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Abstract—Deep neural networks (DNNs) are increasingly de-
ployed as integral parts of software systems. However, due to
the complex interconnections among hidden layers and massive
hyperparameters, DNNs must be trained using a large number
of labeled inputs, which calls for extensive human effort for
collecting and labeling data. Spontaneously, to alleviate this
growing demand, multiple state-of-the-art studies have developed
different metrics to select a small yet informative dataset for
the model training. These research works have demonstrated
that DNN models can achieve competitive performance using a
carefully selected small set of data. However, the literature lacks
proper investigation of the limitations of data selection metrics,
which is crucial to apply them in practice. In this paper, we
fill this gap and conduct an extensive empirical study to explore
the limits of data selection metrics. Our study involves 15 data
selection metrics evaluated over 5 datasets (2 image classification
tasks and 3 text classification tasks), 10 DNN architectures, and
20 labeling budgets (ratio of training data being labeled). Our
findings reveal that, while data selection metrics are usually
effective in producing accurate models, they may induce a loss of
model robustness (against adversarial examples) and resilience to
compression. Overall, we demonstrate the existence of a trade-off
between labeling effort and different model qualities. This paves
the way for future research in devising data selection metrics
considering multiple quality criteria.

Index Terms—deep learning, data selection, active learning,
empirical study

I. INTRODUCTION

Deep learning (DL) has achieved tremendous success in
various cutting-edge application domains, such as image pro-
cessing [1], machine translation [2], autonomous vehicles [3],
and robotics [4]. Two key elements to achieve high-performing
predictions are well-designed deep neural networks (DNNs)
(with appropriate architecture and parameters) and a carefully
chosen set of labeled training data. However, data labeling
is expensive and time-consuming because it requires a large
amount of human effort. For example, that it took more than 3
years to prepare the first version of the ImageNet [5] dataset.
Thus, acquiring labeled data is seen as a major obstacle to the
widespread adoption of DL [6].

One established solution to reduce data labeling cost is
active learning [7], i.e., incremental methods to select infor-
mative subsets of training data to undergo labeling in a way
that the produced model is as accurate as if it was trained on
all data. With active learning, engineers can thus compromise
labeling effort with model performance (e.g., classification
accuracy). There has been much research on devising active
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learning methods, each relying on different data selection
metrics. These metrics [8]–[11] typically exploit information
of the DNN under training (e.g., its gradient or uncertainty)
to select the most informative data to label next.

On the other hand, recent work on DL testing and debugging
[12]–[19] have proposed different metrics for test generation
and test selection, i.e., the problem of selecting test data that
are more likely to be misclassified by the model [20]. As in
active learning scenarios, these test data can then be used to
improve the model (by retraining).

The proliferation of data selection metrics (coming from
active learning and testing) makes it challenging for engineers
to decide which one they should use. Indeed, the different
metrics have been evaluated on a restricted set of problems
(mostly image classification datasets) under incomparable ex-
perimental settings (different models and labeling budget) [18],
[19]. There is, therefore, a need for a comprehensive study of
all these data selection metrics on a common ground involving
different classification tasks.

Another gap in the current body of knowledge is that most
experimental studies evaluate the metric wrt. the test accuracy
of the trained models.1 Other key quality indicators have
been ignored, such as the model robustness to adversarial
attacks and the model performance after compression. The
lack of consideration for these indicators raises practical issues
when deploying DL models trained using active learning
(consider, e.g., biomedical image segmentation [22] or mobile
DL applications [23]). Hence, one should make sure that active
learning can produce models whose quality is not limited to
classification accuracy but extends to all quality indicators
relevant for the use case.

To fill these gaps, in this paper, we conduct a compar-
ative empirical study to explore the potential limitations of
active learning. Our study involves 15 data selection metrics
evaluated over 5 datasets (2 image classification tasks and
3 text classification tasks), 10 DNN architectures, and 20
labeling budgets (ratio of training data that can be labeled).
Specifically, our study aims to answer the following four
research questions:
•RQ1: How effective are the different data selection
metrics for producing accurate models? We answer this
question by measuring how fast (i.e., how many training data
are required) the accuracy of the trained model converges to

1Rarely, some studies [21] measure empirically the robustness of the model
to adversarial attacks.



the accuracy of the fully trained model (i.e., trained with the
full training set). Besides, we employ random selection as
a baseline to compare the effectiveness of each metric. Our
results indicate significant differences between metrics (up to
45.9% of test accuracy), especially when less than 50% of the
training data is used.
•RQ2: How robust are models trained with active learn-
ing? We answer this question by measuring the theoretical
robustness of the trained models (using the CLEVER score
[24]) as well as their empirical robustness against multiple
adversarial attacks. For the image classification task, our
results reveal a gap between the fully trained models and those
trained with active learning (up to 1.49 CLEVER score and
23.39% of success rate), whereas there are no such differences
in the text classification task.
•RQ3: Do models trained using active learning maintain
accuracy after compression? Model compression, a well-
known technique to embed DL models in resource-constrained
devices, has the downside effect of reducing the accuracy
due to precision loss in the computed model weights. We
investigate whether models trained with active learning are
more sensitive to this phenomenon than fully trained models.
Our results reveal that, for the image classification task,
training on 50% of data entails a loss in test accuracy up
to 7.47% higher compared to training with the full dataset.
•RQ4: What is the relationship between the amount of
training data, and model robustness and accuracy after
compression? We conduct additional experiments where we
increase the data budget of data selection metrics. Our results
indicate that with the growth of training data, the robustness
of the model will also increase. The model can achieve similar
robustness with the fully trained model only using 35% data,
and even outperform it when more data are used. This indicates
that the training process promoted by active learning can be
used as an effective way to increase robustness. As for model
compression, there appears to be no relationship between
accuracy decay induced by compression and data budget.

With our extensive empirical study, we provide practical
guidance to engineers in balancing the benefits of data selec-
tion metrics with their potential side effects. That is, we show
and quantify the existence of a trade-off between the efficiency
of model training (in particular, the data labeling effort) and
model properties of interest (viz. robustness and accuracy after
quantization). Doing so, we also open research directions to
explore this trade-off and new data selection metrics aimed
towards the different quality criteria.

In summary, the main contributions of this paper are:

• We conduct the largest empirical study that investigates
the effectiveness of training data selection metrics on
different classification tasks (image and text).

• Beyond (test) accuracy, we explore the effects of reducing
the number of training data on the adversarial robustness
of the models and their accuracy after compression. We,
therefore, reveal the potential effects that active learning
can have on these quality indicators.

• Thereby, we reveal a potential trade-off between labeling
cost and the aforementioned quality indicators. This paves
the way for future research in designing multi-objective
data selection metrics aiming at optimizing this trade-off
under a constrained labeling budget.

The rest of this paper is organized as follows. Section II
introduces some background knowledge of this work. Section
III presents an overview of the study. Section IV introduces
the implementation and empirical configurations. Section V
details the results of our study. Section VI presents the related
works, and Section VII concludes this paper.

