
On Comparing Mutation Testing Tools through
Learning-based Mutant Selection

Milos Ojdanic, Ahmed Khanfir, Aayush Garg, Renzo Degiovanni,
Mike Papadakis, and Yves Le Traon

University of Luxembourg, Luxembourg, Luxembourg
milos.ojdanic@uni.lu, ahmed.khanfir@uni.lu, aayush.garg@uni.lu, renzo.degiovanni@uni.lu,

michail.papadakis@uni.lu, yves.letraon@uni.lu

Abstract—Recently many mutation testing tools have been
proposed that rely on bug-fix patterns and natural language
models trained on large code corpus. As these tools operate
fundamentally differently from the grammar-based traditional
approaches, a question arises of how these tools compare in terms
of 1) fault detection and 2) cost-effectiveness. Simultaneously,
mutation testing research proposes mutant selection approaches
based on machine learning to mitigate its application cost. This
raises another question: How do the existing mutation testing
tools compare when guided by mutant selection approaches?
To answer these questions, we compare four existing tools –
µBERT (uses pre-trained language model for fault seeding),
IBIR (relies on inverted fix-patterns), DeepMutation (generates
mutants by employing Neural Machine Translation) and PIT (ap-
plies standard grammar-based rules) in terms of fault detection
capability and cost-effectiveness, in conjunction with standard
and deep learning based mutant selection strategies. Our results
show that IBIR has the highest fault detection capability among
the four tools; however, it is not the most cost-effective when
considering different selection strategies. On the other hand,
µBERT having a relatively lower fault detection capability, is
the most cost-effective among the four tools. Our results also
indicate that comparing mutation testing tools when using deep
learning-based mutant selection strategies can lead to different
conclusions than the standard mutant selection. For instance, our
results demonstrate that combining µBERT with deep learning-
based mutant selection yields 12% higher fault detection than
the considered tools.

I. INTRODUCTION

Mutation testing is considered one of the most powerful
testing techniques [6]. It operates by posing the requirement
to write tests to reveal artificially injected faults, hence also
revealing the real faults coupled with artificial ones [46], [16].

Motivated by its fault-revealing capability and application
in various domains such as testing [46], debugging [47], [36],
maintenance and change-aware dependability analysis [39],
[10], [17], researchers and practitioners have proposed several
mutation testing approaches to automate fault injection and
test suite assessment. Most approaches inject faults based
on predefined syntactic transformation rules (aka mutation
operators) [6], [18], such as replacing an instance of a
relational operator with another operator, e.g., replacing >
with >=. Other approaches aim at injecting faults by either
following fault patterns created or learned from recurrent
fault instances [29], [51], [48] or by employing code pre-
trained language models [19]. These approaches have been

implemented and made openly available as tools, serving the
main purposes of mutation testing – tests assessment and
guidance criterion.

Interestingly, while several novel mutation testing ap-
proaches and their corresponding tools have recently emerged,
their fault revelation potential has not been assessed and
compared with the traditional grammar-based mutation testing
tools. Since these tools rely on fundamentally different under-
lying techniques such as manually defined patterns [29], deep
learning [51], grammar-based rules [18], and code pre-trained
language models [19], it is particularly interesting to check
for potential complementarities along with their strengths.
Previous studies [32], [35] have limited their studies to only
grammar-based mutation testing tools [18], [26], [37]. Hence,
we ventured to investigate the effectiveness of the most recent
mutation testing tools and contrast their performance with the
traditional ones under a new and larger dataset by employing
Defect4J v2.0.

A. Rationale behind the comparison

Powerful learning-based mutant selection strategies have
been proposed recently [23], [15], [28], intending to reduce
the application cost and noise of mutation testing, which has
been for long considered as a primary cause that keeps the
technique away from broad industrial service. These strategies
aim at discarding redundant mutants and providing testers with
mutants that will bring value to the testing process. Typically,
these strategies employ user-defined features - code features
learned using deep learning - independent of how mutants
are introduced. Since these mutant selection strategies give
different importance to mutants, this may affect the cost-
effectiveness of mutation testing and raises the question of
how the different tools compare in terms of fault detection
under mutant selection strategy guidance.

To this end, we model the application cost they entail and
perform a controlled cost-effectiveness comparison under two
different cost models, which reflect the main efforts spent in
mutation testing campaigns. These cost models are repeatedly
used for work simulation and encompass the number of
analysed mutants and the number of written tests required to
reveal the injected faults [46], [28].

Precisely, we study the fault detection ability and the related
cost-effectiveness of four fundamentally different mutation



testing tools that we deemed as representatives of different
approaches when guided with and without a mutant selection
strategy. In particular, we consider 1) IBIR [29] – a mutation
testing tool that represents manually crafted fault patterns – 2)
DeepMutation [51] – a deep learning-based tool that derives
patterns from real bug fixes – 3) µBERT [19] – a mutation
testing tool that uses a pre-trained NL-PL language model to
replace tokens based on large code corpus learning – and 4)
two sets of operators from PIT [18] – a popular grammar based
mutation testing tool. As a learning-based selection strategy,
we use Cerebro [23], a deep-learning-based mutant selection
technique that has been proven efficient in reducing mutation
testing campaign costs.

B. Contributions

In this study, we hypothesise that different mutation testing
approaches - directed by learning-based selection strategies
- lead to different conclusions on the fault revelation, rais-
ing a risk that their suitability can be misinterpreted. Our
results show that IBIR reveals most of the Defects4J faults
(approximately 90% of the considered real faults), followed by
µBERT (approximately 74%) and PIT (approximately 73%).
However, IBIR and PIT introduce significantly more mutants
than µBERT; approximately, IBIR produces twice as many
mutants as PIT, which produces 3.2 times as many as µBERT.
This seems to introduce a size effect on the number of mutants,
which influences fault detection. To account for this, we also
control the number of mutants (or tests) and perform a cost-
effectiveness comparison.

Thus, when cost-effectively comparing the tools, we find
that except for DeepMutation, which is the least effective,
all tools have similar fault-revealing abilities when controlling
cost/effort and applying them out of the box – without any
guidance. Perhaps surprisingly, when we combine them with
mutant selection strategy, we see a much different picture with
µBERT performing significantly better, approximately 12%,
than the other tools. Additionally, we find that the other tools
subsume DeepMutation by being able to identify more faults
and doing it at a much lower cost.

Overall, our work aims to study the fault detection perfor-
mance of different testing approaches when employing mutant
selection strategies. Our key contributions can be summarized
by the following points:

1) We perform the first study investigating the fault detec-
tion capability of fundamentally different fault seeding
approaches (IBIR, DeepMutation, PIT, µBERT) in a
newly released bug dataset, i.e., Defect4J v2.0.

2) We propose a new way to compare the mutation testing
tools using learning-based strategy and show that leads
to different conclusions on which is the most cost-
effective tool than the ones that could be drawn when not
considering it. We investigate the use of transformers, a
state-of-the-art deep learning technique Cerebro.

