
Towards Automating the Generation of Mutation Tests

Mike Papadakis
Department of Informatics

Athens University of Economics
and Business

mpapad@aueb.gr

Nicos Malevris
Department of Informatics

Athens University of Economics
and Business

ngm@aueb.gr

Maria Kallia
Department of Informatics

Athens University of Economics
and Business

kalliam@aueb.gr

ABSTRACT

Automating software testing activities can increase the quality and

drastically decrease the cost of software development. Towards

this direction various automated test data generation tools have

been developed. The majority of them aim at branch testing, while

a quite limited number aim at a higher level of testing

thoroughness such as mutation. In this paper an automated

framework that makes a joint use of diverse techniques and tools

is introduced in the context of automating mutation based test

generation. The motivation behind this work is the use of existing

techniques and tools such as symbolic execution and evolutionary

testing towards automating the test input generation activity

according to the weak mutation testing criterion. The proposed

framework integrates existing automated tools for branch testing

in order to effectively generate mutation test data. To fulfill this

suggestion three automated tools are used for illustration purposes

and preliminary results are obtained by applying the proposed

framework to a set of java program units indicating the

applicability and effectiveness of the proposed approach.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools

General Terms

Verification

Keywords

Mutation testing, automated test case generation, symbolic

execution, concolic execution, genetic algorithms.

1. INTRODUCTION
Software testing is a very expensive activity as it can consume

50% or even 60% of the total cost of the software life cycle. To

reduce software testing cost, a lot of effort has been put towards

automating the test data generation process, thus also reducing the

overall software development cost. This activity is usually

performed by utilizing an automating tool that produces the

sought test data. In the absence of such tools this activity must be

manually performed making the testing cost more unbearable.

Therefore, the need for automating this process is imperative,

especially when employing expensive testing techniques. Usually,

to evaluate that a piece of software has been thoroughly tested, a

collection of requirements are selected and checked whether they

have been successfully executed with test cases. Requirements

that have received considerable popularity are the structural test

coverage criteria basically for their effectiveness, ease of use and

straightforward evaluation.

Mutation testing is a powerful fault-based yet highly expensive

testing technique initially introduced by Hamlet [8] and DeMillo

et al. [6]. This technique is the basis of the present work and an

attempt to automate the test data generation process for its

effective use is investigated. The successful automation leads to a

successful cost reduction, thus allowing mutation testing to be

more usable and manipulable. Mutation analysis is based on the

production of syntactical alterations of the code under test aiming

at producing semantically different program versions. The

different program versions are called mutated versions as each

one contains a simple syntactic change of the original code. The

role of the test cases is to unveil these purposely syntactic

alterations by distinguishing the mutated programs from the

original one. A mutant is termed “killed” if there is a test that

distinguishes its output from that of the original program whereas;

in the absence of such test cases it is termed “equivalent”. The

percentage of the mutants killed is used as a measure of the testing

thoroughness of the method. Although mutation has been shown

to be quite powerful [2], it has unfortunately proved to be highly

demanding in order to generate and execute the mutated versions.

In view of this and in order to reduce the resulting cost, various

mutation techniques have been proposed. One such technique

namely “weak mutation” [10] targets on reducing the process

execution cost. It suggests stopping the program execution of the

mutated programs immediately after the mutated statements are

executed with data. One other additional technique, called mutant

schemata, targets on reducing the generation and compilation cost

of the produced program versions [28]. This technique produces

one meta-program that embeds in its structure all mutated

versions. Both these techniques have been assessed empirically

and details can be found in [18] and [15] with promising results.

To find appropriate test data with relevance to a selected criterion

can be a very tedious task [20]. This constitutes a major problem

for full or partial automation. Unfortunately, this is the case for

mutation and its variants i.e. weak mutation too. Most of the

progress in the area has been reported by DeMillo and Offutt [7]

in a technique called Constraint Based Testing (CBT). CBT uses

paths and symbolic evaluation to construct sets of conditions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

AST '10, May 3-4, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-970-1/10/05 ... $10.00

under which inputs should execute and infect the program state of

the considered mutated programs. This approach although

powerful has not been implemented or incorporated in an

automated tool for modern programming languages such as java.

In general, approaches employing mutation are scarce in the

literature. Conversely, there appear not to exist any fundamental

attempts that effectively utilise recent advances of symbolic

execution [12], concolic execution [26] and search based

optimization techniques [9]. Techniques that have succeeded in

automating the generation activity for structural testing.

The approach in the present paper automatically reduces the

killing mutant’s problem to a covering branches problem. This

constitutes the basic achievement of the present work. Treating

each mutant as a branch, helps on focusing on specific mutants by

selecting appropriate paths or tests in order to generate effective

data capable of killing the specified mutants. The benefit of such

an activity is that automated tools or techniques implemented for

structural testing can be easily utilized with some modifications to

perform mutation testing. Thus, mutation testing automation is

reflected on the structural testing automation and efficiency,

where known achievements have been recorded.