II. BACKGROUND

We briefly introduce the background related to our work,
including DNNs, test selection and active learning, adversarial
attacks on DNNs, and model compression.

Throughout the paper, X refers to the training set for a
N -class classification DNN. x ∈ X ⊆ Rd is an input and
x′ is its adversarial example. y and yx indicate the true and
predicted labels, respectively. pi (x), 0 ≤ i ≤ N , represents
the predicted probability of x belonging to the ith class, and
correspondingly, y = argmax

i=1:N
(pi (x)).

A. Deep Neural Networks

In general, a DNN consists of multiple layers, i.e., an input
layer, several hidden layers, and an output layer. As shown
in Figure 1, each layer comprises a number of neurons (color
circles). The neuron with the parameters, also called a unit
or a node, is the basic entity of computation of a DNN. It
receives information from the input data or the other neurons
and computes an output by an activation function. The training
process of a DNN is mainly about tuning the parameters to
reach a minimum prediction error concerning true labels. In
this paper, we focus on the classification task where the output
of a DNN classifier is the probability of belonging to each
category given an input. For instance, the input data in Figure
1 is predicted to be in class Dog with a probability of 0.90.

Generally, there are two typical types of DNNs, i.e., Feed-
Forward Neural Networks (FNNs) and Recurrent Neural Net-
works (RNNs). In an FNN, the information only moves in the
forward direction from the input layer to the output layer. This
type of DNNs is widely used in image processing applications.
On the other hand, an RNN utilizes different inter-units (i.e.,
memory cells, control units) to propagate the input information
in a backward way within an RNN layer, allowing the network
to retain knowledge. RNNs usually deal with sequential data
processing due to their ability to capture temporal information
of the data. In this work, we study both FNNs and RNNs.

B. Active Learning

Active learning, a well-known concept in both the software
engineering (SE) community and machine learning (ML)
community, trains a model incrementally with several steps.
In a typical active learning procedure, in the beginning, a
model is randomly initialized. In each step of the training,
it selects a few data from the unlabeled dataset to label and
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Fig. 1. An example of a DNN (feed-forward neural networks) classifier.

then retrains the model for better performance. In other words,
the goal for each step is to reduce the cost of labeling as
much as possible by selecting the most informative data to
annotate while improving the accuracy of a pre-trained model.
Therefore, active learning can help in model evolution. For
instance, in reality, a model needs to be updated over time
due to the rapid growth of new unlabeled data.

C. Test Selection

In the traditional field of SE, test selection has attracted
extensive research attention for a long time. For instance, test
selection is widely applied in regression testing [25] which
aims at reducing the size of test suites since executing the
entire set is remarkably costly. Depending on the purpose,
the selected test suites can help to eliminate redundant test
cases (test suite minimization), test relevant changed parts
of the software (test case selection), and locate faults early
(test case prioritization). A similar concept to test selection is
feature selection [26]–[28] that is thoroughly studied as well.
The difference is that feature selection focuses on seeking the
optimal features in a data set to allow efficient execution, while
test selection tries to reduce the size of data.

In practice, for DL-based software systems, collecting unla-
belled data is easy and cheap but labeling all of them requires
heavy work and specific domain knowledge. Following the
same spirit of test selection in traditional SE, recent research
proposed some test selection metrics for DL systems, like
the neuron coverage-based test selection. These metrics select
the most useful subset of unlabeled test data for both testing
DNNs and improving the performance of pre-trained DNNs
via retraining. We consider that these test selection metrics are
promising to apply in active learning for two main reasons.
First, the procedure of test selection and then retraining,
generally speaking, can be regarded as one-step active learning
– active learning being by nature an incremental process.
Second, the test selection metrics share the same goal of
determining the most useful data given a DNN. For instance,
an active learning process could measure this utility as the
number of new neurons that these data activate.

D. Adversarial Attacks on DNNs

DNNs have been proven to be vulnerable to adversarial
examples, which causes considerable security concerns [29].
Therefore, evaluating the ability (robustness) of a DNN to deal
with adversarial examples is a crucial part of DNN testing. An

adversarial example is a variant of input data by introducing a
small perturbation that is hardly recognized by human beings
but can easily fool DNNs. The perturbation is not just random
noise but carefully calculated by some adversarial attacks. In
this study, we employ three powerful attacks (FGSM, JSMA,
C&W) for image classification, and two (PWWS and DWB)
for text classification.
•FGSM. Goodfellow et al. [30] proposed the fast gradient
sign method (FGSM) to generate adversarial examples, which
is the first gradient-based and one of the most used attacks.
FGSM crafts x′ by x′ = x + ε · sign (OxJ (x, y)) where ε
controls the perturbation size. sign (·) is the sign function.
The sign of a real number is -1 for a negative value, 1 for
a positive value, and 0 for value 0. OxJ (x, y) computes the
gradient of the training loss J given x and its true class y.
• JSMA. The Jacobian-based Saliency Map Attack (JSMA)
[31] first computes a saliency map by the Jacobian matrix. The
map presents how influential each feature (e.g., each pixel) of
the input is to predict a particular class. Through exploiting
this map with targeting a class that does not match the true
class of a given test sample x, JSMA modifies x at where
the pixels have high-saliency values to generate an adversarial
example that might be classified within a predefined threshold
γ (maximum fraction of features being perturbed).
•C&W. Proposed by Carlini and Wagner [32], C&W is
known as one of the strongest adversarial attacks. It uses
a designed loss function f to replace the training loss,
then generates the adversarial example x′ which minimizes
dis (x, x′) + c · f(x′) where dis is a distance metric and c is
a constant that controls the distance and the confidence of x′.
•PWWS. The probability weighted word saliency (PWWS)
[33], a word-level attack, generates text adversarial examples
by replacing original words with synonyms searched from a
lexical database (e.g., WordNet [34]). Given a word, PWWS
selects a substitution concerning two factors. 1) How does the
classification change if replacing this word with a substitution?
2) How does the classification change if ignoring this word?
•DWB. The DeepWordBug (DWB) [35] is a black-box char-
level adversarial attack, which follows two steps to generate
adversarial examples. First, DWB determines the words to
modify by the change of predictions before and after replacing
the words with Unknown tokens. Second, it modifies the
selected words slightly by changing at most two letters per
word through a predefined manner, e.g., alter world to wor1d.

E. Model Compression

Model compression is important for efficient model deploy-
ment in software systems, especially when using large models,
e.g., big DNNs. The goal of model compression is to reduce
the model size while maximally maintaining the performance
in terms of accuracy before practical deployment. Next, we
introduce the two compression techniques considered in our
work.
•Model pruning. Model pruning lightens the model by
removing redundant and unimportant connections that have
little impact on the performance. In this study, we apply two



basic pruning strategies, the weight-level pruning [36] and the
neuron-level pruning [37]. The weight-level method sets the
weights that are smaller than a threshold to zero. The neuron-
level pruning removes the neurons that have a high chance
of being inactivated. Correspondingly, the related connections
(weights) are also eliminated.
•Model quantization. In DNN, weights are stored in the
32-bit floating-point format. To compress the model, the
quantization technique converts the weights from 32-bit into
low-bit (e.g., 8-bit integer).

