
Assessing Software Product Line Testing via Model-based Mutation:
An Application to Similarity Testing

Christopher Henard∗, Mike Papadakis∗, Gilles Perrouin†,♦, Jacques Klein∗, and Yves Le Traon∗
∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Luxembourg

†Precise Research Center In Software Engineering (PReCISE), University of Namur, Namur, Belgium

Email: ∗{firstname.lastname}@uni.lu; †{firstname.lastname}@fundp.ac.be

Abstract—Needs for mass customization and economies of
scale have pushed engineers to develop Software Product Lines
(SPLs). SPLs are families of products sharing commonalities
and exhibiting differences, built by reusing software assets
abstractly represented by features. Feature models describe the
constraints that link the features and allow the configuration of
tailored software products. Common SPLs involve hundreds,
even thousands of features, leading to billions of possible
software products. As a result, testing a product line is
challenging due to the enormous size of the possible products.
Existing techniques focus on testing based on the product line’s
feature model by selecting a limited set of products to test.
Being created manually or reverse-engineered feature models
are prone to errors, impacting the generated test suites. In this
paper we examine ability of test suites to detect such errors.
In particular, we propose two mutation operators to derive
erroneous feature models (mutants) from an original feature
model and assess the capability of the generated original test
suite to kill the mutants. Experimentation on real feature
models demonstrate that dissimilar tests suites have a higher
mutant detection ability than similar ones, thus validating the
relevance of similarity-driven product line testing.

Keywords-Mutation, Testing, Feature Models, Software Prod-
uct Lines, Similarity

I. INTRODUCTION

Customer demands and market pressure forces software
engineers to derive a wide range of different products at a
low cost. Software Product Line [1], [2] (SPL) techniques
and tools allow engineering such families of related prod-
ucts. Such techniques offer to build products by reusing and
combining software assets in a systematic way. Some of
these assets appear in all products (commonalities) while
some do not (variabilities). To compactly represent an SPL,
Feature Models (FMs) were introduced [3], each product
being abstractly modeled as a combination of common
and variable features linked to software assets. FMs allow
visualization, reasoning [4] and configuration [5] of tailored
software products. They are also ideal candidates for sup-
porting model-based testing of SPLs [6].

Common SPLs involve hundreds or thousands of features,
leading to complex FMs and billions of possible software
products to configure. For instance, the Linux kernel FM

♦FNRS Postdoctoral Researcher.

has more than 6,000 features [7]. As a consequence, testing
a SPL and the underlying FM is a inherently difficult activity
[8]. Indeed, although testing all the products would be ideal,
it is rarely feasible in practice since the size of the test suites
have to be realistic enough to fit testing budget constraints.
Test engineers are thus seeking for solutions to reduce the
size of their test suites. In addition, checking manually the
validity of the constraints present in the FM is not feasible.

Mutation analysis is a technique which aims at evaluating
the quality of the testing process. Generally applied on pro-
grams, it involves the modification of the original software
artifact into altered versions, called mutants. Each modified
version contains a defect willingly introduced. The tests are
then evaluated on these mutants to establish whether or not
they are able to reveal the introduced problems. Model-
based testing uses a model of the system to perform software
testing. Its use is to guide the testing process. The underlying
idea of this paper is to use the information provided by FMs
to establish a mutation approach. In SPL context, mutants
can be used to either produce or evaluate test cases. It leads
to our first research question:

[RQ1] How mutation analysis can be performed on
model-based software product lines?

Mutation analysis has been applied to various models, but
not on FMs. The use of mutation in literature is twofold.
First, it has been used to generate tests [9], [10]. Second,
it has been used to evaluate other testing approaches [11],
[12]. We focus on the second part. In our context, a test
suite represents a set of software products and a mutant can
be considered as a fault. In model-based testing, it has been
found that dissimilar test suites have a higher fault detection
power than similar ones [13]. This similarity heuristic can be
used to reduce the size of the test suites by removing similar
products. This approach is particularly useful since for SPL,
the number of products to test is usually enormous, with
potentially billions of possible products to test [8]. Moreover,
the benefit of this heuristic has not been thoroughly assessed
in the context of SPL testing. It leads to our second research
question:

[RQ2] Do dissimilar test suites have a higher mutant
detection rate in the context of software product line and
feature model testing?



To answer RQ1, we introduce a mutation analysis for
SPLs based on FMs. Thus, we produce different erroneous
variants of the original FM by introducing possible defects.
Then, we evaluate test suites generated from the original
FM towards the modified FMs. To answer RQ2, we use
a similarity heuristic [14] to compare two products and
to evaluate the similarity degree of a given test suite. An
experiment conducted on both similar and dissimilar test
suites towards FMs of different size demonstrate the higher
ability of dissimilar test suites to detect the defect embodied
in the modified FMs. Further, the validity of a similarity-
driven prioritization technique [14] is also evaluated.

In brief, the contributions of the present paper are:
• A mutation analysis approach for SPLs based on FMs,
• An experimentation performed on real FMs from small

to large scale ones, which (a) confirm the hypothesis
that dissimilar test suites have a higher mutant detection
rate than similar ones and (b) assess a similarity-driven
prioritization technique.