3) We show that combining µBERT with learning-based
mutant selection yields significantly higher fault detec-
tion, approximately 12% higher, than any other tool.

II. MUTATION TESTING AND MUTANT SELECTION

Mutation is a test adequacy criterion representing test re-
quirements by the mean of artificially seeded faults called
mutants. Mutants are usually obtained by performing slight
syntactic modifications to the original program. For instance,
an expression like x > 0 can be mutated to x < 0 by
replacing the relational operator > with <. The standard
workflow starts by introducing a developer with a mutant to
design a test case to kill it, i.e., to distinguish the observable
behaviour between the mutant and the original program. Some
mutants cannot be killed as they are functionally equivalent to
the original program; thus, they are discarded by the developer.
Hence, the thoroughness of a test suite is measured in terms
of its mutation score, computed as the ratio of killed mutants
over the total number of generated ones.

Mutation testing is a promising, empirically validated soft-
ware testing technique [46], which is often considered com-
putationally expensive, mainly due to the large number of
mutants it introduces, which requires analysis and execution
with the related test suites. One may notice that the number of
mutants is disproportionate to the number of test cases since
one test case can kill several mutants simultaneously. Thus,
the effort to analyze and execute mutants that do not help
improve test suites is wasted. In order to scale mutation testing,
it is of most significance the provision mechanisms that avoid
analysing redundant cases. The redundant mutant will always
be killed if other mutants are killed with the same test [5].
Plus, redundant mutants provide noise to the overall mutation
adequacy score, which consequentially provides the noise into
an overall observation about a test suite quality. The reason
why redundant mutants contribute to the overall computation
cost is that they are numerous, and in order to analyze them,
the tests need to be executed [34]. Hence, it is desirable to
employ mechanisms that avoid analyzing redundant cases, and
analyze only the mutants that add value, i.e., the subsuming
ones [25], [33], [6].

Intuitively, subsuming mutants are the minimum subset of
all mutants that, when killed by any possible test suite, results
in killing the entire set of mutants. For instance, given M1,
M2 and T two mutants and a test suite, where T1 ⊆ T and
T2 ⊆ T are non-empty subsets of tests from T that kill mutants
M1 and M2, respectively. We say that mutant M1 subsumes
mutant M2, if and only if, T1 ⊆ T2. For instance, by assuming
that T1 = {t1, t2} and T2 = {t1, t2, t3}, we can notice that
every time that we run a test to kill mutant M1 (t1 or t2)
we will also kill mutant M2. Though, the vice versa does not
hold. In case T1 = T2, we say that mutants M1 and M2 are
indistinguishable. The set of mutants which are both killable
and subsumed only by indistinguishable mutants are called
subsuming mutants.

Suites targeting subsuming mutants lead to a high mutation
score since killing all subsuming mutants ends up killing
every killable mutant. Since it is impractical to know the
subsumption relations between mutants in advance, novel
machine learning-based approaches recently emerged that aim



to predict whether a mutant is likely to be subsuming or not,
given the surrounding code in which the mutation occurs [23].
Hence, when mutants guide the testing process, it is possible
to use these machine learning model predictions to prioritize
the selection of (likely) subsuming mutants, among others that
are more likely to be redundant.

III. RESEARCH QUESTIONS

This study aims to compare the cost-effectiveness of the
recently proposed mutation testing tools. To do so, we start
our analysis by investigating the fault detection ability of the
studied tools in a scenario when a developer writes a test that
distinguishes a mutant and identifies coupled fault. Thus we
ask:

RQ1 (Tool’s effectiveness) What is the fault detection
ability of IBIR, DeepMutation, PIT and µBERT mu-
tation testing tools? How do the employed techniques
compare in terms of cost-effectiveness?

The answer to this question allows us to identify the
most effective and cost-effective tools in standard comparison
settings with random mutant selection, which have merits in
deciding on their use and shedding light on their strengths.

Intelligent mutant selection strategies have recently been
proposed to prioritize mutants and reduce the mutation testing
effort. Hence, our other objective is to investigate whether
the cost-efficiency of fault-seeding approaches would take
advantage similarly by these strategies. We consider an ad-
vanced learning-based mutant selection Cerebro aiming to se-
lect subsuming mutants utilizing Neural Machine Translation
proficiency. We, therefore, investigate the following research
question:

RQ2: (Learning-Based Selection) What is the cost-
effectiveness of mutation testing tools when mutants
are selected according to a learning-based mutant
selection strategy?

Answering these questions provides evidence of whether
and how much the mutation testing tools/approaches benefit
from the intelligent mutant selection and whether there is one
that benefits more than the others.

Taken all together, by answering the above questions, we
study the fault detection ability of fundamentally different
mutation testing tools and estimate their cost-effectiveness
when guided by mutant selection strategy.

IV. MUTATION TOOLS AND SELECTION STRATEGIES

A. Mutation Testing Tools

PIT [18] is one of the state-of-the-art mutation testing
tools that seeds faults using syntactic transformation rules (aka
mutant operators) at the bytecode level. We selected PIT as
a representative of tools for grammar-based transformation
since it is considered a state of art tool with a vast commu-
nity providing continuous support. Besides, recently we have
witnessed many empirical proofs and studies distinguishing
the tool of its competitors [35]. The tool implements 29
task-specific categories of mutation operators; for instance,

the Conditionals Boundary category mutates relational ex-
pressions. When considering the 29 categories, PIT has over
120 mutation operators. However, PIT also provides different
pre-defined configurations. Thus in this study, we consider
two. We will denote by PIT to the setting in which all
mutation operators from the 29 categories are considered and
by PIT Default to the set of mutants contained in the default
configuration of the tool - consisting of 11 categories. The tool
default configuration is often used in industry settings, while
many existing studies employed all mutants for experimental
purposes. We decided to take both configurations for our study
to dismiss the threat of biasing the tool. We provide a code
snippet demonstrating the mutation induced in the following
box.

//PIT uses grammar transformations - e.g., relation > to <=
public boolean contains(final Object object) {

return indexOf(object) <= 0;
}

µBERT [19] is a mutation testing tool that uses a pre-
trained language model (CodeBERT) [21] to generate mutants
by masking and replacing tokens. µBERT takes a Java class
and extracts tokenized expressions, which mask for token
replacement (mutation), e.g., it masks a variable name and
invokes CodeBERT to complete the masked sequence (i.e.,
to predict the missing token). This approach has been proven
efficient in increasing the fault detection of test suites [19] and
improving the accuracy of learning-based bug-detectors [49];
therefore, we consider it as a representative of pre-trained
language-model-based techniques. For instance, please con-
sider the code snippet provided, in sequence return
indexOf(object) > 0; µBERT mutates the method in-
vocation expression indexOf by feeding CodeBERT with
the masked sequence return <mask>(object) > 0;.
CodeBERT predicts the 5 most likely tokens to replace
the masked one, e.g., it predicts contains, indexOf,
lastIndexOf, count, and size for the given masked
sequence. µBERT takes these predictions and generates mu-
tants by replacing the masked token with the predicted ones
(per masked token creates five mutants). µBERT discards
non-compilable mutants and those syntactically the same as
the original program (cases in which CodeBERT predicts the
original masked token).