The suggestions made in this paper have been incorporated into an

automated framework that uses a novel version of the mutant

schemata technique for weak mutation. A case study indicating

the applicability of the proposed advances has been undertaken,

revealing their strengths. The contribution of the present work can

be summarized into the following proposed points:

 An automated technique for reducing mutants to

branches.

 A practical approach on using existing automated test

data generation tools that rely on either static (symbolic

execution) or dynamic (concolic and search based)

techniques.

 An approach that reduces the execution time used by

dynamic approaches, such as concolic execution and

search based optimization.

The rest of this paper is organised as follows: Section 2 introduces

some background material. Section 3 presents some related to the

present work. Section 4 details the proposed technique. Sections 5

and 6 report a conducted case study and discuss the practicality

issues induced by the application of the proposed technique

together with some future directions. Finally in section 7

conclusions are discussed.

2. BACKGROUND
The goal of testing criteria is to select a subset of all possible test

cases that have a high ability of detecting errors. There are many

types of testing requirements e.g. functional, structural and fault-

based that examine different program characteristics. In general,

structural testing criteria require the examination of the internal

composition of the program’s source code. Tests are derived to

exercise certain program elements such as basic blocks, branches,

paths etc., of the program under test. Typically, tests are produced

until a predefined level of coverage is reached. The level of

coverage according to a selected criterion is defined according to

the following ratio:

Coverage =
𝑇𝑒𝑠𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 − 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 (1)

The criteria requirements goal is both to guide and evaluate the

quality of the test data. Testing based on fault based criteria,

requires the exposition of some introduced faults. According to

these criteria, a number of faults are seeded into the program’s

code and fault based requirements are utilized for their exposition.

The test coverage is defined along the same lines as for the

coverage defined in (1), by calculating the percentage of the faults

revealed. As already discussed, mutation testing is a fault based

testing technique that introduces faults by making simple syntactic

changes to the source code under test. The introduction of the

syntactic changes is based on a set of rules called mutant

operators. As it has appeared in the literature, the exposition of a

seeded fault such as a mutant, should adhere to three conditions

known as Reachability, Necessity and Sufficiency [7]. Based on

these three conditions, DeMillo and Offutt developed a test data

generation technique called Constraint-Based test data generation

(CBT) [7] which forms the foundations for killing mutants. CBT

answers in a general way, the question of how any approach

should attempt to kill mutants.

The Reachability condition states that the mutant statement must

be exercised with test data. It must be noted that mutation

introduces one fault at a time and all the program’s executable

statements apart from the mutated one are the same to the original.

If tests cannot execute the mutated statement, it is guaranteed that

the tests have no chance to kill the seeded mutant [7]. The

necessity condition states that the execution of the mutated

statement must cause a departure form the original program state

[7]. This is substantiated by the fact that the execution outcome of

the original and the mutated statements must be different. In the

opposite situation the syntactical equality of the rest of the two

program versions suggests that they will never form different

computations and will therefore never result in observable output

differences. The sufficiency condition states that the infected

program state must propagate up to the last program statement.

The execution path and its computations must use the mutated

statement and its internal different value (necessity condition) and

create a different observable formulation from the mutated

statement up to program’s output.

Current test data generation approaches [7], [21] try to utilise

directly the reachability and necessity conditions based on

constraint resolution and domain splitting. Because of its high

complexity the sufficiency condition is indirectly satisfied through

the satisfaction of the reachability and necessity ones. This is

reinforced in [7] and [18] where it is shown that tests meeting the

reachability and necessity conditions have a high chance of

meeting the sufficiency condition as well. Although fulfilling the

sufficiency condition may be highly desirable in order to meet

strong mutation requirements. However, by fulfilling the

reachability and necessity conditions only, this results in meeting

the weak mutation criterion requirements [10]. Automated tools

targeting on mutation testing are scant due to technical issues

concerning mutation analysis and the corresponding test data

generation, which is difficult and resource-consuming. It is these

difficulties that the present research tries to overcome by adapting

existing methods for performing other forms of testing to perform

mutation.

Modern test generation methods rely on either static or dynamic

analysis techniques or on their combination. The peculiarities of

mutation itself make difficult the straightforward application of

either of the two approaches. To deal with these special

characteristics, an initial attempt was suggested [21] mainly based

on static analysis. According to this method a suitable program

representation model called enhanced control flow graph is used.

This type of model is constructed by augmenting the program’s

control flow graph with mutant constraints, by representing each

mutant with a special type of vertex. Every added mutant vertex is

connected with its original corresponding node and represents the

necessity constraint [7] related to this mutant. The augmented

graph is then used to select paths that include each mutant in turn

in a static manner and then derive appropriate test data by

symbolic executing them. The strength of this method is attributed

to the unification of all mutant conditions in one appropriate test

model containing both path and mutant conditions.

The benefits of the above consideration is that each mutant and its

representation on the graph i.e. the original node connected to

each mutant node, and vice versa, allows to convert the problem

of generating test data to kill each mutant into that of generating

data to cover all the branches that connect the original with the

mutant nodes. This can be tackled by the well researched problem

of generating test data that will cover all the branches in the

respective graph. The proposed approach embodies this important

characteristic and tries to utilize automated tools for covering

program branches in order to kill the mutants.