III. OVERVIEW

We first introduce the three-phase design of our empirical
study, then present data selection metrics, datasets and models,
and evaluation measures that are studied in our work.

The secure life cycle of deep learning is composed of
some key stages [38] from the requirement analysis and data-
label pair collection to the maintenance and evolution of the
deep learning model. This paper studies the effect of the data
collection (i.e., active learning) on the model development
and deployment (i.e., the model quality). Figure 2 gives an
overview of our study, which consists of three phases, effec-
tiveness analysis of model training with different data selection
metrics, adversarial robustness analysis of the trained model,
and performance analysis after model deployment. Overall,
we compare the models trained using the entire dataset and a
subset of data selected by a specific data selection metric.

A. Study Design
More specifically, in the first phase (data collection), we

compare the effectiveness of each data selection metric for
training a model. Using different metrics (e.g., Entropy, Mar-
gin), we iteratively select a subset of training data and train the
model, then observe the convergence trend of the test accuracy.
For comparison, we also train two baseline models using entire
training data and randomly selected data, respectively.

In the second phase (model development), we evaluate
the robustness of the trained model. In our study, we apply
multiple metrics (e.g., empirical robustness, CLEVER score)
to compare the robustness of models trained with the selected
and the model trained by the entire training data.

In the third phase, we focus on the model performance (test
accuracy) in the model deployment phase. In general, a DNN
model usually consists of a huge number of parameters, e.g.,
a VGG16 model requires about 258MB of hard disk memory.
Before deploying such a large DNN model into the hardware
(e.g., mobile devices), one has to consider the performance
including the required memory and inference speed. We adopt
two well-known techniques (model quantization and model
pruning) to optimize a trained model. Then we evaluate the
accuracy of the optimized models. Besides, we study the
impact of training data size on the robustness of models and
the accuracy of optimized models.

Finally, based on the results of our empirical study, we
provide some practical guidelines for the usage of active
learning on different tasks and summarize some potential
research directions.

B. Datasets and DNN Models

We conduct experiments with two popular image datasets
(MNIST [39] and CIFAR-10 [40]) and three widely used text
datasets (IMDb [41], TagMyNews [42], and Yahoo! Answers
[43]). MNIST includes 10-class grayscale images of hand-
written digits. The dataset includes 60000 and 10000 training
and test data, respectively. CIFAR-10 is a collection of 10-
class color images (e.g., airplane, bird). The dataset consists
of 50000 and 10000 training and test data, respectively. IMDb
is a dataset including movie reviews widely used for text
sentiment analysis (binary classification). Both the training
and test sets include 25000 text reviews. TagMyNews provides
news headlines (text) in 7 categories (e.g., Sport, Business).
We randomly collect 20000 data for training and 2000 data
for testing. Yahoo! Answers consists of text data of 10 topic
categories (e.g., Society & Culture, and Science & Mathemat-
ics). We obtain this data from [33] directly with 3560 training
data and 889 test data.

For each dataset, we employ two DNN architectures to
reduce the model-dependent influence on the results. For
MNIST, we use two well-known convolutional neural net-
works LeNet-1 and LeNet-5 [44], and for CIFAR-10, we select
two models NiN [45] and VGG16 [46], both of which achieve
high accuracy. For IMDb, TagMyNews, and Yahoo! Answers,
we use two types of RNNs, LSTM, and GRU, derived from a
base model [47]. Our companion website presents all details
about the models and training parameters [48].

C. Data Selection Metrics

Various data selection metrics have been proposed and
verified to reduce the labeling effort. Note that the data
selection metric is also known as the acquisition function in
the ML community. We include 14 data selection metrics from
both the ML community (8 metrics) and the SE community (6
metrics). We first introduce the ones from the ML community.
•Entropy [8] considers the uncertainty of data using the
prediction output. This metric is based on the Shannon entropy
of the prediction probability:

argmax
x∈X

(
N∑
i=1

pi (x) log pi (x)

)
(1)

•Margin [8] computes a score for each data by the difference
between its top-2 prediction probabilities:

Margin (x) = pk (x)− pj (x) (2)

where k = argmax
i=1:N

(pi (x)) and j = argmax
i={1:N}/k

(pi (x)). The

training data with low scores will be selected for training.
•K-center [10] firstly divides data into K groups via some
unsupervised machine learning methods (e.g., K-means clus-
tering), then selects the center of each group (if not enough,
consider the data that are close to the center). These selected
data are regarded as the representative of the entire group.
•Expected Gradient Length (EGL) [49] assumes that the
model has no knowledge of the true label of data in advance.
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For each data, it computes the expectation of the gradients
by assigning all the labels to x. The data that have great
expectations are selected. EGL can be presented as follows:

EGL (x) =

N∑
i=1

pi (x) ||OxJ (x, i)| | (3)

where ||.|| is the Euclidean norm. OxJ (x, i) is the gradient of
the loss J given x and label i.
•Bayesian Active Learning by Disagreement (BALD) [50]
applies dropout to select the most uncertain data:

argmax
x∈X

(
1−

count
(
mode

(
y1x, ..., y

T
x

))
T

)
(4)

where T is the number of applying dropout to the model.
•Entropy-dropout and Margin-dropout [9] apply dropout
and calculate the average score of Entropy and Margin over
all dropout models, e.g., Entropy-dropout is defined as

argmax
x∈X

T∑
i=1

Entropy
(
xi
)

T
(5)

where Entropy
(
xi
)

is the entropy of x at the i-th time.
•Adversarial active learning (Adversarial al) [11] lever-
ages an adversarial attack, DeepFool, to facilitate selecting
data. Concretely, the model predicts labels for each data, then
DeepFool introduces perturbations to each data until reaches
an adversarial example. Finally, the data requiring smaller
perturbations will be selected. Intuitively, such data are close
to the decision boundary of the model.