//mBERT uses CodeBERT to alter tokens based on the context
public boolean contains(final Object object) {

return lastIndexOf(object) > 0;
}

IBIR [29] is a fault seeding tool that uses automatic
program repair inverted fix-patterns to inject faults that are
similar to real ones. It takes as input the git repository of
the program to mutate and a bug report, written in natural
language and seeds (introduces) multiple fault candidates
(mutants) that emulate the fault described in the bug report.In
particular, IBIR’s mutation operators are inverted fix-patterns
crafted from actual bug fixes, and their inverse would induce
seeded faults that are similar to actual faults. IBIR, in one
of its configurations, applies faulty patterns exhaustively over



the system-under-test to generate mutants without any bug-
report IRFL guidance. We use this configuration in our study
to exclude the advantage brought by the IRFL component
to IBIR’s performance and, thus, make a fair comparison
between the considered approaches mutations. For instance,
if you consider the code snippet provided, in sequence
return indexOf(object) > 0; IBIR can mutate the
condition by expanding the expression with an extra one
&& object == null.

//IBIR uses inverted fix-patterns
public boolean contains(final Object object) {

return indexOf(object) > 0 && object == null;
}

DeepMutation [51] generates mutants by employing Neural
Machine Translation [53], aka NMT. It uses an NMT model
trained on a large corpus (∼787k) of existing bug-fixing com-
mits mined from GitHub repositories. It takes a Java method as
input and outputs a mutant. Hence, it generates one mutant for
every method in a Java class file. In particular, every method
is abstracted, in which pre-defined identifiers replace the user-
defined variable names and literals to obtain an abstracted
code representation. These abstracted code representations are
then given as input into the trained NMT model to produce
abstracted mutants, which are converted back to source-code
mutants by reversing the abstraction.

We use the publicly available trained model of DeepMu-
tation [1] to generate the mutants and src2abs [4] tool to
perform the abstraction process. This approach is one of its
kind until this moment, and we followed its guidelines [51] to
generate one mutant per method.

//DeepMutation uses Machine Translation for bug-fixing
public int contains(final Object object) {

return indexOf(object);
}

B. Mutant Selection Strategies

The fault seeding techniques generate a very different
number of mutants. Thus, to make a fair comparison, we aim
to control the number of mutants in answering RQs 1 and
2. Since the order in which mutants are analyzed is relevant
due to the existence of equivalent and trivial mutants and can
affect the application cost of mutation testing, it can also alter
the cost-effectiveness of the tools/techniques used. Thus, we
consider two mutant selection strategies that are very different
from each other.

Standard Mutant Selection consists of sampling uniformly
from the entire set of mutants [34], [32], i.e., every mutant has
the same probability of being selected since no prioritization
heuristic is considered.

Cerebro [23] is a machine learning approach that has been
shown effective in statically selecting subsuming mutants. Sub-
suming mutants - a minimal subset of mutants to identify such
as to identify the original set reciprocally [30], [44] - are the set
of mutants that resides on the top of the subsumption hierarchy
and subsume all other mutants [33]. Cerebro learns to identify
subsuming mutants given their context. In particular, it learns

the associations between mutants and their surrounding code
by using language-agnostic Neural Machine Translation [13],
which is also used by many recent studies [53], [22], [52], [50].
Cerebro’s learning scope is a relatively small area around the
mutation point that differentiates locally the mutants that are
subsuming from those that are not. This procedure allows the
selection of the mutants from program elements which fit best
to their context rather than using entire codebases with every
possible transformation. Cerebro demonstrated preserving the
mutation testing benefits while limiting application cost, i.e.,
reducing all cost application factors such as equivalent mu-
tants, mutant executions, and the mutants that require analysis.
Cerebro outperformed other approaches that concern machine
learning models that capture code properties through manually
engineered code features [23].

V. EXPERIMENTAL DESIGN AND ANALYSIS

A. Benchmarks and Ground Truth

We use Defects4J [27] v2.0.0, which contains the build
infrastructure to reproduce (over 800) real faults for Java
programs. Every bug in the dataset consists of the faulty
and fixed versions of the code and a developer’s test suite
accompanying the project that includes at least one fault-
triggering test that fails in the faulty version and passes in
the fixed one.

The set of faults spans more than a decade of development
history, making it challenging for us to synchronize the ex-
ecution of faults over different fault-seeding tools, following
obsolete dependencies not supported by relatively recent tools
and old versions of frameworks or languages, i.e., some of
the mutation tools require Java 1.8+. Thus, intending to be as
fair as possible with the selected tools, we had not considered
those faults that did not satisfy the building requirements —
specifically, the 26 faults from the project Jfreechart and 174
from Closure-compiler. Additionally, when conducting this
study, we found that 82 faults from the Jsoup project were not
compilable due to technical reasons [2]. In total, we analyzed
509 faults from 15 different projects.

It is pertinent to note that when comparing and observing
performance between different tools, we strictly use the in-
tersection of faults, i.e., the faults we were able to study for
all tools in question, and strictly those faults where every tool
generated at least one killable mutant.

B. Generated Mutants

For each selected faulty project version from Defects4J, we
start by identifying the modified classes between the faulty and
fixed versions. Then we generate mutants for the fixed version
of each modified class by employing the selected mutation
testing tools. Table I records the number of faults analysed
and the number of mutants generated by each mutation testing
tool. DeepMutation delivers only one mutant per method and
produced 5,559 mutants for the 348 analysed faults. µBERT
was applied on 499 faults and produced 293,304 mutants.
IBIR produced 1,113,113 mutants for the 393 analysed faults.
As we previously introduced, we consider two configurations



in the case of the PIT mutation testing tool. PIT Default
uses the subset of the mutation operators as specified in the
tool’s production-ready setup. These categories are considered
the most effective ones (11 out of 29) and generate 110,480
mutants for 508 faults analysed. For the sake of thoroughness
of the study, as we already mentioned, we also use all available
mutation operators of the tool, denoted by PIT, and generate
1,212,544 mutants across 29 mutants categories for the 509
faults analysed.

TABLE I: Number of Faults and mutants used in the study.

Mutation Testing Tool # of Analysed Faults # of Mutants

DeepMutation 348 5,559
PIT Default 508 110,480
µBERT 499 293,304
IBIR 393 1,113,113
PIT 509 1,212,544
* When comparing different tools, we strictly use the intersection of faults

C. Experimental Analysis Procedure

We start by executing all the mutants generated by the
different tools on the selected project subjects and recording
the failing tests distinguishing those mutations. Next, we
use Cerebro, the machine learning approach, to obtain the
(subsuming) probability associated with each mutant needed
for answering RQ2.

The procedure to answer RQ1 studies the cost-effectiveness
of the fault seeding techniques when employing standard
(random) mutant selection as the strategy of selecting mutants
in a developer work simulation. We repeat the procedure
for RQ2; however, this time, Cerebro guides the selection
of mutants by prioritising mutants and assigning the highest
probability of being useful to those likely to subsume others,
considering their surrounding code context.

