
An Empirical Analysis of Vulnerabilities in
OpenSSL and the Linux Kernel

Matthieu Jimenez, Mike Papadakis, Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
Email: matthieu.jimenez@uni.lu, michail.papadakis@uni.lu, yves.letraon@uni.lu

Abstract—Vulnerabilities are one of the main concerns faced
by practitioners when working with security critical applications.
Unfortunately, developers and security teams, even experienced
ones, fail to identify many of them with severe consequences.
Vulnerabilities are hard to discover since they appear in various
forms, caused by many different issues and their identification
requires an attacker’s mindset. In this paper, we aim at increas-
ing the understanding of vulnerabilities by investigating their
characteristics on two major open-source software systems, i.e.,
the Linux kernel and OpenSSL. In particular, we seek to analyse
and build a profile for vulnerable code, which can ultimately help
researchers in building automated approaches like vulnerability
prediction models. Thus, we examine the location, criticality and
category of vulnerable code along with its relation with software
metrics. To do so, we collect more than 2,200 vulnerable files
accounting for 863 vulnerabilities and compute more than 35
software metrics. Our results indicate that while 9 Common
Weakness Enumeration (CWE) types of vulnerabilities are preva-
lent, only 3 of them are critical in OpenSSL and 2 of them
in the Linux kernel. They also indicate that different types of
vulnerabilities have different characteristics, i.e., metric profiles,
and that vulnerabilities of the same type have different profiles
in the two projects we examined. We also found that the file
structure of the projects can provide useful information related
to the vulnerabilities. Overall, our results demonstrate the need
for making project specific approaches that focus on specific types
of vulnerabilities.

Index Terms—Software Security, Vulnerabilities, Common Vul-
nerability Exposures, Software Metrics

I. INTRODUCTION

Vulnerabilities are a monkey on the back of developers,
especially when they are developing security critical appli-
cations. Recent events with the heartbleed bug in OpenSSL
demonstrate that a single vulnerability can lead to disas-
trous consequences by jeopardising the safety of millions of
computers [1]. Such severe incidents emphasise the need for
security inspection, security testing and careful code reviews.
Unfortunately, vulnerabilities, unlike bugs, can (easily) remain
unnoticed by both users and developers. The difficulty is that
seeking for vulnerabilities requires an attacker’s mindset [2]
that can foresee and exploit weaknesses.

Vulnerabilities are identified based on code reviews and
security testing. To perform these activities in a cost-effective
manner it is mandatory to know the entities of software,
e.g., modules or functions, that are likely to be vulnerable.
In view of this, researchers developed classification models

using static analysis to predict where inspections should be
performed. These approaches do not consider specific kinds
of vulnerabilities but rather aim at predicting entities that can
be vulnerable with respect to any vulnerability type [3]–[5].
Also previous studied analysed a small restrictive set of the
vulnerable code characteristics [3], [6]. In view of this, we
investigate the metric profile of vulnerabilities according to
their types. Thus, we focus on 4 properties: i) location, ii)
criticality, iii) code metric profile and iv) impact on this profile
when the vulnerability is fixed.

To perform our analysis we choose two security critical
open-source systems with a long history of reported vulnera-
bilities, i.e., the Linux kernel and OpenSSL. Since vulnerabil-
ities are an important concern for these two systems, the com-
munity behind these projects introduced special procedures
for reporting them [7], [8]. This, eases our analysis since it
provides a reliable way of collecting and analysing a large
number of real and critical vulnerabilities.

Overall, for the needs of the present study we gather
more than 2,200 vulnerable files accounting for 862 distinct
vulnerabilities. We compute and report a total of 35 software
metrics, which we use to built vulnerability profiles. These
profiles are then linked with the location, type and criticality
of the studied vulnerabilities.

In this paper, we use on the Common Weakness Enu-
meration (CWE) type of each vulnerability to perform our
categorisation. We found that 20 different CWE types are
used for Linux and OpenSSL vulnerabilities. Among those
categories, 9 are the most prevalent ones and only 3 and 2
are the most critical ones in the OpenSSL and Linux kernel,
respectively. We also found that most of the vulnerabilities
are located on 2 and 4 directories for the OpenSSL and Linux
projects, respectively. Our key findings are that vulnerability
types have different (metric) profiles on the studied projects.
This indicates that it is rather hard to build a generic approach
operating in a cross project basis that finds all types of
vulnerabilities. In particular, our results suggest that future
research should focus on building a “personalised” vulnerabil-
ity prediction model for every type of vulnerability. Another
important finding is that vulnerabilities tend to be on specific
parts of the studied projects, which, could be leveraged by the
future prediction approaches.

Overall, our study makes the following contributions:



• It presents the results of a study on more than 2,200
vulnerable files, which account for 862 different vulnera-
bility reports from two security critical systems, the Linux
kernel and OpenSSL.

• It constructs a metric profile for every major type of
vulnerabilities for both considered systems. This profile
includes the location of the vulnerability, its criticality, its
code metrics and its impact when fixing the vulnerable
code.

