
Towards Understanding Model Quantization for
Reliable Deep Neural Network Deployment

Qiang Hu1, Yuejun Guo2, Maxime Cordy1, Xiaofei Xie3, Wei Ma4, Mike Papadakis1, and Yves Le Traon1
1University of Luxembourg, Luxembourg

2Luxembourg Institute of Science and Technology, Luxembourg
3Singapore Management University, Singapore
4Nanyang Technological University, Singapore

Abstract—Deep Neural Networks (DNNs) have gained consid-
erable attention in the past decades due to their astounding
performance in different applications, such as natural language
modeling, self-driving assistance, and source code understand-
ing. With rapid exploration, more and more complex DNN
architectures have been proposed along with huge pre-trained
model parameters. A common way to use such DNN models in
user-friendly devices (e.g., mobile phones) is to perform model
compression before deployment. However, recent research has
demonstrated that model compression, e.g., model quantization,
yields accuracy degradation as well as output disagreements
when tested on unseen data. Since the unseen data always
include distribution shifts and often appear in the wild, the
quality and reliability of models after quantization are not
ensured. In this paper, we conduct a comprehensive study
to characterize and help users understand the behaviors of
quantization models. Our study considers four datasets spanning
from image to text, eight DNN architectures including both feed-
forward neural networks and recurrent neural networks, and 42
shifted sets with both synthetic and natural distribution shifts.
The results reveal that 1) data with distribution shifts lead to
more disagreements than without. 2) Quantization-aware training
can produce more stable models than standard, adversarial,
and Mixup training. 3) Disagreements often have closer top-1
and top-2 output probabilities, and Margin is a better indicator
than other uncertainty metrics to distinguish disagreements. 4)
Retraining the model with disagreements has limited efficiency
in removing disagreements. We release our code and models as
a new benchmark for further study of model quantization.

I. INTRODUCTION

Thanks to the massively available data released and pow-
erful hardware devices supported, Deep Learning (DL) gains
considerable attention and achieves ever better performance
than humans on different tasks [1]. Many security-critical DL
systems have been deployed in recent years, e.g., self-driving
car [2] and face recognition application [3]. Besides, inspired
by the usage of DNNs for natural language processing, re-
searchers also employ DNNs for source code-related tasks,
e.g., code summarization [4] and problem classification [5].
As the backbone of DL systems, Deep Neural Networks
(DNNs) follow the data-driven paradigm to learn knowledge
from the labeled data automatically and make predictions for
incoming unlabelled ones. Correspondingly, the study of the
development of DNNs into DL systems, which is a key step
in MLOps [6], is interesting to both security and software
engineering communities.

However, a factor that limits the development of DNNs is
that DNNs are usually large-size and require strong computing
resources. For example, the famous language prediction model
GPT-3 [7] has 175 billion parameters, which is hard to be
deployed in our daily used devices. For code tasks, the
recently released model GraphCodeBERT [8] occupies 124M
of storage memory, which is also difficult to be plugged into
the generally used IDEs. Furthermore, with the rapid research
progress, more and more complex DNNs are being developed,
which makes DNN deployment even more challenging.

To solve the above deployment issue, instead of directly
migrating DNNs to devices, one typical process is to reduce
the size of DNN models by model compression techniques
for lighter and easier deployment. There are different ways
to perform model compression, e.g., model pruning which
removes useless parameters from the model, and model quan-
tization which degrades float-level parameters to lower-level
parameters (integer-level). In general, the compression process
is important and must preserve the performance of original
models as much as possible. The reason is that after compres-
sion, it is hard to further change the model when unexpected
problems occur, e.g., retraining a model deployed on a mobile
device is impractical because this model is packaged.

Unfortunately, recent research has revealed two problems
with model compression. First, [9] shows that a compressed
model could have a big accuracy difference (more than 5%)
compared to its original model on the newly synthesized
data (by using fuzzing techniques). Second [10], [11] demon-
strate that it is common to find inputs that trigger different
predictions by a compressed model and its original model.
As these studies reveal, it remains unclear to what extent
model compression preserves prediction performance and un-
der which conditions. However, although some studies have
been conducted, the existing literature 1) only focuses on
studying the compressed model on the artificially generated
unseen data, the real-world unseen data are missed; 2) lacks
a detailed analysis of the characteristics of data that cause the
performance difference and disagreements; 3) ignores the ex-
ploration of how to fix the disagreements. These lacks, in turn,
impede the reliable application of compression techniques.

In this paper, we fill this gap and empirically characterize
the behavior of compressed models under various experimental
settings in order to better understand the limitations of com-



pression techniques. We specifically consider quantization as
this approach is mostly applied in practice [12], and use the
term compressed model to represent the model after quanti-
zation in this paper. We focus our study on the DL models
compressed by TensorFLowLite [13] and CoreML [14] which
are widely adopted in the industry. For example, Google uses
TensorFLowLite for model deployment on Android devices
and Apple applies CoreML for IOS devices. In total, our
experimental settings include four datasets ranging from image
to text, eight different DNNs including both Feed-forward
Neural Networks (FNNs) and Recurrent Neural Networks
(RNNs), 42 different test sets with both synthetic and natural
distribution shifts. Accompanied by our study, we provide the
first benchmark DNN models for further quantization study.
With this material, we explore four research questions that
existing studies have overlooked:

RQ1: How do compressed models react to distribution
shifts? Real applications of DL systems often witness data
distribution shifts – changes in data distribution that typically
cause drops in model performance [15]. Given the practical
predominance of this phenomenon, research [16]–[18] has
emphasized the need to consider distribution shifts when
evaluating DL models. We, therefore, study the impact of
model quantization in the case of distribution shifts. We eval-
uate the compressed models against two types of distribution
shift datasets: synthetic (based on image transformations) and
natural (reported in the literature). We compare the original
and the compressed models in terms of accuracy difference
and predicted label differences, i.e. disagreements.

RQ2: How does the training strategy influence the
behavior of compressed models? We explore the influence
of different training strategies: standard training which is the
basic way to prepare pretrained model, quantization-aware
training [19] which is specifically designed for model quanti-
zation, adversarial training [20] and mixup training [21], which
are the commonly used data augmentation training strategies.
We apply each strategy to train original models and then
quantize these models. We compare the pairs of models in
terms of accuracy differences and disagreements.

RQ3: What are the characteristics of the data on which
original and compressed models disagree? We aim to find
discriminating factors that can help identify the disagreement
inputs. In particular, we investigate whether the most uncertain
data are the most likely to produce disagreements. Based on
different uncertainty metrics, we train simple classifiers based
on logistic regression and evaluate their capabilities to predict
disagreements.

RQ4: Can model retraining reduce disagreements? We
investigate whether retraining – a common approach to im-
prove DL models – can efficiently fix disagreements. Specif-
ically, we explore whether retraining the original model (for
additional epochs) with disagreement inputs can help preserve
the knowledge of these inputs through the quantization pro-
cess, and make the compressed model classify these inputs
correctly.

In summary, the main novel contributions of this paper are:

• We show that synthetic distribution shift has a significant
impact on compressed models; it increases the accuracy
change by up to 3.03% and the percentage of disagreements
by 5.28%.

• We empirically confirm that quantization-aware training is
the best method to alleviate performance loss and disagree-
ments after quantization.

• We demonstrate that data uncertainty – as captured by
the Margin metric – is a suitable factor to discriminate
disagreement data. A simple classifier based on Margin
reaches an AUC-ROC of 0.63 to 0.97.

• We illustrate that retraining on disagreement inputs does not
decrease the total level of disagreements between original
and compressed models because it has the side effect of
introducing new disagreements.

• We build the first model quantization benchmark mod-
els [22] to support future research on studying and improv-
ing the reliability of model deployment.

II. BACKGROUND

A. Deep Learning

Deep learning [23] is a machine learning technique that uses
intermediate layers to progressively obtain knowledge from
raw data, and deep neural networks form the backbone of deep
learning. A typical deep neural network consists of an input
layer, several hidden layers, and an output layer. Each layer
includes neurons that mimic the neurons in human brains and
undertake specific computations, such as sigmoid and rectifier.
The connections between successive layers establish the data
flow. In brief, training a deep neural network is to tune the
parameters (importance of neurons) of the connections, and
testing is to ensure accuracy and reliability during deployment
in real-world applications.