Next, we introduce the metrics from the SE community.
•Neuron Coverage (NC) [16] selects data that have the
largest neuron coverage:

argmax
x∈X

| {neu| neu ∈ Neurons ∧ activate (neu, x)} |
|Neurons|

(6)

where activate (neu, x) indicates that the neuron neu is
activated by x, namely, the output of neu is greater than a
predefined threshold. We highlight that this is a variant of the
original metric to fit active learning. The original NC aims at
selecting data to cover all the neurons, however, in practice,
just a few data are enough to reach 100% coverage [51].
Namely, after a few selection steps, all the neurons have been
activated at least once and the marginal increase of coverage
will be 0. Thus, we apply this variant to fit active learning.
•K-Multisection Neuron Coverage (KMNC) [15] improves
NC by splits the lower and upper bounds of a neuron’s output
into k sections. Instead of using the coverage of neurons, it
considers the coverage of sections. Similar to NC, the data
with high coverage will be selected.
•Multiple-Boundary Clustering and Prioritization (MCP)
[18] is an extension of Margin. First, it divides data into
various “boundary areas” based on the top-2 predicted classes,
e.g., for data with 10 classes, there are P (10, 2) = 90
permutations of pairwise classes. Next, MCP selects data from
each area based on Margin.
•DeepGini [19] selects the most uncertainty data by:

argmax
x∈X

(
1−

N∑
i=1

(pi (x))
2

)
(7)

•Likelihood-based Surprise Adequacy (LSA) and Distance-
based Surprise Adequacy (DSA) [17] measure the surprise
adequacy by the dissimilarity between a test data and the
training set. The difference between LSA and DSA is that
LSA uses kernel density estimation to estimate the surprise
adequacy, while DSA uses Euclidean distance. Both select data
with the largest surprise adequacy.

We remark that although the initial purpose of these SE
metrics is not for active learning, their underlying selection
criteria share similarities with the criteria that active learning
metrics rely on. For example, both Entropy (active learning
metric) and DeepGini (SE metric) metrics select the uncertain
data based on the output probabilities. Therefore, we believe



that it is necessary to consider them in our study. Besides, no
existing research has revealed that whether these SE metrics
fit in active learning or how they perform.

D. Evaluation Metrics

Effectiveness. To evaluate the effectiveness of a selection
metric, we use random selection as the baseline and calculate
the difference of accuracy between the models trained using
random selection and this metric. The difference is defined by:

diff =

steps∑
i=1

(
AcciTS −AcciTR

)
(8)

where steps is the total number of training steps. AcciTS is
the test accuracy of the model trained by a selection metric,
and AcciTR is by random selection. diff shows the degree of
a metric outperforming random selection.

Adversarial robustness. The robustness of DNNs refers to
the ability to cope with adversarial examples. The robustness
of DNNs can be evaluated in multiple ways. We introduce
two popular methods of robustness estimation, Empirical Ro-
bustness [52] and CLEVER score [24]. 1) Empirical Robust-
ness This method quantifies the robustness of a DNN model
through the success rate of crafting adversarial examples by
an attack. In practice, given a DNN and a test set S, an
attack attempts to craft an adversarial example based on each
test data. The attack success rate is the ratio of adversarial
examples successfully generated:

ASR =
| {x | x ∈ S ∧ yx′ 6= y} |

|S|
(9)

Recall that yx′ and y are the predicted label of x′ and true
label of x, respectively. A small ASR indicates a robust
DNN. 2) CLEVER Score The Cross-Lipschitz Extreme Value
fornEtwork Robustness (CLEVER) score calculates the lower
bound for crafting an adversarial example given an input,
which is the least amount of perturbation required to fool a
DNN model. A great CLEVER score indicates a robust DNN.

IV. IMPLEMENTATION AND CONFIGURATION

Experimental environment. This project is implemented
based on Keras [53] and TensorFlow [54] frameworks. We
run all experiments on a high-performance computer cluster
except the model pruning and quantization. Each cluster node
runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. For the model pruning and
quantization, we conduct the experiments on a MacBook Pro
laptop with macOS Big Sur 11.0.1 with a 2GHz GHz Quad-
Core Intel Core i5 CPU with 16GB RAM.

Active learning. We initialize an empty labeled pool and
an unlabeled pool with all the unlabeled data. Besides, we
initialize the with random weights. Next, in each training
step, a fixed number (step size) of data are selected from the
unlabeled pool by a specific metric. Then the selected data
are merged into to labeled pool after annotation. The DNN is
updated by retraining using all the data in the labeled pool. The

TABLE I
CONFIGURATIONS OF ACTIVE LEARNING

Dataset Model Step size Stop point Entire training size
MNIST LeNet-1, LeNet-5 500 10000 60000
CIFAR-10 NiN, VGG16 2500 25000 50000
IMDb LSTM, GRU 500 12500 25000
TagMyNews LSTM, GRU 500 12500 25000
Yahoo!Answers LSTM, GRU 500 12500 25000

TABLE II
CONFIGURATIONS OF ADVERSARIAL ATTACKS. FOR THE DEFINITION OF

THE PARAMETERS (ε, γ , c, dis), PLEASE REFER TO SECTION II.

Dataset FGSM JSMA C&W CLEVER
ε γ c dis

MNIST 0.1, 0.2, 0.3 0.09, 0.1, 0.11 9, 10, 11 L-1, L-2, L-infCIFAR-10 0.01, 0.02, 0.03 0.01, 0.02, 0.03 0.1, 0.2, 0.3

procedure terminates when the size of the labeled pool reaches
a threshold (stop point). Table I lists the detailed settings. Note
that previous works have different parameter settings [8], [9],
[20], [55], we balance these settings to set up our experiments.
We implement data selection metrics based on [20].

Robustness. We use two public libraries, Foolbox [56] for
empirical robustness evaluation and ART [57] for CLEVER
score calculation. In empirical robustness, we apply three
attack methods, i.e., FGSM, JSMA, and C&W, for the image
classification task, and conduct three groups of experiments
with different parameters as in [58]. For the text classification
task, we use PWWS and DWB with the default setting in
[33], [35] to attack the text-related models. By default, only
the correctly classified data undertake the attacks. In CLEVER
score, the setting of c and dis follows the configuration in [58].
One difference is that we use 500 test data to calculate the
CLEVER score, while [58] used 50. The detailed information
is shown in Table II. Note that the setting of CLEVER works
both for the image and text classification tasks.

Model compression In model quantization, we apply two
lightweight frameworks, CoreML [59] and TensorFlowLite
[60], to transform DNNs into different bit-level versions. For
CoreML, we use three levels, 2-bit, 4-bit, and 8-bit. For
TensorflowLite, we apply 8-bit and 16-bit level quantizations
in our models since it only supports these two levels. In model
pruning, for both the weight- and neuron-level, we prune a
DNN into six compress versions with different degrees, from
10% to 60% at 10% intervals, using the implementations by
[36], [37]. As a reminder, model pruning is conducted after
the model is well-trained.

Last but not least, to reduce the influence of randomness, we
repeat each experiment three times and compute the average
results. In total, we trained and evaluated more than 2000
models in this study. The source code can be found on 2.

V. EXPERIMENTAL RESULTS

In this section, we present the results and answer each
research question mentioned in Section I. In the remaining
parts, we remark that “TE”, “TS”, and “Random” represent

2https://github.com/code4papers/ALempirical



TABLE III
EFFECTIVENESS WITH RESPECT TO RANDOM SELECTION (BASELINE).

THE RESULTS ABOVE THE BASELINE ARE HIGHLIGHTED IN GRAY.