• We found that the metric profiles differs among the
different types of vulnerabilities and that the directory of
the project files can provide useful information regarding
the vulnerabilities.

• It introduces a new metric based on graph edit distance
to compute the difficulty of fixing the vulnerable code.

• We found that the vulnerabilities that are the most
complex to fix are the “Numeric Errors” in the case of
Linux. In the case of OpenSSL, these are the “Information
Exposure” and “Races Conditions”.

The remainder of this paper is organized as follows: Sec-
tions II details the context of our study. Section III provides a
motivation of our study and presents our research questions.
The followed methodology is then detailed in Section IV,
while our results are presented in Sections V. Section VI
addresses the threats to validity of the study. Finally, Section
VII concludes the paper.

II. BACKGROUND

A. Vulnerability
1) Terminology: It is hard to describe vulnerabilities since

they appear in various forms, e.g., they can be a consequence
of bugs, insufficient security measurements or something miss-
ing. Whatever their original cause may be, their consequences
are usually critical and costly. In the literature, there are several
definitions for the term vulnerability, e.g., “security bug” [9]
or “software weakness” [10]. In this work, we follow the
definition given by the CVE initiative [11]:

“An information security “vulnerability” is a mistake in
software that can be directly used by a hacker to gain access
to a system or network.”

2) CVE, NVD and CWE: To report and collect detected
vulnerabilities, there are several initiatives. In this paper, we
focus on the CVE-NVD ones that are categorised according
to CWE:

• The Common Vulnerability Exposures (CVE) is a refer-
encing system for publicly disclosed vulnerabilities. It
is operated by the National Institute of Standard and
Technology (NIST). Each accepted and referenced vul-
nerability receives a unique identifier, in order to ease
the sharing of data related to it. In July 2016, more than
77,700 vulnerabilities have been referenced.

• The National Vulnerability Database (NVD) is a U.S.
government database for vulnerabilities referenced by the
CVE system. It provides additional meta information for
vulnerabilities, like the Common Vulnerability Scoring
System (CVSS) score and the CWE used in this paper.

• The Common Weakness Enumeration (CWE) [12] is a
community initiative to create a list of software weak-
nesses. This list is used by the NVD database to catego-
rize vulnerabilities.

B. Software Under Study
In this paper, we study two major open-source software

(OSS) systems, the Linux kernel and OpenSSL. Besides being
open source, these two projects are widely used and involve
many security-related operations. Naturally, they have lots of
vulnerabilities, which have been reported over the past decade,
these currently are 1460 and 159, respectively.

1) The Linux kernel: started in 1991 as a hobby by Linus
Torvalds. The Linux kernel is now shipped in billions of
devices (embedded in all Android devices). It is the biggest
OSS with more than 19.5 million lines of code and more than
14,000 contributing developers.

While these numbers are important, they are not the main
reason for choosing the Linux kernel as a candidate for our
study. As mentioned earlier, the Linux kernel has to deal
with many security aspects, it is the software with the second
highest number of reported vulnerabilities (according to CVE).
Another main reason behind this choice is the fact that the
community behind the Linux kernel is well-organized. This
makes it relatively easy to get relevant and reliable information
on vulnerabilities. A last criterion worth mentioning is the
stability of the version control system, which is used in our
study to gather the vulnerable files. In the past few years, many
OSS adopted git as version control system, making links to a
previous version control system as reported in the vulnerability
reports invalid. As the Linux kernel community created git in
2005, the Linux kernel was the first to adopt it. This gives us
access to over ten years of history to study.

2) OpenSSL: Started in 1998, OpenSSL is a software
library used to secure communications, or identity checking
by providing an open source implementation of the SSL and
TLS protocols. In 2014, two third of the web servers in the
world were using OpenSSL [1].

Although OpenSSL is relatively small in size, when com-
pared with the Linux kernel, it still has 650,000 lines of
codes, 159 reported vulnerabilities and 200 contributors, recent
incidents, like heartbleed [13], showed the tremendous conse-
quences that a single vulnerability in OpenSSL can have. This
makes it an interesting candidate for this study. Regarding the
stability of the version control system, OpenSSL started using
git in 2013. However, the transition to git was made without
losing information, thus making it possible to access previous
information directly from the git repository.

C. Related Work
The analysis of software vulnerabilities is an important

research topic, where most of the efforts have been made in
the direction of identifying vulnerabilities, i.e., automatically
detecting vulnerabilities in software systems. While several
approaches have been suggested, we focus here on the so-
called vulnerability prediction ones, which are related to the
metrics profiles we use and can be influenced by our results.



Vulnerability Prediction Modelling (VPM): Initiated by
Neuhaus et al. [4], VPM is a relatively recent field of study
aiming at classifying an entity as vulnerable or not, using
different features extracted from the software system. This
category of techniques has the advantage of being software
agnostic, as they do not require specific information about
it. Among the possible features to use, Shin et al., [3] [14]
and Chowdhury and Zulkernine [15] [16] suggested the use
of code metrics. Neuhaus et al., [4] proposed to use include
and function calls of files, whereas Scandariato et al. [5] [6]
advocates the use of text mining, i.e., a bag of words to
build the prediction model. These approaches were replicated
and compared on the Linux Kernel by Jimenez et al. [17].
The results show that vulnerability prediction models can
be relatively precise with Neuhaus et al. [4] being the best
predictor for future vulnerabilities. All these approaches aim
at pointing out likely vulnerable parts of a system, while our
study aims at profiling vulnerabilities.