B. Model Quantization

Model quantization is one of the most used model compres-
sion techniques that aims at transforming the higher-bit level
weights to lower-bit level weights, e.g., from float32 weights to
8-bit integer weights, to reduce the size of the model for easy
model deployment. Multiple quantization approaches [19],
[24]–[26] have been proposed given its importance in DL-
based engineering. An important part of quantization methods
is the mapping between the two parts of weights. This mapping
can be constructed by using a simple linear function to find
the scale for two levels of weights, or by different clustering
metrics (e.g., k-means cluster used in CoreML) to find the
lookup table quantization of weights.

Figure 1 gives an example of basic linear quantization. We
assume the left side is the float32-level weights, and the range
of these weights is [-1, 1]. We plan to convert the float weights
to 8-bit integer weights ranging in [-128, 127]. Thus, the scale
here is 128 and the compressed weights are calculated by
Round(weightsfloat/scale). Generally, to further reduce the
memory usage of compressed models, the quantization only
keeps positive weights.

2



0.2 -0.1 0.3

0.4 0.2 -0.5

-0.2 0.6 0.3

26 -13 38

51 26 64

-26 77 38

Quantization

Float32 Int8

Fig. 1. An example of weights quantization. Each weight in Float32 format
is converted into Int8.

C. Distribution Shift

Distribution shift refers to the change of data distribution
in the test dataset compared to the training dataset. Generally,
benchmark datasets [27], [28] are designed to include training
and test data following the same distribution. However, in real-
world deployments, the test data can be from the same or a
different distribution, which raises the security concern [16]. A
motivating example can be found on our project site [22].

Generally, there are two types of distribution shifts, syn-
thetic and natural [15]. Synthetic distribution shift considers
possible perturbations in the real world. In addition, consid-
ering the severity of corruption, data can have various levels
of noise, which covers many different situations. As a result,
synthetic distribution shift is always taken as a starting point
to evaluate the performance of a DNN under different settings.
A wide range of visual corruptions has been developed in the
image domain [29], [30]. For example, adding motion blur
into an image can mimic the scenario of a moving object, and
inserting the fog effect can simulate the condition of foggy
weather. Different from synthetic shift, natural distribution
shift comes from natural variations in datasets. For instance, in
the widely used text dataset, IMDb [28], data (movie reviews)
are collected from IMDb. When testing, the reviews can be
from another movie review website.

III. OVERVIEW

A. Study Design

Figure 2 gives an overview of our study. Overall, instead of
only analyzing the behavior of compressed models produced
from pre-trained models, we also follow the general MLOps
to explore how the training process affects the compressed
model in the DNN development phase, and if the model
repair process can enhance the compressed model in the DNN
maintenance phase. Specifically, following the common DL
systems development process, we prepare the original model
DNN by standard model training (Section III-D) using the
collected datasets. Then, we use quantization techniques (e.g.,
TensorflowLite, CoreML) to compress the model and prepare
the optimized model DNN’ for further deployment. Afterward,
to study whether the quantization is reliable or not, we prepare
two types of test data, the ID test set, and the OOD test
set. Remark that the ID test set is the original test data
from each dataset, which is in distribution compared to the
training data. The OOD test set is the data with distribution
shifts. We compare the performance of the original DNN and

compressed DNN’ on these two types of test sets and check
the differences to answer RQ1. In our study, we consider two
types of distribution shifts, synthetic and natural.

In the development phase, in addition to standard training,
some other training strategies are often used to prepare pre-
trained models. Thus, it is essential to explore the potential
factor that could influence the behaviors of compressed mod-
els – training strategy. We utilize three additional training
strategies to train models and then analyze the behaviors of
their compressed versions to answer RQ2. Specifically, we
include quantization-aware training [19], which is specifically
designed for solving the problem of accuracy decline after
quantization, adversarial training [20] and Mixup training [21]
which aim to improve the generalization of a DNN model.

After analyzing the behaviors of compressed models, we
obtain multiple models that are waiting for repair with their
disagreements. Before trying to remove the disagreements and
repair the compressed models, the first step should be to
investigate the properties of the data that cause disagreements
between DNN and DNN’. We utilize the uncertainty metric as
an indicator to check if it can represent the properties of dis-
agreements and answer RQ3. Specifically, for each test dataset
(ID/OOD) and model, we collect all the disagreements that
have at least once been predicted differently by the original
model and the compressed model. Then, we randomly select
the same number as the disagreements of normal inputs where
the predictions before and after quantization are consistent.
Afterward, we obtain the output probabilities of these two
(disagreements and normal inputs) sets and calculate their
uncertainty scores by different uncertainty metrics as the input
data of the logistic regression classifier. We assign the label
of disagreement and normal input as 1 and 0, respectively.
We then combine and shuffle the two sets and split them into
training data and test data following the ratio 9:1. Finally, we
train the classifier using the training data and calculate the
AUC-ROC score of the classifiers using the prediction of test
data with a threshold of 95%. The AUC-ROC score is used
to determine the best uncertainty metric that is discriminative
between disagreements and normal inputs significantly.

Finally, we make the first step to repairing the compressed
model. We verify if model retraining is helping to alleviate
disagreements to answer RQ4. Model retraining is the most
straightforward and commonly used method during deploy-
ment to specifically let a pre-trained model work on unlearnt
features [31]. However, its effectiveness on model quantization
is uncovered. After retraining, we follow the same procedure
as RQ1 to produce the compressed model and check if the
disagreements decreased. Remarkably, we consider both the
existing and newly generated disagreements.

B. Datasets and Models

Table I presents the details of datasets and models. In this
study, we consider four widely studied datasets over image
and text domains. For each dataset, we build two different
models. More specifically, MNIST [27] is a gray-scale image
dataset containing digit numbers from 0 to 9. We train LeNet-

3



Train

DNN
Training Set

ID Test Set

Output

Quantization

DNN’

Test

Test

Shift

OOD Test Set

Output

Diff ?

Disagreement Set

Retrain

Analysis

Report

RQ4: Effectiveness of model retraining

Standard
Quantization-

aware
Adversarial

Mixup TensorFlowLite
CoreML

Motion blur
Fog

Customer
Etc.

RQ3: Characteristic of disagreementsRQ1: Behavior of quantization modelsRQ2: Influence of training strategy

Development Deployment

Research
Directions

Fig. 2. Overview of the experimental design.

TABLE I
DETAILS OF DATASETS AND DNNS

Dataset Classes Training Test Model Parameters Accuracy (%) Distribution Shift
LeNet-1 7206 98.62MNIST 10 60000 10000 LeNet-5 107786 98.87

MNIST-C
(Synthetic)

ResNet20 274442 87.44CIFAR-10 10 50000 10000 NiN 972658 88.27
CIFAR-10-C
(Synthetic)

ResNet-50 23960630 75.78iWildCam 182 129809 8154 Densenet-101 7224054 76.01
Camera Traps

(Natural)
LSTM 2694206 83.78IMDb 2 5000 5000 GRU 2661694 83.14

CR, Yelp
(Natural)

1 and LeNet-5 from the LeNet [27] family. CIFAR-10 [32]
contains color images of airplanes and birds. For this dataset,
we build two models, Network in Network (NiN) [33] and
ResNet-20 [34]. iWildCam is a dataset from the distribution
shift benchmark Wilds [15]. It consists of color images of
different animals, e.g., cows, wild horses, and giraffes. We
follow the recommendation of the benchmark to build ResNet-
50 [34] for iWildCam and add one more model, DenseNet-
121 [35], in our study. IMDb [28] is a text dataset collected
from the popular movie review website IMDb. This dataset is
mainly used for sentiment analysis, i.e., the reviewer holds a
positive or negative opinion of a movie. We build two well-
known RNN models, LSTM [36] and GRU [37], for IMDb.

Test data with distribution shift. For synthetic distribution
shift, we test on MNIST and CIFAR-10 with benchmark
datasets MNIST-C [29] and CIFAR-10-C [30], respectively.
Both benchmarks include several groups of noisy images
synthesized by different image transformation methods, e.g.,
image rotation and image scale. MNIST-C contains 16 types
of transformations and CIFAR-10-C has 19 types. For natural
distribution shift, we test on iWildCam and IMDb using
the Wilds benchmark. The distribution shift comes from the
change of camera traps in iWildCam and the difference in
websites and customers in IMDb.

