
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Muteria: An Extensible and Flexible Multi-Criteria Software
Testing Framework

Thierry Titcheu Chekam
thierry.titcheu-chekam@uni.lu
SnT, University of Luxembourg

Luxembourg

Mike Papadakis
michail.papadakis@uni.lu

SnT, University of Luxembourg
Luxembourg

Yves Le Traon
yves.letraon@uni.lu

SnT, University of Luxembourg
Luxembourg

ABSTRACT
Program based test adequacy criteria (TAC), such as statement,
branch coverage and mutation give objectives for software testing.
Many techniques and tools have been developed to improve each
phase of the TAC-based software testing process. Nonetheless, The
engineering effort required to integrate these tools and techniques
into the software testing process limits their use and creates an over-
head to the users. Especially for system testing with languages like
C, where test cases are not always well structured in a framework.

In response to these challenges, this paper presents Muteria, a
TAC-based software testing framework. Muteria enables the inte-
gration of multiple software testing tools.

Muteria abstracts each phase of the TAC-based software testing
process to provide tool drivers interfaces for the implementation of
tool drivers. Tool drivers enable Muteria to call the corresponding
tools during the testing process. An initial set of drivers for KLEE,
Shadow and SEMu test-generation tools, Gcov, and coverage.py
code coverage tools, and Mart mutant generation tool for C and
Python programming language were implemented with an average
of 345 lines of Python code. Moreover, the user configuration file
required to measure code coverage and mutation score on a sample
C programs, using the Muteria framework, consists of less than 15
configuration variables.

Users of theMuteria framework select, in a configuration file, the
tools and TACs to measure. The Muteria framework uses the user
configuration to run the testing process and report the outcome.
Users interact with Muteria through its Application Programming
Interface and Command Line Interface. Muteria can benefit to re-
searchers as a laboratory to execute experiments, and to software
practitioners.

KEYWORDS
software testing, framework, extensible, test adequacy criteria,
multi-tools, multi-languages
ACM Reference Format:
Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2020. Muteria:
An Extensible and Flexible Multi-Criteria Software Testing Framework. In
AST ’20: International Conference on Automation of Software Test (AST ’20),
October 7–8, 2020, Seoul, Republic of Korea.ACM, NewYork, NY, USA, 4 pages.
https://doi.org/10.1145/3387903.3389316

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
AST ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7957-1/20/05. . . $15.00
https://doi.org/10.1145/3387903.3389316

1 INTRODUCTION
Test adequacy criteria (TAC) based software testing has gained
more attention among researchers and is becoming widely used in
practice[1, 13]. A TAC-based software testing process, as depicted in
Figure 1 (more details in section 2) involves using TACs to evaluate
and improve test suites. Several phases (steps) of the software test-
ing process optimize the execution (represented with dashed lines
in the Figure 1). Many tools and techniques have been developed
to help software developers test their software [1, 2, 5, 10, 11, 13].
These tools and techniques are used to increase the fault detection,
provide some guarantee of the software correctness and reduce the
cost of software testing through automation of the process [5]. Nev-
ertheless, with the proliferation of programming languages, TACs
and software testing tools, developers need to exert supplementary
effort to learn to use newly-developed tools, and integrate them into
their test environment. Furthermore, researchers exert much effort
to implement and evaluate their developed techniques and often,
a great deal of engineering effort is required in order to integrate
their implementation with other tools. These challenges are mainly
affecting programming languages such as C, where, system tests
are not always well structured (can be a set of bash scripts) and the
data is represented by each tool regardless of the others.

This paper presents Muteria in response to those challenges.
Muteria provides a collection of simplified drivers interfaces for
integration of software testing tools (implementing different aspects
of the TAC-based software testing process). Tools are integrated
into Muteria through drivers that implement interface functions to
enable Muteria to call the tools. These drivers can be made publicly
available with the corresponding tools.

The Muteria framework provides:
• The Flexibility to add support for new TACs and program-
ming languages.