3. RELATED WORK
The automatic generation of test data has been regarded as the

main issue in software testing for a long period. This is true for all

methods developed for assessing the quality of software. In view

of this, mutation being a very powerful testing method, could not

be left aside especially when by its definition is a very expensive

to use method. Despite the need for tools that will alleviate the

problems induced by mutation very little has been done towards

developing automated tools for this purpose. The most important

work can be attributed to DeMillo and Offutt in a method known

as the Constraint Based Testing Technique [7]. The CBT

technique has been implemented in a tool called Godzilla for the

testing Fortran programs and has been integrated with the Mothra

[5] mutation testing environment. Godzilla embodies the

reachability and necessity conditions and describes them as

mathematical systems of constraints. The reachability conditions

are described by path expressions of all program paths that pass

through a mutated statement. The necessity conditions are

described by a specific, to each mutant expression(s) in order to

infect the program’s state immediately after the mutated

statement. Godzilla conjoins and tries to solve for each mutant its

reachability and necessity constraints in order to produce some

tests. In this approach there is no straightforward attempt to

automatically satisfy the sufficiency conditions. CBT has

empirically been shown to be an effective technique however, it

has certain drawbacks with respect to the symbolic evaluation

when dealing with the handling of arrays, loops, non linear

expressions and the path explosion problem as this is reported in

[17]. To overcome these difficulties, the Dynamic Domain

Reduction (DDR) [17] method was proposed. With this method

tests are produced based on the reduction of the input spaces of

the variables involved. The DDR approach treats the test

generation problem as a dynamic path based problem. Its basic

characteristic is the generation of test data for a chosen path using

a search heuristic over the input domain guided by the program’s

control flow graph and a backtracking mechanism. In [21], a

transformation of the problem of killing mutants to a covering

branches alternative, was suggested. Thus, effective heuristics

applied for branch testing can be extended to mutants too. The

most popular methods for branch testing are those that select

specific path sets to generate the sought test data. As with all path

generation methods their major deficiency is the generation of

infeasible paths, this problem is also inherited when employing

path generation for performing mutation testing too. In [21] a path

based strategy that alleviates the effects of infeasible paths [30]

was successfully used for producing mutation adequate test cases.

Dynamic approaches based on searching input domain sets have

also been proposed. Bottaci [4] proposed a fitness function

composed of two parts, one that measures the reachability

distance (measures how close the data are to reach the mutant

statement) of the produced tests and the other for measuring their

necessity distance (measures how close the data are to killing the

mutant statement). In [3] an evolutionary approach that generates

mutation test data was proposed. In this technique, the generation

process is mapped on to a minimization problem guided by an

appropriate fitness function. In particular, the authors adopt the

ant colony optimization algorithm [3] as a metaheuristic search

engine and a partial implementation as they implement the

reachability part only, of the fitness function proposed by Bottaci

[4].

Many dynamic approaches have appeared in the literature for

branch testing based on either concolic [26] or search based

optimization techniques e.g. [9], [27]. Most of these techniques

try to effectively utilize optimization algorithms and input domain

control. Harman and Mcminn [9] conducted a comprehensive

theoretical and empirical study of search based optimization

approaches used in software testing. Their results suggest that

simple hill climbing techniques as in [13] are the most effective

for generating structural tests. Additional integrated approaches

that attempt to effectively combine both search based

optimizations and symbolic execution have also been suggested.

For example in the context of object oriented applications, a

framework [11] that attempts to improve the branch coverage by

aiming at generating method sequences based on evolutionary

testing and method internal structures relying on concolic

execution was proposed. A similar hybrid approach [22] that

integrates genetic algorithms as a search engine over the input

domain and symbolic execution based on the Yates and Malevris

method [30] has also been suggested.

The benefits of mutation testing highly depend on the number of

mutants involved. Strategies involving mutation should therefore

attempt to limit the number of the mutants introduced on the one

hand while avoiding to introduce equivalent ones on the other.

Such an approach is proposed in [24] where the construction of

higher order mutants is discussed. In this work it is suggested that

the number of mutants and equivalent ones can be dramatically

limited by introducing two or more mutants at a time. A different

approach to heuristically deal with equivalent mutants is proposed

in [25]. According to the authors, dynamic invariants are

introduced into the program under test. The mutants are assessed

based on their impact with the invariants. By targeting to those

with a higher level of impact, a good measure of the adequacy of

the test suite is established, while limiting the number of

considered mutants and the equivalent ones. However, both of

these approaches rely on mutation analysis rather than on

generating test data.

4. PROPOSED FRAMEWORK
The proposed framework attempts to automate the test data

generation process according to the mutation testing criterion. The

framework takes the test objective code written in java as input

and automatically generates the required data. To achieve this, a

test data generation engine must be employed. Here the presented

framework can adopt any automated tool aiming at structurally

testing java programs. In the present study three automated tools

were used. These tools were chosen because of their availability

and the differences in their philosophy for generating data. Two of

them are publicly available. The first is known as the symbolic

execution extension of the java PathFinder tool [23] and the

second as etoc [27], an evolutionary based testing tool for java.