C. Quantization Techniques

TensorflowLite [13] is a component of the deep learning
framework – TensorFlow, which is developed and maintained

by Google. It provides interfaces to convert TensorFlow mod-
els into Lite models to promote the deployment in different
low-computing devices, such as Android mobile phones. Cur-
rently, TensorFLowLite supports both 8-bit integer and 16-
bit float quantizations for most DNNs except 8-bit integer
quantization for RNNs [38]. In our experiments, we only apply
16-bit float quantization for IMDb-related models.

CoreML [14] is an Apple framework that converts models
from third-party frameworks (e.g., TensorFlow and PyTorch)
to Mlmodel. Mlmodel is a specific deep learning model
format for IOS platforms. CoreML also provides post-training
quantization interfaces to compress models. Different from
TensorflowLite, CoreML supports all bits level quantization
for all types of DNNs.

D. Training Strategies

In addition to standard training, we consider three rep-
resentative training strategies from different perspectives,
quantization-aware [19], adversarial [20], and Mixup [21].

Standard training is the baseline to evaluate the other
training strategies. In this setting, we train the model without
any modification in the model (e.g., quantization-aware) or
data (e.g., Mixup).

Quantization-aware training is designed by the Tensor-
Flow group, which is used for preserving the accuracy of the
model after post-training quantization in the training process.
It simulates the quantization effects in the forward pass of
training. Namely, during training, the parameters of the model
will be updated by both the normal operations and the injected
quantization operations. In this way, the trained model can
learn the knowledge for quantization.

Adversarial training is one of the most effective defenses
for promoting model robustness by adversarially data augmen-
tation. Compared to standard training, adversarial examples
crafted from raw inputs are fed to train the model during

4



each epoch. As a result, the training dataset is augmented
successively.

Mixup training is a data augmentation technique that
generates new samples by weighted combinations of random
training data and their labels. It has been empirically proven
to be effective in improving the generalization of DNNs and
has several variants, such as AugMix [39]. In this paper, we
consider the original Mixup.

E. Evaluation Measures

We consider both the accuracy and disagreement to evalu-
ate the performance of DNNs and use AUC-ROC to evaluate
the performance of logistic regression classifiers.

Accuracy is the basic criterion to quantify the quality of a
DNN model, which refers to the ratio of correct predictions.

Number of disagreements is defined in [10] to characterize
the difference between two DNNs. A disagreement is an
input that triggers different outputs by the original model
and its compressed version. By measuring the number of
disagreements in the test data, one can observe the model’s
behavior change after quantization.

Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) [40] is a threshold-independent evaluation
metric. In RQ3, we utilize the AUC-ROC score to measure the
performance of the trained logistic regression classifiers.

F. Uncertainty Metrics

In RQ3, we utilize uncertainty metrics to estimate the
characteristics of the disagreement inputs. Following previous
studies [41], [42], we select 4 commonly used output-based
uncertainty metrics in our study. Given a classification task, let
DNN be a C-class model and x be an input. pi (x) denotes
the predicted probability of x belonging to the ith class,
0 ≤ i ≤ C. Entropy score [43] quantifies the uncertainty of
x by Shannon entropy: Entropy(x) = -

∑C
i=1 pi (x) log pi (x).

Gini [44] score is calculated as: Gini(x) = 1−
∑C

i=1 (pi (x))
2.

Margin [45] score is based on the top-2 prediction probabil-
ities: Margin(x) = Margin (x) = pk (x) − pj (x), where
k = argmax

i=1:C
(pi (x)) and j = argmax

i={1:C}/k
(pi (x)). Least

Confidence (LC) [46] score is the difference between the
most confident prediction and 100% confidence. LC(x) = 1 -
pk (x), where k = argmax

i=1:C
(pi (x)).

IV. CONFIGURATION

Environments. We undertake model training and retrain-
ing on an NVIDIA Tesla V100 16G SXM2 GPU. For the
TensorFlowLite model evaluation, we run experiments on a
2.6 GHz Intel Xeon Gold 6132 CPU. For the CoreML model
evaluation, we conduct experiments on a MacBook Pro laptop
with macOS Big Sur 11.0.1 with a 2GHz GHz QuadCore Intel
Core i5 CPU with 16GB RAM.

Quantization. We apply the interfaces provided by Ten-
sorFLowLite and CoreML to accomplish post-training model
quantization. For IMDb-related models, we only apply 16-
bit float quantization by TensorFlowLite and utilize both 8-bit

integer and 16-bit float quantization by CoreML. For other
models, we conduct 8-bit integer and 16-bit float quantization
using both techniques.

Model training. For the quantization-aware training, we
mask layers (e.g., the BatchNormalization layer) that are not
supported by the current TensorFlow framework. In addition,
since TensorFlow does not support RNNs [47], we skip IMDb-
related models in this experiment. Regarding the adversarial
training, we employ the commonly used PGD-based [48]
adversarial training for image datasets, and PWWS-based [49]
adversarial training for text datasets. For the Mixup training,
we follow the recommendation by the original paper to set the
mixup parameter α as 0.2. For the training of the regression
model used in RQ3, we use the default setting of sklearn
framework and set the number of maximum iterations as 5000.

Model retraining. Following the same setting from the
empirical study of model retraining [31], we add all disagree-
ments into original training data to train the pre-trained model
with additional several epochs (5 epochs for MNIST, IMDb,
and iWildsCam, 10 epochs for CIFAR-10). All the detailed
configurations can be found at our project site [22].

V. EXPERIMENTAL RESULTS

A. RQ1: Behavior of Compressed Models

Table II presents the results of the behaviors of compressed
models on ID test data and OOD test data with synthetic
distribution shifts. We can see the accuracy in most cases
degraded due to the loss of information during quantiza-
tion, which is also demonstrated by the existing studies [9],
[41]. However, surprisingly, almost 30% of (86 out of 292)
opposite cases where compressed models hold higher ac-
curacy than their original models. Particularly, in the case
of ResNet20, Zoom blur, the compressed model has an
improvement of 1.98%. On the other hand, this phenomenon
also happens to the natural distribution shift (10 out of 16 cases
in Table III). Regarding shifted data as natural adversarial
examples, our finding confirms the conclusion from a recent
research [50] that the quantization process can be useful to
promote the model’s adversarial robustness. In addition, the
distribution shift can lead to larger change and should be taken
into account during deployment. For example, in MNIST, TF-
8, the compressed model has an accuracy change of 0.04%
on ID test data but 0.78% under the Fog shift (Table II). And
comparing the ID and OOD test sets, we found the synthetic
distribution shift can increase the accuracy change by up to
3.03% (ResNet20-Gaussian noise-CM-8).

Considering the disagreement, the results demonstrate that
even if the compressed model maintains accuracy, there may
exist disagreements. For example, in the case of LeNet1, CM-8,
the accuracy change is 0, but the number of disagreements is 6.
Even worse, in DenseNet-121, CM-16, 216 disagreements ap-
pear without any accuracy change. This calls for the attention
that the behaviors of compressed models can not be exactly
reflected by only comparing the test accuracy. Thus, during
deployment, using accuracy only to evaluate the quality and
reliability of compressed DNNs is insufficient.

5



TABLE II
BEHAVIOR OF COMPRESSED MODELS UNDER SYNTHETIC DISTRIBUTION

SHIFT. NON-HIGHLIGHTED VALUE: ACCURACY CHANGE (%),
HIGHLIGHTED VALUE: NUMBER OF DISAGREEMENTS. A LOW VALUE

INDICATES A SMALL DIFFERENCE BETWEEN THE ORIGINAL AND
COMPRESSED MODELS. ID REFERS TO THE ID TEST DATA AND THE

OTHERS ARE OOD TEST DATA. TF: TENSORFLOWLITE. CM: COREML.
—AVERAGE—: THE AVERAGE OF ABSOLUTE CHANGES.