MNIST CIFAR-10 IMDb TagMyNews Yahoo!AnswersMetric LeNet-1 LeNet-5 NiN VGG16 LSTM GRU LSTM GRU LSTM GRU Average

Entropy -131.88 -183.84 26.14 3.91 49.41 44.13 29.63 37.72 3.19 -20.06 -14.16
Margin 69.82 28.78 14.44 6.29 - - 29.68 36.23 26.10 17.44 28.59
K-center -23.28 28.63 21.00 -7.67 62.94 39.15 25.60 36.63 9.52 15.97 20.84
EGL -11.71 -14.13 -30.46 -17.65 3.62 -31.02 -14.55 -14.85 -155.46 -82.90 -36.91
BALD 27.84 -25.22 21.98 9.04 57.62 53.44 28.42 27.43 20.02 6.41 22.69
Entropy-dropout -81.71 -165.96 22.88 3.18 64.81 48.91 30.23 34.43 2.29 17.51 -2.34
Margin-dropout 43.57 14.67 1.19 6.56 - - 26.83 41.00 25.68 29.92 23.67
Adversarial al 33.23 22.69 -77.73 29.15 - - - - - - 1.835
NC -26.95 -182.01 -2.76 -10.95 36.28 12.69 30.77 25.27 -72.29 -93.89 -28.38
KMNC 3.80 -153.02 0.40 12.69 34.02 39.39 -4.35 0.83 -392.01 -375.40 -83.36
MCP 25.66 8.39 14.28 13.17 - - 24.53 30.70 11.59 17.02 18.16
DeepGini -74.07 -213.23 21.33 12.98 - - 30.62 31.98 20.47 -2.59 -21.56
LSA 19.83 22.37 3.41 8.97 -4.53 5.10 -1.22 -1.32 -385.71 -359.77 -69.28
DSA 9.26 23.62 1.37 10.49 5.54 5.34 -7.87 -0.78 -392.39 -359.47 -70.48

training using the entire dataset, the subset selected by data
selection metrics, and randomly selected data, respectively.
Note that due to the page limitation, we only illustrate a part of
the results in this paper, and the complete results are provided
as supplementary material [48]. The conclusions we draw
below generalize to all studied datasets/subjects and DNNs.

A. RQ1: Effectiveness of Data Selection Metrics

First, we show, in Figure 3, the performance of using dif-
ferent data selection metrics to train a DNN that achieves the
same test accuracy as the fully trained model. For comparison,
a horizontal dashed line in each sub-figure represents the
accuracy of the fully trained model. Overall, most metrics
manage to produce models with the same accuracy as the fully
trained model by using only 7% to 50% of training data.

Next, Table III offers a more detailed comparison of these
metrics, showing their effectiveness taking random selection
as a baseline (measured using Equation 8). Surprisingly, only
three metrics (Margin, Margin-dropout, MCP) significantly
outperform the baseline in all cases. On the contrary, in most
cases (9 out of 10), EGL is worse than random selection. There
are some metrics like LSA and DSA, which outperform the
baseline on the image classification task but underperform the
baseline on the text classification task, e.g., on Yahoo-LSTM
and Yahoo-GRU, and the difference reaches up to 392.39. We
conjecture that LSA and DSA tend to select data based on
similarity or distance. However, different from image data,
the two texts data (sentence or document) might have a big
difference in the hidden space even if they are in the same
category. In this case, the inter-output of the model against
these two data can be completely different which makes LSA
and DSA select the wrong data.

Specifically, considering the image classification task, we
observe that in addition to Margin, Margin-dropout, and MCP,
two other metrics, LSA and DSA, can always outperform
the baseline. What’s more, on LeNet-1 and LeNet-5, half
of the metrics are worse than the random baseline. Espe-
cially, Entropy, Entropy-dropout, NC, and DeepGini get high
negative differences, e.g., -131.88 for Entropy on LeNet-1,
which means these four metrics are much worse than random
selection. Turn to sub-figures 3(a) and 3(b), in the first few
training steps (where the big difference comes from), these
four metrics achieve much less test accuracy than the others

(also random selection). One explanation is that Entropy,
Entropy-dropout, and DeepGini try to find the most uncertain
data. However, such uncertain data are hard to be learned by
models that are not well-trained.

On the other hand, for the text classification task, the output
probability-based metrics (e.g., Margin and BALD) perform
better than the coverage and surprise adequacy-based metrics.
Extremely, LSA performs worse than the baseline on 5 (out of
6) models. Besides, on model Yahoo LSTM, the most efficient
metric (Margin) is much better than the worst one (KMNC)
with a 418.49% test accuracy gap. These results reflect that
both coverage and surprise adequacy based-metrics are not
suitable for the text classification task.

Answer to RQ1: The nature of the classification task
significantly affects the effectiveness of multiple data selection
metrics (e.g., LSA and DSA). Therefore, the limitation of
active learning experiments to a single target task – even
with multiple datasets – constitutes a critical threat to external
validity. Some metrics, like Margin, Margin-dropout, and
MCP, consistently perform well across all labeling budgets,
models, and tasks.

B. RQ2: Adversarial Robustness

We then study the robustness of models trained by different
data selection metrics against adversarial attacks. Figure 4
illustrates the empirical robustness of the models against
various attacks. Once again, we have to distinguish the two
types of tasks since the results of different metrics are greatly
biased on the tasks. For the image classification task, the TE
models are usually more robust than the TS models. However,
for the text classification task, the TS models are in some
cases more robust than the TE models (ad vice-versa). We
conjecture that two factors may affect the robustness of the
models: (i) the number of data used for training and (ii) the
training process. In active learning, the early selected data are
trained more times during incremental learning. Thus, the most
informative data (according to the data selection metrics) have
a larger influence on the model weights and, in turn, impact its
robustness. On the other hand, since the selected data can be
representative of the entire dataset to some extent, the differ-
ence between the TS and TE models is small. Taking VGG16
as an example, the difference varies from 1.67% to 17.21%
in FGSM, from 1.42% to 3.21% in C&W, and from 0.32%
to 10.54% in JSMA. Another observation that reinforces our
hypothesis regarding the importance of the training process
is that none of the metrics performs consistently better than
random selection. We investigate this hypothesis in the RQ4
experiments, where we consider different labeling budgets.

Table IV lists the CLEVER score of different models. As
for the text classification task, models trained with active
learning either yield a small improvement (less than 0.58
CLEVER score) or offer inconsistent benefit (either increasing
or decreasing the CLEVER score, depending on the considered
metric and norm distance). Besides, none of the data selection
metrics improves over the random selection, even the three
metrics which performed better in terms of effectiveness (viz.
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(a) MNIST, LeNet-1
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(b) MNIST, LeNet-5
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(c) CIFAR-10, NiN
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(d) CIFAR-10, VGG16
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(e) IMDb, LSTM
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(f) IMDb, GRU
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(g) TagMyNews, LSTM
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(h) TagMyNews, GRU
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(i) Yahoo, LSTM
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(j) Yahoo, GRU

Fig. 3. Evolution of the test accuracy (y-axis) achieved by different data selection metrics given the number (x-axis) of training data.
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Fig. 4. Adversarial attack success rate (%) of VGG16 and TagMyNews. The number in each cell represents the success rate and the color gives a straightforward
visual comparison of different values. The most robust model is framed by a red rectangle. The lower the success rate, the better robustness.

