, experimental
results obtained with FlakiMe may differ from results that would be
obtainedwith real flaky tests. FlakiMe enables laboratory-controlled
experimentation with extremes, and therefore it is not directly
concerned with the specific settings/characteristics of a particular
environment context. As such, we give experimental controllability
over the degree of flakiness, so that researchers can stress-test their
techniques and study their limits. It remains important to validate
research techniques in practice, through empirical studies with
real flaky tests. What FlakiMe offers is the capacity to conduct
complementary experimental analyses under broader and more
controllable settings than what real-but-rare flaky tests enable.

Previous research on flakiness has helped to identify the main
causes of flakiness [27, 29], and has introduced techniques to either
reduce or ameliorate its effects. However, hitherto, no systematic
way of evaluating the sensitivity of arbitrary software testing prob-
lems to flakiness has been introduced. We fill this gap and report
results on the use of our FlakiMe platform to yield insights on two
software testing problems. Thus, our key contribution is the evi-
dence that the use of FlakiMe leads to interesting and actionable
results. Specifically, we use FlakiMe to perform two laboratory-
controlled experiments on:
1We will refer to G&V APR simply as “automated program repair”.

(1) Mutation testing: We show how FlakiMe allows us to in-
vestigate the size of this effect. In particular, using FlakiMe
we can reveal that:

(a) A small amount of flakiness can affect the mutation score
(10% of flakiness failures yields mutation score variations
between 2% to 5%);

(b) When the degree of flakiness increases, the mutation score
follows an asymptotic growth where additional increases
in the degree of flakiness have a rapidly diminishing im-
pact on mutation testing.

(c) Taken together with the above findings we form a take-
home message for mutation testing researchers: flakiness
is a potential problem but with limited effect. Although
researchers should always take into account the flakiness
effects on the mutation scores they report, the results
suggest that it is not sufficient to “poison the well”.

(2) Automated program repair: For the application of repair,
we found that the impact of flakiness is stronger than it is on
mutation testing. Specifically, we show that the same degree
of flakiness has different effects on different systems. This
indicates that research on automated repair needs to analyze
how sensitive to flakiness their test suites and subjects are.
Our results show that FlakiMe can be used to pre-select
suitable subjects and to validate the key decisions made by
the studied techniques. More precisely, we show that:

(a) Deterministic repair is increasingly affected by the num-
ber of tests covering the produced patches. In our studied
projects, only 50% of patches remain proposed by the tech-
niques as a result of flakiness.

(b) Non-deterministic repair experiences a drop in the number
of patches produced by 60% to 100%, with the worst case
(total failure; 100% drop) occurring for 36% of the programs
studied. Exploiting knowledge about the non-flaky failures
mitigates this effect, yielding between 2 to 600 times more
patches and even allowing the repair of cases that were
before hindered by flakiness.

2 RELATEDWORK
Previous work on test flakiness [1, 8, 9, 20, 21, 35] has primarily
focused on identifying its causes. Luo et al. [27] were the first to
propose a formal classification of the root causes of test flakiness.
Relying on this definition, recent studies [1, 4, 18–21, 26] highlight
various degrees of flakiness in industrial code bases (e.g. 4% of
flaky failures at Google [26]). Other studies have been conducted
addressing non-deterministic system such as machine learning
models [8], different programming languages [12] or automatically
generated tests [33]. The follow-up work aimed at the automated
identification of flaky tests [10] and the development of tools that
identify and/or remove flaky tests, such as iFixFlakies [38], iDFlakies
[22], RootFinder [20], DeFlaker [4], SHAKER [39], FLASH[8] or the
work of Malm et al. [28] which proposes to insert delays in tests to
increase their robustness.

The presence of flaky tests degrades the effectiveness of test
suites. Therefore, flaky tests should be fixed/controlled early, ide-
ally as soon as flakiness is introduced [32]. Facing the need to detect
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flaky behavior before it manifests itself, researchers started investi-
gating flakiness prediction models based on supervised learning.
King et al. [17] rely on a Bayesian network model defined over
code metrics related to flakiness. Similarly, FLAST[41] uses code
metrics to feed a K-nearest neighbours model. Recent work has
shifted from code metrics to vocabulary-based approaches. Pinto et
al. [34], followed by Haben et al. [13] and Camara et al. [5], devel-
oped random forest models that learn from test code tokens in order
to predict new flaky tests based on how similar their vocabulary
is to known flaky tests. Finally, approaches like FlakeFlagger [3]
and the classifier presented by Lampel et al. [24] rely on dynamic
features (observed at runtime) instead of the static features used in
the other studies. With FlakiMe, researchers have now the ability
to leverage such flakiness prediction models in order to control the
degree of flakiness present in test suites and assess the sensitivity
of testing techniques to this flakiness.

The inherent non-determinism of flaky tests, combined with the
specific environmental conditions under which flakiness manifests
itself, makes it inherently difficult to collect flaky test datasets and
even more difficult to consistently reproduce flaky failures. As a
result, few studies have analysed the effects of flakiness on software
testing techniques.

Mutation testing. Shi et al. [37] evaluated the effects that non-
deterministic coverage (in test executions) can have on mutation
score and proposed a way to reduce this problem. The study shows
that the mutation score can vary up to 5% when ignoring non-
determinism. These findings are based on in vivo observations of
non-determinism in 30 open-source software projects. None of the
30 projects they studied exhibited flaky behavior in the test outcome,
only in the test coverage. This highlights the difficulties to construct
flaky test datasets suitable for research and to reproduce real flak-
iness occurrences. Therefore, we complement such studies with
FlakiMe and its capability to produce in vitro laboratory-controlled
flakiness. With FlakiMe, we simulate test failures with different
flake rates and observe the asymptotic growth in mutation score
as the flake rate increases. Our results corroborate Shi et al.’s gen-
eral finding that a small amount of non-determinism can affect
the mutation score. Our novel finding is that the effect of flakiness
saturates rapidly when the flakiness rate increases.