The remainder of this paper is organized as follows:
Section II and III respectively present the challenges of
SPL testing and introduce the concepts underlying the pro-
posed approach. Section IV details the mutation testing and
similarity approaches. Section V reports on the conducted
experiments. Finally, Section VI discusses related work and
Section VII concludes the paper.

II. CHALLENGES OF SOFTWARE PRODUCT LINE
TESTING

Testing a SPL is challenging due to the combinatorial
explosion of the number of products to consider [8]. Indeed,
even relatively small FMs might allows configuring billions
of possible products. For instance, the FM of a video player
[15] of less than 200 features allows derivating around
4.5E13 different variants of this player. In that context,
testing all the possible products is infeasible since in a real
world industrial environment, the resources are limited. It
thus becomes necessary to reduce the number of products
to test to a reasonable value while trying to maximize the
level of confidence in the products that are tested.

Mutation analysis has been applied effectively on different
kind of models, e.g. [16], [17], [18]. However, in the context
of SPLs, it has not yet been introduced. To this end, FMs
are the standard models used for describing and testing
a SPL [3]. Hence, we apply mutation on the constraints
embodied in a FM. Doing so enables targeting at possible
errors contained in inherent constraints of a product line
as modeled by FMs. In other words, mutation analysis
simulates possible defects in the logic constraints of the SPL.

Scalability forms an open issue for testing large SPLs
[8]. Recently, similarity was shown to be a simple, scalable
and effective approach, capable of both reducing the number
of products to test and to prioritize them [14]. The idea
introduced in this paper is to use mutation testing as a way

to assess the similarity method [13], [14]. Since mutants
represent possible defects of the model, they can be used
to evaluate the quality of the similarity-driven selected tests.
The benefit of this practice is that it becomes possible to
measure the appropriateness of the generated products at the
model level. Additionally, the usefulness of the similarity-
driven prioritization can also be assessed.

III. BACKGROUND

A. Feature Models (FMs)

Feature Models (FMs) represent the features and con-
straints between the features of the product line. A feature
represent an abstraction of a software asset, like a function-
ality. FMs allow constructing tailored software products by
selecting the features to be present in the final products.
A FM is generally represented by either a diagram, which
graphically represents the hierarchy and the constraints
linking the features or by a propositional formula, which
includes all the constraints linking the features and translates
the graphical representation of the diagram into propositional
logic.

Figure 1 illustrates an example of a FM with 10 features
[4]. It represents the different features and constraints that
hold among them. The translation of a FM to logic [5] allows
ensuring the configuration semantic is preserved. Indeed,
the formula of a FM defines the legal configurations1, i.e.
configurations which fulfill the constraints of the FM. In the
following, we will refer to configurations as products.

The formula of a FM can be expressed in Conjunctive
Normal Form (CNF), i.e. with a conjunction of n clauses
C1, ..., Cn, where a clause is a disjunction of m literals:

FM =

n∧
i=1

Ci.

As a result, a clause represent a constraint that has to
be satisfied by a given product. A literal represent either a
selected or an unselected feature. Thus, the general form of
a clause Ci is:

1A configuration represents the selected and unselected features of the
product.

Figure 1. A Simple Feature Model of a Mobile Phone Product Line



Ci =

m∨
j=1

fj , where fj is a feature or its negation.

For instance, the boolean formula in CNF of the mobile
phone product line depicted by Figure 1 is:

FM = (mobile phone) ∧ (¬calls ∨mobile phone)

∧ (¬mobile phone ∨ calls) ∧ (¬gps ∨mobile phone)

∧ (¬screen ∨mobile phone)

∧ (¬mobile phone ∨ screen)

∧ (¬media ∨mobile phone) ∧ (¬basic ∨ screen)

∧ (¬color ∨ screen) ∧ (¬high resolution ∨ screen)

∧ (¬screen ∨ basic ∨ color ∨ high resolution)

∧ (¬basic ∨ ¬color) ∧ (¬basic ∨ ¬high resolution)

∧ (¬color ∨ ¬high resolution)

∧ (¬camera ∨media) ∧ (¬mp3 ∨media)

∧ (¬media ∨ camera ∨mp3) ∧ (¬camera ∨ ¬mp3)

∧ (¬gps ∨ basic) ∧ (¬basic ∨ gps)

∧ (¬camera ∨ high resolution).

It contains 21 clauses represented here between brackets.
A valid assignment of the variables of this formula repre-
sents a valid product that can be derived from the FM. For
instance, the product

P = mobile phone, calls,¬gps, screen,media,

¬basic, color,¬high resolution,¬camera,mp3

is valid since it satisfies the formula of the FM. This
product has 6 features selected and 4 features not selected.

B. Mutation Testing and Analyis

Mutation analysis forms a powerful technique with var-
ious applications like software testing [19], [16] and de-
bugging [20]. It is applied by creating altered (mutant)
versions of the various programs artifacts like source code,
specification models, etc. [19], [16]. The main idea behind
this approach is to evaluate the power of test cases to reveal
behavior differences between the original (unaltered) and
the mutated (altered) artifact versions. The mutated versions
represent possible defects of the artifact under test and
they are produced based on a set of well defined rules
called mutant operators [16]. Mutant operators are defined
on “syntactic descriptions to make syntactic changes to the
syntax or objects developed from the syntax” [16]. The
process of introducing mutants is called mutation analysis.
The ability of the utilized test cases to reveal the introduced
mutants is examined in order to use this approach for testing
purposes (mutation testing). If a mutant can be detected by
a test, the mutant is called killed. Otherwise, it is called live.
Therefore, measuring the ratio of the killed mutants to the

totally introduced ones results in a quality measure of the
testing process. This measure is called mutation score and
demonstrates the ability of the tests to detect errors.