The third one utilizes the “concolic” execution method [26] and it

was implemented by the authors for the purpose of the present

paper.

In [21] the foundations of producing certain constraints under

which mutants are killed as proposed by DeMillo and Offutt [7],

are used in order to construct a suitable model for test generation.

This test model, called Enhanced Control Flow Graph (ECFG)

[21], forms a graph embedding into its arcs all the considered

mutant constraints. By doing so, covering the ECFG branches

results in covering - killing all the considered mutants. Thus,

following this approach an automated tool that interfaces with a

suitable ECFG [21] can produce mutation tests. Although this

approach can reduce the mutant killing problem to a covering

branches problem, existing automated tools constructed for

structural testing, cannot be used straightforwardly. Hence using

existing automated tools requires complex adaptations in their

embodied generation engines in order to produce mutation tests.

Such adaptations are based on the bilateral embodiment of the

actual program execution graph and the enhanced model (ECFG).

The proposed framework uses simple but quite effective

modifications in order to make use of existing structural testing

tools. This follows the spirit of avoiding making drastic alterations

on existing tools for producing mutation tests. The innovative idea

behind this research is the production of one meta-program that

includes all candidate mutants into its structure. The structure of

the meta-program is along the same lines as the ECFG [21] and

thus reduce the mutants into branches. By interfacing this meta-

program with an automated tool able to generate tests for

structural testing, can effectively produce mutation testing tests

for the original program.

The framework can be completely automated and its effectiveness

depends on that of the underlying test data generation tool. At

present, the framework automatically produces the meta-program

that is passed to a test generation tool that produces the required

tests. An overview of the proposed framework structure is

presented in Figure 1. For the paper’s purposes the present study

uses the symbolic execution extension of the java PathFinder tool,

the etoc tool and a concolic execution tool. Although these tools

may not be the most appropriate and effective ones, they were

chosen because of their availability and the different underlying

techniques that they implement. However, it is believed that they

serve the general goals of the present study, which is to illustrate

the applicability and effectiveness of the proposed framework.

Source

Code

Mutant Schemata

Generator

Meta-Program

Source

Code

Test CasesTest Data Generation System
Test Data Generation SystemTest Data Generation

System

Figure 1. The proposed framework

The automated production of the meta-program uses an extension

of the mutant schemata technique which is described in the

following subsection (4.1). The tools used for generating tests and

their use in the proposed framework are described in the

succeeding subsections (4.2. and 4.3).

4.1 Mutant Schemata
Automating test case generation requires specific, to the technique

used, information about the target test requirements. Mutation

posses difficulties in producing this information (i.e. killing the

mutants) as its requirements are spanned across different program

versions (one mutant per version). Thus, there is a need for a

unification of mutation requirements in a suitable way to be used

by techniques, such as symbolic execution or a search based

application, appropriate for test generation. By doing so, the

candidate mutants are concentrated in a unique representation

rather than being spread to one application per mutant. This

approach is in a way similar to the one introduced by Untch et al.

[28] who proposed the Mutant Schemata Generator (MSG)

system. Each pair of operands participating to an operation is

passed as parameters of the operator into a schematic function

(e.g. a > b becomes FunctionGT(a, b)). Expanding the

suggestions of the MSG approach, the evaluation of the mutants’

execution is performed within the schematic function [16]. This

implies an indirect reduction to a path - branch coverage problem

of the mutated programs. By placing the mutant evaluation into

the schematic function, the suitable conditions under which a

considered mutant is killed is also embedded. These conditions

are formed as decisions, into the schematic function, containing

the following expression:

Original statement ≠ Mutated statement (2)

This expression has been used by DeMillo and Offutt [7] in order

to produce mutant necessity constraints.

The above decision expression (2) has two possible outcomes (the

original is either equal to the mutated or not). Thus implying the

introduction of true (mutant is killed) and false (mutant is alive)

braches to represent the possible outcomes.

In order to make this possible, the code before being transferred to

the considered test tool needs to be instrumented with the use of

calls to statically or dynamically predefined schematic entities.

These entities should be defined according to the considered

mutant operators. This process is similar to the one presented by

Untch et al. [28].

Node

N-1

Node

N

Node

N+1

Node

N+2

Node

N-1

Node

N

Node

N+1

Node

N+2

Node

N_M[1]

Node

N_M[2]

Node

N_M[n-1]

Node

N_M[n]

...

Figure 2. Augmented mutation graph

Comparing outputs of mutant statements with the respective

original ones results in testing according to the weak mutation

coverage criterion [16]. According to Howden [10], in weak

mutation it is acceptable to execute all the mutants for one place

when executing program code. Based on this idea the schemata

were expanded with internal checks for the local results and were

made responsible to execute all the selected mutants due to their

position each time they were reached. This means that no mutants

are considered if the selected test case can’t reach them. This

implies that an effective technique or a tool aiming at exercising

program branches should now target on mutants effectively.

When exiting the schemata, the result of the original code is

maintained and returned in order to continue with the program

execution along the original execution path, while having

performed a quick evaluation of killed or not mutants for the

decision node of the program’s graph.