The closest work to ours is the one of Bosu et al. [18],
who studied the characteristics of vulnerability introducing
commits, and use the same categorization we use for analysing
vulnerabilities. However, our study differs in the following
three points. First, there is a major difference in the used
ground truths. We rely on referenced vulnerabilities from
which we retrieve their patches, whereas they analyse code
reviews looking for vulnerabilities. Second, our aim is to study
the characteristics of real vulnerabilities, which have passed
through the code review process, while they were interested
in the conditions that make a commit to introduce a potential
vulnerability (which was found by the code inspection). Third,
we study the difference (in terms of software metrics) between
the vulnerable code and its fix, while they only concern
vulnerability introduction.

Other related studies that analysed vulnerabilities and their
patches are due to Milenkoski et al. [19], Fonseca et al. [20]
and Jimenez et al. [21]. These studies focus on specific kinds
of vulnerabilities and their causes.

III. RESEARCH QUESTIONS

Due to their importance, vulnerabilities are a popular re-
search subject. The community has organized its efforts by
creating a set of software weaknesses (namely CWE) and
a scoring system for criticality (namely CVSS), based on
exploitability and impact metrics. An interesting starting point
for our study is to identify the prevalence of the vulnerabilities
according to their types and criticality. Thus, we ask:

RQ1. Which are the types of vulnerabilities that are
most prevalent in Linux kernel and OpenSSL?
Can we link categories with criticality levels?

The answer of this question will reveal the types were vulner-
abilities are more prevalent. It will also reveal the categories
with the most critical vulnerabilities.

The next step of our study regards the vulnerability location,
i.e, which part of the software system a vulnerability is origi-
nated from. Together with the categorisation, this information

TABLE I
VULNERABILITY DATASET STATISTICS

Linux kernel OpenSSL
Num of Vulnerabilities CVE 768 95
Num of Commits 899 382
Num of vulnerability types (CWE) 20 11
Vulnerable Files/ Unique 1615/951 619/102

can provide useful insights regarding the weaknesses of the
different sections of the studied projects.

RQ2. Is the location of the vulnerable files linked to the
vulnerability types and/or their criticality?

After studying the vulnerabilities, the next step is to analyse
vulnerable files, i.e., files that needed to be modified to fix
the vulnerability. This level of granularity for analysis is
generally used by VPM as it was considered as actionable
by Microsoft developers [22]. Thus, the result of this analysis
could help VPMs by assessing the prediction power of some
characteristics of vulnerable files. This leads to the following
question:

RQ3. What are the characteristics of vulnerable files
per considered type?

Another interesting point that has so far not received much
of attention by the literature is the extent to which a vulnera-
bility fix impacts a file. For example, are those fixes complex
or simple? Can we observe different patterns when fixing same
specific types of vulnerabilities? All these concerns guide us
to our next research question:

RQ4. What is the impact of fixing a vulnerability on
the metric profile we use?

An analysis of the impact could help to flag some commits
as vulnerability fixes, as well as provide some insights on the
vulnerability fixes.

IV. METHODOLOGY

A. Dataset
Our dataset contains all vulnerabilities from the two studied

systems reported in the NVD database for which it is possible
to retrieve patches. Since NVD does not store any patches, we
mine them from the version control systems by identifying the
vulnerability fixing commits. To retrieve these commits we use
three different strategies:

• Extracting commit hashes directly from CVE references
• Gathering commits that mention a CVE number
• Retrieving all git commits mentioning in their message

a bug ID that is also mentioned in one of the CVE
references

We then retrieve all the files from these commits in their
vulnerable and patch state.

Table I presents the statistics of our dataset. Overall, we
managed to collect data representing a percentage of 52% of
the possible CVE identifiers for the Linux kernel, and 59%
for the OpenSSL. The table records the number of commits,
the number of different vulnerability types (CWE) and the



number of vulnerable files that were retrieved. Note that a
vulnerability can be fixed in more than one commit and a file
can be vulnerable several times.

B. Characterization of Vulnerable Files and Fixes

We considered 35 metrics to profile the vulnerable files.
These are categorised as follows:

• Basic Metrics: lines of code, blank lines, commenting
lines, comment density, preprocessor lines, number of
variable, number of declared functions. These metrics
provide information regarding the profile of the vulnera-
ble files.

• Code Metrics: all variants of cyclomatic complexity
(strict, modified and standard), essential complexity, max-
imum nesting, fan in and fan out. Note that these are
function-level metrics and we are working at the file
level so we computed for each file the metrics on all the
function and kept the maximum, average and sum values.
These metrics characterise the structure of the code and
their definition can be found at [23].

