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Abstract—Testing is crucial to ensure the quality of software
systems – but testing is an expensive process, so test managers
try to minimise the set of tests to run to save computing resources
and speed up the testing process and analysis. One problem is
that there are different perspectives on what is a good test and
it is usually not possible to compare these dimensions. This is a
perfect example of a multi-objective optimisation problem, which
is hard — especially given the scale of the search space here.
In this paper, we propose a novel hybrid algorithm to address
this problem. Our method is composed of three steps: a greedy
algorithm to find quickly some good solutions, a genetic algorithm
to increase the search space covered and a local search algorithm
to refine the solutions. We demonstrate through a large scale
empirical evaluation that our method is more reliable (better
whatever the time budget) and more robust (better whatever
the number of dimensions considered) – in the scenario with 4
objectives and a default execution time, we are 268% better in
hypervolume on average than the state-of-the-art algorithms.

Index Terms—Multi-objective Optimisation, Hybrid-
metaheuristic, Search-based Software Engineering, Test
Suite Selection,

I. Introduction

“Test early, test often”: one of the most iconic principles
of modern software development methods consists in contin-
uously testing software artefacts – in order to fix problems
quickly. However, programs tend to have a large number
of tests and running all of them becomes not practical (or
feasible) as running and analysing tests is expensive in terms
of resources (servers) and manpower [10]. Many techniques
exist to address this problem, from test generation [2] to
distributed testing [15], test case minimisation [25] to test case
prioritisation [26]. In this paper, we address test selection [31],
which can be defined as “find a minimal subset of all the
tests that covers as much of the program as possible” – in
order to speed up the testing process, and limit the impact
on the material resources (servers on which to run tests) and
human resources (tests results usually need to be analysed by
developers/testers).

Coverage is the key here and there are multiple ways of
computing it (see Section III), each of them telling something
different about the program under test and there is no agree-
ment on which one of them is the best (see Section II). Time is
also a dimension of the problem, as running tests takes time:
is it better to save 10 minutes or to spend these 10 minutes on
stressing more the program with tests that focus on branch
coverage? Do we need so many tests doing line coverage
or should we save an hour of testing? Etc. This is a typical
multi-objective problem: test resource managers want to make

decisions based on good subsets of the tests, i.e., sets of tests
that are better than any other possible set on a particular
combination of objectives. Eventually, test resource managers
look at the different possible sets and make a decision based
on a local optimisation (e.g., favouring objective 1 which gives
a bigger gain than objective 2 while the latter is usually more
important etc.).

In such large search spaces, many optimisation techniques
do not work well: exact solvers (e.g., MILP) only handle a
single objective thus would require a scalarisation of some
sort of the objectives, and do not scale well anyway. While
greedy algorithms and neighbouring search algorithms are too
poor (due to their guided and non-diverse search) or too slow
(due to their local nature). Evolutionary algorithms (NSGA-
II, MOEA/D), on the other hand, have recently proven to
be better [32], [34], while hybrid algorithms, i.e., algorithms
composed of various other algorithms, have not been studied
extensively for this problem (with the notable exception of
Yoo and Harman [32]). The main contribution of this paper
is to perform a thorough study (based on similar data as the
state-of-the-art [31], [34]) of the application of a three step
method, that has recently proven to be good in large scale
multi-objective problems [28], [29], [16]. In particular, we
introduce our own method, GREAP (for GReedy Evolutionary
Algorithm Path-relinking), based on a greedy algorithm to find
quickly some good solutions, a genetic algorithm to increase
the search space covered and a local search algorithm to refine
the solutions. We show that our solution is (i) more robust than
the state-of-the-art to the number of objectives; (ii) is more
effective (better quality and diversity) ; (iii) is more efficient
(can work in tighter time budgets); and (iv) scales better when
the size of the programs and the number of tests increase. In
particular, we show that GREAP loses only 2% of quality
when the time budget is reduced to 25% – while state-of-the-
art algorithms lose 40+% (and they cannot find any solutions
for 3 out of 10 subjects). We also show that GREAP is the only
algorithm which always finds solutions when the number of
objectives increases from 2 to 4 (quality reduced by only 8%).
In general, for 4 objectives and a “normal” time budget (see
Section V-E), GREAP is 268% better than the other algorithms
(if we exclude the subjects for which the other algorithms
cannot find any solutions) – see Table VI.