Automatic Program repair. Qin et al. [36] have analyzed the
impact of specific causes of flakiness on APR. Like our study, they
rely on the Defects4J dataset as a source of buggy programs – the
most established dataset in APR. However, their analysis is limited
to flaky failures caused by the use of different JDK versions. Their
results show that a few flaky failures (0.3% of all test executions)
negatively impact the suspicious statement localization in more
than 20% of the programs and reduce the repair capabilities of the
APR tool by up to 87%. By contrast, our study introduces a broader
set of flakiness instances in Defect4J tests based on how similar
their code is to flaky tests observed in the field. We investigate
in depth how the rate of occurrence of flaky failures affects each
step of the APR process, from fault localization to patch validation.
While Qin et al. [36] observe negative effects, these effects are
somehow limited (APR can still fix bugs). Our novel finding is that
scarce flakiness occurrences can have a profound effect and even
annihilate the capacity of APR methods. We also identify the key
components that are affected and suggest mitigation strategies.

Fault Localization. Vancsics et al. [40] have studied the effects
of flakiness on fault localization. They seeded flakiness in tests
suites by making tests randomly flake (with a uniform distribution),
whereas we use calibrated prediction models from the literature
and a varying flakiness rate in order to observe trends and extremes.
Their observations are aligned with ours: flakiness has a significant
impact and falsely alters the ranking of suspicious statements. They
also show that different ranking formulae are impacted differently.
In our study, we do not observe the effects of flakiness on fault
localization in isolation but within the broader use case of APR. We
further demonstrate that the impact of flakiness on fault localization
is the main factor explaining the reduced effectiveness of APR and
propose mitigation strategies accordingly. Finally, our platform is
generic and enables experimentation on different testing techniques,
including – but not limited to – FL.

Test Selection/Prioritization. Leong et al. [26] has reported
that flaky tests significantly mislead the test selection algorithms
used in Google’s continuous integration environment. Lam et al.
[23] have conducted a focused study on the impact of test order
dependency, a specific form of flakiness. Though our study focuses
on mutation testing and APR, FlakiMe can also support sensitivity
studies on other testing techniques through the seeding of varying
degrees of flakiness.

3 FLAKIME
FlakiMe2 is a flexible tool through which researchers can simulate
a rich set of scenarios and conditions for flakiness. It is distributed
as a Maven plugin. Hence, testers can seamlessly integrate FlakiMe
into any Java project as part of the Maven configuration, with-
out requiring any modification to the code of the project or its
environment.

FlakiMe instruments the bytecode of the tests by introducing a
payload that can trigger flaky failures at any test execution point,
i.e. flake points. FlakiMe, therefore, introduces test failures but does
not make some tests incorrectly pass.3 These test failures are intro-
duced at specific test code locations named flake points. Concretely,
a flake point can be any location that corresponds to the end of a
basic control flow block (i.e. a sequence of contiguous instructions
that does not contain jump/branch instructions except the last one).
The probability that a flaky failure occurs at a specific flake point
depends on (1) a user-defined flakiness prediction model and (2) a
real-valued parameter named the nominal flake rate. FlakiMe im-
plements a test instrumenter that injects probable program failures
at any flake point during test execution. To simulate a flaky failure,
FlakiMe raises an unchecked exception, thereby causing the test to
fail. The exception is guarded by a probabilistic condition which
depends on the probability of the test execution to flake at this
point.

To qualify the probabilistic condition that guards the unchecked
exception, we rely on three concepts:

• The test flakiness probability, 𝑃𝑓 𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 ∈ [0, 1], represents
the likelihood that some (part of) test code is flaky. This value
is determined by the flakiness prediction model integrated
into FlakiMe.

2https://github.com/serval-uni-lu/flakime
3We will consider extending FlakiMe with this capability in the future.

https://github.com/serval-uni-lu/flakime
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• The nominal flake rate, 𝐹𝑅𝑛 ∈ [0, 1], represents the probabil-
ity that the execution of a flaky test results in a flaky failure.
This rate is a parameter that researchers can set and control
in their experiments to conduct sensitivity analyses.

• The effective flake rate, 𝐹𝑅𝑒 ∈ [0, 1], is the actual probability
for the execution of any test to result in a flaky failure. It is
defined as 𝐹𝑅𝑒 = 𝐹𝑅𝑛 ×𝑃𝑓 𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 . Therefore, the higher the
user sets the nominal flake rate, the higher number of flaky
failures this user will observe.

In addition to the nominal flake rate that FlakiMe users control
entirely, the users can easily plug in their own flakiness predic-
tion model. For instance, such models can learn from previously
observed flaky tests to predict the likelihood that unseen test in-
stances are flaky [3, 5, 13, 17, 34]. FlakiMe can benefit from studies
characterizing flakiness to build specific environmental perturba-
tions that mimic real-world flakiness as it has been observed in
the field. There currently exists no perfect model of real flaky tests
in the literature. Hence, the realism of the flakiness that FlakiMe
injects is bound to the evidence that the integrated model matches
real flaky tests. Hence, researchers should use FlakiMe with the
model that best reflects their environmental settings and working
assumptions, and be aware that the generality of their conclusions
is limited to the validity of these working assumptions in the real
world. We discuss this further in Section 7 – Threats to Validity.

In our study, we take advantage of a generic state-of-the-art
approach that predicts which tests could be flaky based on their
test code tokens similarity with previously observed real flaky tests
[5, 13, 34]. The advantage of this model is that it applies to pieces
of code of any length. It can, therefore, be used to define dependent
probabilities on multiple flake points of the same test. Also, the
model being based on code vocabulary, tests that execute similar
pieces of code have a dependent likelihood to be flaky.

More specifically, the approach of Pinto et al. [34] uses a set of
1,874 flaky tests extracted from 24 open-source projects [4] to train
a classifier. They represent a training sample with its binary label
(test being flaky or not) and its token feature vector, i.e.: for each
token contained in any of the 1,874 flaky tests, whether the token
is present. To compute this vector, the approach tokenises the code
of the test, removes a predefined list of stop words, and builds a
Boolean vector such that each element in the vector indicates the
presence or absence of the corresponding token in the test. With
this encoding, Pinto et al. trained a supervised classification model
to classify tests as flaky or not, thus based on the terms (tokens)
this test contains. Among the all classification models they have
considered in their empirical evaluation, Pinto et al. have demon-
strated that a random forest classifier yielded the best prediction
performance (the highest precision and F1 score).