Margin, Margin-dropout, and MCP). Overall, these results
corroborate our previous findings. That is, for the image
classification task, active learning yields less robust models.

TABLE IV
THE CLEVER SCORE OF CIFAR-10 (VGG16) AND TAGMYNEWS

(LSTM). THE RESULTS THAT ARE BETTER THAN THE TE MODEL ARE
HIGHLIGHTED IN GRAY. THE HIGHER SCORE, THE BETTER ROBUSTNESS.

CIFAR-10 (VGG16) TagMyNews (LSTM)Meric L-1 L-2 L-inf L-1 L-2 L-inf
Etropy 3.7143 0.3289 0.0055 3.6466 1.1559 0.0531
Margin 3.6607 0.2136 0.0051 3.5496 2.0390 1.6712
K-center 3.6475 0.3132 0.0057 3.7970 0.9840 0.0132
EGL 4.2577 0.6996 0.0037 3.6881 0.7235 0.0276
BALD 3.8096 0.3176 0.0048 3.7424 1.3236 2.9914
Etropy-dropout 3.6881 0.1495 0.0075 3.4033 0.7465 0.4027
Margin-dropout 3.8213 0.3103 0.0047 3.5453 0.8562 0.0059
Adversarial al 4.2606 0.5242 0.0032 - - -
NC 4.2036 0.7017 0.0031 3.9315 0.9729 0.1879
KMNC 4.2628 0.6442 0.0340 3.1824 0.4198 0.0041
MCP 4.2955 0.4984 0.0041 3.7244 1.1289 0.8011
DeepGini 4.2616 0.5116 0.0031 3.4139 2.6286 1.6805
LSA 4.2449 0.7477 0.0041 3.8102 0.7150 0.0077
DSA 4.2567 0.6576 0.0035 3.7198 1.0144 0.0102
Random 3.9665 0.6499 0.0057 3.6295 1.6243 0.0065
TE 4.3636 0.7399 0.8053 3.3600 0.9910 1.6684

Answer to RQ2: For the image classification task, models
trained with active learning can have lower robustness than
models trained with the entire dataset, and the difference can
be up to 1.49 CLEVER score and 23.39% attack success
rate. Therefore, experimental studies should involve evaluation
metrics beyond clean accuracy. For the text classification
task, the results are inconsistent across attacks (empirical
robustness) and distance norm (CLEVER score), indicating
that other factors are at play when it comes to robustness,
e.g., the training process.

C. RQ3: Test Accuracy After Model Compression

We compare the test accuracy of a model produced by
different data selection metrics before and after compression.
Table V shows the results of VGG16 (image classification)
and TagMyNews-LSTM (text classification) by quantization.

On VGG16, the accuracy of the 2-bit compressed models
drops significantly by at least 76.32%, no matter it was fully
trained or with active learning. By contrast, on TagMyNews-
LSTM, the accuracy decay using 2-bit is relatively small (less
than 9.42%). The reason could be that, 1) the quantization



process has less impact on the LSTM layer, or 2) the text
data is less sensitive to the precision of weights. In both
cases, the compressed models achieve the same accuracy as
the original models with 16-bit (expect Margin and Entropy-
dropout On TagMyNews-LSTM). Specifically, compared with
random selection, on both VGG16 and TagMyNews-LSTM,
no metric always outperforms the baseline. Comparing with
the TE model, we found that for the image classification task,
the compressed TE model always maintains higher (with a gap
up to 7.47%) test accuracy. However, for the text classification
task, the TS model sometimes loses more test accuracy than
the TS models after quantization. Surprisingly, with 2-bit
quantization, the TE model gets the largest accuracy decay
(-9.42%).

TABLE V
THE CHANGE OF TEST ACCURACY OF CIFAR-10 (VGG16) AND

TAGMYNEWS (LSTM) BEFORE AND AFTER MODEL QUANTIZATION. THE
BEST AND WORST RESULTS ARE HIGHLIGHTED IN GRAY AND ORANGE,

RESPECTIVELY.

CIFAR-10 (VGG16) TagMyNews (LSTM)
CoreML TFLite CoreML TFLite

2-bit 4-bit 8-bit 8-bit 16-bit 2-bit 4-bit 8-bit 16-bit
Entropy -78.13 -4.77 -0.09 -0.53 0 -2.13 -0.2 0 0
Margin -78.59 -3.06 -0.14 -0.76 0 -2.5 -0.28 -0.03 -0.02
K-center -76.32 -2.28 -0.81 -5.18 0 -1.72 -0.1 +0.02 0
EGL -76.72 -2.35 -0.02 -0.63 0 -0.22 -0.18 +0.12 0
BALD -77.99 -2.34 -0.01 -0.2 0 -3.9 -0.03 +0.02 0
Etropy-dropout -77.92 -4.53 -0.76 -0.48 0 -2.82 -0.1 -0.03 -0.02
Margin-dropout -78.02 -1.56 -0.01 -0.39 0 -2.57 -0.22 -0.02 0
Adversarial al -79.77 -2.05 -0.05 -3.2 0 - - - -
NC -77.17 -8.85 -0.22 -2.39 0 -2.57 -0.12 +0.02 0
KMNC -78.92 -1.65 -0.06 -2.67 0 -2.88 -0.22 +0.03 0
MCP -79.72 -1.56 -0.02 -3.64 0 -4.17 -0.07 0 0
DeepGini -80.2 -3.47 0 -3.02 0 -8.73 -0.13 -0.03 0
LSA -78.16 -1.74 -0.01 -2.53 0 -4.1 -0.12 -0.02 0
DSA -78.28 -1.99 -0.04 -2.88 0 -2.88 0 +0.02 0
Random -77.82 -1.74 -0.24 -1.77 0 -2.32 -0.42 -0.13 0
TE -81.36 -1.38 0 -0.03 0 -9.42 -0.07 0 0

Figure 5 depicts the result by weight- and neuron-level prun-
ing. In general, with pruning more weights and neurons, the
test accuracy decreases gradually up to 36.20% and 81.46%
on VGG16, respectively. However, on TagMyNews-LSTM, the
accuracy changes negligibly by increasing or decreasing up to
0.4%. The reason might be that these two pruning methods can
only affect the Convolutional layer and the Dense layer, while
our LSTM models only contain one Dense layer to output the
final prediction probability. Looking into VGG16, the neuron-
level pruning affects the accuracy more than the weight-level
for all the data selection metrics, which suggests that in
practical applications, the engineers should consider more the
weight-level pruning than the neuron-level to minimize the
accuracy loss. Among these data selection metrics, DeepGini
and NC are always better than random selection. Besides,
for the image classification task, the TE model outperforms
all TS models with a gap up to 33.4%. However, for the
text classification task, the TE model has no advantage of
maintaining test accuracy over TS models after pruning.