In Figure 2, an augmented mutation program graph that contains

the eligible mutants is presented. Let us assume that node N of the

left graph is to be tested with mutation. The proposed approach

suggests injecting all the possible mutants (n new nodes (N_M[1]

to N_M[n]), where n is the number of all the candidate mutants

after node N. Then the control flow of the whole program must be

restructured to follow the nodes N_M[1] to N_M[n] and from

there return to node N, in essence at the end of node N, to

continue with the initial program flow. The data in memory when

entering nodes (N+1) or (N+2), should be identical irrespective of

which graph (original or mutated) is being executed. In practice

the code of node N will be replaced by an entity executing all the

nodes from N_M[1] to N_M[n] and at the end return to the main

program flow the result from the execution of the code in node N.

This will assist in continuing the execution of the mutated

program as if no added nodes from the mutation process were

present. All checks will occur internally, comparing the result in

the program’s memory between the original code and the mutated

one. Thus, it encapsulates the mutation testing exercise in each

schematic function while making it transparent for the succeeding

nodes.

The transformation of the program’s graph illustrates the actual

schematic modifications of the program’s source code when

applying the mutant schemata method. It is noted that every

mutant node (N_M[1], ..., N_M[n]) contains inside its structure

the evaluation of killable mutants according to expression (2).

Any tool that uses symbolic execution or concolic execution

should be able to reproduce as path conditions all the suitable

conditions under which mutants are killed. Search based

approaches should be able to guide the generation process through

mutant branches and effectively kill them, by taking into account

both the reachability and necessity conditions. Additionally, the

use of internal evaluations into the mutant schemata results in a

straightforward enumeration of the killed mutants by a selected

test and hence there is no need for external driver or tool to

calculate the ratio of the killed mutants.

4.2 Symbolic Execution
The symbolic evaluation process [12] of a program consists of

assigning symbolic values to variables in order to deduce an

abstract algebraic representation of the program’s computations

and representation. This technique is based on the selection of

paths from its control flow graph and the computation of symbolic

states. The symbolic state of a path forms a mapping from input

variables to symbolic values and a set of constraints called path

conditions over those symbolic values [14]. Path conditions

represent a set of constraints called symbolic expressions that

form the computations performed over the selected path. Solving

the path conditions results in test data which if input to the

selected path, this will be executed. If the path condition has no

solution the path is termed infeasible.

In the present paper a symbolic evaluation system known as

symbolic execution extension of the java PathFinder [23], [29]

(JPF-SE) was used. In JPF-SE symbolic execution is performed

by initializing the input variables thus to supporting complex data

structures. The basic function of JPF-SE is to direct JPF to

validate the various paths contained in the symbolic execution

tree. This is done in an exhaustive way using a depth first or

breadth first strategy. Whenever a new branching point is reached,

the path condition is updated by checking it for satisfiability using

an appropriate decision procedure. If the path condition is

unsatisfiable, the system backtracks to a previous satisfiable point

according to the strategy taken. By doing so, all feasible paths are

thus explored. In the present work, the default decision procedure

of the JPF-SE, namely Choco which is a constraint solver for java

was used in combination with the default exhaustive exploration

of the symbolic execution tree.

4.3 Evolutionary Testing
Testing techniques based on genetic algorithms try to mimic the

natural evolution and use it as a search engine in seeking for

suitable tests. The present framework integrates the technique

proposed by Tonella [27] for evolutionary testing of java classes.

According to this technique tests are encoded into chromosomes

as method sequences and their respective parameter values for a

class object of the class under test. Test evolution starts by setting

as objective targets the program branches. Each one of these

targets-branches is considered in a row until it is covered or the

search reaches a predefined upper bound limit (time or number of

evolutions). Initial population of tests is produced at random.

These tests are executed in order to determine if the targeted

branches have been covered, if so, the tests are saved and the

search continues to the rest uncovered ones. If the produced tests

fail to cover the targeted branches a fitness value is calculated

according to each test. The fitness value is computed as the ratio

of the covered control and call dependence edges over those of the

target branch. New tests are produced considering previous ones

with higher fitness values by transforming them based on

crossover and mutation operations. These operations (crossover

and mutation) form a set of predefined modifications on the

chosen tests, such as insert, delete and alter method invocations

and method parameters.

The above technique has been implemented into an automated

tool called etoc [27]. Although this tool has been shown to be

quite powerful for testing java classes, its main purpose is to

generate program method sequences able to test state related

behavior encapsulated by objects under test. Thus it fails to

produce tests aiming at complex non state dependent branch

conditions inside methods. Targeting on these conditions should

employ techniques such as the [9], [27]. Despite its limitation this

tool has been used in our case study for illustration purposes only.

In addition any other tool can be used.

4.4 Concolic execution
The concolic testing (concolic execution) method [26] forms a

combination of actual and symbolic execution. According to this

method, when actual execution takes place, symbolic constraints

are collected, constructing the path condition of the executed path.