In FlakiMe, we leverage the approach of Pinto et al. (that predicts
the probability that a test is flaky) in order to determine the flaki-
ness probability 𝑃𝑓 𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 of a test based on the terms it contains.
To use this approach in our study, we have extended the initial
training set with the token of our test subjects (i.e., the project un-
der flakiness simulation) and we trained from scratch the random
forest following Pinto et al.’s protocol [34]. Then, we use the model
to determine the test flakiness probability at any flake points in
the tests of the project under study. More precisely, we use the

model to compute the probability that a given test is flaky. We,
then, spread the probability mass over all flake points in the test,
based on the vocabulary of the code that precedes each flake point.
Hence, flake points lying at statements found in many flaky tests
will receive a higher probability than flake points that include no
risky operations.

Figure 1 shows the distribution of the test flakiness probability
that we obtain for our studied projects (see Section 5.4. We observe
that the shape of the distribution changes for each project. When
compared to Chart (Figure 1a) the project Time (Figure 1d) has a
median flakiness probability of 0.45 while the former has a median
value of 0.19. Time exhibits less variance across tests and is, on
average, more prone to flakiness than Chart. It is noteworthy that
these probability values do not correspond to the actual probability
that tests executions flake, but they rather serve as a means of
distinguishing the inherent proneness of different tests to be flaky.
FlakiMe weights each of these probability values with the nominal
flake rate, thereby allowing users to control the effective flake rate.

FlakiMe is designed to be an extensible tool that can be used
by researchers to test novel methods under different assumptions.
Thus, we design FlakiMe so that it can easily incorporate new flaki-
ness prediction models to account for such assumptions. To do so,
we integrate the concept of Flakikess Model which is an abstract Java
class that can be extended to easily integrate additional models. This
abstract class contains three methods: (1) preProcess which is
run before the instrumentation and provides information about the
tests to be instrumented; (2) getEffectiveFlakeRate which
returns the effective flake rate given a test method and a line number,
and (3) postProcess which allow for eventual cleaning or any
other post-processing operation.

To ease the integration of other methods/models, the framework
provides static information about the test code and an interface to
integrate modules assigning the flakiness probabilities.

4 THE IMPACT OF FLAKINESS ON
SOFTWARE TESTING TECHNIQUES

4.1 Mutation Testing
Mutation testing [31] determines the proportion of mutants (artifi-
cially injected defects) causing tests to transition from passing to
failing. Starting from a test suite 𝑡1, . . . , 𝑡𝑛 that passes on the origi-
nal program 𝑃 , mutation testing generates mutants𝑀1, . . . , 𝑀𝑘 by
altering the syntax of 𝑃 and, then, runs the test suite on the mutants.
The test suite 𝑡1, . . . , 𝑡𝑛 kills a mutant𝑀𝑗 if the execution of at least
one test on𝑀𝑗 fails. The mutation score (number of mutants killed
divided by the number of mutants) is a frequently used metric for
measuring test thoroughness [31]. One can see this as an 𝑛 × 𝑘
matrix, where each cell is related to a test 𝑡𝑖 and mutant 𝑀𝑗 pair,
and denotes whether 𝑡𝑖 killed𝑀𝑗 or not.

In the absence of flakiness, such a matrix is determined by the
tests and the mutants. However, in the presence of flakiness things
change arbitrarily; a flaky test that passes on the original program
can fail on a mutant, leading to a kill. Thus, running the test suite
with FlakiMe results in swapping the status of some mutants. The
probability of swapping, in this case, is equivalent to the effec-
tive probability that the concerned tests flake. Hence, failed flaky
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Figure 1: Distribution of test flakiness probability assigned by the vocabulary model employed in FlakiMe to each test subject.

test executions artificially inflate the mutation score, causing an
overestimation of the test suite’s fault revealing potential.

4.2 Program Repair
Automated program repair aims at generating patches (modifica-
tions of the software code that fix bugs) for programs with bugs
witnessed by failing test cases. In this line of work, effectiveness is
measured by the number of valid patches, generated within a given
time limit. A valid patch is one that compiles and passes all tests,
including the initially failing tests (that witnessed the bug).

Since the validity of patches is determined by the test case results,
it is interesting to see the extent to which flakiness can impact patch
selection. In other words, we would like to check the sensitivity
of repair methods to noisy signals caused by flakiness. FlakiMe
impacts this validity check by making a test fail randomly. In the
repair process, such a patch could be mistakenly discarded.

An increasing number of repair methods have appeared over the
years [7]. We select two recent methods that exhibit fundamental
differences of approach for greater diversity. These are PRActi-
cal Program Repair (PRAPR) [11] and Automated Repair for Java
Programs (ARJA) [43]. PRAPR uses mutation testing to generate
patches while ARJA uses genetic programming. Another key dif-
ference between the two approaches lies in their usage of Fault
Localization (FL) [42]. Where PRAPR only uses FL to prioritise the
order in which the patches are generated, ARJA uses it to identify
the most suspicious statements to repair.

4.2.1 Deterministic mutation-based repair (PRAPR). Unlike ARJA,
PRAPR requires the user to specify the failing test(s) that witness
the bug that is to be repaired. Then, it applies Fault Localization
(FL) to associate an estimated degree of suspiciousness to the state-
ments covered by the failing tests. The most suspicious statements
are targeted first, so as to increase the likelihood of finding a good
fixing point early. However, all statements are investigated given
sufficient time. To repair the program, PRAPR applies a predefined
set of mutation operators on each of the covered statements. More
suspicious statements are mutated first. This process results in a
deterministic set of patches defined by the mutation operators and
the mutable locations. To validate the patches, only tests covering
the mutated statements as well as the tests given as input are exe-
cuted against the mutants. The patch candidates (mutant programs)
for which all tests pass constitute the resulting set of valid patches.

4.2.2 Genetic programming-based repair (ARJA). ARJA is a GenProg-
like [25] tool. It generates a population of patches that evolve over
a predefined number of generations. ARJA does not ask the user

to specify the initially failing tests. Instead, it runs the entire test
suite, applies FL, and considers all tests that failed to retrieve the
set of suspicious statements. Then, it discards the statements with
suspiciousness values below a predefined threshold and collects the
statements that (i) are covered by at least one test covering the sus-
picious statements (ii) have some dependency with the suspicious
statements. A patch is formed by altering these statements. ARJA
uses the NSGA-II genetic algorithm to evolve the patches using a
fixed-size population and by producing patches for a fixed number
of evaluations. To evaluate a patch, ARJA runs the initially-failing
tests and all other (passing) tests that cover suspicious statements
(not discarded during filtering). If no tests fail, including the initially
failing ones, the patch is considered valid.