Answer to RQ3: Model compression inconsistently affects
the performance of the models trained with active learning and
no data selection metric provides satisfactory results across
all tasks. For the image classification task, after compression,
the fully trained models hold higher test accuracy than the
models trained with active learning, and the gap can be up to

0 10 20 30 40 50 60
Percentage

0

5

10

15

20

25

30

35

A
cc

ur
ac

y 
de

cr
ea

se

DSA
LSA
Entropy
BALD
K_center
Margin
Entropy_dropout
Margin_dropout
EGL
NC
MCP
Adversarial_al
KMNC
DeepGini
Random
TE

(a) VGG16, Pruning-weight
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(b) VGG16, Pruning-neuron
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(c) TagMyNews-LSTM,
Pruning-weight
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Fig. 5. The change of test accuracy (y-axis) after model pruning with different
degrees (x-axis), i.e. the proportion of weights and neurons being pruned.

7.47% (quantization) and 33.4% (pruning). On the contrary,
for the text classification task, the fully trained models have
no advantage of test accuracy over the models trained with
active learning after model compression.

D. RQ4: Impact of Training Data Size

From Sections V-B and V-C, we found that the data selec-
tion metrics tend to produce less robust models and introduce
greater changes of accuracy after model compression. We
further extend our experiments to investigate the impact of the
data size on the quality (e.g., adversarial robustness and test
accuracy after compression) of models. Figure 6 shows the
results on VGG16 and TagMyNews-LSTM. For adversarial
attacks, we use JSMA-0.01 for VGG16 and PWWS for
TagMyNews-LSTM, respectively. For model compression, we
employ the 4-bit quantization by CoreML. On both models, we
show the results by two data selection metrics: the prediction
probability-based Entropy and neuron coverage (NC).

Figure 6(a) and Figure 6(b) show that TS models become
more robust with more training data added, especially, the
models could be more robust than the fully trained models
in the end. According to the results, we can see that to
achieve similar robustness with fully trained models, more than
60% of training data are required for the image classification
task, while only 35% of training data is enough for the text
classification task. This corroborates our hypothesis (see RQ2)
that the training process used by active learning (which makes
data selected earlier go through more training iterations than
data selected later) can yield more robust models compared
to a traditional training process involving all data from the
beginning. This finding also opens the perspective of using
such an active learning process in conjunction with common
methods to improve robustness, such as adversarial training.

Figure 6(c) and Figure 6(d) show the test accuracy decay
after model compression. For the text classification task, the
difference is negligible throughout the increase in data size.
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(c) VGG16, Quantization
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Fig. 6. Impact of training data size (x-axis) on the performance (y-axis)
(success rate or accuracy decrease) of model. The horizontal dashed line shows
the attack success rate or change of test accuracy of a fully trained model.

For the image classification task, the decay of accuracy keeps
stably lower than 10% until the data size reaches 37500, where
the accuracy decreases significantly by up to 60.73%. These
results reveal that the data size is not a key factor in the test
accuracy decay on model compression.

Answer to RQ4: Increasing the labeling budget of active
learning mitigates the loss in robustness compared to a fully
trained model. For example, using at least 60% training data
for the image classification task (respectively, 35% for the text
classification task) yields models with the same robustness as
the fully trained model. However, training with more data does
not change our previous conclusions regarding the inconsistent
effect of model compression.

E. Discussion

We highlight our novel findings first, then discuss some
practical guidance and research directions accordingly.

Novel findings and user guidance. 1) Finding: previous
studies were limited to test accuracy, the image classification
task, and did not compare metrics from both the ML and SE
communities. We reveal that the benefits of active learning are
highly task-dependent. Some data selection metrics (LSA and
DSA) are highly affected by the nature of classification tasks,
while some (Margin, Margin-dropout, and MCP) can achieve
consistently high performance. Guidance: engineers need to
choose data selection metrics according to specific tasks. 2)
Finding: the limitation of active learning also exists in the
adversarial robustness and model compression, however, the
evaluation was missing in the literature. We found that the
active learning process has some potential but notable impact
on these indicators, e.g., for the image classification task, the
fully trained model is more robust than the model trained
by active learning. Guidance: engineers are recommended to
consider all these indicators when using active learning.

Research directions. 1) Since no existing data selection
metric can perform well on all the considered objectives,

an interesting research direction is to design data selection
metrics that can optimize multiple qualities such as accu-
racy, robustness, and accuracy after compression. Regarding
robustness, an adequate metric should also effectively integrate
with an adversarial training process, minimizing the amount
of data to form which adversarial examples are generated to
increase the model robustness. 2) Our study focuses on two
types of classification tasks (image and text). Recently, DL
systems have been applied in some SE-related tasks, such as
source code function prediction and automatic program repair.
Exploring how existing data selection metrics perform on these
tasks is a potential research direction. Besides, proposing a
source code-oriented data selection metric for this kind of
system could be another contribution.

F. Threats to Validity

First, threats to validity may lie in the selected datasets and
DNN models. Regarding the datasets, we employ five popular
datasets across both image and text classification tasks in our
study. As for the DNNs, we consider, in total, ten architectures
(two for each dataset) to alleviate the model-dependent issue.
Though the models we use perform well on the chosen tasks,
an interesting direction of future work is to repeat the study on
more complex model architectures, such as transformer-based
models for text classification [61], and observe whether the
trends remain.

Second, the parameter configuration may induce a threat to
validity. Regarding the parameters in active learning, there is
no universal rule for choosing the best settings. For instance,
previous studies [8], [9], [20], [55] utilize different settings of
labeling budget and stop strategy. We mitigate this threat to
validity in two ways: (1) we took the best and most common
practices from the literature to design our active learning
process and settings, and (2) our research questions concern
the specific impact of some parameters (e.g. RQ4 studies the
impact of the stop criteria). For robustness evaluation, we
follow a recent study [58] to set a range of perturbation sizes
for different adversarial attacks. As for model compression,
our study involves multiple settings to reduce the potential
bias of the results.

Third, due to the space limitation, we only report the results
of two datasets covering the image and text classification
tasks. Nonetheless, we remark that the reported conclusion
is generalized to all the datasets and DNNs. For example,
for RQ2, in total, 31 out of 36 settings, the fully trained
image-related models are more robust than the actively trained
models, which is consistent with our finding. Besides, we
report all our complete results on our project site [48].

VI. RELATED WORK

We review related works in three aspects: data selection in
DL systems, empirical study on active learning, and empirical
study for DL systems.