In particular, the standard developer workflow simulation
emulates a testing scenario where the mutants guide the testing
process and serve as test requirements. A tester selects mutants
and designs tests to kill them until every (killable) mutant is
killed (a standard simulation often reported in the literature
[46]). Intuitively, the work simulation starts with an initial
empty test set and the set of mutants to be covered. The
next step is to select a mutant with high priority given by
some strategy and either, select randomly a test (without
replacement) that kills it, or judge it as equivalent. Each
selected test is added to the test suite, and every mutant killed
by that same test is discarded. The simulation is repeated until
all mutants are treated.

Precisely, given a list M of mutants sorted by a particular
mutant selection strategy (i.e., Standard or Cerebro) and their
predefined test pool P (provided within the dataset Defects4J),
we incrementally construct and measure the number of tests in
test suite T required to distinguish every (killable) mutant from
M, likewise measuring the number of analyzed mutants (killed
or judged equivalent) during the process. The simulation starts
by picking the top mutant m, according to the selection
strategy used, among survived mutants (initially considering

all mutants from M). Next, we check if there exists some test
in the test pool P that kills m (this process simulates a tester
picking, analyzing, and designing a test to kill a mutant). If no
test kills a mutant m, we judge it as equivalent and remove it
from M. Otherwise, we randomly pick one test t from the pool
that kills m, add t to the suite T, and remove from M every
mutant that is killed by t. This process continues by taking
the next surviving mutant from M, finding a test t to kill it,
and repeating until every mutant in M is killed (or judged as
equivalent).

In order to perform a more complete and fair comparison
between the tools, we measure the cost of a mutation testing
tool in two ways: The number of tests designed/written to kill
all (killable) mutants [34], and the number of analyzed mutants
during the process [32].

Furthermore, it is necessary to note that we consider the
effectiveness of a mutation testing tool as the ability to devise
a test suite T to detect the real fault. That is, we measure
whether, by running forged test suite T on the faulty version
of the program, we could detect the real fault.

To answer RQ1, we run previously described simulation by
randomly sorting the list of mutants from the different muta-
tion tools and comparing their effectiveness when applying the
same effort, i.e., how many faults we can find when writing
the same number of tests or analyzing the same number of
mutants. To answer RQ2, we run the same simulation and
comparison, but with the mutants prioritized according to
Cerebro’s importance prediction.

Since our simulation process includes some random effects
(e.g., which test t is selected to kill a mutant m), we repeat
this process 100 times for all approaches to reduce the threat
of randomness [9].

Overall, this experimental setup promises to investigate the
performance and usability of the studied mutation testing tools
when applied together with mutant selection strategies.

D. Cerebro Mutant Selection Prediction Performance

To use the machine-learning approach Cerebro [23] and
select (subsuming) mutants when addressing RQ2, we need
to train it on our data set. We follow the guidelines of Garg
et al. [23] to implement Cerebro’s approach and perform
training. Garg et al. employ a 5-fold cross-validation to evenly
split the benchmark into five parts, providing five models to
obtain probabilities. To evaluate the performance of Cerebro
on our dataset, we repetitively use one-fold of our benchmark
for testing and 4 for training. Table II reports the average
prediction performance of our implementation of Cerebro,
which is comparable with the results of Garg et al. [23] when
trained on PIT mutants. When we train it on µBERT mutants,
we observe better prediction performance indicators (10% in
Precision, 17% in Recall, and 13% in MCC) than trained
on PIT mutants. When training Cerebro on IBIR mutants,
we obtain slightly worse prediction performance than when
trained on other tools (3% and 16% lower MCC w.r.t to PIT
and µBERT) (Note that since DeepMutation produces only
one mutant per method, no mutant prioritization is required).



TABLE II: Prediction Performance of Cerebro.

Cerebro trained on: MCC Precision Recall

µBERT 0.56 0.81 0.52
IBIR 0.40 0.84 0.25
PIT 0.43 0.71 0.35
* Cerebro maintains similar performance as reported by Garg et al. [23]

For the sake of clarity, it is pertinent to note that column
Precision describes the ratio of mutants truly subsuming
among all the mutants predicted as subsuming, while column
Recall is the ratio of mutants correctly predicted as subsuming
among all the subsuming mutants. The column MCC (refer-
ring to Matthews Correlation Coefficient) [38] denotes the
coefficient between 1 and -1. An MCC value of 1 indicates
a perfect prediction, whereas a value of -1 indicates a perfect
inverse prediction, i.e., a total disagreement between prediction
and reality. An MCC value equal to 0 indicates that the
prediction performance is equivalent to random guessing.

E. Statistical Analysis

To evaluate whether fault detection under the same invested
effort is significantly different between techniques, we use
the non-parametric effect size measure Vargha and Delaney
A12 [54]. Intuitively, A12 measure will tell us how frequently
one tool obtains better indicators than the others. It returns
values between 0 and 1, where A12 = 0.5, showing that the
two measures are completely equivalent; otherwise, they have
some differences.

VI. EMPIRICAL EVALUATION

A. RQ1: Tool’s effectiveness under Standard Selection
We start our analysis by examining the effectiveness of the

mutation testing tools/techniques under the standard mutant
selection strategy.

TABLE III: Cost-effectiveness comparison under different mu-
tant selection strategies (RQ1 and RQ2).
Each cell represents the absolute difference in fault-detection between
the Observed Tool and the Baseline (-/+ for lower/higher fault
detection) when the same effort is invested (#M stands for the same
number of mutants analysed, and #T stands for the same number
of tests written). For instance, using Standard Selection (RQ1) IBIR
detects, on average, 14.50% more faults than DeepMutation, when
analysing the same number of mutants.

RQ1: Standard Selection

Observed Tools Comparison Baseline Tools
DeepMutation PIT Default µBERT PIT
#M #T #M #T #M #T #M #T

PIT Default 15.52 1.95 — — — — — —
µBERT 16.68 2.57 -0.64 0.72 — — — —
PIT 12.30 2.28 -7.42 -0.65 -7.59 -2.84 — —
IBIR 14.50 3.79 -3.66 2.12 -0.50 1.15 11.66 3.06

RQ2: Learning-Based Selection (Cerebro)

Observed Tools Comparison Baseline Tools
PIT Default µBERT PIT
#M #T #M #T #M #T

µBERT 12.14% 3.30% — — — —
PIT -2.09% -2.45% -10.42% -3.64% — —
IBIR -1.78% -2.39% -7.06% -0.73% 5.77% -0.70%
* Columns correspond to columns in the grids of Figures 1 and 2

Figure 1 visualizes fault detection concerning the number
of analyzed mutants and the number of written tests. It

is pertinent to note that the selection number is controlled
since different observed tools generate different numbers of
mutants. Hence, when studying the detection of each fault,
the maximum cost is directed by the tool that produces the
least number of mutants, more precisely, which requires the
least effort to analyse all of its mutants. Table III summarises
the differences in fault detection of the tools involving the
same effort. Let us consider from Sub-table (RQ1) in Table III,
the first column – DeepMutation. This column summarises the
fault detection difference between the tools observed in the two
left Sub-figures of 1, in which DeepMutation is considered the
reference tool that limits the maximum cost of the simulation
(as its mutants require the least effort to be all analysed, in the
majority of the cases). The sub-columns #M and #T values
report the fault detection advantage (or disadvantage) of using
a tool from the first column instead of using DeepMutation,
when spending the same effort in terms of respective mutants
analysed and tests written. For instance, the first row indicates
that PIT Default (29.54%) can detect 15.52% more faults than
DeepMutation (14.02%) when analyzing the same number of
mutants while detecting near 2% more faults when writing
the same number of tests. Hence, we use different baselines
to present our results in Table III and Figure 1, sorted in
ascending order according to the number of mutants generated
by each tool: DeepMutation, PIT Default, µBERT and PIT.