ARJA generates the same number of candidate patches over dif-
ferent runs. However, the patches will differ due to the randomness
in the evolution of the population. Hence, the number and content
of valid patches vary from one run to another.

Flaky tests may affect the initial test suite run, impacting the
FL estimates (suspiciousness scores). This can have a double effect:
change the patch search space and alter the number of tests to be
used for patch validity check. Variations in these numbers provide a
coarse view of the extent to which the use of FlakiMe has reshaped
the search space and affects the likelihood of finding a valid patch.
During patch validation, flaky test failures might occur and add
noise to the signal. Not only does this cause the algorithm to discard
valid patches but it also perturbs its learning, potentially hindering
its effectiveness.

4.3 Suspicious Statement Selection
Suspicious statement selection in many repair techniques – in-
cluding ARJA – relies on Spectrum-Base Fault Localization (SBFL).
Given a set of statements {𝑠1, . . . , 𝑠𝑠 } and a test suite {𝑡1, . . . , 𝑡𝑛},
SBFL assigns a suspiciousness score to each statement based on
the number of failing and passing tests covering them. It does this
by building an 𝑛 × 𝑠 matrix where each cell records whether a
particular test covers a particular statement. Then, it runs all tests
and keeps a record of those that pass and those that fail. Based on
this, it computes a suspiciousness score for every statement. For
instance, Ochiai, the metric used by PRAPR and ARJA, assigns to
any statement 𝑠 the score: 𝑠𝑓 /

√
(𝑠𝑓 + 𝑛𝑓 ) · (𝑠𝑓 + 𝑠𝑝 ) where 𝑠𝑓 is the

number of failing tests covering the statement 𝑠 , 𝑛𝑓 is the number
of failing tests, and 𝑠𝑝 is the number of passing tests covering 𝑠 .

Compared to a non-flaky test suite with clearly identified failing
tests, FlakiMe affects the Ochiai score of all statements because tests
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sometimes fail instead of pass. This increases the values 𝑛𝑓 and 𝑠𝑓
(if the failing flaky tests cover 𝑠). Thus, flakiness can either increase
or decrease the Ochiai score of the statements. When a surrounding
repair method discards statements based on their suspiciousness (as
in the case of ARJA), such differences can largely affect the search
space and reduce the effectiveness of the repair.

5 EXPERIMENTAL SETUP
5.1 Research Questions
Our first question concerns mutation testing and examines (quanti-
tatively) the extent to which mutation score can be inflated by test
flakiness:

RQ1 How much does flakiness artificially inflate the mutation
score of given test suites?

To answer this question we check the effect of flakiness on the
mutation scores of the whole projects’ test suites first, then on
randomly chosen samples. Our interest is on the divergence of
those scores under different degrees of flakiness.

In automated program repair, the observable effect of flakiness
is to reduce the number of generated valid patches. We want to
check the sensitivity of repair methods on flakiness. Thus, we ask:

RQ2 How sensitive to flakiness is the effectiveness of program
repair at generating valid patches?

We study this question on two state-of-the-art automatic pro-
gram repair tools leveraging different strategies, namely, PRAPR
and ARJA. While our goal is not a comparison of the tools, we aim
to highlight the ways flakiness affects different approaches and,
from there, to suggest mitigation strategies. Thus, we divide RQ2
into the following subquestions:

How much does flakiness decrease the number of valid patches
produced by deterministic mutations?

How much does flakiness decrease the number of valid patches
produced by genetic programming?

Going a step further, we also investigate the way PRAPR and
ARJA use Spectrum-Based Fault Localization (SBFL). PRAPR applies
SBFL only as a prioritisation step to minimise the time to generate
the first valid patch. Ultimately, it considers only the suspicious
statements covered by the failing tests that the user-provided. Con-
versely, ARJA uses SBFL to define its search space (discarding less
suspicious statements). This has three consequences: (a) the search
space encompasses more candidate patches that do not fix the bug
(since they target wrong statements), reducing de facto the effec-
tiveness of ARJA; (b) the faulty statement may be removed from the
search space, making it impossible to generate a valid patch; (c) the
number of tests – both failing and passing – executed to validate
candidate patches is increased. Consequently, we also investigate
the scenario where no flaky failures occur during SBFL. In this case,
the suspicious statement search space is not compromised which
could help to alleviate the effects of flakiness. To this end, we seek
to answer:

RQ3 Does making fault localization target real failing tests im-
prove the robustness of program repair against flakiness?

To complement our analysis, we study the sensitivity of SBFL
to flakiness with respect to the selection of suspicious statements.

We aim to measure the number of faulty statements that remain
selected as the flakiness rate increases, and the number of non-
faulty statements that are kept out of the search space. Hence, we
are interested at:

RQ4 How much does flakiness hinder the ability of threshold-
based suspicious statement selection?

Overall, the aim of our study is to demonstrate that FlakiMe
can yield interesting insights on the techniques’ behaviours and
robustness. Our goal is to show that the sensitivity of some decisions
and method characteristics to flaky tests can be exposed through
the lens of FlakiMe, which paves the way for the study and design
of mitigation strategies.

5.2 Nominal Flake Rate
The nominal flake rate 𝐹𝑅𝑛 is the parameter that we can set in our
experiments to control the effective rate 𝐹𝑅𝑒 at which flaky failures
occur. In practical applications, 𝐹𝑅𝑒 depends on environmental
factors and conditions that vary significantly and is, therefore, hard
to generalize outside a particular context. For example, industrial
evidence shows the existence of test suites involving 15%-45% flaky
tests [1, 4, 18–21, 26], which differs significantly from open-source
projects [3]. However, these studies do not report on the rate at
which these tests flake. Because of this, we consider it essential
and insightful to experimentally analyse the sensitivity of testing
techniques to varying degrees of flakiness. We, therefore, consider
a range of 𝐹𝑅𝑛 from 0.01 to 0.50 (we stop at 0.20 for ARJA because
this repair method could not produce patches above this rate).