MNIST
LeNet1 LeNet5Test Data

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
ID -0.04 14 -0.04 9 0 2 0 0 0.02 4 0.01 3 0.01 1 0 0
Brightness 0.51 172 0.28 67 -0.04 53 0.01 7 -0.27 175 -0.56 100 -0.79 100 0.03 6
Canny edges 0.77 172 0.5 86 0.02 51 -0.01 4 0.16 73 -0.06 35 -0.01 17 0.02 2
Dotted line -0.21 38 -0.06 24 -0.03 8 0 0 -0.01 26 -0.06 13 -0.04 12 0 0
Fog 0.78 542 0.11 133 -0.17 112 0 6 0.31 321 -0.43 112 -0.6 120 0.01 8
Glass blur -0.05 41 -0.04 18 -0.05 10 0 0 0.09 44 -0.1 23 -0.03 17 0 0
Identity -0.04 14 -0.04 9 0 2 0 0 0.02 4 0.01 3 0.01 1 0 0
Impulse noise -0.23 77 0.06 28 -0.11 33 -0.04 4 -0.02 50 -0.13 35 0.01 23 -0.03 3
Motion blur 0.14 79 0.08 29 -0.07 20 0.01 1 0.18 59 -0.11 23 -0.01 17 0.01 1
Rotate -0.07 62 -0.03 30 0 13 -0.02 2 -0.11 30 -0.09 18 -0.05 10 0 0
Scale -0.28 102 -0.15 43 -0.04 29 0 0 -0.05 53 -0.02 22 -0.02 8 0 0
Shear 0 22 0 8 0.01 11 0.01 2 0 22 -0.03 11 -0.01 5 0 0
Shot noise -0.06 26 -0.02 11 0 10 0 0 0.06 16 -0.01 7 -0.03 6 0 0
Spatter -0.05 31 0.06 13 0.02 6 0 0 0.04 14 -0.02 10 0 8 -0.01 1
Stripe -0.42 113 -0.1 70 0.18 103 -0.04 6 -0.03 88 -0.03 36 -0.19 53 0 1
Translate -0.18 159 -0.08 70 -0.04 67 0 4 0.15 135 -0.05 64 0 47 -0.01 2
Zigzag 0.03 88 -0.03 41 -0.01 34 -0.04 7 -0.06 66 -0.17 34 -0.08 30 -0.01 1
—Average— 0.23 103 0.10 41 0.05 33 0.01 3 0.09 69 0.11 32 0.11 28 0.01 1

CIFAR-10
NiN ResNet20

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
ID -0.95 514 -0.1 24 0.03 45 0.02 7 0.04 456 -0.4 54 0.36 181 0.03 7
Brightness -0.02 70 -0.01 50 0.03 44 0.01 9 -0.02 190 0.1 51 -0.08 170 -0.03 5
Contrast 0.04 78 -0.06 42 -0.06 48 -0.04 6 -0.12 250 0.04 49 0.02 187 -0.06 10
Defocus blur -0.1 51 -0.05 34 -0.06 37 -0.04 5 -0.21 205 0.01 53 0.02 175 -0.03 15
Elastic transform 0.03 107 0.02 65 0.06 70 0.01 10 0.02 342 0 84 0.83 302 -0.05 18
Fog -0.02 57 0.02 29 -0.06 37 -0.03 6 -0.07 236 0.01 45 -0.07 212 0 16
Frost 0.02 81 -0.05 53 0 50 0 10 -0.28 260 0.05 68 -0.76 317 0.01 14
Gaussian blur -0.05 56 -0.06 29 -0.04 36 -0.02 5 -0.18 207 0.05 60 0.04 161 0.03 12
Gaussian noise 0.06 96 -0.03 57 0.06 65 -0.06 8 -0.35 343 0.06 106 -2.67 499 -0.15 29
Glass blur -0.36 164 -0.42 122 -0.02 90 -0.08 20 -0.09 559 0.12 168 -1.56 754 -0.14 57
Impulse noise -0.28 108 -0.34 86 -0.11 82 -0.05 18 -0.12 275 0.04 72 -1.1 329 -0.01 20
Jpeg compression -0.26 82 -0.15 55 -0.21 57 -0.05 12 -0.15 259 -0.08 75 -0.94 315 -0.06 21
Motion blur 0 87 -0.06 43 0.14 67 -0.05 13 0.46 336 -0.04 83 1.69 325 -0.02 21
Pixelate 0.03 84 0 49 -0.06 53 -0.01 6 0.08 251 0.05 61 -0.32 239 -0.02 10
Saturate -0.13 89 0 49 -0.05 49 -0.02 8 -0.16 262 -0.02 66 0.11 238 -0.01 22
Shot noise -0.06 105 -0.08 60 -0.09 69 -0.02 8 -0.18 302 0.03 79 -2.01 409 -0.12 23
Snow -0.14 698 -0.03 67 -0.02 66 -0.02 5 -0.56 255 0.04 68 -0.84 291 -0.08 23
Spatter -1.06 604 -0.02 43 0.08 52 0.02 4 -0.29 228 0.06 64 -0.38 239 -0.01 15
Speckle noise -1.89 631 -0.12 49 -0.06 65 0.01 5 -0.34 269 -0.01 70 -1.98 398 -0.04 13
Zoom blur 0.6 883 -0.07 56 0.1 77 -0.04 12 0.25 415 -0.04 125 1.98 392 0.01 24
—Average— 0.31 232 0.08 53 0.07 58 0.03 9 0.20 295 0.06 75 0.89 307 0.05 19

TABLE III
BEHAVIOR OF COMPRESSED MODELS UNDER NATURAL DISTRIBUTION

SHIFT. NON-HIGHLIGHTED VALUE: ACCURACY CHANGE (%),
HIGHLIGHTED VALUE: NUMBER OF DISAGREEMENTS. A LOW VALUE

INDICATES A SMALL DIFFERENCE BETWEEN THE ORIGINAL AND
COMPRESSED MODELS. ID REFERS TO THE ID TEST DATA AND THE

OTHERS ARE OOD TEST DATA. TF: TENSORFLOWLITE. CM: COREML.
—AVERAGE—: THE AVERAGE OF ABSOLUTE CHANGES.

iWildCam
DenseNet-121 ResNet50Test Data

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
ID -18.96 2830 -0.12 167 -8.34 2035 0.04 34 0 326 -0.11 187 -0.21 226 0.06 16
OOD -10.91 14279 -0.42 1105 -5.18 11095 0 216 1.09 2158 0.6 1270 -0.33 1811 -0.01 128
—Average— 14.94 8555 0.27 636 6.76 6565 0.02 125 0.55 1242 0.35 729 0.27 1019 0.04 72

IMDb
LSTM GRU

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
ID - - -0.08 8 0 6 0 0 - - -0.06 3 0.04 2 0 0
CR - - -0.04 8 -0.06 9 0 0 - - 0.28 30 0.2 24 -0.02 1
Yelp - - -0.12 14 0.02 7 0 0 - - 0.06 9 0.08 8 0 0
—Average— - - 0.08 10 0.03 7 0.00 0 - - 0.13 14 0.11 11 0.01 0

Moreover, comparing the number of disagreements from the
ID test data and OOD test data, we observe that the distribution
shift tends to lead to more disagreements. In 82% cases (241
of 294), the number of disagreements from OOD test data is
greater than from ID test data, the difference can be by up
to 5.28% (LeNet1, Fog, TF-8). However, after the model has
been deployed and used in the wild, test data are more likely to
have distribution shifts which raises a big concern that model
quantization may bring unexpected errors.

Next, we compare the two quantization techniques consider-
ing the accuracy change. On average, regardless of the dataset,
DNN, and quantization level, CoreML produces more stable
compressed models (smaller change) than TensorFlowLite
in most cases (12 out of 14). Concretely, in 16-bit float
quantization, CoreML always outperforms TensorFlowLite.
Take iWildCam, DenseNet-121 as an example, in 16-bit level
quantization, the average accuracy change is 0.27% by Ten-
sorFlowLite but only 0.02% by CoreML. This difference of

0.25% could cause the CoreML-compressed model to correctly
predict 188 more data than the TensorFlowLite-compressed
model, which is a considerable difference. In 8-bit integer
quantization, CoreML can still outperform TensorFlowLite in
most cases (4 out of 6). Additionally, we found an extreme
case (iWildCam, DensetNet-121) where the accuracy of com-
pressed models by both techniques drops a lot. This finding
raises the concern that both quantization tools have room
for improvement and require a thorough test. On the other
hand, considering the number of disagreements, the models
compressed by CoreML have fewer disagreement inputs than
those by TensorFlowLite in most cases (13 out of 14).