We observe that DeepMutation is the least cost-effective
technique - other tools detect between 12% and 17% more
faults when the same number of mutants is analyzed. Moreover,
we notice that the rest of the tools require the analysis of
fewer mutants than DeepMutation (around four times less) to
reach the same fault detection. The differences are statistically
significant. We also compared them with the Vargha-Delaney
A measure (Â12) [54], showing that other tools achieve better
fault detection on average in 99.6% cases.

We can also observe that the effectiveness of PIT Default
(58%), µBERT (57%) and IBIR (54%) is similar, outper-
forming PIT (50%) when analyzing as many mutants as
PIT Default. When writing the same number of tests, we
observe that µBERT reaches similar effectiveness (54%) as
PIT Default, PIT 53% and IBIR 56%.

When we focus on µBERT, we can observe that both
µBERT (73.2%) and IBIR (72.7%) are more effective than
PIT (65.7%) under the same effort. These differences also
have statistically significant p-value, and Â12 when compared
to their cost-effectiveness, evidencing that µBERT and IBIR
in ≈ 99% cases can detect more faults. Moreover, to reach the
same effectiveness as PIT, µBERT and IBIR need to analyze
44% and 38% fewer mutants than PIT. When we compare the
number of tests, we observe that IBIR (65.2%) and µBERT
(64.01%) can detect near 4% more faults than PIT (61.16%)
under the same effort.

Finally, we can observe that IBIR (near 90%) is more
effective than PIT (74%) when the same number of mutants
are analyzed. IBIR needs to analyze 80% fewer mutants (and
25% fewer tests) than PIT to reach the same effectiveness.
This difference is also statistically significant p-value<0.01.



Fig. 1: RQ1 Standard Selection: tools’ cost-effectiveness in fault detection over different effort models – analysing mutants / writing
tests. Different groups of tools control the number for selection to address differences in the scope of mutant generation.

IBIR is the most effective tool, identifying on average ≈ 90% of
real faults. It requires the analysis of 80% fewer mutants (and
25% fewer tests) than PIT to reach the same effectiveness. In terms
of cost-effectiveness µBERT, IBIR, PIT Default perform similarly,
with PIT performing slightly worse. All other tools subsume Deep-
Mutation concerning fault detection through standard selection.

B. RQ2: Tool’s effectiveness under Cerebro
Figure 2 visualize cost-effectiveness simulation of the fault

seeding techniques when we use a machine learning-based
approach, i.e., Cerebro for mutant selection. It is important to
note that due to findings in the previous research question, we
don’t find it suitable to consider DeepMutation in this research
question since it is subsumed even when using all its mutants.

As can be seen in Figure 2, learning-based mutant selec-
tion improves the remaining fault-seeding techniques’ cost-
effectiveness. Table III in RQ2 cells presents the absolute
differences in fault detection between the tools.

Interestingly, when using Cerebro to select mutants, µBERT
achieves ≈12%, ≈14% and ≈13% higher fault detection rate
than PIT Default, PIT and IBIR, respectively, when analyzing
the same number of mutants and ≈4%, ≈6% and ≈6%
when analysing the same number of tests. The differences are
statistically significant, according to the computed p-value (<
0.01). We have also validated these findings by computing the
(Â12) measure, showing that it achieves higher fault detection
on average in 96.2% cases. Surprisingly, µBERT analyses
50%, 82%, and 78% fewer mutants than PIT Default, PIT and
IBIR, respectively, to reach the same effectiveness. Concerning
the number of tests, the difference is also noticeable when
compared with PIT, since µBERT obtains ≈5% higher fault
detection under the same number of tests written.

Interestingly, in the presence of the learning-based mutant
selection strategy, IBIR keeps its significantly high difference
in fault detection when analyzing the same number of mutants
as PIT, ≈6%. This difference is also statistically significant
with p-value<0.01.

Overall, our results indicate that using learning-based mu-
tant selection significantly impacts the cost-effectiveness of the
fault-seeding techniques. This observation promises to impact
how we use fault-seeding techniques and how we compare
new fault-seeding techniques’ effectiveness.

µBERT has significantly improved its performance under the
machine-learning-based selection strategy, i.e., Cerebro, becoming
the most cost-effective fault seeding technique. µBERT needs to
analyse 50%, 82%, and 78% fewer mutants than PIT Default,
PIT and IBIR, respectively, to reach the same effectiveness when
selecting mutants according to Cerebro. IBIR, PIT Default and PIT
all experience improved performance but overall, they all perform
similarly.

VII. DISCUSSION

A. Mutant Selection or not: How does the mutant selection
impact the mutation testing tools?

Regardless of the fundamental differences between the con-
sidered approaches, our results show they are all efficient
in guiding testing towards higher fault detection capabilities.
In fact, with relatively low efforts, they score comparable
fault detection rates. Their difference becomes noticeable only
by spending extra efforts or leveraging a mutants selection
strategy to spare the efforts lost in analyzing irrelevant mutants
- as can be seen from our results in RQ2. While in RQ1, under
the standard mutant selection strategy, we do not report any
statistically significant difference (p<0.05) between the tools,
except in the cases where DeepMutation is subsumed and
µBERT and IBIR deviate from others. Although we observe
that IBIR is the most effective when considering extra effort
in analyzing mutants - with statistically significant differences.
The reasoning is that a) IBIR provides mutants with high fault
detection capabilities but b) produces numerous equivalent and
irrelevant ones, which increase the cost to the target.

The impact is revealed when we applied a learning-based
mutant selection approach in RQ2, which deflates mutant



Fig. 2: RQ2 Learning-Based Selection: tools’ cost-effectiveness in fault detection over different effort models – analysing mutants /
writing tests. Different groups of tools control the number for selection to address differences in the scope of mutant generation.

redundancy. Learning-based selection Cerebro makes µBERT
the most cost-effective, significantly outperforming the other
approaches, which differs from standard selection conclusions.
We argue that Cerebro boosting µBERT, particularly, unlike
the others, lies in the similarity and homogeneity among its
mutants, which all replace one token with another considering
the code context. In contrast, others may remove or alter
multiple tokens or statements, making the learning task harder.