5.3 Third-Party Tools
To study the effect of flakiness on mutation testing, we use the
open-source tool PIT [6], with its default operator set. The muta-
tion score 𝑀𝑆 of a test suite 𝑇 on a program 𝑃 can be expressed
as:𝑀𝑆 (𝑃,𝑇 ) = |𝐾 |/( |𝑀 | − |𝐸 |) where |𝐾 | is the number of mutants
killed, |𝑀 | is the total number of mutants and |𝐸 | is the number of
equivalent mutants. We ignore the analysis of equivalent mutants
since they do not impact our analysis and use a simplified muta-
tion score measure: 𝑀𝑆 (𝑃,𝑇 ) = |𝐾 |/|𝑀 | which is independent of
the equivalent mutants. Thus, as flakiness is introduced, only the
number of killed mutants |𝐾 | influences the mutation score.

To analyze the sensitivity of automated program repair, we select
two tools leveraging different strategies, PRAPR and ARJA. PRAPR
is available as a Maven plugin and as a Docker image4. We use the
Maven plugin in conjunction with the FlakiMe plugin to perform
our experiment.

ARJA is retrieved from GitHub5 and modified to print additional
statistics related to its execution and notify the system which step
it is performing (SBFL or patch validation).

To account for random variations introduced by flakiness and
by the patch generation process in the case of ARJA, we execute 10
runs for each degree of flakiness. This number of repetitions is a
compromise between statistical relevance and computation cost.

4https://github.com/prapr/prapr
5https://github.com/yyxhdy/arja

https://github.com/prapr/prapr
https://github.com/yyxhdy/arja
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5.4 Test Subjects
Defects4J [16] is a set of real bugs harvested from Java projects. It is
one of the most popular datasets in evaluating automatic program
repair techniques, including PRAPR and ARJA. In our study, we
consider the bugs for which the techniques succeeded. An impor-
tant success metric here is the ability of the techniques to generate
genuine patches (semantically equivalent to the developers’ patch).
Thus, for PRAPR, we picked the 16 buggy versions from five projects
originating from the Defects4J dataset for which PRAPR produced
at least one genuine patch. We discarded the buggy programs for
the Closure project because PRAPR requires more than 64GB of
RAM to repair them [11]. For ARJA, we consider 11 buggy versions
from two programs of Defects4J, for which the tool generated at
least one genuine patch (reported in ARJA’s supplementary mate-
rial6) and for which we could successfully generate valid patches
(using the default settings of the tool). Unfortunately, we could not
generate valid patches for some programs, due to differences in the
tool configurations and/or infrastructures. Nevertheless, to increase
diversity, we also considered 3 projects for which ARJA could gen-
erate valid (but not necessarily genuine) patches , i.e. patches that
pass all tests.

For mutation testing, we consider the latest releases (non-buggy)
of four projects that we use in the repair experiments: time, lang,
charts and math. We choose these projects to maintain a certain
consistency across our experiments.

6 RESULTS
6.1 RQ1: Mutation Testing
We investigate the effect of flakiness on the mutation score by
injecting flaky failures with a nominal flake rate ranging from 0.0
to 0.5. We repeat the experiment 10 times (for each rate).

Figure 2a shows the average mutation score overall runs. We ob-
serve that mutation score increases more steeply at lower flakiness
rates. This indicates that flaky tests, even at a small degree, are suffi-
cient to introduce noise, although the effect remains modest overall.
One reason leading to this fast increase comes from tests with high
flakiness probability. These tests tend to fail as soon as flakiness is
introduced. This effect is project-dependent and bounded by the
number of mutants that survive and are covered by the flaky tests
– hence the asymptotic behaviour. However, the total increase of
mutation score remains low even when the degree of flakiness in-
creases. For instance, when increasing the nominal flake rate from
0.0 to 0.5, the mutation score of Time raises from 31.73% to up to
38.93% (increase of 7.69%) while the score of Lang increases from
85.58% to up to 90.57% (increase of 4.99%).

Figure 2b shows the standard deviation of the mutation score as
the nominal flake rate increases. Without flakiness, the outcome
of the tests is deterministic and, therefore, we observe a standard
deviation of zero. When flakiness occurs, the standard deviation
remains low with average values ranging from 0.01 to 0.21.

Figure 2c allows us to better observe the difference in mutation
score that each nominal flake rate induces. We see that the median
values for a nominal flake rate of 0.1 range between 1.86% (Lang)
and 4.78% (Time). The values for a nominal flake rate at 0.5 ranges

6https://github.com/yyxhdy/arja-supplemental/blob/master/arja-supplemental.pdf

Table 1: Impact of flakiness on the valid patches generated
by PRAPR. |𝑃 | and |𝑉 | denote the number of (all) patches
and valid patches originally generated by PRAPR. |𝑇𝑣 | is the
average number of tests covering a valid patch. |𝑉𝑓 | is the
average number of valid patches in the flaky case, where 𝑓 ∈
{0.1, 0.2, 0.3, 0.4, 0.5} is the nominal flake rate.

Bug |𝑃 | |𝑉 | |𝑇𝑣 | |𝑉0.1| |𝑉0.2| |𝑉0.3| |𝑉0.4| |𝑉0.5 |
math-5 211 3 36.3 2.4 1.7 1.0 0.8 0.6
math-34 146 1 1.0 1.0 0.5 0.2 0.0 0.0
math-50 931 40 3.1 32.9 27.2 25.1 22.2 20.3
math-82 2017 7 14.0 5.5 4.4 2.7 1.8 0.8
math-85 1190 4 13.0 2.4 1.2 0.7 0.1 0.0

time-11 2951 36 6.1 28.0 21.8 19.3 15.2 13.3
time-19 3423 2 705.0 0.4 0.2 0.0 0.0 0.0

lang-6 206 1 31.0 0.4 0.1 0.0 0.0 0.0

mock.-29 2842 2 5.0 1.2 0.9 0.5 0.4 0.0
mock.-38 482 3 77.7 1.2 1.0 0.4 0.4 0.1

chart-1 3721 1 38.0 0.9 0.6 0.6 0.4 0.2
chart-11 158 2 16.0 1.4 0.9 0.7 0.3 0.1
chart-12 2245 2 3.5 1.2 0.9 0.4 0.0 0.0
chart-20 240 1 95.0 0.4 0.4 0.3 0.1 0.1
chart-24 133 2 1.0 1.3 1.1 0.7 0.1 0.0
chart-26 12435 103 43.6 79.1 64.7 52.0 40.2 33.9

from 4.11% (Lang) to 7.87% (Time). We observe that the smallest
degree of flakiness already results in about half of the total increase
of mutation score (i.e. at 0.5 nominal flake rate) and that mutation
score plateaus from thereon.