In the context of this paper, mutants are produced by
applying a set of mutant operators to the original FM.
The test evaluation is performed by checking whether the
tests satisfy the boolean formula of the modified FMs.
Since the examined tests are produced based on the original
FM, they always satisfy their respective boolean formulas.
Consequently, a mutant is said to be killed if its formula is
not satisfied.

C. Similarity

Similarity is an heuristic which is used here to compare
valid software products (i.e. the test cases) and to evaluate
the similarity degree of a given test suite. Previous work
on model-based testing, such as [13], [21] have shown that
dissimilar test suites bestow a higher fault detection power
than similar ones. The experiment’s results presented in
this paper (see Section V) show that dissimilar test suites
kill more mutants than similar ones. Similarity involves the
definition of a distance metric d between any two products
Pi and Pi, where 1 ≤ i, j ≤ n. This metric is used to
evaluate the degree of similarity between two given products:
the higher the resulting distance is, more different the two
products are.

IV. APPROACH

A. Mutation Analysis for Software Product Lines Based on
Feature Models

In this paper, we introduce a mutation testing approach
for SPLs based on FMs. The approach works as follows.
From a FM represented as a boolean formula, we produce
several erroneous versions of this model by applying mutant
operators on the clauses of the formula. These erroneous
versions of the original FM are the mutants. Then, using
a SAT solver [22], we generate valid products from the
original FM and we check their validity towards the mu-
tants. This evaluation is performed by checking whether the
generated products satisfy or not the boolean formula of the
mutants. This allows evaluating the quality of the test suite
through the computation of the mutation score. The approach
is depicted by Figure 2.

We propose two mutation operators which perform at the
clause level of the boolean formula of the FM. These two
operators are summarized in Table I. The first operator takes
a clause Ci and randomly change a literal of this clause
into its negation. As a result, this operator alters an existing
clause of the FM formula. The second operator aims at
creating two clauses from a given one by replacing one
of the disjunction operator in this clause by a conjunction
operator. Thus, this second operator creates two clauses from
an existing one, increasing the total number of clauses of the
boolean formula by one.



Figure 2. Mutation Analysis Approach

B. Test Suite Generation

In our context, a test represents one valid product that
can be configured from a FM. As a result, a test suite is
composed of the products to test. Usually, the number of
products that can be generated from a FM explodes with the
number of features, leading quickly to billions of possible
products to test, even for FM with less than 200 hundreds
features (see Table II).

We use a SAT solver [22] to generate products randomly
from the space of all the valid products. The random gen-
eration of products is performed via the method described
in [14]. Products randomly generated were found to be
dissimilar due to the large size of the search space. Besides,
to generate similar products, one product is randomly se-
lected from the search space of all the valid products. Then,
adjacent products to the randomly selected one are retrieved.
These are products sharing many selected or unselected
features in common. Section IV-C1 gives more details about
similar and dissimilar products.

C. Evaluation of the Quality of the Test Suite

Here, we try to link the mutation score of the examined
test suites with the quality of the test suite in terms of
dissimilarity between the products. To this end, we first
present a similarity-based distance between two products and
a prioritization technique which make use of this distance
to order the products [14].

1) A Similarity-based Distance: We consider products
represented as a set of selected and unselected features. In
this context, one product is represented as a set of n features
of a FM as P = {±f1, ...,±fn}, where +fi indicates
a feature which is selected by this product, and −fi an

Algorithm 1 Similarity-driven Prioritization(S)
1: input: S = {P1, ..., Pm} . Unordered set of m products
2: output: L . Prioritized list of m products
3: L← []
4: Select Pi, Pj from S where max (d(Pi, Pj))
5: . Take the first ones in case of equality
6: L.add(Pi)
7: L.add(Pj)
8: S ← S \ {Pi, Pj}
9: while #S > 0 do

10: s← size(L)

11: Select Pi ∈ S where max
(∑s

j=1 d(Pi, L.get(j)
)

12: . Take the first one in case of equality
13: L.add(Pi)
14: S ← S \ {Pi}
15: end while
16: return L

unselected one. The distance d between two products is
given by [14]:

d :
P × P −→ [0, 1.0]

(Pi, Pj) 7−→ 1− #Pi ∩ Pj

#Pi ∪ Pj
, where Pi, Pj ∈ P.

The resulting distance varies between 0 and 1. More
particularly, a distance equal to 1 indicates that the two
considered products are completely different. A distance
equals to 0 denotes that the two products are the same
(redundant). It is noted that an unselected feature is also
an element of the set representing a product.

2) A Similarity-driven Prioritization: Here, we use the
above-mentioned distance d to prioritize a test suite S of m
products [14]. The objective is to order the products such as
the first products selected are the most distant the one from
the others. Formally, the prioritization is defined as [23]:

Given: a set of products, S, the set of all the permutations
of S, PS and a function f from PS to the real numbers,
f : PS −→ R+.