To further investigate this variance in cost-efficiency be-
tween the studied techniques, we should check whether the
other approaches could also get boosted by classification tech-
niques like µBERT. This question is particularly interesting in
the case of IBIR, which introduces significantly more mutants,
thus, more subsuming and subsumed mutants than µBERT,
which challenges any classifier. To check this hypothesis, we
plan in future work to construct and study more classifiers
(learning-based or not) together with a perfect classifier (an
artificial model that perfectly predicts whether a mutant is
subsuming or not) and thus obtain more insights about the
cost-effectiveness of the available fault-seeding techniques.

Altogether, we conclude that when comparing mutation
testing techniques, the standard mutant selection strategy can
lead to incomplete conclusions as the most cost-effective
tool/technique is not necessarily the same under learning
strategies which we encourage researchers and practitioners
to utilize and explore further.

So far, the investigation also implies that some operators
of different approaches provide beneficial ingredients that
should be considered and further explored as complements to
mutation testing tools. In the following, we scratch the surface
and pave the way for future researchers towards this direction.

B. Complementarity of the approaches
So far, we have elaborated on the cost-effectiveness of

fundamentally different approaches when guided – or not –
by intelligent selection. However, we haven’t investigated and
given insights into ”how?” and ”what?” an approach can and
cannot reveal, and consequently, 1) what could be the added
value of spending more effort using each approach and 2)
whether the approaches could complement each other.

As a first step in this direction – as encouragement for future
studies since a thorough breakdown may undermine the intent
and scope of this work – we amend our quantitative study with
a qualitative one. We investigate the bugs that each approach
can find – at least once among our simulation repetitions
– and distinguish the ones that could not be found by all
approaches. Then, we examine these bugs with their revealing
mutants and discuss the particularities and shortages, i.e. the
fault injection patterns that make any difference between all
considered approaches.

The Venn diagram in Figure 3 depicts the distribution of
the bugs that are revealed by each tool. Same as per previous
results, IBIR outperforms all approaches in terms of fault de-
tection capability, finding 99,57% of the target bugs followed
by µBERT (92,7%), PIT (87,55%), PIT Default (85,83%) and
finally DeepMutation (41,20%). In fact, IBIR can discover all
the target bugs except one (Mockito 5), which no approach
can find, indicating the pseudo-completeness of its mutation
operators. Indeed, 2 bugs are only found by IBIR – Math
12 and Mockito 33 – mainly thanks to patterns’ power, such
as removing or inserting new statements, replacing method
invocations, and adding extra conditions.

Concerning µBERT mutations, even if they do not remove
or insert new code but only change one token by another, they
can reveal 17 bugs which only IBIR could find. Additionally,



0 00

0
0

0

0

2

0

0

7

17
0

2

108
0

0
00

0

0 0
0

0

0

1

6

8

1

2

78

DeepMutation
IBIR

BERT
PIT
PIT_Default

Fig. 3: Which bugs are revealed by every approach? IBiR is
capable to find almost all (99,57%) bugs followed by µBERT
(92,7%), Pit (87,55%), Pit-Default (85,83%) and finally Deep-
Mutation (41,20%).

µBERT finds respectively 26 and 29 bugs that mature and
sophisticated operators of PIT Default and PIT missed. We
explain this by the fact that µBERT’s pre-trained model
CodeBERT and its knowledge of code (the information it
retrieves from the code) to mutate perms it to propose real-
like code replacements, thus, real-like mistakes and bugs, i.e.
changing method calls, access to objects’ fields and arrays etc.

PIT and PIT Default yield comparable results, showing they
can amend µBERT capabilities in finding respectively 13 and
14 bugs more, thanks to patterns that involve multiple tokens
changing, i.e. the removing mutation operators.

Overall, we believe that future research should investigate
the appropriate joint use of IBIR’s inverted fix-patterns, well-
crafted and mature PIT Default grammar transformations, and
µBERT’s code and context-knowledge based mutations.

C. Implications for practice
Over the last decade, mutation testing (a.k.a. fault seed-

ing, fault injection) has been used exhaustively for testing,
debugging, maintenance, change-aware dependability analysis,
test assessment, etc. In the context of mutation testing, recent
industrial applications less often include the generation of
all mutations or coverage-adequate test sets. Cheaper trends
concern the effort required, and the risk of unrealistic test re-
quirements is seen through the objective of equivalent mutants.
Instead, industrial applications are interested in obtaining a
curbed sample of mutants that reliably mimic real faults. Thus,
satisfying the famous mutation testing proverb: ”Do fewer, do
smarter, do faster” [41].

At the same time, with the wave of open possibilities
brought by machine learning models, many tools emerged.
Their diversity provokes a topic of interest in the development
and research circles – together with empirical comparisons
– about which approach/tool is more efficient in emulating
and revealing actual bugs. However, as we showed in the
paper, solely comparing tools based on their mutant generation

degree does not lead to solid conclusions. Each technique
brings additional value, with an inevitable cost in noise.
Thus, with this study, we aspire to spread the message to
practitioners to consider the actual cost of every technique
expressed through some form of intelligent selection and effort
analysis, thus discarding the noise. Furthermore, we shed
light on different degrees of redundancy that different ap-
proaches carry, transformations that make them distinguishable
and complimentary, making them less costly. Altogether, the
central insight of our study to future researchers and tool
developers is to consider appropriate selection strategies when
comparing and developing fault-seeding techniques. Moreover,
we encourage researchers to explore the combination of mod-
els to identify promising locations for mutant generation and
joint transformation rules.

When comparing mutation testing techniques or tools, it is imper-
ative to account for a mutant selection technique suitable for this
purpose. The use of standard mutant selection entails a risk of
drawing incorrect conclusions.

VIII. THREATS TO VALIDITY

External Validity: To reduce threats that may relate to the
subjects we used, we selected 509 faults from 15 mature
open-source real-world projects that are well maintained and
tested from Defects4J v2.0. As we already discussed, while
conducting our experiments, we could not compile or run the
tests of all the versions available in Defects4J v2.0. Although
our evaluation expands to many faults and Java projects of
different sizes, the results may not generalize to other projects
or programming languages.

Another external threat lies in the tools’ specificity and
running configurations we consider. To reduce this threat,
we employ fundamentally different modern mutation tools
and run them exhaustively using their corresponding default
configurations, generating as many mutants as the tool can
generate for each subject.

Another threat can be related to the mutant selection strate-
gies used in the study. To reduce this threat, we consider
two fundamentally different approaches. Nevertheless, we do
not remove the threat that results can change when another
mutant selection technique is employed or considering another
language (e.g. Cerebro [23] was also evaluated on C programs,
which was not explored in this paper) - yet we plan to follow
this line of work in the future.