A small amount of flakiness can affect the mutation score
(less than 0.1 nominal flake rate inflates the score by 2%–
5%), yet this effect diminishes as the flakiness degree in-
creases. This results in an asymptotic growth with the
mutation score plateauing around 4%-8%.

6.2 RQ2: Effectiveness of Program Repair
6.2.1 Deterministic mutation technique. To evaluate the impact
of flakiness on PRAPR, we replicate its original experiments [11].
We retrieve the set of patches 𝑃 generated by PRAPR and the set
of valid patches 𝑉 , as well as the set of covering tests 𝑇𝑣 for each
mutant. Then, we re-execute PRAPR and report the number of valid
patches for different nominal flake rates (i.e. 0.1, 0.2, 0.3, 0.4, and
0.5). Even though the results of PRAPR execution are deterministic,
the validity of a patch may vary from one execution to the other
because of the injected flakiness. To alleviate any bias due to this
randomness, we execute PRAPR 10 times for any flake rate and
report the average number of valid patches over these 10 runs.

Table 1 shows the results. The number of valid patches is reduced
by 17.75% (math-50) to 80% (time-19) when a nominal flake rate
of 0.1 is introduced. When the degree of flakiness is increased to
0.5, the number of patches drops under 50% of the original number
for all projects and PRAPR generates no valid patch for 7 out of
the 16 projects. The initially large number of valid patches gener-
ated for math-50 (i.e. 40 patches) combined with the low number
of covering tests (3) explains the low impact of flakiness on this
project. On the contrary, for time-19, PRAPR initially generates a

https://github.com/yyxhdy/arja-supplemental/blob/master/arja-supplemental.pdf
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Figure 2: Impact of flakiness on the mutation score. Figure 2a shows the𝑀𝑆 of the complete test suites, while Figure 2b shows
the standard deviations of𝑀𝑆 . Figure 2c shows the difference in𝑀𝑆 that flakiness introduces.

low number of valid patches (2) while the number of covering tests
is high (705 tests). In this case, the introduction of flakiness com-
pletely annihilates PRAPR’s patch generation capabilities. Overall,
we observe that if the number of covering tests is important the
number of valid patches decreases faster. The decrease, however,
remains relatively slow when compared to the results of ARJA (see
Section 6.2.2).

Although PRAPR relies on SBFL to locate suspicious statements,
the tool takes as input a set of initially failing tests. During the
evaluation of the suspicious statements, any statement which is not
covered by any initially failing test is discarded. Thus, the set of
suspicious statements is bounded by the set of statements covered
by all initially failing tests. Consequently, the maximum number of
added tests that are introduced during the patch validation steps
are those with an intersection (in terms of coverage) with the initial
failing tests. The chances for at least one test to generate a flaky
failure remain lower as the total number of executed tests remains
low.

In an attempt to better analyze the benefits of knowing the
real failing tests, we ran PRAPR without this prior knowledge. In
this case, PRAPR runs first a fault localization procedure where it
executes all tests. If flaky failures occur, they will augment the set
of failing tests that PRAPR considers during repair. When running
under these settings, for all the buggy versions contained in the
dataset, PRAPR failed to generate any valid patches as soon as the
slightest flakiness is introduced. This is because PRPAR repairs
single faults and narrows its search to statements covered by all
failing tests. If two failing tests have a disjoint coverage – which
can happen if one such test is flaky – then PRAPR will generate no
patch.

As the degree of flakiness of the test suite increases, the
effectiveness of deterministic mutation-based repair tech-
niques decreases. The number of generated valid patches
drops by 20% to 80% for a low degree of flakiness and ex-
hibits a decrease of 50% to 100% when a high degree of
flakiness is injected.

6.2.2 Genetic programming-based technique. We first run ARJA on
each unmodified buggy program 10 times and analyze the number
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Figure 3: Sensitivity ofARJA’s effectiveness to flakiness. The
effect of flakiness is case-dependent and has disastrous con-
sequences. Fewer valid patches are generated as the nominal
flake rate increases. The most affected bugs are those that
ARJA can hardly fix even in the absence of flakiness.

of valid patches. Then, we repeat the same experiment while intro-
ducing flakiness. We assign each of these tests with a nominal flake
rate ranging from 0.00 to 0.20 – we stop there because at this point
ARJA fails to generate any patch for all projects. For each project,
we perform 10 runs of ARJA on each resulting flaky program.

Figure 3 shows the number of valid patches generated by ARJA
as the nominal flake rate increases. The results reveal that flakiness
has disastrous effects on all projects and drastically reduces the
number of valid patches generated – even more so as the nominal
flake rate increases.

When we consider a 0.05 nominal flake rate, the average number
of patches generated drops by more than 60% for all projects. Math-
5, math-39, math-53, and math-98 see their score reduced by 100%,
i.e. ARJA produces no valid patch for these projects. In math-22 and
math-58, the number of generated patches drops from an average
of 29.6 and 125 generated patches, respectively, to less than 1 patch.
For math-70, this average number drops from 97.8 to 1.3. ARJA
still produces valid patches for lang-20 (-82%), lang-22 (-77%) and
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lang-39 (-71%). Math-50 exhibits the smallest decrease – from 130.8
to 40.3 valid patches, that is, -69%. Overall, while the impact of
flakiness varies a lot from one buggy program to the other, the most
negative scenarios tend to occur in programs for which ARJA could
hardly generate a valid patch already in the non-flaky variants.

The decrease in the effectiveness of genetic programming-
based program repair due to flaky failures is dramatic for
all bugs in our dataset. With a nominal flake rate of 0.1, the
number of generated patches drops to zero for all projects.