It then uses this path condition in order to drive the execution

towards different program paths. This is achieved by negating one

condition of the predicates in the path condition. The advantage of

this approach is that complex and unhandled expressions can be

resolved by the actual execution by replacing or simplifying them

with the actual values encountered during the execution.

The process starts with random or user defined inputs. These

produce program traces that form both the execution path and its

respective path condition in a simplified form (simplifying

unhandled expressions). The process then iteratively negates and

solves all path condition’s predicate expressions each one in turn

starting from the ultimate one to the first one. New inputs are

produced which hopefully follow different execution paths.

Ideally, if all expressions can be handled, the process can continue

until all program feasible paths have been executed. In practice

this is limited by the power of the underlying decision solving

procedures. In the present paper a prototype tool that implements

the above procedure has been constructed and used in the above

described framework for performing mutation. Currently the

prototype has some limitations such as the handling of dynamic

program inputs, method sequences and floating point arithmetic.

5. CASE STUDY
To perform an initial assessment of the applicability and

feasibility of the framework, it was applied to a set of java

programs. The selected programs were chosen from a) the testing

textbook website by Ammann and Offutt [1], b) from the

examples distributed together with the JPF-SE tool [23] and c)

from the mutation benchmark programs used by Polo et al. [24].

Table 1 presents the number of the candidate mutants and the

number of produced equivalent mutants per each program.

Mutant schemata were generated based on the mutation operators

set proposed by Offutt et al. [19]. As the current approach targets

on weak mutation the unary mutant operator, which inserts unary

language operators (i.e. decision negation, unary increment and

decrement), was excluded as by definition it will always be

weakly killed by any test that executes it. This is also argued in

[7]. Thus, four operators were used (i.e. ABS, AOR, LCR and

ROR details of these operators can be found in [5]) for the

purposes of the case study. In addition, any other mutant operator

can also be used by defining and embedding its mutant schemata

into the produced schematic meta-program. The schemata were

designed based on the initial specifications of the above mutation

operators as set in [5]. All equivalent mutants were detected by

manual analysis in order to accurately calculate the mutation score

achieved. Test cases were then derived based on the three

employed tools (i.e. JPF-SE, etoc and concolic prototype as these

was described in section 4), aiming to cover program branches

first and then mutants.

Table 1. Subject programs

Test Object
Number of

Mutants

Number of

Equivalent Mutants

Trityp : J1 352 92

FourBalls : J2 214 39

Mid : J3 163 4

Find : J4 201 53

Bubble : J5 93 21

Cal : J6 330 62

TrashAndTakeOut : J7 117 11

PrintPrimes : J8 103 28

BankAccount : J9 69 6

BST : J10 94 3

5.1 Experience
This section reports results from the application of the framework

to the selected test objects. For the needs of the case study, the

framework first generates three meta-programs, embodying the

peculiarities of each of the utilized tools. Then the incorporated

tools together with the meta-programs were used according to

their normal functionality. The automation level depends solely

on the test data generation tool and it is independent of the

mutation evaluation process. As all the incorporated tools use

different approaches for automating the test generation process,

the case study highlights the general character and the simplicity

of the proposed schemata technique utilized by the framework. In

order to reinforce the power of the schemata technique (for

generating tests for mutation) three different automated tools were

used. This also shows the ability of the framework to host any

other automated tool in a similar fashion. Additionally, the

framework can be used as a yardstick towards the use and

development of more powerful and specialized tools for mutation

testing.

Table 2. Initial mutation score achieved by the employed tools

Test

Object
JPF-SE Concolic Etoc

J1 87.69% 86.54% 85.38%

J2 0.00% 44.57% 73.71%

J3 50.31% 62.26% 63.52%

J4 91.89% 90.54% 7.43%

J5 91.67% 91.67% 87.50%

J6 0.00% 73.51% 80.22%

J7 87.74% 87.74% 73.58%

J8 98.67% 98.67% 94.67%

J9 68.25% 66.67% 74.60%

J10 43.96% 46.15% 62.64%

Table 2 presents the initially achieved mutation score by the

utilized tools, when used for branch testing. It must be noted that

branch coverage was performed for the purpose of obtaining test

data for doing so without including the mutant schemata. Then

these test data were driven to the mutated programs containing the

mutant schemata for killing the mutants. The results indicate that

all three tools are not very effective for killing the mutants. This

was somehow expected as the tools were used for branch testing

in a crude way. The variations of the scores among different test

objects are purely due to the internal characteristics of the test

objects and the methods themselves.

In the next phase of the case study the programs containing the

mutant schemata were used as input instead of the original ones.

Performing branch testing to these programs leads to the direct

killing of the mutants. In Table 3 the results obtained by

employing the selected tools are presented. These results record a

high coverage level for all three employed tools. The comparison

of the results obtained in Tables 2 and 3 shows that the application

of the suggested approach within the proposed framework

produces much better results when the mutants’ schemata are

embodied in the test objects. This should be regarded as an

achievement of the proposed framework as it is flexible to adopt

the characteristics of the mutants.