Internal Validity: Threats to internal validity may arise in
how we train the machine learning-based approach Cerebro for
RQ2. To address this threat, we strictly follow the guidelines
reported by Garg et al. [23] and explain the steps in Section
V-D. In contrast to Garg et al. [23] that evaluated Cerebro only
with mutants generated with PIT, in this study, we also train
Cerebro on mutants generated with µBERT and IBIR. Other
threats may relate to how we label mutants as subsuming. To
counter this threat, we rely on the developer suites provided
by the Defect4J benchmark, as it is regarded as the most
detailed dataset of faults from projects with thorough test sets
in Java language. Any weakness in the suites may lead to



incorrect labelling for mutants, introducing some noise that can
affect Cerebro’s prediction abilities. Unfortunately, we could
not compile and run the master-branch [3] of DeepMutation.
Thus, we had to operate the tool from the resources and pre-
trained artefacts provided in the repository.

Another threat to internal validity may be that we generate
mutants only for the class fixed in the bug-fix pairs provided by
Defects4J. Thus, we do not reduce the potential threat that the
results do not apply to mutants from other classes interacting
with the mutants used in this study.

Construct Validity: Our assessment metrics, number of
analyzed mutants, number of written tests and fault detection
may not entirely and exhaustively reflect the actual testing
cost / effectiveness values. These metrics have been suggested
by literature [46], [7], [34] and are intuitive, i.e., the number
of analyzed mutants and the number of tests essentially
simulate the manual effort involved by testers when mutants
guide the testing process [6], [45]. These two cost models
illustrate objective comparison as the engineering effort is
assumed to be fixed, which would not be the case in a human
study, fluctuating based on a participant’s experience. While
measuring real execution time (computational effort) would be
impacted by the environment, e.g., the number of machines,
machines’ performance, scheduling algorithms and maturity
of the tools in a sense if they have built-in support for multi-
threading/parallelism.

At the same time, fault detection is the effectiveness metric
of interest in this study that can be impacted by randomization.
To address this threat, we run and repeat 100 times a simula-
tion scenario where a tester selects mutants and designs tests
to kill them. Overall, we mitigate these threats by following
suggestions from mutation testing literature [46], [7], [34],
using state-of-the-art tools and performing several simulations.
We also find consistent and stable results across our subjects.

IX. RELATED WORK

Mutation testing is widely used in experimental studies
to compare and assess testing techniques [46], motivated by
studies showing that mutant killing ratios have similar trends
to real fault detection ratios [8]. While traditionally mutants
are seeded by performing simple syntactic changes in the
programs, real faults are in their majority more complex [24],
[12]. These studies introduce mutants that are complex and
look like being similar to real faults. In particular, it was
proposed to form mutation operators based on fault-fixing
commits [14], [51] or recurrent real fault instances [11], [29].

Traditional mutation testing approaches generate mutants by
using simple syntactic changes since previous studies have
shown the existence of the so-called coupling effect that
states that simple faults can subsume almost all the complex
ones [20], [40]. This brings into question the pattern-based
approaches that aim at mimicking the various fault instances
syntactically since it is likely that mutants that are syntactically
dissimilar to real faults couple with them. This is a motivation
for conducting our work.

The relation between mutants generated by different
grammar-based mutation testing tools has also been stud-
ied [31], [46], and showed that PIT, which we use in our
study, is the most effective tool today [32]. Though previous
studies compare the effectiveness of mutation testing tools
and draw conclusions under the assumption that every mutant
has the same probability of being selected, that is, under a
standard mutant selection policy. However, recent advances
have resulted in powerful techniques for cost-effectively se-
lecting mutants, i.e., by avoiding the analysis of redundant
mutants (basically, equivalent and subsumed ones) [23]. In
particular, such approaches utilise the knowledge of mutants’
surrounding context, embedded into the vector space, to judge
the usefulness of a mutant for specific tasks, which usually
reduces the mutation testing effort. Besides, a recent study also
explored mutant selection using manually engineered features
to capture their test completeness probability - being subsum-
ing. However, as the study on Cerebro [23] showed that the
deep learning approach outperforms such models, we decided
to use it in this study over the other approach. A recent line of
work has also been formed to study the existence of commit-
relevant mutants in capturing regression faults, and change-
aware test assessment in the context of evolving systems
[42], [43]. To this end, in our study we investigate selection
and fault detection such as to differentiate the cost-effective
performance of the tools, resulting in different conclusions
on comparing the tools. This makes using various mutant
selection strategies particularly important when comparing and
assessing mutation testing tools and techniques.

X. CONCLUSION

We studied the fault detection performance of recently
proposed mutation testing tools (DeepMutation, PIT, IBIR and
µBERT) on a new and large fault dataset.We also employed
two different mutant selection strategies a) standard, b) state-
of-the-art deep learning driven one, then we performed a
cost-effectiveness comparison using two typically adopted
cost models; one associated with the number of mutants
requiring analysis and a second one with the number of tests
to reveal the injected faults. Our results showed that IBIR
has the highest fault detection capability (≈90% on average)
but is not the most cost-efficient. In contrast, µBERT, even
less effective, has significantly higher cost-effectiveness when
using learning-based selection strategies, approximately 12%
higher, than all the other tools. More notably, we found that
mutation testing tools perform differently when guided by
mutant selection strategies, indicating the need for considering
intelligent selection when comparing mutation testing tools. In
other words, mutant selection strategies must be considered
when comparing the cost-effectiveness of mutation testing
tools to avoid the risk of making wrong conclusions.

ACKNOWLEDGMENT

This work is supported by the Luxembourg National
Research Funds (FNR) through the CORE project grant
C19/IS/13646587/RASoRS.



REFERENCES

[1] Deepmutation. https://github.com/micheletufano/DeepMutation.
[2] Defects4j issue- 353. https://github.com/rjust/defects4j/issues/353.
[3] Master branch deepmutation. https://github.com/micheletufano/

DeepMutation/commit/a20882d8fbd107762e2d40f5742d838242dbf1e5.
[4] src2abs. https://github.com/micheletufano/src2abs.
[5] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing

theoretical minimal sets of mutants. In 2014 IEEE seventh international
conference on software testing, verification and validation, pages 21–30.
IEEE, 2014.

[6] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-
bridge University Press, 2016.

[7] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering, 32(8):608–624, 2006.

[8] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is mutation
an appropriate tool for testing experiments? In Gruia-Catalin Roman,
William G. Griswold, and Bashar Nuseibeh, editors, 27th International
Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St.
Louis, Missouri, USA, pages 402–411. ACM, 2005.

[9] Andrea Arcuri and Lionel Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, page 1–10, New York, NY, USA, 2011. Association for
Computing Machinery.

[10] Jean Arlat, Alain Costes, Yves Crouzet, Jean-Claude Laprie, and David
Powell. Fault injection and dependability evaluation of fault-tolerant
systems. IEEE Trans. Computers, 42(8):913–923, 1993.

[11] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz
Machalica, Satish Chandra, and Erik Meijer. What it would take to use
mutation testing in industry–a study at facebook, 2021.

[12] Marcel Böhme and Abhik Roychoudhury. Corebench: studying com-
plexity of regression errors. In Corina S. Pasareanu and Darko Marinov,
editors, International Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages 105–115.
ACM, 2014.