6.3 RQ3: Targeted Fault Localization in
Program Repair

As a first step to investigate a mitigation strategy for the corruption
of ARJA’s search space due to flakiness, we retrieve additional
information from our RQ2 experiments. The failing and the passing
tests that cover one or more suspicious statements identified by
SBFL determine the set of statements considered to produce patches.
Their number is, thus, an indication of both the size of the search
space and the risk of discarding a valid patch due to flakiness.

Figure 4 shows the number of those tests for all projects and
nominal flake rates, averaged over 10 runs. As the nominal flake
rate increases, the number of failing tests increases almost linearly
(Figure 4a). Interestingly, as soon as flakiness is introduced, the
number of executed passing tests may not only increase but also
decrease (Figure 4b).

We explain this potential decrease by the fact that Ochiai – the
statement suspiciousness formula used by ARJA – depends on
the number of the failing tests that cover the statement and the
total number of failing tests. Hence, a flaky failure can decrease
the suspiciousness of a statement if the corresponding flaky test
does not cover the statement. If the suspiciousness score of the
statement goes below the predefined threshold used by ARJA, then
the statement is ignored during patch generation. This can, then,
result in a reduction in the number of executed passing tests. We
investigate the impact of flakiness on the suspiciousness score in
more depth in RQ4.

We notice a general trend where the number of executed tests
increases with the nominal flake rate. This is especially true, e.g.,
for math-22 which sees the number of tests executed explode after
a nominal flake rate of 0.14. These observations shed some light on
the results of RQ2:We suspect that the number of patches generated
dramatically decreases because of the larger number of (flaky) tests
executed.

We, therefore, pursue our investigation by studying the practi-
cal benefits of making SBFL target the real failing test cases. We
conduct controlled experiments where we compare the number
of valid patches produced by ARJA in (1) the previous flaky case
where SBFL is applied as is and (2) a new case where no flakiness is
injected during fault localization, thereby leaving the search space
untouched. Doing so allows us to discard any suspicious statements
and tests that are artificially added (due to flakiness occurring dur-
ing SBFL), under the same nominal flake rate. As before, we run
ARJA 10 times on each variant of each buggy program. Because

the patch search space is not compromised, we expect to observe
improvements in the number of valid patches.

Figure 5 shows the number of valid patches in the new case
(Targeted) and in the previous case (Non-Targeted), with a
nominal flake rate of 0.05. We observe a clear improvement in the
targeted case. ARJA is even able to generate valid patches for the
four programs (math-39, math-5, math-53, and math-98) it could not
repair in the non-targeted case. For the remaining programs, the
median number of valid patches is multiplied by a factor ranging
from 2 (math-50) to 600 (math-58). A Wilcoxon signed-rank test
with 𝛼 = 0.05 reveals that the differences are statistically significant
(p-value < 10−2).

These results show the importance of identifying the failing
test cases on which to apply fault localization, in order to avoid
corrupting both the patch search space and the validation process.

The fault localization step of program repair is particularly
vulnerable to flakiness. An efficient strategy to mitigate the
effect of flakiness on APR is, therefore, to make sure that
the repair targets the real failing tests. Applying this strat-
egy has allowed the generation of patches for four more
programs and yields up to 600 times more valid patches.

6.4 RQ4: Suspicious Statement Selection
To evaluate how the alterations in the suspiciousness scores impact
the set of statements selected by repair methods, we record, for each
unmodified buggy program, the statements retained by ARJA after
filtering. As recommended in the original paper [43], all statements
with an Ochiai score below 0.1 are discarded. Taking the set of
selected/discarded statements as the ground truth, we compute
their counterparts in flaky variants of the programs. We, then,
define the resilience of the Ochiai score against flakiness as its
capability to preserve the original set of suspicious statements.

We measure this resilience using the standard metrics of ac-
curacy, precision, and recall. Accuracy indicates the percentage
of statements that remain in their class (selected or discarded), a
coarse-grained view of how much the sets of statements are altered.
Precision measures the percentage of selected statements (in the
flaky case) that indeed had to be selected (were selected in the
non-flaky case). Thus, the lower the precision, the more the patch
search space is increased with patches that do not target the real
buggy statements. Recall measures the percentage of real suspicious
statements that remain selected in the flaky case. A lower recall
means a higher risk of discarding the real buggy statements.

We compute the accuracy, precision and recall for different flaky
failure rates, ranging from 0.00 (non-flaky case) to 0.50, in steps of
0.01. For each rate, we repeat the experiment 10 times.

Figure 6 shows the results for different nominal flake rates. In
Figure 6a, we observe that the accuracy tends to slightly decrease
with a higher rate of flaky failures but remains high for all projects
(over 97% for a nominal flake rate of 0.50). Indeed, most statements
are not covered by any failing test in the non-flaky program and
remain so in the flaky cases.

Flakiness has, however, a drastic impact on precision and recall,
with an amplitude that is project-dependent. As soon as a small
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Figure 4: Number of tests (failing, passing, and total) covering one or more suspicious statements and executed by ARJA, for
a nominal flake rate ranging from 0.0 to 0.2 and across 10 runs for each rate. Test flakiness creates discrepancies in the test
results that are executed against candidate patches. This has a double effect: waste of computation resources and a higher risk
of altering important test signals.
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Figure 5: Number of generated valid patches obtained when
no flaky failures occur during the fault localization step of
ARJA (Targeted) and flaky failures can arise at any step
(Non-targeted) with a nominal flake rate of 0.05.

degree of flakiness (0.01) is introduced, some projects see their
precision and recall drop dramatically (e.g. math-22 which sees its
precision drop to 20.82% and its recall to 35.12%; math-39 falls to a
precision of 32.56% and to a catastrophic recall 6.22%; math-50 sees
both precision and recall fall to about 25%).

When the nominal flake rate is set to 0.05, all projects see their
precision drop by 60% or more while the recall remains more case-
specific. The Ochiai score of the 𝐿𝑎𝑛𝑔 projects better resist flakiness
and manages to keep acceptable precision and recall at the lower
flakiness rates. The precision exhibits low values (less than 50%)
around at a nominal flake rate of 0.09. At 0.25, the values of recall for
lang-20 and lang-22 suffer a significant drop and it is only around
0.28 that the recall of lang-39 drastically drops. Finally, on math-70
and math-98, the Ochiai-based selection offers acceptable recall
until around a nominal flake rate of 0.10, where the recall drops
below 50%.