• Code churn: number of changes and number of lines
added, deleted, modified in the history of the file.

• Developer history: number of developers currently work-
ing on the file (git blame), number of developers that have
worked on the file.

Regarding the impact of a vulnerability fix we measured
the delta of all the previously suggested metrics between the
vulnerable file and the fixed one. This provides information
related to the nature of the patch that fixes the vulnerability.
However, it does not give any general overview on the impact
of the change on the code. In view of this, we introduce a new
metric detailed in the following subsection.

C. Graph Edit Distance (GED)

Measuring the impact of a vulnerability fix is not an easy
task. Making a ‘diff’ on the fixed and vulnerable files, which
is a common practice, only reveal changes at the line level and
does not consider the control flow. To measure the impact on
the program flow, we compute the control flow graph (CFG) of
the related functions before and after the modifications. Then,
we compute a graph edit distance (GED) between the two
graphs. Graph edit distance was first formalised by Sanfeliu
et al., [24] and is used to measure the similarity between two
graphs. A survey on its use has been conducted by Gao et
al., [25]. The main idea here is to evaluate the minimum edit
“cost” of going from the vulnerable CFG to the fixed CFG, by
attributing different costs for an edge or a vertex of the graph
replacement, deletion or insertion. For our study, we chose to
attribute a value of 2 for replacement, 1 for insertion, 1 for
deletion. This measure will indicate to what extent the patch
modified the control flow of the function. As this measure
is also a function level metric, we compute the GED for all
functions of a file and sum them up after. The GED of an
unmodified function being 0. Our implementation of this GED
is based on a github project available at [26].

TABLE II
DEFINITION OF CWE RETAINS FOR THIS STUDY

CWE Definition
20 Improper Input Validation

119 Improper Restriction of Operations
within the Bounds of a Memory Buffer

189 Numeric Errors
200 Information Exposure
264 Permissions, Privileges, and Access Controls
310 Cryptographic Issues

362 Concurrent Execution using Shared Resource
with Improper Synchronization (’Race Condition’)

399 Resource Management Errors
0 Vulnerabilities without a CWE Number

�� ���� ����� ������ ����������� � ��� ����� ��� ��� � � �� � �������� ���� �� ���� ���

����������� � �� � ���� ���� ���� ����� �� ����� �� ���� ��� ������ �

�� ��� � ��������� �� � ��� �� � ���� � ��� �������� ��� ��

CWE�264

CWE�200

CWE�399

CWE�20

CWE�119

CWE�0

CWE�189

CWE�362

2 4 6 8 10

(n=344)

(n=311)

(n=190)

(n=161)

(n=159)

(n=156)

(n=152)

(n=72)

(a) Linux Kernel

����������������������������������������

��������������� ���������

������

CWE�310

CWE�0

CWE�399

CWE�119

CWE�20

CWE�362

CWE�200

2 4 6 8 10

p

(n=181)

(n=112)

(n=100)

(n=56)

(n=51)

(n=34)

(n=33)

(b) OpenSSL

Fig. 1. Criticality (CVSS score) per type of vulnerability (CWE), n indicates
the number of vulnerable files in the dataset for this category

D. Experimental Process
Once all vulnerable files are gathered, i.e., by following the

procedure described in Section IV-A, we compute our metrics
both in the state before and after the vulnerability fixes. We
then compute all deltas and the graph edit distances. All of our
experiments, were produced using the the HPC facilities of the
University of Luxembourg [27]. Once in possession of all the
metrics we analysed our results by grouping the vulnerable
files according to their CWE types.

V. RESULT

A. RQ.1: Most reported types of vulnerabilities and criticality
When analysing our data, we found that specific types of

vulnerabilities are scarce. As our goal is to identify trends,
we filter them out and focus only on the most common ones.
Thus, we choose a threshold of 50 vulnerabilities for the Linux
Kernel and 30 for OpenSSL , i.e., each type of vulnerability
to be present in at least 50 or 30 vulnerable files. This left us
with the 9 types of vulnerabilities that are more prevalent in
the studied systems. These 9 vulnerability types are reported
in Table II.

After identifying the vulnerability types, we focus on their
criticality. Figure 1 presents these results, ordered (from top
to bottom) by the number of vulnerable files present in
each category. A first observation that we can make is that
the most represented categories (order) of one system are