Data selection in DL systems. We have already witnessed
the success of data selection in SE problems, such as system-
atic literature review [62], defect prediction based on static



code attributes [28], software cost modeling [63], and software
fault prediction [64]. Meanwhile, in the ML community, many
data selection metrics have been proposed mainly for active
learning. Recently, Ren et al. [65] surveyed the active learning
metrics and categorized them into uncertainty-based [8], [66],
deep Bayesian active learning [9], density-based [10], [67],
and other methods [11], [68], [69]. On the other hand, the SE
community has proposed some DL testing criteria as well as
data selection metrics. Inspired by the program coverage, Pei
et al. [16] proposed the basic neuron coverage criterion, which
can be used as a data selection metric. Then, DeepGauge
[15] introduced other DL test criteria, e.g., KMNC, Neuron
Boundary Coverage. Kim et al. [17] proposed surprise guided
testing metrics based on the similarity between the training
data and test data. Moreover, some prediction probability
based data selection metrics [18], [19], [70] are also proposed.
Most recently, Wang et al. [71] proposed a robustness-oriented
data selection metric, however, their metric can only select
data that are generated by adversarial attacks, it is out of
our consideration. In our work, we comprehensively studied
almost all these metrics not only on their effectiveness but also
the potential limitations.

Empirical study on active learning. Active learning has
been widely studied over recent years, and some empirical
studies of active learning have also been conducted from
different domains. Ramirez-Loaiza et al. [72] utilized several
performance measures, e.g., accuracy, F1 score, and AUC, to
evaluate active learning baselines. However, all these measures
are based on the correctness of classification, while our study
includes more evaluation methods, such as the adversarial
robustness and the performance change by model compression.
Pereira-Santos et al. [73] conducted a large-scale empirical
study of active learning for three machine learning algorithms,
C4.5, SVM, and 5NN. Similarly, the evaluation is limited
to the classification correctness quantified by the Area under
the Learning Curve (ALC). In addition, some works target
specific tasks by active learning. Settles et al. [49] analyzed
active learning for sequence labeling tasks such as information
extraction and document segmentation. For these specific
problems, the evaluation mainly lies in the learning curve
and runtime. Yu et al. [62] empirically studied existing active
learning techniques for literature reviews, then proposed a
novel one that outperforms the existing metrics concerning the
recall vs. studies reviewed curve. Chen et al. [74] studied the
behavior of active learning for the word sense disambiguation
task. However, they only considered two basic data selection
metrics, entropy and margin, and the evaluation only involves
accuracy. Heilbron1 et al. [75] explored active learning for
the action localization task, which also only considered a very
limited number of (3) data selection metrics and compared
the performance by ALC based on the correctness. Manabu
[76] studied active learning with support vector machines
(SVMs) for natural language processing. In their study, they
only compared their proposed metrics with random selection
based on accuracy. Besides, the finding is mainly that SVM
active learning is suitable for Japanese word segmentation.

To sum up, compared with previous empirical studies, our
study focuses on the application of active learning in deep
learning systems and is the first one that studied both image
classification and text classification tasks. More importantly,
our work is the only one that analyzes the impacts of ac-
tive learning on two important testing aspects during DNN
deployment, the adversarial robustness and the performance
of DNNs after model compression. Moreover, to the best of
our knowledge, our study is the first that evaluates the data
selection metrics proposed by the SE community for active
learning.

Empirical study for DL systems. Recently, multiple em-
pirical research studies focus on exploring the DL issues that
are hard to be solved in theory. Guo et al. [77] studied the
performance difference between different DL frameworks as
well as the model changes after model migration. Zhang et
al. [78] and Chen et al. [79] studied the challenges in the
deployment phase of DL systems. Both of them revealed that
developing a DL system is harder than developing software
systems. Ma et al. [20] performed a comparison study on
different data selection metrics. They investigated the ability
of each metric to identify misclassified input and improve the
test accuracy by retraining. What’s more, Zhang et al. [80]
conducted a comparative study about the capability of different
uncertainty metrics in distinguishing adversarial examples and
benign examples. Different from these works, our empirical
study focuses on exploring the limitations of active learning,
especially the potential limitations of the model trained by
active learning, compared to the fully trained model.

VII. CONCLUSION

In this paper, we conducted a comprehensive empirical
study to explore the limitations of active learning. In total,
more than 2000 models for image classification and text
classification tasks have been trained and systematically eval-
uated. The results reveal that, when using active learning to
train a model, different data selection metrics yield models
of significantly different quality (in accuracy and robustness).
For the image classification task, a model trained with active
learning can achieve competitive test accuracy but suffers from
robustness loss and are less to compression. However, these
downsides rarely occur in text classification models. Also, we
further studied the relationship between the data budget and
the quality of a trained model. We found that the robustness
of the model increases with the amount of training data, and
ultimately reaches the robustness of the fully trained model.
Based on these findings, we provided some practical guidance
as well as research directions. We believe that our work could
give engineers and researchers some valuable insights into the
whole secure life cycle of deep learning, especially in the data
collection and model evolution steps.
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[61] P. Li, P. Zhong, K. Mao, D. Wang, X. Yang, Y. Liu, J.-x. Yin, and
S. See, “Act: an attentive convolutional transformer for efficient text
classification,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 15, 2021, pp. 13 261–13 269.

[62] Z. Yu, N. A. Kraft, and T. Menzies, “Finding better active learners for
faster literature reviews,” Empirical Software Engineering, vol. 23, no. 6,
pp. 3161–3186, 2018.

[63] Z. Chen, T. Menzies, D. Port, and D. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, vol. 22, no. 6, pp. 38–46,
2005.

[64] H. Lu and B. Cukic, “An adaptive approach with active learning in
software fault prediction,” in Proceedings of the 8th International Con-
ference on Predictive Models in Software Engineering, ser. PROMISE
’12. New York, NY, USA: Association for Computing Machinery,
2012, p. 79–88.

[65] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A survey of deep active learning,” arXiv preprint arXiv:2009.00236,
2020.

[66] N. Asghar, P. Poupart, X. Jiang, and H. Li, “Deep active learning for
dialogue generation,” arXiv preprint arXiv:1612.03929, 2016.

[67] Y. Geifman and R. El-Yaniv, “Deep active learning over the long tail,”
arXiv preprint arXiv:1711.00941, 2017.

[68] M. Fang, Y. Li, and T. Cohn, “Learning how to active learn: A deep
reinforcement learning approach,” arXiv preprint arXiv:1708.02383,
2017.

[69] B. Yang, J.-T. Sun, T. Wang, and Z. Chen, “Effective multi-label
active learning for text classification,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2009, pp. 917–926.

[70] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in IEEE/ACM 43nd International Conference on Software Engineering
(ICSE), 2021.

[71] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
“Robot: robustness-oriented testing for deep learning systems,” arXiv
preprint arXiv:2102.05913, 2021.

[72] M. E. Ramirez-Loaiza, M. Sharma, G. Kumar, and M. Bilgic, “Active
learning: an empirical study of common baselines,” Data Mining and
knowledge Discovery, vol. 31, no. 2, pp. 287–313, 2017.
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