• An Interface to implement drivers to integrate new tools.
• A controller that handles the integration of the tools.
• A Reporter that computes metrics and display results.

The remaining of the paper will present in section 2 the moti-
vation for building Muteria. In section 3, an overview of Muteria
is presented and, a case study is shown in section 4. Finally, the
related works and conclusion are presented in sections 5 and 6
respectively.

2 BACKGROUND AND MOTIVATION
2.1 Software Testing Process
Figure 1 presents an overview of a test adequacy criteria (TAC)
based software testing process, adapted from the “Two mutation
processes” presented by Offut [5]. During the process, tests, that are

1

https://doi.org/10.1145/3387903.3389316
https://doi.org/10.1145/3387903.3389316

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AST ’20, October 7–8, 2020, Seoul, Republic of Korea Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Input Test
program (P)

Prog.
TACs

Instrumentations

TAC Generation(Results in test objectives TO)

TACs Selection
& Prioritization

TACs Equivalence
and duplicate

detection

Select Target TACs
for Test-

Generation TOT

Generate
Tests GT

Existing Tests
(ET) Select Tests ST

from 𝑬𝑬𝑬𝑬 ∪ 𝑮𝑮𝑮𝑮

Test execution on P

P is correct?

Test case
prioritization of ST

Run ST on P

Fix P
No

Yes

End

Test objective’s
test execution

Test objective’s
test execution
optimization

Run ST on TO and/or TOT

Enough
Coverage?

End

No

Yes

Process 1
Process 2

Process 1 and Process 2
OR

Legend
Steps Group
(the order may vary)

Figure 1: Test Adequacy Criteria (TAC) based software test-
ing process (adapted from Offut’s “Two mutation processes”
[5]). The Process 1 is adapted from the “Traditional process”
and Process 2 from the “Post-Mothra Process”

either manually or automatically generated, are executed (after pos-
sible selection/prioritization) on the program under test (PUT) P , to
check for failures due to potential faults (in the presence of faults,
the process is interrupted, the user repairs the program and restarts
the process). The test suites are evaluated using TACs’ coverage and
improved to maximize TACs’ coverage. The TACs’ test objectives
are generated by instrumenting the PUT. For faster execution, the
TACs’ test objectives of interest may be selected (for instance, a
random number of mutants are selected based on mutation opera-
tors in the case of mutation testing [9] or, most likely to be faulty
statements are selected in case of statement coverage). The tests
are executed (with possible optimization such as optimizing strong
mutation using weak mutation [4]) on the TACs’ instrumented
programs and the coverage values are computed. The computed
TACs’ coverage values are reported to the user who, based on the
values, may generate more tests to increase the coverages.

There are two variants of the process: in process 1, the targeted
TACs coverage is reached before the PUT is checked for correctness
while in process 2, the PUT is checked for correctness before the
TACs’ coverage is measured.

Each phase of the preceding process have been subject to re-
search leading to development of new techniques and tools. Nonethe-
less, researchers exert a great deal of engineering effort to build
prototypes of their techniques which, often, are not easy to use due
to the engineering effort needed in order to integrate them into the
software testing process. Moreover, the experimental evaluations
of the developed techniques require that scripts are implemented
to integrate the prototypes with other existing tools.

2.2 Why A New Framework?
The reasons behind Muteria are to provide the following.

A laboratory framework for TAC-based software testing re-
search that allows researchers to implement and evaluate
their techniques with little effort.

Simplify the development of TAC-based software testing
tools by providing out-of-the-box integration with other
existing tools.

Ease the use of TAC-based software testing techniques through
rich user interfaces and configuration.

3 MUTERIA FRAMEWORK OVERVIEW
We believe that a well designed software testing framework should
be easy to use, provide good user interfaces and be easy to mod-
ify for different uses. Muteria framework implements the different
phases of the TAC-based software testing process, depicted in Fig-
ure 1, with extensible interfaces. Muteria uses a modular approach
[8] for the implementation of its functionalities.