Answer to RQ1: Under synthetic distribution shift, the
accuracy change and the number of disagreements between
the original and compressed models increase by up to 3.03%
and 5.28%. Regardless of the dataset, DNN, and distribution
shift, CoreML keeps the behaviors of original DNNs better
than TensorFlowLite during deployment.

B. RQ2: Influence of Training Strategy

In this section, we explore how different training strategies
influence the behaviors of compressed models. Here, we only
report the results of one model from each dataset (MNIST-
LeNet5, CIFAR-10-ResNet20, IMDb-LSTM, and iWildsCam-
ResNet50). The whole results are available at our project site.

ID
brightness

canny_edges

dotted_line

fog

glass_blur

identity

impulse_noise
motion_blurrotate

scale

shear

shot_noise

spatter

stripe

translate

zigzag

40

60

80

Stan
QA
Adv
Mixup

(a) MNIST

IDbrightness
contrast

defocus_blur

elastic_transform

fog

frost

gaussian_blur

gaussian_noise
GB IN JC

motion_blur

pixelate

saturate

shot_noise

snow

spatter

speckle_noise
zoom_blur

40

60

80

Stan
QA
Adv
Mixup

(b) CIFAR-10
ID

CR Yelp

60

80
Stan
Adv
Mixup

(c) IMDb

ID OO
D

0

10

20

30

40

50

60

70
Stan
QA
Adv
Mixup

(d) iWildCam

Fig. 3. Accuracy (%) of models (before quantization) trained by different
training strategies. ID represents the accuracy on ID test datasets, and the oth-
ers are on OOD test datasets. Stan: standard training. QA: quantization-aware
training. Adv: adversarial training. Mixup: Mixup training. In CIFAR-10, GB,
IN, and JC represent glass blur, impulse noise, and jpeg compression.

First, we evaluate the performance of each training strategy
considering the distribution shift before model quantization.
Figure 3 shows the results. Under synthetic distribution shift,
for MNIST, there are 12, 5, and 6 cases out of 17 that
using quantization-aware, adversarial, and Mixup training,
respectively, improve the accuracy compared to using standard

6



ID

br
igh

tn
es

s

ca
nn

y_
ed

ge
s

do
tte

d_
lin

e fog

gla
ss

_b
lur

ide
nt

ity

im
pu

lse
_n

ois
e

moti
on

_b
lur

ro
tat

e
sc

ale
sh

ea
r

sh
ot_

no
ise

sp
att

er
str

ipe

tra
ns

lat
e

zig
za

g

0

200

400

600

800

1000

D
is

ag
re

em
en

t 
C
ha

ng
e QA

Adv
Mixup

(a) MNIST, TensorFlowLite

ID

br
igh

tn
es

s

ca
nn

y_
ed

ge
s

do
tte

d_
lin

e fog

gla
ss

_b
lur

ide
nt

ity

im
pu

lse
_n

ois
e

moti
on

_b
lur

ro
tat

e
sc

ale
sh

ea
r

sh
ot_

no
ise

sp
att

er
str

ipe

tra
ns

lat
e

zig
za

g

0

100

200

300

400

D
is

ag
re

em
en

t 
C
ha

ng
e QA

Adv
Mixup

(b) MNIST, CoreML

ID

br
igh

tn
es

s

co
nt

ra
st

de
foc

us
_b

lur

ela
sti

c_
tra

ns
for

mfogfro
st

ga
us

sia
n_

blu
r

ga
us

sia
n_

no
ise

gla
ss

_b
lur

im
pu

lse
_n

ois
e

jpe
g_

co
mpr

es
sio

n

moti
on

_b
lur

pix
ela

te

sa
tu

ra
te

sh
ot_

no
ise
sn

ow

sp
att

er

sp
ec

kle
_n

ois
e

zo
om

_b
lur

300

200

100

0

100

D
is

ag
re

em
en

t 
C
ha

ng
e

QA
Adv
Mixup

(c) CIFAR-10, TensorFlowLite

ID

br
igh

tn
es

s

co
nt

ra
st

de
foc

us
_b

lur

ela
sti

c_
tra

ns
for

mfogfro
st

ga
us

sia
n_

blu
r

ga
us

sia
n_

no
ise

gla
ss

_b
lur

im
pu

lse
_n

ois
e

jpe
g_

co
mpr

es
sio

n

moti
on

_b
lur

pix
ela

te

sa
tu

ra
te

sh
ot_

no
ise
sn

ow

sp
att

er

sp
ec

kle
_n

ois
e

zo
om

_b
lur

700

600

500

400

300

200

100

0

D
is

ag
re

em
en

t 
C
ha

ng
e

QA
Adv
Mixup

(d) CIFAR-10, CoreML

ID CR
Ye

lp

6

4

2

0

2

4

D
is

ag
re

em
en

t 
C
ha

ng
e

Adv
Mixup

(e) IMDb, TensorFlowLite

ID CR
Ye

lp

7

6

5

4

3

2

1

0

D
is

ag
re

em
en

t 
C
ha

ng
e

Adv
Mixup

(f) IMDb, CoreML

ID
OOD

2000

1750

1500

1250

1000

750

500

250

0

D
is

ag
re

em
en

t 
C
ha

ng
e

QA
Adv
Mixup

(g) iWildCam, TensorFlowLite

ID
OOD

1400

1200

1000

800

600

400

200

0

D
is

ag
re

em
en

t 
C
ha

ng
e

QA
Adv
Mixup

(h) iWildCam, CoreML

Fig. 4. The disagreement change of models trained by different training strategies compared to by standard training. QA: quantization-aware training. Adv:
adversarial training. Mixup: Mixup training. y−axis: the difference in the number of disagreements between a training strategy and standard training.

TABLE IV
AVERAGE ACCURACY CHANGE (%) OF MODELS BY QUANTIZATION. A

LOW AVERAGE VALUE INDICATES A SMALL DIFFERENCE BETWEEN THE
ORIGINAL AND COMPRESSED MODELS. HIGHLIGHTED VALUES INDICATE

THAT THE ACCURACY CHANGE BY THE CORRESPONDING TRAINING
STRATEGY IS THE SAME AS OR SMALLER THAN BY STANDARD TRAINING.

Training StrategyDataset Quantization Standard Quantization-aware Adversarial Mixup
TensorFlowLite-8 0.09 0.06 0.36 0.53
TensorFlowLite-16 0.11 0.01 0.09 0.24

CoreML-8 0.11 0.06 0.11 0.09MNIST

CoreML-16 0.01 0.01 0.01 0.02
TensorFlowLite-8 0.20 0.77 1.02 1.48
TensorFlowLite-16 0.06 0.06 0.21 0.15

CoreML-8 0.89 0.05 0.20 0.12CIFAR-10

CoreML-16 0.05 0.03 0.16 0.04
TensorFlowLite-16 0.08 - 0.03 0.05

CoreML-8 0.03 - 0.03 0.03IMDb
CoreML-16 0.01 - 0.01 0.01

TensorFlowLite-8 0.55 0.47 0.24 0.29
TensorFlowLite-16 0.35 0.05 0.10 0.07

CoreML-8 0.27 0.19 0.04 0.62iWildCam

CoreML-16 0.04 0.11 0.04 0.06

training. While the result for CIFAR-10 changes to 5, 8,
and 12 cases of 20 correspondingly. We conclude that none
of these three training strategies can consistently deal with
the issue of accuracy degradation under synthetic distribution
shifts. On the other hand, under natural distribution shift,
interestingly, when performing adversarial training for IMDb
models, the accuracy of models on both distribution-shifted
datasets (CR and Y elp) has been improved. We conjecture
that the features of text adversarial examples are more likely
to appear in the real-world OOD test dataset. For example, the
original sentence ”a wonderful...are terribly well done and its
adversarial sentence ”a wonderful...are terribly considerably
perform” only have a two-word difference, but the model
predicts them differently. The words considerably and perform
are both in the vocabulary of OOD data. For iWildCam, only
the Mixup training can improve the accuracy of models on
shifted data.