Problem: finding S′ ∈ PS such as (∀S′′ ∈ PS | S′′ 6=
S′)[f(S′) ≥ f(S′′)]. In this context, f is the dissimilar-
ity achieved by S. The experimental study (see Section
V) demonstrates the correlation between the dissimilarity
between products and the mutation score.

The approach used in this paper is presented in Algorithm

Table I
MUTATION OPERATORS FOR FEATURE MODELS

Input Applies on Result

A clause: Ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a literal of the clause: fk, k ∈ [1,m] A modified clause: C′
i = f1 ∨ ... ∨ ¬fk ∨ ... ∨ fm

A clause: Ci = f1 ∨ ... ∨ fk ∨ ... ∨ fm a disjunction operator in the clause 2 clauses: C′
i = f1 ∨ ... ∨ fk and C′′

i = fk+1 ∨ ... ∨ fm



1. Informally, this prioritization approach selects at each step
the product which is the most distant to all the products
already selected during the previous steps. To this end, the
two products belonging to S and sharing the highest distance
are first added to L (lines 4 to 7). These two products are
then removed from S (line 8). The next step consists in
adding to L and removing from S the product sharing the
maximum distance to all the products already added to L
(lines 9 to 14): for each product of S, we sum the individual
distances with the other products of L, thus giving a value
for the set. Then the maximum is obtained by comparing
these set values (line 11). This process is repeated until S
is empty.

V. EXPERIMENTS

In this section, the mutation testing approach of FMs and
the evaluation of the quality of the generated test suites are
assessed. The experimental study employs 12 real FMs from
two common repositories [15], [24]. These FMs are recorded
in Table II. It presents, for each FM, the number of features
it contains and the total number of products that can be
configured from the model.

A. Evaluation of The Mutation Score Depending on the Type
of Tests

The first experiment aims at evaluating the impact of the
quality of the test suite on the mutation score. In other words,
the objective is to evaluate whether dissimilar test suites kill
more mutants than similar ones.

1) Setup: We generated 100 mutants for each of the 12
FMs used in this case study. The chance to produce a mutant
with one of the two mutation operators was set to 0.5. We
generated three type of test suites: test suites containing only
dissimilar products, test suites containing half similar and
dissimilar products, and test suites containing only similar
products. Different size of tests suites were generated for
each of these types: test suites of 2, 10 and 50 products. We
evaluated the test suites towards the 100 mutants to compute
the mutation score. The generation of the test suites and
the evaluation of the mutation score has been repeated 100
times.

Figure 3. Distribution of the 100 p-values Resulting of the Mann-Whitney
U Test between the Mutation Score Achieved by Similar and Dissimilar Test
Suites for the 100 Executions.

2) Results: The results are recorded in Table III. It
presents, for each FM, the average, minimum and maximum
mutation score achieved for the different size and types
of test suites. Following this table, one may observe that
the mutation score for the test suites of dissimilar products
is higher than the tests suites, containing both similar and
dissimilar products, and the latter is higher than similar test
suites. In some cases, like for the Linux kernel 2.6.28.6 FM
with test suites of 50 products, the mutation score achieved
by dissimilar test suites is more than three time bigger than
the mutation score reached by similar test suites.

To evaluate whether these differences are statistically
significant, we followed the guidelines suggested by Arcuri
and Briand in [25] by performing a Mann-Whitney U Test. It
is a non-parametric statistical hypothesis test for assessing
whether one of two samples of independent observations
tends to have larger values than the other. We obtain from
this test a probability called p-value which represents the
probability that the two samples are equal. It is conventional
in statistics to consider that the difference is not significant

Table II
12 VARIOUS SIZE FEATURE MODELS

C
ou

nt
er

St
ri

ke
Si

m
pl

e
FM

D
S

Sa
m

pl
e

E
le

ct
ro

ni
c

D
ru

m

Sm
ar

t
H

om
e

v2
.2

V
id

eo
Pl

ay
er

M
od

el
Tr

an
sf

or
m

at
io

n

C
oc

he
E

co
lo

gi
co

Pr
in

te
rs

E
le

ct
ro

ni
c

Sh
op

pi
ng

eC
os

3.
0

i3
86

pc

Fr
ee

B
SD

ke
rn

el
8.

0.
0

L
in

ux
ke

rn
el

2.
6.

28
.6

Number of Features 24 41 52 60 71 88 94 172 290 1,244 1,396 6,888

Number of Valid Products (≈) 18,176 6,912 331,776 3.87E9 4.5E13 1.65E13 2.32E7 1.14E27 4.52E49 NA NA NA



Table III
MUTATION SCORE ACHIEVED WITH DIFFERENT TYPES OF TEST SUITES (%)

Number of products 2 10 50
Type of products Dissim. Sim. Dissim. Half Sim./Dissim. Sim. Dissim. Half Sim./Dissim. Sim.

avg 69.50 53.02 82.29 80.09 64.40 84.83 84.44 76.86
Counter Strike Simple FM min 54 31 77 75 45 83 83 63

max 77 71 85 84 75 85 85 84
avg 50.64 35.91 69.26 64.71 52.72 88.67 86 77.07

DS Sample min 46 22 60 56 39 81 76 66
max 58 50 81 75 63 90 90 90
avg 63.59 45.92 81.31 78.99 60.04 83 83 80.05