[13] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive
exploration of neural machine translation architectures. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1442–1451, Copenhagen, Denmark, September 2017.
Association for Computational Linguistics.

[14] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps.
The care and feeding of wild-caught mutants. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, page 511–522. Association for Computing Machinery, 2017.

[15] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé,
Yves Le Traon, and Koushik Sen. Selecting fault revealing mutants.
Empir. Softw. Eng., 25(1):434–487, 2020.

[16] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark
Harman. An empirical study on mutation, statement and branch coverage
fault revelation that avoids the unreliable clean program assumption. In
Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, editors,
Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages
597–608. IEEE / ACM, 2017.

[17] Jörgen Christmansson and Ram Chillarege. Generation of error set that
emulates software faults based on field data. In Digest of Papers: FTCS-
26, The Twenty-Sixth Annual International Symposium on Fault-Tolerant
Computing, 1996, pages 304–313. IEEE Computer Society, 1996.

[18] Henryy Coles, Thomas Laurent, Christopher Henard, Mike Papadakis,
and Anthony Ventresque. PIT: a practical mutation testing tool for
java (demo). In Andreas Zeller and Abhik Roychoudhury, editors,
Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 449–452. ACM, 2016.

[19] Renzo Degiovanni and Mike Papadakis. µBERT: Mutation testing using
pre-trained language models. In Mutation Workshop at ICST. IEEE,
2022.

[20] Richard Demillo, R.J. Lipton, and F.G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11:34 – 41,
05 1978.

[21] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and

Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors,
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: Findings, EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Findings of ACL, pages 1536–
1547. Association for Computational Linguistics, 2020.

[22] Aayush Garg, Renzo Degiovanni, Matthieu Jimenez, Maxime Cordy,
Mike Papadakis, and Yves Le Traon. Learning from what we know: How
to perform vulnerability prediction using noisy historical data. Empir.
Softw. Eng., 27(7):169, 2022.

[23] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu
Chekam, Mike Papadakis, and Yves Le Traon. Cerebro: Static sub-
suming mutant selection. IEEE Transactions on Software Engineering,
pages 1–1, 2022.

[24] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How
close are they to real faults? In Proceedings of the 2014 IEEE 25th
International Symposium on Software Reliability Engineering, ISSRE
’14, page 189–200, USA, 2014. IEEE Computer Society.

[25] Yue Jia and Mark Harman. Higher order mutation testing. Information
and Software Technology, 51(10):1379–1393, 2009. Source Code
Analysis and Manipulation, SCAM 2008.

[26] René Just. The major mutation framework: Efficient and scalable
mutation analysis for java. In Proceedings of the 2014 international
symposium on software testing and analysis, pages 433–436, 2014.

[27] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for Java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis (ISSTA), pages 437–440, 2014.

[28] Samuel J Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul
Ammann, and René Just. Prioritizing mutants to guide mutation
testing. In Proceedings of the 44th International Conference on Software
Engineering, pages 1743–1754, 2022.

[29] Ahmed Khanfir, Anil Koyuncu, Mike Papadakis, Maxime Cordy,
Tegawende F. Bissyandé, Jacques Klein, and Yves Le Traon. Ibir: Bug
report driven fault injection. ACM Trans. Softw. Eng. Methodol., may
2022.

[30] M. Kintis, M. Papadakis, and N. Malevris. Evaluating mutation testing
alternatives: A collateral experiment. In 2010 Asia Pacific Software
Engineering Conference, pages 300–309, 2010.

[31] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos
Valvis, and Nicos Malevris. Analysing and comparing the effectiveness
of mutation testing tools: A manual study. In 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 147–156. IEEE, 2016.

[32] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos
Valvis, Nicos Malevris, and Yves Le Traon. How effective are mutation
testing tools? an empirical analysis of java mutation testing tools with
manual analysis and real faults. Empir. Softw. Eng., 23(4):2426–2463,
2018.

[33] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng. Mutant
subsumption graphs. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops, pages 176–185,
2014.

[34] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Ma-
riet Kurtz, and Nida Gökçe. Analyzing the validity of selective mutation
with dominator mutants. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 571–582, 2016.

[35] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and
A. Ventresque. Assessing and improving the mutation testing practice
of pit. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 430–435, March 2017.

[36] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang,
Dan Hao, and Lu Zhang. Can automated program repair refine fault
localization? a unified debugging approach. In ISSTA ’20: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, pages 75–87. ACM, 2020.

[37] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated
class mutation system. Softw. Test. Verification Reliab., 15(2):97–133,
2005.

[38] B.W. Matthews. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)
- Protein Structure, 405(2):442 – 451, 1975.



[39] Roberto Natella, Domenico Cotroneo, João Durães, and Henrique
Madeira. On fault representativeness of software fault injection. IEEE
Trans. Software Eng., 39(1):80–96, 2013.

[40] A. Jefferson Offutt. Investigations of the software testing coupling effect.
ACM Trans. Softw. Eng. Methodol., 1(1):5–20, January 1992.

[41] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the
orthogonal. Mutation testing for the new century, pages 34–44, 2001.

[42] Miloš Ojdanić, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam,
Anthony Ventresque, and Mike Papadakis. On the use of commit-
relevant mutants. Empirical Software Engineering, 27(5):1–31, 2022.

[43] Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis,
and Yves Le Traon. Mutation testing in evolving systems: Studying the
relevance of mutants to code evolution. ACM Transactions on Software
Engineering and Methodology, 2022.

[44] Mike Papadakis, Thierry Titcheu Chekam, and Yves Le Traon. Mutant
quality indicators. In 2018 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops, ICST Workshops,
Västerås, Sweden, April 9-13, 2018, pages 32–39. IEEE Computer
Society, 2018.

[45] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and
Yves Le Traon. Threats to the validity of mutation-based test assessment.
In Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 354–365, 2016.

[46] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six - mutation testing advances: An analysis and
survey. Advances in Computers, 112:275–378, 2019.

[47] Mike Papadakis and Yves Le Traon. Metallaxis-fl: mutation-based fault

localization. Software Testing, Verification and Reliability, 25(5-7):605–
628, 2015.

[48] Jibesh Patra and Michael Pradel. Semantic bug seeding: A learning-
based approach for creating realistic bugs. ESEC/FSE 2021, page
906–918, New York, NY, USA, 2021. Association for Computing
Machinery.

[49] Cedric Richter and Heike Wehrheim. Learning realistic mutations: Bug
creation for neural bug detectors. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 162–173, 2022.

[50] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks, 2014.

[51] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele
Bavota, Massimiliano Di Penta, and Denys Poshyvanyk. Deepmutation:
A neural mutation tool. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: Companion Proceedings,
ICSE ’20, page 29–32, New York, NY, USA, 2020. Association for
Computing Machinery.

[52] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An empirical study on learning
bug-fixing patches in the wild via neural machine translation. ACM
Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

[53] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Learning how to mutate source
code from bug-fixes, 2019.

[54] András Vargha and Harold D. Delaney. A critique and improvement of
the ”cl”d common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.