Second, we check the accuracy change of each model
trained by different training strategies after quantization. Table
IV presents the results of the average accuracy change of all
test datasets of each model. Compared to standard training, the

compressed models by using the quantization-aware training
are more stable where the accuracy change in most cases
(10 out of 12) is the same as or smaller. For example, in
CIFAR-10, CM-8, by standard training, the compressed model
has an average of 0.89% difference compared to its original
model. However, by quantization-aware training, the difference
can decline to only 0.05%. By contrast, both adversarial
and Mixup training can result in more stable (11 out of
15, 8 out of 15 cases) compressed models than standard
training but not as well as quantization-aware training. In
short, quantization-aware training outperforms adversarial and
Mixup training considering minimizing the accuracy change
during deployment.

In addition, similar to the findings in RQ1, we observe
that under synthetic distribution shift (MNIST and CIFAR-
10), most (7 out of 8) of the accuracy change improvements
happen in the models compressed by TensorFlowLite. And for
the data with natural distribution shifts, the accuracy change
increase only happens in the models compressed by CoreML.
This phenomenon indicates that in terms of accuracy change,
quantization-aware training produces more stable models than
standard, adversarial, and Mixup training. TensorFlowLite is
more suitable to deal with natural distribution shifts, while
CoreML performs better for synthetic distribution shifts.

Finally, we check the disagreements that occur during model
quantization. Figure 4 shows the disagreement change of
models trained by different strategies compared to the standard
training. Given all OOD test datasets, the quantization-aware
equipped with TensorFlowLite can efficiently decrease the
number of disagreements. Under synthetic distribution shift
only, after TensorFlowLite quantization, the models trained by
Mixup training lead to more disagreements. On the other hand,
under natural distribution shift, all these tree training strategies
are useful to reduce disagreements (negative disagreement
change in Figures 4(e) - 4(h)) regardless of the quantization
technique. We can conclude that under synthetic distribu-

7



tion shift, quantization-aware training is useful to remove
disagreements for TensorFlowLite-compressed models. While
under natural distribution shift, all three training strategies are
efficient to reduce disagreements.

Answer to RQ2: Generally, quantization-aware training can
produce more stable models with small accuracy changes
and fewer disagreements after model quantization. For data
with natural distribution shifts, both quantization-aware
training and basic data augmentation training (adversarial
training and Mixup training) can reduce the disagreements.

C. RQ3: Characteristic of Disagreements

Since disagreements are usually close to the decision bound-
aries of the model [10], we try to characterize the disagree-
ments from the perspective of output uncertainty. Concretely,
after quantization, the decision boundary of a model may
slightly move due to the precision of parameter change. As
a result, the data that are close to the boundary might cross
over the boundary and cause disagreements. Generally, those
data are uncertain to the model and could be identified by
uncertainty metrics. Many metrics have been proposed but
which one can be used to more precisely distinguish the
disagreements and normal inputs is unclear. In our study,
we consider four (Entropy, Margin, Gini, Least Confidence)
widely used uncertainty metrics only based on the output of
the model to determine the best one to present the property of
disagreements.

0 200 400 600 800 1000
Data

0.0

0.5

1.0

1.5

2.0

En
tr

op
y 

sc
or

e

(a) Entropy

0 200 400 600 800 1000
Data

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
n 

sc
or

e

(b) Margin

0 200 400 600 800 1000
Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
in

i s
co

re

(c) Gini

0 200 400 600 800 1000
Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LC
 s

co
re

(d) Least Confidence

Fig. 5. An example (CIFAR-10, ResNet20, ID test data) of the distributions
of output uncertainty scores. Red: disagreements. Blue: normal inputs.

Figure 5 gives an example (CIFAR-10, ResNet20) of the
distribution of uncertainty scores of the disagreements and
normal inputs. First of all, regardless of the uncertainty metric,
the result confirms that disagreements are more uncertain for a
model than normal inputs as they usually have higher (lower in
Margin) uncertainty scores. Thus, output-based uncertainty is
a promising indicator to distinguish disagreements and normal
inputs. Take the least confidence as an example, most normal

TABLE V
AUC −ROC SCORE OF THE LOGISTIC REGRESSION CLASSIFIERS
TRAINED BY USING DIFFERENT UNCERTAINTY SCORES. THE BEST

RESULTS AMONG THE FOUR UNCERTAINTY METRICS ARE HIGHLIGHTED.

Uncertainty MeasureDataset DNN Training Strategy Entropy Gini Margin LC
Standard 83.67 85.00 94.76 89.78

Quantization-aware 95.81 95.20 97.45 96.61
Adversarial 71.41 73.58 96.51 82.49

Mixup 79.74 84.34 94.06 89.76
Lenet1

Average 82.66 84.53 95.70 89.66
Standard 86.79 89.49 97.36 94.49

Quantization-aware 80.39 83.3 94.82 88.48
Adversarial 72.02 76.47 96.78 85.09

Mixup 71.53 72.00 89.42 78.37

MNIST

Lenet5

Average 77.68 80.32 94.60 86.61
Standard 95.42 93.58 94.54 94.28

Quantization-aware 95.29 95.62 96.52 96.11
Adversarial 92.63 94.01 97.05 96.04

Mixup 87.03 90.31 95.28 93.27
ResNet20

Average 92.59 93.38 95.85 94.93
Standard 93.36 94.88 96.2 95.65

Quantization-aware 85.23 85.74 87.47 86.31
Adversarial 93.79 94.96 96.25 95.64

Mixup 88.59 89.98 93.15 91.85

CIFAR10

NiN

Average 90.24 91.39 93.27 92.36
Standard 100 100 100 100

Adversarial 100 83.33 100 100
Mixup 100 100 100 100LSTM

Average 100 94.44 100 100
Standard 100 100 100 100

Adversarial 100 50.00 100 100
Mixup 100 100 100 100

IMDb

GRU

Average 100 83.33 100 100
Standard 78.67 85.00 85.60 85.83

Quantization-aware 75.64 75.73 76.51 76.18
Adversarial 61.71 62.04 63.35 62.28

Mixup 82.57 79.98 82.46 80.98
Densenet

Average 74.65 75.90 76.98 76.32
Standard 87.00 93.41 95.95 94.44

Quantization-aware 89.71 91.60 97.36 94.79
Adversarial 88.54 85.81 96.77 89.88

Mixup 87.73 89.68 96.23 93.10

iWildCam

Resnet50

Average 88.25 90.13 96.58 93.05

inputs have LC scores near 0. According to the definition of
LC, the result demonstrates that the model is confident (with
almost 100%) in the top-1 predictions for these inputs. In
detail, the number of inputs having LC scores in the ranges of
[0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1] are 462,
31, 7, 0, and 0 respectively. In contrast, for the disagreement
inputs, most of them have high uncertain scores. Specifically,
the number of inputs that the LC scores in the ranges of [0,
0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1] are 110, 175,
225, 26, and 0 respectively.

Table V presents the AUC-ROC scores of the regression
classifiers trained by using the uncertainty scores. Overall, in
most cases (27 out of 30), classifiers trained by Margin score
have greater AUC-ROC scores than other classifiers, which
means that the disagreement inputs and normal inputs have
a bigger difference based on the Margin score. Specifically,
in 23 (out of 30) cases, the classifiers trained using Margin
score as the training data have greater than 90% AUC-ROC
scores, which indicates the classifiers are useful to distinguish
the normal inputs and disagreements. Besides, most IMDb
classifiers have 100% AUC-ROC scores, the perfect results
could come from the limited number of disagreements but can
still prove the output-based uncertainty score is a promising
indicator to represent the property of disagreements.

Figure 5 also shows a few disagreements where the model
has high confidence. We call them extreme disagreements.
We utilize the Margin score to set the threshold and analyze
how many extreme disagreements exist and where do they
come from. Concretely, we define the disagreements with
Margin > 0.95 as extreme. We observe that there are 3,

8



226, 0, and 9 extreme disagreements in MNIST, CIFAR-
10, IMDb, and iWildsCam, respectively. Interestingly, all
the extreme disagreements come from the disagreements be-
tween TensorFlowLite-8bit compressed model and the original
model, which means this quantization moves the decision
boundary a lot in some areas. A deeper analysis could be
an interesting research direction.

Answer to RQ3: Disagreements have closer top-1 and top-
2 output probabilities than normal inputs. Compared to
Entropy, Gini, and Least Confidence, Margin is a better
metric to distinguish disagreements and normal inputs.