�� ��� � �� ��� � �����

���� �� �� �

�� �� ��� �

�� � � ���� ��

�� �� �� � ��

� �� ��

� � ��� � � �

�� �� ��

CWE�264

CWE�200

CWE�399

CWE�20

CWE�119

CWE�0

CWE�189

CWE�362

0 20 40 60 80

Maximum Cyclomatic Complexity

�� � ��� � �� ��� �� �� �

�� �� ��

�� �� � � ��� �� �

� �� ��� �� �� ���

�� ��� � ���

����� �

� �� �� �� �� � �� ���

��� �� � �� �

0 10 20 30 40 50

Maximum Essential Complexity

�� � ��� � ��� � � ������ �

��� ��� �� � � ���

�� �� � �

��� �� � �

�� �� �

� ��

���� �� �

���� �

0 20 40 60 80

Maximum Fan In Complexity

�� �� ��� � �� �� �� ��

�� � �� �� ���� �� � �� ��

�� ���

� ��� � � �

� �� ������

�� ���

� �

0 20 40 60 80

Maximum Fan Out Complexity

Fig. 2. Maximum complexity of Linux Kernel vulnerable files

� � � ��� �� � ���� �� � ��� � ��� �� �

� ���� ��� � �

� � �� � �

� �� � ��

� ������ ��� �� ��

� �� � ��� ��� �

� � �� �� � � � �� �� �

�� ��� �

CWE�264

CWE�200

CWE�399

CWE�20

CWE�119

CWE�0

CWE�189

CWE�362

0

50
0

10
00

15
00

20
00

25
00

30
00

Lines of Codes

� � � � ��� � � ���� ���� � � �������� � � �

� ��� � �

� �� ���� � �� �� �

�� � �� ���

�� ���� �� �� �� ��

�� � ���� �� ��

� � ���� � �� � ��� � ��

��� � �� ��

0

10
00

20
00

30
00

40
00

50
00

Lines Added

� � �� ��� ��� �� �� �� �����

������ �� �������� �

� �

� � � �� �

� �� ����� �� ��

�� ���� � ��� �

� �� ��� �� ��

��� �� �

0 50 10
0

15
0

20
0

25
0

30
0

35
0

Number of Variable Declared

���� � �� ���� � ������ ��� � � ��� �� �� ���

� �

��

�� �� ��� ���

�

� � �

�

0 20 40 60 80 10
0

Total Number of Developers

Fig. 3. Metrics of Vulnerable Files for the Linux Kernel

TABLE III
LOCATION OF THE VULNERABLE FILES IN OPENSSL

Directory Number of Vulnerable Files CVSS Score most represented CWE
(number of vulnerable files)

apps 9 6.77 CWE-20 /CWE-399 (4)
crypto 286 5.82 CWE-310 (90)
engines 9 6.67 CWE-399 (6)
ssl 314 5.52 CWE-310 (90)

not the ones of the other. This is due to the functionality
differences of the studied systems. Another observation is that
the most critical type of vulnerabilities for the Linux kernel
is the “Information Exposure” (CWE-200), whereas its the
less critical for OpenSSL. With respect to CVSS score the
most consistent category over the two software systems is the
“Improper Restrictions Of operations within the bounds of a
memory buffer” (CWE-119) with a relatively high average
criticality of 7 in both cases. This is even the most critical
one for OpenSSL. This buffer problem is extremely risky as
it is related to memory and can impact other programs.

Overall, our results show that out of the 20 types of
vulnerabilities, 9 are prevalent and among them the most
critical ones (with CVSS score above 6) are the CWE-200 and
CWE-119, for Linux and CWE-119, CWE-399 and CWE-362,
for the OpenSSL.

B. RQ. 2 Location of the vulnerabilities
Table III and IV present the results related to the actual

location of vulnerable files within the project file structure.

TABLE IV
LOCATION OF THE VULNERABLE FILES IN THE LINUX KERNEL

Directory Number of Vulnerable Files CVSS Score most represented CWE
(number of vulnerable files)

arch 241 4.46 CWE-264 (120)
crypto 81 2.35 CWE-264 (66)
drivers 239 4.95 CWE-119 (55)
fs 339 5.60 CWE-200 (95)
kernel 117 5.92 CWE-200 (49)
mm 71 5.83 CWE-264 (22)
net 423 5.26 CWE-200 (76)
security 38 5.85 CWE-119 (12)

It is important to note that only the main directory appears
here. This is to keep consistency between OpenSSL and Linux
due to the fact that OpenSSL is not using subdirectories. One
interesting result is that in OpenSSL the vulnerabilities are
either emanating from the crypto directory or the SSL one.
This may be explained by a previous observation that the
most represented category is related to the “Cryptographic”
issues (Fig. 1(b)). Interestingly, the most critical vulnerabilities
are located on the “apps” directory, but it involves much
lower number of vulnerabilities. Overall, among the two most
vulnerable directories (crypto and SSL), those in ‘crypto”
directory are more critical.

In the Linux kernel, the directory with the most vulnerable
files is the “net” directory, which is in charge of the network
functionalities and has “Information Exposure” vulnerabilities.
Interestingly, the problem of permission and privileges seems
to occur mostly in the “arch” and “crypto” directories, whereas



buffer errors are mostly present in the “drivers” and “security”
directories. Looking at the criticality, the “kernel” directory
seems to be the more at risk followed by the “mm” responsible
for the memory management one.

Overall, our results suggest that the file structure of the
projects, filenames and categories can provide useful informa-
tion related to the nature of the vulnerabilities. As we will
see in the following sections, this is complementary to the
information provided by software metrics.