Electronic Drum min 55 33 75 73 45 83 83 76
max 69 58 83 83 69 83 83 83
avg 78.18 58.83 93.13 91.71 66.49 94 93.86 77.62

Smart Home v2.2 min 62 34 89 85 46 94 93 63
max 90 76 94 94 79 94 94 86
avg 69.16 53.64 82.50 80.70 58.36 84.02 83.64 67.68

Video Player min 31 25 77 57 29 83 77 34
max 81 72 85 84 73 86 85 77
avg 68.69 52.33 83.17 80.24 54.21 84 83.99 58.94

Model Transformation min 60 39 80 66 41 84 83 45
max 74 65 84 84 66 84 84 73
avg 72.66 59.21 83.93 80.40 60.90 88.94 88.32 66.46

Coche Ecologico min 67 49 79 71 47 87 85 55
max 78 68 88 86 69 89 89 74
avg 59.58 45.13 76.45 72.68 47.47 82.50 80.95 56.48

Printers min 38 21 72 60 31 80 77 38
max 70 60 81 77 63 84 83 66
avg 66.27 48.33 86.42 82.80 49.09 89.23 88.70 54.18

Electronic Shopping min 55 38 80 76 38 88 85 40
max 77 60 90 89 63 90 90 67
avg 60.35 48.32 77.83 73.22 48.41 83.49 81.13 49.64

eCos 3.0 i386pc min 49 38 74 65 38 77 76 40
max 68 65 86 83 56 87 87 57
avg 26.82 18.62 40.91 36.55 18.89 46.89 45.28 19.14

FreeBSD kernel 8.0.0 min 10 5 32 25 5 45 40 7
max 37 32 46 43 29 48 48 32
avg 10.14 7.14 15.72 13.97 7.40 23.21 21.40 7.29

Linux kernel 2.6.28.6 min 7 3 11 10 4 14 14 4
max 17 16 24 22 16 35 34 10

if the p-value is higher than the 5% level.

For each size of test suites and for each of the 100
executions, we took the mutation score achieved by the
dissimilar and similar test suites for each feature model. We
thus have on the one hand the 12 mutation scores for the
similar test suites, and on the other hand the 12 mutation
scores of the dissimilar test suites. It leads to 100 p-values
corresponding to the number of executions performed. The
results are presented in Figure 3. It represents via a box

plot the distribution of the 100 p-values resulting of the
Mann-Whitney U test between the mutation score achieved
by similar and dissimilar test suites for the 100 executions.
From this figure, it can be observed that the difference is
statistically significant for test suites of 10 and 50 products
since all the p-values are lower to the significance level of
5%.



B. Evaluation of the Mutation Score Towards the Similarity-
driven Prioritization

Here, the objective is to assess whether the similarity-
driven prioritization [14] is effective. In other words, we
want to evaluate whether k products selected according to
the prioritization technique presented in Section IV kill more
mutants than k products randomly prioritized.

1) Setup: For each FM, we generated tests suites of 100
products containing both similar and dissimilar products.
We executed the similarity-driven prioritization technique
to prioritize each test suite. Then, we applied 100 times
a random prioritization of the products in order establish
a random ordering of them. Finally, for each number of
k products selected between 0 and 100, we evaluated the
mutation score achieved with these k products.

To compare the prioritization approaches, the area under
curve is evaluated [14], [26]. This area is the numerical
approximation of the integral of the coverage curve and is
computed using the trapezoidal rule:∫ b

a

g(x)dx ≈ (b− a)
g(a) + g(b)

2
.

Thus, for each prioritization method, if cov(x) denotes the
mutation score achieved with the x-th product, then the area
value is given by:

99∑
i=1

∫ i+1

i

cov(x)dx =

99∑
i=1

cov(i) + cov(i+ 1)

2
.

A higher area under curve value expresses a more effective
prioritization.

2) Results: Table IV presents the area under curve for the
similarity and random prioritization for each FM. From this
table, one can see that the similarity-driven prioritization
bestow a higher area under curve value than the random
one, fact which demonstrates its effectiveness. Indeed, in
any cases, the similarity-driven prioritization achieves the
highest area under curve value. Figure 4 depicts the curve of
the mutation score achieved for different number of products

[14]

Figure 4. Mutation Score Achieved for the Prioritization Techniques
Averaged on the 12 FMs. The Random Technique Is the Average of 100
Executions per FM.

selected, averaged on the 12 FMs. This figure also shows the
benefit of the similarity-driven prioritization. For instance, a
mutation score of around 80% can be achieved with the
similarity-driven prioritization with only around 5 products
while the random prioritization requires around 20 products.
In addition, only around 30 similarity prioritized products
are needed to achieve the maximum score of around 85%
where the random prioritization requires 100 products.

To evaluate whether the differences between the
similarity-driven prioritization technique and the random
one are significant, we performed a Mann-Whitney U Test.
For each FM, we compared the results of the similarity
prioritzation with each of the 100 random executions. It thus
leads to 100 p-values per FM, which are represented with
box plot in Figure 5. From this figure, one can see that the

Table IV
AREA UNDER CURVE OBSERVED FOR THE TWO PRIORITIZATION TECHNIQUES.