3.1 Design Goals
In this section, we present the main features ofMuteria that support
its design.

3.1.1 Extensible. The modular design of Muteria framework sep-
arates the phases of the TAC-based software testing process into
different components. Within each component, multiple tools that
implement the corresponding phases can be integrated into the
framework. Integrating a new tool into Muteria simply requires to
extend the corresponding component’s tool driver interface. Such a
design enables the development of drivers for new tools on a specific
component, independently of the tools used in other components.

3.1.2 Configurable. Muteria provides a wide space of configura-
tions that allow the users to have deep control over the execution
of the framework. The framework allows the users to configure
the execution of the software testing process by specifying the test
adequacy criteria to use during testing, whether to reuse preceding
execution data or not (useful for example for regression testing),
the level of concurrency and, which metrics to report and how to
report them. The underlying test generation tools, test adequacy
criteria tools and test execution optimization techniques can also be
configured collectively or individually (tool specific configuration).

3.1.3 Multi Programming Language Support. The Muteria frame-
work separately supports multiple programming language by inte-
grating the testing tools of the same programming language. For
instance, using the framework on a C language program allows only
the use of tools supporting C programs. Therefore, the framework’s
extension tools are grouped by programming languages.

3.2 User Interaction
Muteria framework provide 2 main forms of user interaction.

3.2.1 Application Programming Interface. Users can integrate Mu-
teria into other frameworks through its application programing
interface (API). Moreover, Muteria’s components can be used as
libraries to build different frameworks.

3.2.2 Command Lines. As most frameworks, Muteria provides a
rich command lines interface (CLI), allowing users to execute the
framework from terminals.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Muteria: An Extensible and Flexible Multi-Criteria Software Testing Framework AST ’20, October 7–8, 2020, Seoul, Republic of Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.3 Architecture
Figure 2 presents an overview of the architecture of the Muteria
framework. The core of the framework is made of the following
components:

3.3.1 Controller. This component organizes the tasks to be exe-
cuted, based on the configuration, and calls the relevant components
for each of the executions. It implements the integration between
the tools implementing different phases of the software testing
process.

3.3.2 CodeManager. This componentmanages the code repository
of the PUT. It also provides functions to build code (convert from
one code representation to another).

3.3.3 Test Cases Manager. This component provides an abstraction
of test generation and test execution to the framework. Multiple
test generation and test execution tools can be integrated through
drivers on this component. Manually written tests are also managed
by this component. This component provides high level functions
to generate and to execute tests. These functions are mapped to the
underlying tools through the tool drivers.

3.3.4 TAC Manager. Similar to the Test Cases Manager, this com-
ponent provides an abstraction of each implemented TAC’s instru-
mentation tool. Multiple TACs tools can be integrated through
drivers on this component. Each tool may implement support for
multiple TACs. This component provides functions to instrument
the PUT for the given TACs and to execute a test set against the
instrumented programs (by calling the Test Case Manager).

3.3.5 Test Execution Optimizer. This component provides func-
tions to select and prioritize tests cases (e.g. for regression testing).
New test execution optimizing techniques’ implementations can
be integrated into this component.

3.3.6 Test Generation Guidance. This component implements func-
tions to select, during the test generation process, "important" TACs’
test objectives to focus on (e.g. select likely fault revealing state-
ments or mutants [11] and use them to guide automated test case
generation to reveal potential faults).

3.3.7 TAC Execution Optimizer. This component provides func-
tions to select and/or prioritize TACs’ test objectives for execution
(e.g. using weak mutation to improve execution time of strong
mutation [4]). This is useful, for instance, for strong mutation in
regression testing, where the optimizer could statically select the
mutants likely to be relevant to the area of interest in the program
under test.

3.3.8 Reporters. This component provides functions to compute
useful metrics (such as code coverage, mutants subsumption and
execution time) and present to the user.