Table 3. Mutation score achieved by the employed tools based

on the proposed framework

Test

Object
JPF-SE Concolic Etoc

J1 98.85% 99.23% 97.69%

J2 0.00% 68.00% 77.14%

J3 100.00% 100.00% 73.58%

J4 96.62% 97.97% 66.22%

J5 94.44% 94.44% 90.28%

J6 0.00% 80.97% 92.54%

J7 95.28% 99.06% 83.02%

J8 98.67% 100.00% 100.00%

J9 85.71% 100.00% 84.13%

J10 71.43% 100.00% 80.22%

This study forms the first step towards automating the test data

generation activity for mutation testing. The presented case study

focuses on revealing the effectiveness of the proposed framework

in guiding existing tools to produce high quality tests. The

employed tools are not the most appropriate ones as they cannot

focus on specific program branches. The employment of only

these three tools was imposed by the limited availability of similar

automated tools. In any case the scope of the present research was

not to compare and record the performance of automated tools.

The purpose of the present study was to show that mutation

testing can be effectively performed by employing a category of

tools that perform another type of testing such as branch testing.

6. DISCUSSION AND FUTURE WORK
The proposed technique forms the first step towards automating

the generation of test cases according to higher level criteria such

as mutation. The technique suggests a novel and practical way of

reducing the mutation testing problem to a well studied one such

as the branch testing in order to effectively apply existing

automated methods for this criterion. This is the first attempt to

the authors’ knowledge of adopting concolic execution [26] for

performing mutation testing. Concerning the symbolic evaluation

and evolutionary techniques, very little has been done as

discussed in the related work section 3. As far as the search based

techniques are concerned various improvements can be made to

improve their effectiveness. For example, the implementation of

the fitness function suggested by Bottaci [4] can be

straightforwardly implemented by measuring the branch distance

of mutant constraints.

Generally, dynamic approaches rely on the actual execution of the

program under test. In order to be effective they often require a

dramatically huge number of execution cycles. This problem is

intensified under mutation testing which produces a vast number

of mutants. The attempt to kill the mutants by executing them, in

combination with the required excessive execution cycles results

in exhaustive computational resources while being time

consuming. An advantage of the proposed technique is that by

employing weak mutation in comparison to strong mutation the

amount of time and therefore the overall effort can be reduced by

at least 50% as stated in [18]. Moreover, the use of mutant

schemata also results in additional time savings when compared to

the traditional separate compilation approach [15] for each

mutant. The proposed approach takes advantage of the execution

path by executing only the reached mutants. Additionally, by

executing all mutants in one execution run results in additional

resource execution savings. Furthermore, the technique by

combining all the above (weak mutation and mutant schemata)

should result in further considerable savings.

Although the proposed method gives answer to the automation

issues of mutation testing its optimal use and application requires

some special treatment. This is a consequence of the introduced

complexity of mutants and their necessity requirements. Thus, it

may be mandatory to use effective heuristics to deal with the

mutation complexity as exhaustive or full testing is prohibitive.

The shortest path strategy [30] also used in [21] forms an answer

to circumvent this problem. Conversely, other practical heuristics

could be also considered for efficiency reasons. This is something

that goes beyond the goals of the present study and is left for

future research.

The results reported in this paper indicate the applicability of the

proposed technique for mutation testing by using structural testing

tools. It is the lack of tools that gave rise to this idea for

generating test data to perform mutation in an effective way rather

than in an efficient one. The results also suggest that mutation

requires powerful and scalable tools, able to handle complex

expressions. In future it is planed to expand the implemented

concolic prototype in order to achieve a higher level of mutation

coverage. Additionally, we plan to explore the application of the

technique with other automated tools. Finally, it is planned to

measure the efficiency of the proposed mutant schemata technique

for killing mutants.

7. CONCLUSION
Test data generation is a tedious and expensive task. Its

automation helps the effective application of software testing

techniques. However, such automated tools do not exist for all

techniques. Mutation testing is a well researched, highly powerful

and promising technique. Despite this it has not been widely used

as it should be expected. One of the possible reasons behind this is

probably its high complexity and the lack of automated tools to

facilitate this problem. It is this deficiency that the present

research tried to cover. The approach proposed instead of

developing a purpose built automated tool for generating mutation

test data, suggests using existing ones for other well established

techniques such as branch testing whose successful performance

is well known. To evaluate this argument a number of java

programs was used with three different test data generation tools.

Other languages or tools can also be used in a similar fashion. The

innovation of the present work is that to make this argument

possible, the automated tools were not internally modified.

However, all the necessary modifications were performed in the

test objects source codes, by using the mutant schemata technique.

The automated tools used were based on symbolic evaluation,

concolic execution and search based optimization, demonstrating

that these techniques can be effectively employed to generate

mutation test cases.

From the conducted study it can be concluded that a high level of

automation for the generation of test cases for killing the mutants

can be achieved. This effort provides the foundations for

exploring the capabilities of symbolic execution, concolic

execution and search based optimization techniques for fault

based testing.

8. ACKNOWLEDGMENTS
This work is supported by the Basic Research Funding (PEVE 2010)

program of the Athens University of Economics and Business.