C
ou

nt
er

St
ri

ke
Si

m
pl

e
FM

D
S

Sa
m

pl
e

E
le

ct
ro

ni
c

D
ru

m

Sm
ar

t
H

om
e

v2
.2

V
id

eo
Pl

ay
er

M
od

el
Tr

an
sf

or
m

at
io

n

C
oc

he
E

co
lo

gi
co

Pr
in

te
rs

E
le

ct
ro

ni
c

Sh
op

pi
ng

eC
os

3.
0

i3
86

pc

Fr
ee

B
SD

ke
rn

el
8.

0.
0

L
in

ux
ke

rn
el

2.
6.

28
.6

Similarity-driven prioritization 8,346 8,567.5 8,177.5 9,276.5 8,208.5 8,280.5 8,730 8,028.5 8,777.5 8,080.5 4,540.5 2,304.5

Random prioritization (min) 7,995 7,666 7,983 9,117.5 8,009.5 8,040 8,289.5 7,614.5 8,342.5 7,476.5 4,014 1,473.5

Random prioritization (avg) 8,187 8,118.5 331,776 9,175 8,142.5 8,183 8,514 7,802 8,535.0 7,7728 4,239.5 1,883

Random prioritization (max) 8,313.5 8,473 331,776 9,268.5 8,205 8,274.5 8,684.5 8,021.5 8,729.5 8,068 4,530.5 2,272.5



Figure 5. Distribution of the 100 p-values Resulting of the Mann-Whitney
U Test between the Mutation Score Achieved by Products Prioritized with
the Similarity Technique and the 100 Random Prioritization.

results are not significantly significant for the small FMs.
One explanation is that only a small number of products,
e.g. 5 or 10 allows killing most of the mutants, and thus
the remaining products don’t kill any new mutants, leading
to two samples which are almost the same. However, for
the largest FMs, the difference is significant, with median
values greatly below the significance level of 5%.

C. RQ1 and RQ2

The mutation testing approach proposed in this paper
aims at evaluating the quality of the tests. We produced 100
erroneous FMs and we evaluated the fault detection power
of different type of test suites generated from the correct
FM. The approach uses mutation operators which perform
on the boolean formula of the FM by altering clauses. The
results obtained show that the tests are able to kill some
mutants, which makes the approach interesting for testing
FMs.

The impact of dissimilar and similar test suites on the
mutation score is clear. The results obtained in this paper
show that dissimilar test suites bestow a higher mutant
detection rate than similar ones. Indeed, both the evaluation
of the mutation score depending on the type of tests and
the similarity-driven prioritization showed that dissimilar
products kill more mutants than similar ones. In addition,

we observed a significant statistical difference between the
mutation score achieved by the different type of test suites,
fact which confirm the similarity hypothesis.

D. Threats to Validity

First, there is an external validity threat. Indeed, we
cannot ensure that the mutation analysis and prioritization
approaches will output analogous results on different sets of
FMs, e.g. larger or more constrained. To reduce this threat,
we used 12 FMs of different sizes, from 24 to almost 7,00
features. Each of these FM bestow a different number and
complexity regarding their constraints.

Besides, an internal validity threat could be due to po-
tential errors in our implementation which could affect the
presented results. To overcome these threats, we divided the
implementation into sub stages. This practice allowed having
a better control on each of the steps composing the proposed
approaches. Besides, to avoid any risk due to random effects
like coincidental selection of mutants or tests, we repeated
the experiments 100 times.

Finally, whether the defects introduced in the mutants
reflects real faults form a construct validity threat. Mutation
has proven to be effective and the mutation operators used
performs on the logical constraints of the feature model.
These constraints linking the features represent a potential
source of errors in the model’s construction stage.

VI. RELATED WORK

Generally, the application of mutation testing and analysis
to test specifications or models has been widely used [19].
For instance, Li et al. applied mutation analysis on Finite
State Machines [17]. Other models include Petri nets [18]
or security policies metamodels [27]. In this paper, we focus
on FMs, the boolean model of SPLs.

With respect to mutation, several work are related to
the present one. In [28], [29], Kaminski et al. use a logic
mutation approach to generate only subsuming higher order
logic mutants. This approach works in the context of logic-
based testing which aims at designing tests depending on
logical expressions. In this paper, mutation operators are
applied on the logic representing the FM. In [11], Andrew
et al. use mutation analysis to create mutants. They show
that generated mutants can be used to predict the detection
effectiveness of real fault. They investigate the relative cost
and effectiveness of different testing coverage criteria. Here,
we do not focus on whether or not the generated mutants
are representative of real defects. In [30], Gargantini and
Fraser propose a method that generate tests for the possible
faults of boolean expressions. Here, we do not focus on test
generation. We alter the boolean formula representing the
FM.

In the context of similarity and model-based testing,
Cartaxo et al. [31], [21] present a strategy for automatic
test case selection based on the use of a similarity function.



Labeled transition systems are the model from which test
cases are generated. Hemmati et al. [32], [13] investigates
and compares possible similarity functions that can be used
for test cases selection in the context of state machine
testing. The underlying model are UML state machines. In
[14], Henard et al. use similarity to generate and prioritize
t-wise test suites in the context of SPLs. The difference with
this paper is that here similarity is used to assess the quality
of the tests in terms of mutation score. Similarity is only
used to compare two tests and is not used as a guide to
generate the tests beforehand. Here, we generate the tests
from the underlying FM using a SAT solver.