3.4 Implementation
The Muteria framework is implemented in Python programming
language. The extension tools’ drivers are also implemented in
Python programming language. The integrity of the code reposi-
tory of the PUT is ensured using git1 (some TACs, e.g. mutation,
1https://gitpython.readthedocs.io/en/stable/

Web UI/Server CLI

Framework API (UI)

Controller
Code Manager

Test Case
Manager

Reporter

TAC Manager

Test Generation
Guidance

Test Execution
Optimizer

TAC Execution
Optimizer

Test Generation
Guidance

…

…

… ………

Us
er

 In
te

rfa
ce

User Interface

Figure 2: Architecture of Muteria framework. The com-
ponents with black rectangle provide interfaces for corre-
sponding tools to connect to the framework. The controller
enable the integration. All components are accessible by the
users through the framework API.

may modify source files). There have been many challenges in the
development of the framework, and the greatest were the modu-
larization of the framework and design of tool driver interfaces.
The Muteria framework is publicly available2 open source. Installa-
tion is done by running pip install muteria. A docker image is also
available2.

4 CASE STUDY
We implemented a set of drivers for several C programming lan-
guage software testing tools, namely: GNU Gcov code coverage
measurement tool, Mart [12] mutant generation tool (based on
LLVM3 and usable through command line interface), KLEE [2] test
generation tool, Shadow [6] symbolic execution-based patch test
generation tool, and SEMu [3] mutant test generation tool. We also
implemented drivers for Python code coverage measurement tool
Coverage.py4. Table 1 summarizes the implementation sizes of the
drivers.

We also present in Table 2 the number of configuration vari-
ables that the user needs to provide to run the testing process on a
software using the selected tools.

The sample reported coverage information for the execution of
Muteria on a sample C program is shown in Figure 3.

5 RELATEDWORKS
Many frameworks have been designed and developed to support
TAC-based software testing. Most of those frameworks either fo-
cus on specific programing languages, specific TAC or support
specific test runners. Moreover, very often, there is no straightfor-
ward approach to integrate those with other tools. Stryker [1] is
an open-source mutation testing framework that supports several
programming languages (currently three) and enable integration
with multiple test runners. Nevertheless, currently, Stryker neither
2https://github.com/muteria/muteria
3https://llvm.org/
4https://github.com/nedbat/coveragepy

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST ’20, October 7–8, 2020, Seoul, Republic of Korea Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Muteria in Practice: Implemented drivers sizes
(Python LOC) for several tools

Tool Name Tool Type Driver Size (LOC)

GNU Gcov Statement, Branch, Func-
tion Coverage

404

Mart Mutant Coverage and
Strong/Weak Mutation

452

KLEE Test generation 438
Shadow Patch Test generation 304
SEMu Mutation Test generation 236
custom Manually built system tests 237

Table 2: Muteria in Practice: Some User Configurations

Language Testing scenario # Config. Vars.

Python Measure unit tests State-
ment/branch Coverage

8

C/C++ Measure system tests and generated
tests Statement, Branch, Function
Coverage and weak, strong muta-
tion scores

16

Figure 3: report of software testing withMuteria.

provides support for adding test adequacy criteria nor supports
integration with various mutation tools or test generation tools.
Open Code Coverage Framework (OCCF) [10] is a framework that
aim to simplify the development of code coverage measurement in
multiple programming languages. OCCF does not provide mech-
anisms to integrate such coverage measurement tools with other
types of tools such as test generation tools. OCCF is orthogonal
with Muteria and can be used alongside Muteria by developping
Muteria drivers for the tools developed with OCCF. The Mothra
mutation framework [5] was built with the goal to be expandable
and adaptable. In fact, Mothra tool-set was designed to be like a
laboratory for future research [5], which is also an important philos-
ophy for Muteria. Nevertheless, Mothra was designed for Fortran
programs and for mutation TAC. Muteria learned from Mothra and
generalized to support different TACs and programming languages.