D. RQ4: Effectiveness of Retraining

In RQ3, we observe that the disagreements are data where
the model has low confidence in the prediction. We investigate
if model retraining, an efficient method to improve confidence,
can ensure a stable compressed model during quantization.

Table VI presents the number of disagreements from the ID
test data before and after model retraining. In most cases (18
out of 26 cases that have disagreements before retraining),
the number of disagreements decreases after model retrain-
ing. However, surprisingly, there are some exceptions that
the disagreements increase. For example, in MNIST, LeNet1,
CoreML-8, 6 more disagreements appear after retraining.
This phenomenon indicates that retraining the model using
disagreements cannot always remove the disagreements.

TABLE VI
NUMBER OF DISAGREEMENTS BEFORE AND AFTER MODEL RETRAINING.

IN TOTAL: DISAGREEMENTS IN A TEST DATASET REGARDLESS OF THE
QUANTIZATION TECHNIQUE. VALUES IN BRACKETS ARE THE DIFFERENCE.

STUBBORN: DISAGREEMENTS CANNOT BE REMOVED BY RETRAINING.
NEW: DISAGREEMENTS APPEARING AFTER RETRAINING.

Before After Before After
MNIST LeNet1 LeNet5
TensorFlowLite-8 14 7(-7) 4 3(-1)
TensorFlowLite-16 9 4(-5) 3 1(-2)
CoreML-8 2 8(+6) 1 1(0)
CoreML-16 0 0(0) 0 0(0)
In total 15 16(+1) 6 4(-2)
Stubborn 1 0
New 15 4
CIFAR-10 NiN ResNet20
TensorFlowLite-8 514 371(-143) 456 439(-17)
TensorFlowLite-16 24 26(+2) 54 49(-5)
CoreML-8 45 31(-14) 181 56(-125)
CoreML-16 7 4(-3) 7 13(+6)
In Total 540 401(-139) 536 480(-56)
Stubborn 47 100
New 354 380
IMDb LSTM GRU
TensorFlowLite-16 8 7(-1) 3 1(-2)
CoreML-8 6 2(-4) 2 0(-2)
CoreML-16 0 0(0) 0 0(0)
In Total 13 8(-5) 5 1(-4)
Stubborn 0 0
New 8 1
iWildCam DenseNet ResNet50
TensorFlowLite-8 2830 3319(+489) 326 373(+17)
TensorFlowLite-16 167 12(-155) 187 143(-44)
CoreML-8 2035 7(-2028) 226 101(-125)
CoreML-16 34 2(-32) 16 27(+11)
In Total 3834 3324 (-510) 469 462 (-7)
Stubborn 2230 24
New 1094 438

0 5 10 15 20 25

0

5

10

15

20

25

(a) MNIST-LeNet1
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) CIFAR-10-ResNet20

Fig. 6. Examples of two stubborn disagreements. MNIST: predicted label
before retraining: 1, 100% confidence, after: 8, 100% confidence. CIFAR-10:
prediction before retraining: cat, 59% confidence, after: deer, 92% confidence.

In addition, we study whether the old disagreements are
really removed by model retraining or not. To this end, we
compare if the disagreements remain the same after retraining.
For simplicity, we define the stubborn disagreement as
the disagreement appearing both before and after retraining,
and new disagreement as the disagreement introduced by
retraining. Figure 6 gives two examples of stubborn dis-
agreements. For the MNIST image, the model predicts the
digital number as 0 or 9, while the true label is 8. For the
CIFAR-10 image, the model hesitates to predict the animal to
be a cat before retraining, and raises the confidence of this
wrong prediction after retraining, while the true label is deer.
Besides, we observe that the average Margin score of all the
stubborn disagreements before and after retraining are 0.40 and
0.56, respectively. That means although models become more
confident with these stubborn disagreements after retraining,
their uncertainty is still high. In Table VI, regardless of the
quantization technique, only a few stubborn disagreements
remain after retraining. For example, in CIFAR-10, NiN, only
47 (of 540) disagreements are left. However, model retrain-
ing introduces new disagreements which have the same size
as without retraining. For example, in iWildCam, ResNet50,
through retraining, only 24 stubborn disagreements are left
and all the other 445 are efficiently removed, but meanwhile,
438 new disagreements appear. We can conclude that through
model retraining, only a few stubborn disagreements remain
but a similar size of new disagreements is introduced.

Answer to RQ4: Retraining fails to reduce the total number
of disagreements. Though it manages to remove some
existing disagreements, it introduces as many new ones.

VI. DISCUSSION

A. Compressed Model Repair

We have verified that model retraining, the most common
strategy to enhance performance, has limited functionality in
removing disagreements. How to solve this issue is still an
open problem. Based on our investigation, the disagreements
are mainly the data with small Margin scores by compressed
models. Therefore, the main challenge is how to improve con-
fidence in the data. We provide two potential solutions. 1) On-
line monitoring. Before quantization, training multiple mod-
els to perform prediction can also improve confidence [51].

9



Concretely, we can divide data into different groups based
on their Margin scores. For each group of data, a model is
trained and compressed. 2) Offline repair. After quantization,
build an ensemble model to perform prediction instead of the
compressed model. Ensemble learning [52], [53] has been
proven to effectively improve the predictive performance of
a single model by taking weighted average confidence from
multiple models. However, both solutions will increase the
storage size since more models are required. As a result, there
is a trade-off between fewer disagreements and efficient model
quantization. Thus, designing a robust quantization method is
still an ongoing and important direction.

B. Threats to Validity

First, the threats to validity come from the selected datasets
and models. Regarding the datasets, we consider both image
and text classification tasks and include OOD benchmark
datasets with both synthetic and natural distribution shifts.
All the datasets are widely used in previous studies. As for
the models, we cover two types of DNN architectures, feed-
forward neural network, e.g., ResNet, and recurrent neural
network, e.g., LSTM. In addition, we take into account the
model complexity and apply both simple and complex ones,
such as LeNet1 and ResNet50. For each dataset, we employ
two different models to eliminate the influence of selected
models. An interesting research direction is to repeat our
experiments on other tasks, such as the regression task.

Second, the training strategies and uncertainty metrics could
be other threats to validity. For the training strategies, among
all possible choices, we include the four most representative
and common ones. Standard training is the most basic training
procedure and should be taken as the baseline. Quantization-
aware training is specifically designed for quantization. Mixup
training is the first and basic data augmentation approach to
improve the generalization of DNNs over different distribution
shifts. Adversarial training is one of the most effective tech-
niques to promote model robustness/generalization. For the
uncertainty metrics, we tend to select metrics that require as
few configurations as possible. The four metrics included in
this work are all solely based on the output probabilities. This
is to avoid the impact of uncontrollable factors. For example,
the dropout-based uncertainty metric [54] needs to consider
where to put the dropout layer and the dropout ratio.

VII. RELATED WORK

A. Deep Learning Testing

As a critical phase in the software development life cy-
cle [55], deep learning testing ensures the functionality of DL-
based systems during deployment. Multiple testing methods
have been proposed in recent years [56]–[60]. For example,
from the perspective of deep learning models, Pei et al.
proposed DeepXplore which borrows the idea from code
coverage and defines neuron coverage to measure if the test
set is enough or not. Later on, DeepGauge [61] defines some
new coverage metrics, e.g., k-multisection Neuron Coverage

and Neuron Boundary Coverage, and demonstrates their ef-
fectiveness compared to the basic neuron coverage. From the
perspective of test data, several test generation [18], [62]–
[64] and test selection [44], [65], [66] approaches have been
proposed. Gao et al. proposed SENSEI [59] which utilizes
genetic search to find the best image transformation methods
(e.g., image rotate) to generate suitable data for training a
more robust model. Chen et al. proposed PACE [65] which
uses clustering methods and an MMD-critic algorithm to
select a small size of test data to estimate the accuracy
of the model. However, all of these works test the model
before quantization, while our study mainly focuses on the
analysis of the difference between the models before and after
quantization.

There are two studies closely related to our work [10], [11].
Both of them generate test inputs that have different outputs
between the original and compressed models. However, these
works did not 1) study the properties of such disagreements; 2)
try to solve the disagreements; 3) consider natural distribution
shift, all of which are considered in our work.