C. RQ. 3 Characteristics of vulnerable files
Due to space limitations we present the 8 software metrics

that have the strongest discrimination power. The complete
set of our results can be be found at: http://www.jimenez.lu/
Research/VulnerabilityAnalysis/vuln.html

1) Linux Kernel: Figures 2 and 3 presents the results related
to the selected metrics. A first observation indicates that
vulnerable files related to “Permissions, Privileges, and Access
Control” (CWE-264) contain less complex functions than any
other type of vulnerabilities. They also have fewer lines of
code, lines added, variable declared and a smaller group of
developers working on it. This indicates that files dealing with
permission rights do not require complex algorithms and are
less likely to be modified once been written.

Files related to “Numeric Errors” (CWE-189) appear in
the the most complex functions (according to “Cyclomatic
Complexity”, “Essential Complexity” and “Fan In”). The same
files are also having the highest number of lines of codes and
declared variables. This may suggest that numeric error, i.e.,
improper calculation or conversion of numbers, are more likely
to be found in complex functions than in simple ones.

High “Fan Out” values, i.e., the number of called functions
plus global variables, and high number of developers result
in “Race Conditions” problems. This indicate that code parts
related to concurrency have also high “Fan Out”, which in
term requires special attention. These files are also important
and seem to have a central interest in the project as there is
also a high number of developers working on them.

We also observe that vulnerable files without a category
(CWE-0) have average values for all metrics, which may
suggest that these vulnerabilities are a mixture of categories.

2) OpenSSL: Figures 4 and 5 present the results for
OpenSSL. A first point is that there is a difference between
the maximum cyclomatic and essential complexity of the
OpenSSL than of the Linux kernel, while interestingly the
number of lines of code stay in the same range of values.

The category of vulnerable files with the higher score are
those that are uncategorized vulnerabilities (CWE-0). This is
also true for the number of lines of code and declared vari-
ables. These might indicate that uncategorized vulnerabilities
are of other categories than the existing ones.

Considering “Race Conditions” (CWE-362) vulnerable files,
we observe that they are due to the involvement of many
developers (like in the Linux kernel). On the side of “Crypto-
graphic Issues” (CWE-310) that is the most represented type
of vulnerabilities in OpenSSL, we observe a low maximum

complexity compared to other types of vulnerabilities, except
for “Fan Out” result.

D. RQ. 4 Impact of vulnerability fixes

Here we compute the delta of the employed metrics (be-
tween the vulnerable and fixed version of the systems) and
the graph edit distance.

1) Linux Kernel: Figure 6 presents the results for the
selected metrics. Regarding the complexity, the impact of a fix
is similar for most of vulnerabilities except for “Information
Exposure”, ones for which there is a lower complexity. This
result is surprising, as one could expect an increase of com-
plexity from additional checks. Looking at graph edit distance
metrics, fixes for CWE-264 are the ones that are less impacted
whereas the fixes for “ Numeric Errors” are the ones with
the greatest impact. This was expected as those vulnerabilities
were the ones with the higher complexity observed for most
metrics.

2) OpenSSL: Figure 7 shows the OpenSSL results. A first
observation is that there is much larger variation from one
category to another, than in the case of the Linux kernel.
Fixes of CWE-119 files seem to have a larger impact on
the cylomatic complexity increasing it by a value of two, on
average, and the highest delta in lines of codes. In the “Fan In”,
i.e., the number of function calls plus global variable reads, the
highest variation is observed for CWE-362 fixes. Regarding
graph edit distance, the fixes with the most impact on the
CFG are the ones from “Information Exposure” (CWE-200)
files followed by “Races Conditions” CWE-362. Interestingly,
these two types are also among the top ones of the Linux
kernel for this metric.

VI. THREATS TO VALIDITY

A. Construct Validity

The datasets used for this study are automatically generated
using git commit messages and the NVD database. Thus,
imprecise information in the NVD or misleading commit
messages could generate noise in our data. Similarly, the
categorization of vulnerabilities might be inconsistent, since
this is a manual process performed by different people. Thus,
it is likely that different points of view on which category
a vulnerability belongs to might exist. However, given the
well-organized community behind these projects with strict
guidelines [28], we believe that this could only be the case
for a small percentage of the vulnerabilities.

In this study, we consider as vulnerable files, every file that
had to be modified to fix a vulnerability. Thus, all the files
from a fixing commit were added in the dataset. Yet, some
commits might include fixes for some other things than this
vulnerability, hence adding files unrelated to the vulnerability
to our dataset. As this is against common practices, it should
not impact our results. Moreover, our aim is to profile vul-
nerable files so that developers can focus on such files.We
believe that the modified code parts are indeed relevant to the
vulnerable code since they are fixing vulnerabilities.