We conclude that the slightest degrees of flakiness (i.e., 0.01) can
reduce the precision and recall of the threshold-based suspicious
statement selection by up to 80%. This shows that the adopted
threshold is yet another factor contributing to ARJA’s loss of ef-
fectiveness. As shown by our results, the potential benefits of this

threshold (reducing the number of tests to execute) must be bal-
anced with the risk of executing flakiness, which can dramatically
reduce the performance of program repair. Lowering the threshold
may help, but still necessitates a clear a priori knowledge of the
particular flaky failure rate.

The smallest degree of flakiness is sufficient to disrupt
threshold-based suspicious statement selection. We found
that both precision and recall can drop by more than 80%.
Without user feedback, SBFL cannot target real failing tests,
so the use of the threshold should be avoided.

7 THREATS TO VALIDITY
The most important threat to validity regards the realism of the
injected flakiness and the lack of validation of FlakiMe against the
actual behaviour exposed by real flaky tests. The results of perform-
ing mutation testing or program repair with real flaky tests may,
therefore, differ from the results observed with FlakiMe. While
the experimental analysis that FlakiMe enables is important to
stress-test the research techniques and study their limits, empirical
analysis involving real flaky tests remains essential to validate these
research techniques in practice. It is to be noted that FlakiMe opens
the possibility for mitigating this threat and conducting empirical
studies through its calibration of its behavior to a particular con-
text. This can be done by incorporating a context-specific flakiness
prediction model, e.g., to simulate particular causes or instances of
flakiness. Nevertheless, the primary contribution of this paper is
the experimental analysis of the impact of flakiness as enabled by
FlakiMe. Our results corroborate and expand the findings of other
studies conducted on real-world flakiness [36, 37, 40].

Threats to construct validity are related to how we inject flaky
failures. Given that FlakiMe alters the execution of tests (and not the
source code), we cannot systematically control the execution flow
of the program under test. One of the major consequences of this
limitation regards flakes that instead of creating flaky failures, cause
it to pass. Because in its current implementation FlakiMe introduces
flaky failures, it cannot simulate this behaviour. Previous studies
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Figure 6: Performance of suspicious statement selection as the flaky failure rate increases.

have shown that this phenomenon can occur in reality [37] and
decrease the mutation score, although to a limited extent. Moreover,
the mutation testing tool we use (PIT) computes test coverage
once and for all on the basis of the original program and does not
execute the tests not covering the mutated statements. Thus, later
changes of coverage due to flakiness remain undetected by PIT
and do not affect the mutation score. Nevertheless, FlakiMe can
support a plethora of scenarios, such as the above ones, providing
experimental control on flakiness. We, therefore, expect that future
work will further alleviate such threats by considering further test
suites, projects characteristics, and flakiness injection methods.

A threat to the internal validity is due to the flakiness prediction
model that we used to determine the probability of tests to be flaky.
This model relies on the vocabulary of tests and do not include any
dynamic information such as coverage. Although, one could use
better predictors, based on the code under test, these are unlikely
to affect our results given the study of Haben et al. [13] that found
negligible improvement on the use of the code under test.

Finally, a threat to the external validity, which hinders the abil-
ity to generalize our results, regards the selection of the projects
in this study. We mitigate this threat by selecting projects from
the well-known benchmark Defects4J and ensure that the flaki-
ness probability distribution present in the test subjects (Figure 1)
presents differences. Furthermore, all the projects taken in our
analysis are written in Java, but we do not have any evidence that
different languages would yield significantly different results.

Ultimately, although laboratory-controlled conditions inevitably
differ from reality to some extent, they can still lead to interesting
insights that remain applicable in the real world, such as the mitiga-
tion strategies that our study has allowed us to reveal. We believe
that one of the main strengths of FlakiMe remains its flexibility
to integrate different “flakiness models” – i.e. the set of methods
and conditions that determine how FlakiMe injects flakiness in pro-
grams and tests. We entrust future users of FlakiMe with the task of
designing appropriate models for the specific flakiness phenomena
that these researchers investigate – and do so with the awareness
that any model they build comes with inevitable threats to validity
and should, therefore, be used under specific and validated working
assumptions. To ease this endeavor, additionally to the FlakiMe
Maven plugin, we provide a full replication package.7

7https://github.com/serval-uni-lu/flakime-replication-package

8 CONCLUSION
We presented a test flakiness platform, FlakiMe, that allows ex-
perimenting with laboratory-controlled test flakiness. FlakiMe is
customizable and can simulate a wide range of flakiness-related
conditions and scenarios. To demonstrate the utility of FlakiMe we
performed laboratory-controlled experiments to assess the impact
of test flakiness on mutation testing and automated program repair.

Interestingly, we showed that putting flakiness under labora-
tory control adds a new dimension to software testing studies,
which is the simulation of a world where some tests exhibit non-
deterministic behaviour and are considered as potentially flaky.
Such a world allows establishing a better understanding of the ef-
fects of flakiness and paves the way for developing robust (against
flakiness) test techniques.

For instance, we demonstrated that mutation testing, a popular
test assessment metric, is impacted by flaky tests, i.e., mutation
score is inflated by approximately 2%-8% depending on the degree
of flakiness. This effect is however small, as the introduced noise is
similar among all cases making the metric relatively stable.

In program repair, our results showed that the fault localization
step is particularly sensitive to test flakiness. Such sensitivity can
have disastrous effects on patch generation. Thus, to make program
repair techniques robust to flaky tests, one should revisit the key
decisions and assumptions made during fault localization.

For example, in a scenario where some ‘real’ failing tests are
specified as inputs, a tailored fault localisation procedure that con-
siders only these tests helps to prevent the corruption of the patch
search space as well as useless runs of the candidate patches with
flaky test cases. With FlakiMe as a framework to conduct controlled
and fine-grained experiments, researchers can further analyze mit-
igation techniques to improve the resilience of software testing
techniques under flakiness.
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