9. REFERENCES
[1] P. Ammann and J. Offutt, “Introduction to Software

Testing”, Cambridge University Press
 http://ise.gmu.edu/~offutt/softwaretest/

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Exeperiments?”, In
Proceedings of the International Conference on Software
Engineering, pages 402-411, 2005.

[3] K. Ayari, S. Bouktif, and G. Antoniol, “Automatic mutation
test input data generation via ant colony”, In Proceedings of
the annual conference on Genetic and Evolutionary
COmputation, pages 1074-1081, 2007.

[4] L. Bottaci, “A genetic algorithm fitness function for mutation
testing”, In Proceedings of the Software Engineering using
Metaheuristic INovative Algortithms workshop, pages 3-7,
2001.

[5] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offutt,
K. N. King, “An extended overview of the Mothra software
testing environment”, In Proceedings of the 2nd workshop on
Software Testing, Analysis and Verification, pages142-151,
1988.

[6] R. A. Demilo, R. J. Lipton, and F. D. Sayward, “Hints on test
data selection: Help for the practicing programmer”, IEEE
Computer, 11(4):34-41, 1978.

[7] R. A. Demilo and A. J. Offutt, “Constraint-Based Automatic
Test Data Generation”, IEEE Transactions on Software
Engineering, 17(9):900-910, 1991.

[8] R. G. Hamlet, “Testing program with the aid of a compiler”,
IEEE Transactions on Software Engineering, 3(4):279-290,
1977.

[9] M. Harman and P. McMinn, “A theoretical & empirical
analysis of evolutionary testing and hill climbing for
structural test data generation”, In Proceedings of the
International Symposium on Software Testing and Analysis,
pages 73-83, 2007.

[10] W. E. Howden, “Weak mutation testing and completeness of
test sets”, IEEE Transactions on Software Engineering,
8(4):371-379, 1982.

[11] K. Inkumsah and T. Xie, “Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution”, In Proceedings of Automated
Software Engineering Conference, pages 297-306, 2008.

[12] J.C. King, “Symbolic execution and program testing”,
Communications of the ACM, 19(7):38-94, 1976.

[13] B. Korel, “Automated software test data generation”, IEEE
Transactions on Software Engineering, 16(8):870-879, 1990.

[14] C. Koutsikas and N. Malevris, “A Unified Symbolic
Execution System”, In Proceedings of the International
Conference on Computer Systems and Applications, pages
466-469, 2001.

[15] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: An
automated class mutation system”, Software Testing,
Verification and Reliability, 15(2):97-133, 2005.

[16] M. Mastorantonakis and N. Malevris, “An Effective Metrod
for Mutating JAVA Programs” In Proceedings of the
International Conference on Software Engineering and
Applications, 2003.

[17] A. J. Offutt, Z. Jin and J. Pan, “The dynamic domain
reduction approach to test data generation”, Software:
Practice and Experience, 29(2):167-193, 1999.

[18] A. J. Offutt and D. S. Lee, “An Empirical Evaluation of
Weak Mutation”, IEEE Transactions on Software
Engineering, 20(5):337-344, 1994.

[19] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf “An
experimental Determination of Sufficient Mutation
Operators”, ACM Transactions on Software Engineering and
Methodology, 5(2):99-118, 1996.

[20] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the
Orthogonal”, In Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, pages 45-55,
2000.

[21] M. Papadakis and N. Malevris, “An Effective Path Selection
Strategy for Mutation Testing”, In Proceedings of Asia-
Pacific Software Engineering Conference, pages 422-429,
2009.

[22] M. Papadakis and N. Malevris, “Improving Evolutionary
Test Data Generation with the Aid of Symbolic Execution”,
AIAI 2009 Artificial Intelligence Techniques in Software
Engineering Workshop, pages 201-210, 2009.

[23] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape, “Combining unit-
level symbolic execution and system-level concrete
execution for testing NASA software”, In Proceedings of the
International Symposium on Software Testing and Analysis,
pages 15-25, 2008.

[24] M. Polo, M. Piattini, I.G. Rodriguez, “Decreasing the cost of
mutation testing with second-order mutants”, Software
Testing, Verification and Reliability, 19(2):111-131, 2009.

[25] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation
testing by checking invariant violations”. In Proceedings of
the International Symposium on Software Testing and
Analysis, pages 69-80, 2009.

[26] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit
testing engine for C”, In Proceedings of the International
Symposium on Foundations of Software Engineering, pages
263-272, 2005.

[27] P. Tonella, “Evolutionary testing of classes”, In Proceedings
of the International Symposium on Software Testing and
Analysis, pages 119-128, 2004.

[28] R. Untch, J. Offutt and M. J. Harrold, “Mutation analysis
using mutant schemata”, In Proceedings of the International
Symposium on Software Testing and Analysis, pages 139-
148, 1993.

[29] W. Visser, C. S. Pasareanu, and S. Khurshid. “Test input
generation with Java PathFinder”, In Proceedings of the
International Symposium on Software Testing and Analysis,
pages 97-107, 2004.

[30] D. F. Yates and N. Malevris, “Reducing the effects of
infeasible paths in branch testing”, ACM Software
Engineering Notes, 14(8):48-54, 1989.