�

� ���

� ���

�� �

CWE�310

CWE�0

CWE�399

CWE�119

CWE�20

CWE�362

CWE�200

0 20 40 60 80 10
0

Maximum Cyclomatic Complexity

� �

�

��

0 10 20 30 40 50

Maximum Essential Complexity

�� �� � �

�

�

� �� ��

��

0 20 40 60 80

Maximum Fan In Complexity

���

0 20 40 60 80

Maximum Fan Out Complexity

Fig. 4. Maximum complexity of OpenSSL vulnerable files

�

���� �� � �

� �

��

� �� �� ���

�� ��

CWE�310

CWE�0

CWE�399

CWE�119

CWE�20

CWE�362

CWE�200

0

50
0

10
00

15
00

20
00

25
00

Lines of Codes

�

� ��� ��

� ��

��

� �� �� ���

�� ��

0

10
00

20
00

30
00

40
00

Lines Added

�� �� �

� ��� �

��

� �

��

0 50 10
0

15
0

20
0

25
0

Number of Variable Declared

�

�� ��� � ��

� � �

�

� ��

� ��

0 5 10 15 20 25 30

Total Number of Developers

Fig. 5. Metrics of Vulnerable Files for OpenSSL

� �� � ����� � �� �� � ��� ���� ����� � ��� ������� �� ���� ��� ��� �� ��� ������� �� ����� ���� ��� �� �� �� � ����� ����� ����� � �� ��� ��� ��� �� ��� �� �� ����

�

� ���� � ��� ��� ��� ��� ��

��� � �� � � � � ��� ��� �

���� �� �� � �� �� ����� ��� � �� �� � � ��

��� �� ���� � ��� �� � �� �

� �� �� ��� ��� �� �� ����

�� �� �� �� � ��� �

CWE�264

CWE�200

CWE�399

CWE�20

CWE�119

CWE�0

CWE�189

CWE�362

�1
0 �5 0 5

Delta Cyclomatic Complexity Sum

� �� �� �� � ����� ��� �� ���� ��� � �� � ��� � �� � � �� �� � ��� � �� � ���� �� ���� ��� ���� �� � ���� �� � �� �� �

�

�� ��� �� ��� � �� �� ��� �� �� � �� ��� � �� ��� �� ��� �

� � ���� ����� � ������ �� �� �� ���� �� ���

� ���� ��� �� ��� �� ��� �� �� �� ��� � � �� ��� �� �

��� ���� ���� � �� ��� ��

��� �� ��� ��� � ���� � �� ��� � � � ��� �� �

��� �� ���

�4 �2 0 2 4

Delta Fan In Complexity Sum

� ���� ��� ���� ��� � ��� �� �� � ��� � �� � �� � � �� � ��� �� �� ��� � �� �� � � �� ��� ���� �� � �� �� �� � �� �� �� �� �� �

�� ��� ��� � ����� ������ � � ��� � � ���� ���� ����� � �� ���� ��

� � ��� � �� �� ��� ����� ��� � �� � ��

� ��� �� � ��� ��� ��

�� � � �� �� �� � � ����� � ��� � � ���

��� �� ���� � ��� �� �� �� � ��� �� �

��� �� � �� �� �

�� � ���

�2
0

�1
0 0 10 20

Delta Lines of Codes

�� � � ��� ��� � � �� � �� ������� �

� ���

� �� � ��� � ��� �� �

��� ��

�� � ���

0 10 20 30 40 50

Graph Edit Distance Sum

Fig. 6. Impact of Fixes for Linux kernel

� ��� �� ����� �

�� ����� ������ � ��� �� �

�� �� � ��� ����

��

� � ���� �

�� �� � �

� ��� �� � ��� ���

CWE�310

CWE�0

CWE�399

CWE�119

CWE�20

CWE�362

CWE�200

�4 �2 0 2 4

Delta Cyclomatic Complexity Sum

� ��� ����������� � �� �� �� �� ��� �� �� �� �

� �� ��� �� � � ���� � � ��

�� ��� �� �� �� � �

����� ������ �����

� ����� � ��� �

� �����

������ ����

�2 �1 0 1 2 3 4 5

Delta Fan In Complexity Sum

� �� � �� � �� � �� ����� �� ���� ���

�� ���� ��

���� ����

���

��� ������

�

�� ���

�1
0 0 10 20 30

Delta Lines of Codes

�� �� ��

0 5 10 15 20 25 30

Graph Edit Distance Sum

Fig. 7. Impact of Fixes for OpenSSL



B. Internal Validity

Potential bugs in our implementation may also influence
our results by providing incorrect measures. To reduce these
threats, we carefully tested and verified our implementation.
Moreover, as metrics for all files are computed the same way,
this should not have much influence on particular profiles we
report as similar variations, in the measurements, should be
observed with other tools.

C. External Validity

This study is limited to two open source software systems
written in C. Thus, our results might not be generalizable to
systems written in other languages. This is partly indicated by
our results which show that different profiles exist, between the
two projects, for the same types. However, these two projects
are typical examples of safety critical applications, they are
well organized and have a long history of vulnerabilities that
includes a rather large number of vulnerabilities.

VII. CONCLUSION

We analysed the characteristics of the Linux kernel and
OpenSSL vulnerabilities. We found that different types of
vulnerabilities have different profiles. On the one hand, this
finding indicates that there is no “pot of gold” for vulnerability
prediction methods, i.e., approach that finds all types of vulner-
abilities, while on the other it suggests that current approaches
could be tuned to target specific types of vulnerabilities.