6 CONCLUSION
This paper presents Muteria, a framework that integrates tools de-
veloped for software testing. Muteria framework can be extended

to supports other programming languages and provides the flexi-
bility to add support for new test adequacy criteria (TAC). Muteria
provide simple interfaces to implement drivers for various soft-
ware testing tools such as test-case prioritization, mutant selection,
test-generation, etc, tools. Muteria also provide rich configuration
options. The main limitation of Muteria is the possible loss of per-
formance due to the generalizability. In fact, some test execution
optimization techniques that are language specific may not be us-
able with Muteria. Moreover, Muteria inherits the performance
limitation of the integrated tools.

Muteria framework can be used by researchers to experiment
with their findings and run experiments, and also by practitioners.
Muteria framework was developed as a result of the challenges
encountered while conducting previous research [7, 11, 13].Muteria
is publicly available: https://github.com/muteria/muteria.

ACKNOWLEDGMENTS
This work was supported by the AFR PhD Grant of the National
Research Fund, Luxembourg, to Thierry Titcheu Chekam.

REFERENCES
[1] 2020. Stryker Mutation Framework. https://stryker-mutator.io/. Accessed:

24-01-2020.
[2] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings. 209–224.
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

[3] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon.
2020. Killing Stubborn Mutants with Symbolic Execution. arXiv:cs.SE/2001.02941

[4] Sang-Woon Kim, Yu-Seung Ma, and Yong-Rae Kwon. 2013. Combining weak and
strong mutation for a noninterpretive Java mutation system. Software Testing,
Verification and Reliability 23, 8 (2013), 647–668. https://doi.org/10.1002/stvr.1480
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1480

[5] Jeff Offutt. 2011. A mutation carol: Past, present and future. Information and
Software Technology 53, 10 (2011), 1098 – 1107. https://doi.org/10.1016/j.infsof.
2011.03.007 Special Section on Mutation Testing.

[6] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a doubt:
testing for divergences between software versions. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016. 1181–1192. https://doi.org/10.1145/2884781.2884845

[7] Mike Papadakis, Thierry Titcheu Chekam, and Yves Le Traon. 2018. Mutant Qual-
ity Indicators. In the 13th International Workshop on Mutation Analysis (Mutation
2018).

[8] David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing Systems
into Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.
1145/361598.361623

[9] Goran Petrovic and Marko Ivankovic. 2018. State of Mutation Testing at Google.
In 40th IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP 2018, May 27 - 3 June 2018, Gothenburg,
Sweden.

[10] Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa. 2010. Open
Code Coverage Framework: A Consistent and Flexible Framework for Measur-
ing Test Coverage Supporting Multiple Programming Languages. In 2010 10th
International Conference on Quality Software. 262–269. https://doi.org/10.1109/
QSIC.2010.42

[11] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé, Yves
Le Traon, and Koushik Sen. 2019. Selecting fault revealing mutants. Empirical
Software Engineering (18 Dec 2019). https://doi.org/10.1007/s10664-019-09778-7

[12] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: A
Mutant Generation Tool for LLVM. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2019). Association for Computing
Machinery, New York, NY, USA, 1080–1084. https://doi.org/10.1145/3338906.
3341180

[13] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
2017. An empirical study on mutation, statement and branch coverage fault
revelation that avoids the unreliable clean program assumption. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. 597–608. https://doi.org/10.1109/ICSE.2017.61

4

https://github.com/muteria/muteria
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://arxiv.org/abs/cs.SE/2001.02941
https://doi.org/10.1002/stvr.1480
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1480
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/QSIC.2010.42
https://doi.org/10.1109/QSIC.2010.42
https://doi.org/10.1007/s10664-019-09778-7
https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1109/ICSE.2017.61

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Software Testing Process
	2.2 Why A New Framework?

	3 Muteria Framework Overview
	3.1 Design Goals
	3.2 User Interaction
	3.3 Architecture
	3.4 Implementation

	4 Case Study
	5 Related Works
	6 Conclusion
	Acknowledgments
	References