Most of the work on SPL testing was focused on providing
scalable and efficient test generation techniques but less
attention has been devoted to the evaluation of the bug
detection ability of generated test suites, motivating this
research. In [33], Steffens et al. provide an industrial account
on the actual detection ability of t-wise techniques, showing
that they actually detect bugs. Johansen et al. [34] applied
such techniques on the Eclipse IDE and exhibited some
interaction problems. Both did not consider issues occurring
in the FM itself. Ensan et al. [35] developed an fault
injection tool which associate errors to construct of the
FM such as individual features, groups or constraints. This
fault injection tool aims at simulating actual issues found in
practice. To the best of our knowledge, our approach is the
first to evaluate the ability of dissimilar test suites to detect
FMs errors.

VII. CONCLUSION AND FUTURE WORK

SPLs testing is difficult due to the large number of
products that can be configured, number which can reach
billions of billions with moderate size FMs. In this paper,
we presented a mutation analysis approach for software
product lines based on feature models. To the best of our
knowledge, it is the first mutation analysis approach applied
in the context of software product lines. In addition, this
approach has been evaluated towards similar and dissimilar
test suites to evaluate whether dissimilar test suites bestow a
higher mutant detection rate than similar ones. The benefit of
dissimilar test suite is that they allow to drastically decrease
the number of products to test.

Our experiments, performed on 12 real feature models of
different size demonstrate the effectiveness of the approach.
In particular, the higher ability of dissimilar test suites to kill
mutants has been proven with both the mutation score and
prioritization evaluations. Indeed, dissimilar test suites are in
some case able to kill two or three times more mutants than
similar products. The prioritization results emphasized the
benefit of this heuristic, showing that testing first dissimilar
products rather than similar ones allow killing more mutants.

In future, further experiments based on additional and of
various sizes FMs and mutant operators are scheduled. This
will give more confidence on the findings of the present

paper. We also plan to use mutation analysis as a guide
towards generating test suites. By doing so, the testing
process will be improved since the utilized tests will be
capable of killing all the introduced mutants. Finally, an
empirical comparison between the similarity-based and other
approaches, e.g. t-wise [14] is also planned.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and Tech-
niques. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2005.

[2] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns. Addison Wesley, Reading, MA, USA,
2001.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son, “Feature-Oriented Domain Analysis (FODA) Feasibility
Study,” Carnegie-Mellon University Software Engineering
Institute, Tech. Rep., Nov. 1990.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated
analysis of feature models 20 years later: A literature review,”
Inf. Syst., vol. 35, no. 6, pp. 615–636, Sep. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.is.2010.01.001

[5] M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based
analysis of feature models is easy,” in Proceedings of
the 13th International Software Product Line Conference,
ser. SPLC ’09. Pittsburgh, PA, USA: Carnegie Mellon
University, 2009, pp. 231–240. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1753235.1753267

[6] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon,
“Automated and scalable t-wise test case generation strategies
for software product lines,” in ICST. IEEE Computer Society,
2010, pp. 459–468.

[7] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,
“Variability modeling in the real: a perspective from the
operating systems domain,” in ASE, 2010, pp. 73–82.

[8] J. McGregor, “Testing a software product line,” in Testing
Techniques in Software Engineering. Springer, 2010, vol.
6153, pp. 104–140.

[9] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic
test data generation,” IEEE Trans. Softw. Eng., vol. 17,
no. 9, pp. 900–910, Sep. 1991. [Online]. Available:
http://dx.doi.org/10.1109/32.92910

[10] M. Papadakis and N. Malevris, “Mutation based test case
generation via a path selection strategy,” Inf. Softw. Technol.,
vol. 54, no. 9, pp. 915–932, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2012.02.004

[11] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing
testing coverage criteria,” IEEE Trans. Softw. Eng., vol. 32,
no. 8, pp. 608–624, Aug. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2006.83

http://dx.doi.org/10.1016/j.is.2010.01.001
http://dl.acm.org/citation.cfm?id=1753235.1753267
http://dl.acm.org/citation.cfm?id=1753235.1753267
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://dx.doi.org/10.1109/TSE.2006.83


[12] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is
mutation an appropriate tool for testing experiments?”
in Proceedings of the 27th international conference on
Software engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 402–411. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062530

[13] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable
model-based testing through test case diversity,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 1, 2012.

[14] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. L. Traon, “Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test suites
for large software product lines,” Tech. Rep., 2012. [Online].
Available: http://arxiv.org/abs/1211.5451

[15] M. Mendonca, M. Branco, and D. Cowan, “S.p.l.o.t.:
software product lines online tools,” New York, NY, USA,
pp. 761–762, 2009. [Online]. Available: http://doi.acm.org/
10.1145/1639950.1640002

[16] J. Offutt, “A mutation carol: Past, present and future,” Infor-
mation & Software Technology, vol. 53, no. 10, pp. 1098–
1107, 2011.