Overall, the analysis of 2,200 vulnerable files, related with
862 vulnerabilities reveal that they are of 20 types. However, 9
of them are the most prevalent ones and only few are critical (3
for OpenSSL and 2 for the Linux kernel). These results suggest
that future research should focus on building specialised
models targeting these critical types of vulnerabilities.

Another important finding is that the identified profiles are
system specific. This means that it is hard to draw conclusions
for all types of vulnerabilities since vulnerabilities have dif-
ferent profiles in the two systems we study. This suggests that
the use of prediction models that are trained on one project
may fail on another and hence the creation of cross-project
vulnerability models, as attempted by existing approaches [3],
[5], seems to be quite hard if not impossible.

Additionally, our results show that the location of the
vulnerable files can provide useful information on where and
which type of vulnerabilities to look for. Also our results
suggest that vulnerability criticality is related to its location.
Interestingly, file location is not considered by any of the
existing vulnerability prediction methods. A possible reason
for this is that location is a nominal property linked to the
software system under analysis and can only be used for
specific project prediction and not for cross system ones.

Finally, our results indicate that fixing vulnerabilities in
Linux does not involve many changes (from source code
editing point of view). In OpenSSL the fix process is more
complex than in Linux and require many changes, located in
different parts of the code.

In future work we plan to extend our analysis on additional
safety critical systems and investigate whether “personalized”
prediction models, i.e., project-specific or type-specific, can
be developed. We also plan to assess the practical benefits of
such models with respect to existing ones.

REFERENCES

[1] Bug in openssl opens two-thirds of the web to eavesdropping.
[Online]. Available: http://arstechnica.com/security/2014/04/
critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/

[2] G. McGraw and B. Potter, “Software security testing,” IEEE Security &
Privacy, vol. 2, 2004.

[3] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
Complexity, Code Churn, and Developer Activity Metrics as Indicators
of Software Vulnerabilities,” IEEE TSE, vol. 37, Nov. 2011.

[4] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in CCS’07.

[5] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
Vulnerable Software Components via Text Mining,” IEEE TSE, vol. 40,
Oct. 2014.

[6] J. Walden, J. Stuckman, and R. Scandariato, “Predicting Vulnerable
Components: Software Metrics vs Text Mining,” in ISSRE’14.

[7] Linux procedure for security bugs report. [Online]. Available:
https://www.kernel.org/doc/Documentation/SecurityBugs

[8] Openssl procedure for security bugs report. [Online]. Available:
https://www.openssl.org/news/vulnerabilities.html

[9] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical Software Engineering, vol. 19,
no. 6, 2014.

[10] Ics/scada top 10 most dangerous software weaknesses. [On-
line]. Available: http://www.toolswatch.org/wp-content/uploads/2015/
11/ICSSCADA-Top-10-Most-Dangerous-Software-Weaknesses.pdf

[11] Definition of vulnerability. [Online]. Available: https://cve.mitre.org/
about/terminology.html

[12] Cwe home page. [Online]. Available: https://cwe.mitre.org/data/
[13] Heartbleed home page. [Online]. Available: http://heartbleed.com
[14] Y. Shin and L. Williams, “Can traditional fault prediction models be used

for vulnerability prediction?” Empirical Software Engineering, vol. 18,
pp. 25–59, Feb. 2013.

[15] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and
cohesion metrics be used as early indicators of vulnerabilities?” in
SAC’10.

[16] “Using complexity, coupling, and cohesion metrics as early indicators
of vulnerabilities,” Journal of Systems Architecture, vol. 57, 2011.

[17] M. Jimenez, M. Papadakis, and Y. L. Traon, “Vulnerability prediction
models: A case study on the linux kernel,” in SCAM’16, 2016.

[18] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: an empirical study,” in
FSE’14, 2014.

[19] A. Milenkoski, B. Payne, N. Antunes, M. Vieira, and S. Kounev,
“Experience report: An analysis of hypercall handler vulnerabilities,”
in ISSRE’14.

[20] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, “Analysis of field data
on web security vulnerabilities,” Dependable and Secure Computing,
IEEE Transactions on, vol. 11, no. 2, March 2014.

[21] M. Jimenez, M. Papadakis, T. F. Bissyande, and J. Klein, “Profiling
android vulnerabilities,” in QRS’16. IEEE, 2016.

[22] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in HotSoS’15.

[23] Scitool complexity metric. [Online]. Available: https://scitools.com/
support/metrics list/?metricGroup=complex

[24] A. Sanfeliu and K. Fu, “A distance measure between attributed rela-
tional graphs for pattern recognition,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 13, 1983.

[25] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
Pattern Analysis and Applications, vol. 13, 2010.

[26] Graph edit distance implementation. [Online]. Available: https:
//github.com/haakondr/NLP-Graphs/

[27] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of
an academic hpc cluster: The ul experience,” in HPCS’14.

[28] Linux coding style. [Online]. Available: https://www.kernel.org/doc/
Documentation/CodingStyle