B. Empirical Study for Deep Learning Systems

Empirical software engineering is one general way to prac-
tically analyze software systems. In recent years, multiple em-
pirical studies for deep learning systems have been conducted
to help understand such complex systems.

The empirical study by Zhang et al. [67] pointed out that
model migration is one of the top-three common programming
issues in developing deep learning applications. Noticing the
lack of benchmark understanding of the migration and quanti-
zation, Guo et al. [9] investigated, for the deployment process,
the performance of trained models when migrated/compressed
to real mobile and web browsers. They focus on the impacts of
the deployment process on prediction accuracy, time cost, and
memory consumption. In addition to the accuracy, we further
evaluate the robustness of a model, especially considering
the synthetic and natural distribution shifts in the test data.
Chen et al. [68] studied the faults when deploying deep
learning models on mobile devices. They especially apply
TensorFlowLite and CoreML in the deployment, which is
also considered in our study. The difference with our study
is that their empirical study explores the failures related to
data preparation (datatype error), memory issues, dependency
resolution error, and so on, while our study focuses on the
differential behavior during deployment and retraining. Hu et
al. [41] verified that model quantization has opposite impacts
on different tasks in the setting of active learning. For example,
after quantization, the model is less accurate in the image
classification task while exhibiting better performance in the
text classification task. In our study, since the labels of all data
are available, we apply standard training.

VIII. CONCLUSION

In this paper, we conducted a systematic study to character-
ize and help people understand the behaviors of compressed
models under different data distributions. Our results reveal

10



that there are more disagreement inputs in data with distri-
bution shift than in the original test data. Quantization-aware
training is a useful training strategy to produce a model that
has fewer disagreements after quantization. The disagreements
are those data that have high uncertainty scores, and the
Margin score is a more effective indicator to distinguish the
normal inputs and disagreements. More importantly, we also
demonstrated that the commonly used approach – retraining
the model with disagreements has limited usefulness to remove
the disagreements and repair compressed models. Based on our
findings, we provide two future research directions to solve the
disagreement issue. To support further research, we released
our code, and models (before and after quantization) to be a
new benchmark for studying the quantization problem.

ACKNOWLEDGMENTS

This work is supported by the Luxembourg Na-
tional Research Funds (FNR) through CORE project
C18/IS/12669767/STELLAR/LeTraon.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz et al., “Self-
driving cars: A survey,” Expert Systems with Applications, vol. 165, p.
113816, 2021.

[3] G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Z. Li, and
T. Hospedales, “When face recognition meets with deep learning: an
evaluation of convolutional neural networks for face recognition,” in
Proceedings of the IEEE international conference on computer vision
workshops, 2015, pp. 142–150.

[4] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[5] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker et al., “Project codenet: A
large-scale ai for code dataset for learning a diversity of coding tasks,”
arXiv preprint arXiv:2105.12655, 2021.

[6] A. Masood and A. Hashmi, “Aiops: predictive analytics & machine
learning in operations,” in Cognitive Computing Recipes. Springer,
2019, pp. 359–382.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[8] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[9] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 810–822.

[10] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: Detecting
disagreements for deep neural networks.” in IJCAI, 2019, pp. 5772–
5778.

[11] Y. Tian, W. Zhang, M. Wen, S.-C. Cheung, C. Sun, S. Ma, and Y. Jiang,
“Fast test input generation for finding deviated behaviors in compressed
deep neural network,” arXiv preprint arXiv:2112.02819, 2021.

[12] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive
study on challenges in deploying deep learning based software,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 750–762.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[14] M. Thakkar, Beginning machine learning in ios: CoreML framework,
1st ed. APress, 2019.

[15] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsub-
ramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao et al., “Wilds: A
benchmark of in-the-wild distribution shifts,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 5637–5664.

[16] D. Berend, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, and J. Zhao, “Cats are
not fish: Deep learning testing calls for out-of-distribution awareness,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1041–1052.

[17] R. Hu, J. Sang, J. Wang, and C. Jiang, “Understanding and testing
generalization of deep networks on out-of-distribution data,” arXiv
preprint arXiv:2111.09190, 2021.

[18] S. Dola, M. B. Dwyer, and M. L. Soffa, “Distribution-aware testing
of neural networks using generative models,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 226–237.

[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[21] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[22] “Project website,” 2023. [Online]. Available: https://github.com/
Anony4paper/quan study

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[24] G. Shomron, F. Gabbay, S. Kurzum, and U. Weiser, “Post-training
sparsity-aware quantization,” arXiv preprint arXiv:2105.11010, 2021.

[25] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry, “Accurate
post training quantization with small calibration sets,” in Proceedings
of the 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 4466–4475. [Online].
Available: https://proceedings.mlr.press/v139/hubara21a.html

[26] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and
S. Gu, “Brecq: Pushing the limit of post-training quantization by block
reconstruction,” arXiv preprint arXiv:2102.05426, 2021.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[28] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, 2011, pp. 142–150.

[29] N. Mu and J. Gilmer, “Mnist-c: A robustness benchmark for computer
vision,” arXiv preprint arXiv:1906.02337, 2019.

[30] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[31] Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and
Y. Le Traon, “An empirical study on data distribution-aware test
selection for deep learning enhancement (in press),” ACM Transactions
on Software Engineering and Methodology (TOSEM), 2022. [Online].
Available: https://orbilu.uni.lu/handle/10993/50265

[32] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Tech. Rep., 2009.

[33] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

11



[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[38] 2022. [Online]. Available: https://github.com/tensorflow/tensorflow/
issues/35194

[39] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019.

[40] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[41] Q. Hu, Y. Guo, M. Cordy, X. Xie, W. Ma, M. Papadakis, and
Y. Le Traon, “Towards exploring the limitations of active learning: An
empirical study,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 917–929.

[42] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test
selection for deep learning systems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 2, pp. 1–22, 2021.

[43] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[44] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 177–188.

[45] D. Wang and Y. Shang, “A new active labeling method for deep
learning,” in 2014 International joint conference on neural networks
(IJCNN). IEEE, 2014, pp. 112–119.

[46] B. Settles, “Active learning literature survey,” 2009.
[47] 2022. [Online]. Available: https://github.com/tensorflow/tensorflow/

issues/25563
[48] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[49] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language
adversarial examples through probability weighted word saliency,” in
Proceedings of the 57th annual meeting of the association for compu-
tational linguistics, 2019, pp. 1085–1097.

[50] Y. Fu, Q. Yu, M. Li, V. Chandra, and Y. Lin, “Double-win quant:
Aggressively winning robustness of quantized deep neural networks
via random precision training and inference,” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 3492–3504. [Online]. Available:
https://proceedings.mlr.press/v139/fu21c.html

[51] P. Bielik and M. Vechev, “Adversarial robustness for code,” in
Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 896–907.
[Online]. Available: https://proceedings.mlr.press/v119/bielik20a.html

[52] O. Sagi and L. Rokach, “Ensemble learning: a survey,” WIREs
Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249,
2018. [Online]. Available: https://wires.onlinelibrary.wiley.com/doi/abs/
10.1002/widm.1249

[53] L. Li, Q. Hu, X. Wu, and D. Yu, “Exploration of classification
confidence in ensemble learning,” Pattern Recognition, vol. 47, no. 9,
pp. 3120–3131, 2014. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0031320314001198

[54] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[55] L. Ma, F. Juefei-Xu, M. Xue, Q. Hu, S. Chen, B. Li, Y. Liu, J. Zhao,
J. Yin, and S. See, “Secure deep learning engineering: A software quality
assurance perspective,” arXiv preprint arXiv:1810.04538, 2018.

[56] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[57] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

[58] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[59] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz testing
based data augmentation to improve robustness of deep neural net-

works,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1147–1158.

[60] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
A mutation testing framework for deep learning systems,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1158–1161.

[61] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
120–131.

[62] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[63] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
739–743.

[64] V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella, “Deepmetis:
Augmenting a deep learning test set to increase its mutation score,”
arXiv preprint arXiv:2109.07514, 2021.

[65] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 29, no. 4, pp. 1–35, 2020.

[66] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
499–509.

[67] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical study
of common challenges in developing deep learning applications,” 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), pp. 104–115, 2019.

[68] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu,
“An empirical study on deployment faults of deep learning based
mobile applications,” 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp. 674–685, 2021.

12