[17] J.-h. Li, G.-x. Dai, and H.-h. Li, “Mutation analysis for
testing finite state machines,” in Proceedings of the 2009
Second International Symposium on Electronic Commerce
and Security - Volume 01, ser. ISECS ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 620–624. [Online].
Available: http://dx.doi.org/10.1109/ISECS.2009.158

[18] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero,
M. E. Delamaro, and E. Wong, “Mutation testing applied to
validate specifications based on petri nets,” in Proceedings
of the IFIP TC6 Eighth International Conference on Formal
Description Techniques VIII. London, UK, UK: Chapman
& Hall, Ltd., 1996, pp. 329–337. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646214.681539

[19] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” Software Engineering, IEEE
Transactions on, vol. 37, no. 5, pp. 649 –678, sept.-oct. 2011.

[20] M. Papadakis and Y. L. Traon, “Using mutants to locate ”un-
known” faults,” Software Testing, Verification, and Validation,
2008 International Conference on, vol. 0, pp. 691–700, 2012.

[21] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto,
“On the use of a similarity function for test case selection
in the context of model-based testing,” Software Testing,
Verification and Reliability, vol. 21, no. 2, pp. 75–100, 2011.
[Online]. Available: http://dx.doi.org/10.1002/stvr.413

[22] D. Le Berre and A. Parrain, “The sat4j library, release
2.2, system description,” Journal on Satisfiability, Boolean
Modeling and Computation(JSAT), vol. 7, pp. 59–64, 2010.

[23] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Softw. Test. Verif.
Reliab., vol. 22, no. 2, pp. 67–120, Mar. 2012. [Online].
Available: http://dx.doi.org/10.1002/stv.430

[24] http://code.google.com/p/linux-variability-analysis-tools/
source/browse/?repo=formulas.

[25] A. Arcuri and L. Briand, “A practical guide for using
statistical tests to assess randomized algorithms in software
engineering,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985795

[26] H. Do and G. Rothermel, “On the use of mutation faults in
empirical assessments of test case prioritization techniques,”
IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 733–752,
Sep. 2006. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2006.92

[27] T. Mouelhi, F. Fleurey, and B. Baudry, “A generic metamodel
for security policies mutation,” in Software Testing Verifi-
cation and Validation Workshop, 2008. ICSTW ’08. IEEE
International Conference on, april 2008, pp. 278 –286.

[28] G. K. Kaminski, U. Praphamontripong, P. Ammann, and
J. Offutt, “A logic mutation approach to selective mutation for
programs and queries,” Information & Software Technology,
vol. 53, no. 10, pp. 1137–1152, 2011.

[29] G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-
based testing,” J. Syst. Software, 2012.

[30] A. Gargantini and G. Fraser, “Generating minimal fault
detecting test suites for general boolean specifications,” In-
formation & Software Technology, vol. 53, no. 11, pp. 1263–
1273, 2011.

[31] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado,
“Automated test case selection based on a similarity function.”
in GI Jahrestagung (2)’07, 2007, pp. 399–404.

[32] H. Hemmati and L. Briand, “An industrial investigation of
similarity measures for model-based test case selection,”
in Proceedings of the 2010 IEEE 21st International
Symposium on Software Reliability Engineering, ser. ISSRE
’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 141–150. [Online]. Available: http://dx.doi.org/10.1109/
ISSRE.2010.9

[33] M. Steffens, S. Oster, M. Lochau, and T. Fogdal, “Industrial
evaluation of pairwise spl testing with moso-polite,” in Va-
MoS, 2012, pp. 55–62.

[34] M. F. Johansen, Ø. Haugen, F. Fleurey, E. Carlson, J. En-
dresen, and T. Wien, “A technique for agile and automatic
interaction testing for product lines,” in ICTSS, ser. Lecture
Notes in Computer Science, B. Nielsen and C. Weise, Eds.,
vol. 7641. Springer, 2012, pp. 39–54.

[35] F. Ensan, E. Bagheri, and D. Gasevic, “Evolutionary search-
based test generation for software product line feature mod-
els,” in CAISE. Gdansk, Poland: Springer, 2012.

http://doi.acm.org/10.1145/1062455.1062530
http://arxiv.org/abs/1211.5451
http://doi.acm.org/10.1145/1639950.1640002
http://doi.acm.org/10.1145/1639950.1640002
http://dx.doi.org/10.1109/ISECS.2009.158
http://dl.acm.org/citation.cfm?id=646214.681539
http://dx.doi.org/10.1002/stvr.413
http://dx.doi.org/10.1002/stv.430
http://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
http://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1109/TSE.2006.92
http://dx.doi.org/10.1109/TSE.2006.92
http://dx.doi.org/10.1109/ISSRE.2010.9
http://dx.doi.org/10.1109/ISSRE.2010.9

	Introduction
	Challenges of Software Product Line Testing
	Background
	Feature Models (FMs)
	Mutation Testing and Analyis
	Similarity

	Approach
	Mutation Analysis for Software Product Lines Based on Feature Models
	Test Suite Generation
	Evaluation of the Quality of the Test Suite
	A Similarity-based Distance
	A Similarity-driven Prioritization


	Experiments
	Evaluation of The Mutation Score Depending on the Type of Tests
	Setup
	Results

	Evaluation of the Mutation Score Towards the Similarity-driven Prioritization
	Setup
	Results

	RQ1 and RQ2
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