This paper is organised as follows: Section II presents the
related work, Section III defines formally the problem; Sec-
tion IV introduces our algorithm; Sections V and VI present
the experimental setup and the results of the evaluation; and
finally Section VII concludes the paper.
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II. RelatedWork

Testing software systems usually takes the form of creating
and running test cases, which aim at checking whether the
program under test is behaving as expected. Any wrong
program logic is supposed to make the tests fail – while when
tests pass, we assume the behaviour of the program under test
is correct (as long as the tests are exhaustive and correct). The
set of all test cases is called a test suite. Developers and testers
have worked with all sorts of metrics to assess the quality of
tests, and in particular coverage metrics are widely used. Test
resource managers also consider resource consumption (e.g.,
tests execution time, financial cost of running the tests) as
an important element. Creating tests is a skill- and labour-
intensive tasks and automatic test generation [2], [14] is the
focus of a lot of interest in academia and industry. Software
artefacts evolve constantly though: various stakeholders and
developers change their opinions about what applications
should do and how to achieve their goals, parts of the code
are improved or re-factored, and so on. Tests are then used
to ensure that nothing bad is introduced in the programs and
they are executed very often against the evolving programs.
Given the size of the software artefacts and the complexity
of software engineering teams and projects – this is quickly
a challenge, with a lot of resources dedicated to running the
tests and analysing their outputs.

Three directions have been proposed to address this prob-
lem [23]: Test Case Minimisation [25] aims at providing sub-
sets of the initial test suite by eliminating redundant tests [21],
[4], i.e., tests that can be forgotten with no major impact Test
Case Prioritisation [11] aims at reordering the test suite, in
order to find the best order in which to apply the tests and
increase the chances of finding the defects at an early stage
Test Case Selection, the one we address in this paper and the
focus of the remaining of this paragraph, aims at selecting a
subset of the original test suite which balances quality and cost
of the test suite. Early works have often addressed the problem
as a single objective, with one property fixed (either cost or
quality) and the other property optimised. Fischer et al. [13]
proposed a 0-1 integer programming problem formulation
while Rothermel et al. [25]) later proposed a graphical rep-
resentation of the problem. In 2001, an empirical comparison
study by Mansour et al. [22] compared the early algorithms
applied on test case selection. In 2007, Yoo and Harman [31]
presented the first work on multi-objective test case selection
and introduced the concept of Pareto efficiency of selected
set of tests, that they solved using an evolutionary algorithm
(i.e., NSGA-II [6]). They have later extended their study with
a greedy algorithm [32] and produced a hybrid algorithm.
The objectives considered were execution time (cost) and
statement coverage (quality). Evolutionary algorithms are the
most popular algorithms for this problem: Dipesh et al. [23]
use a cluster-based evolutionary algorithm and consider four
objectives (execution time and three quality measures); while
Zheng et al. [34] evaluate MOEAD for the problem, using a
various number of coverage objectives (see Section III).

Now that the problem is widely considered multi-objective,
the question of picking the right objectives becomes important.

Indeed, when objectives are not independent, they have an
impact on each other and optimising one may lead to op-
timising others – and in turn algorithms that optimise this
“dominant” objective(s) have an advantage. It is not a surprise
that the coverage metrics we propose in our study are not
totally independent. After all, they all try to maximise how
much of the program is tested. The relative impact of one on
the others is not clear though and recent studies by Gregory
Gay [17], [18] show that there is a lot of research to be
done in this domain – Gay’s work addresses another problem
(namely test generation) but we think his conclusions can be
extended to our work. In particular, Gay’s finding that simple
objectives (line/branch coverage) are very efficient is a sign
that they cannot be dismissed. Another of Gay’s conclusions
is that combinations of objectives have unique results, that are
difficult to achieve when using single-/mono-objectives. This
also reinforces our ideas that the software testing field (and in
particular test selection) needs multi-objective approaches.

III. Problem Definition

Test selection is an important test resource management
problem where algorithms try to minimise the number of tests
required to stress a software artefact. Each test in a test suite
covers in some ways a part of the program and the general
idea is to find the minimal set of tests that covers the whole
program – or the largest part of the program. The general idea
being that running less tests (or just the right number of tests)
can improve the resource management.

There are various test coverage metrics: line coverage,
instruction coverage, branch coverage, etc. In this paper, we
select 3 of them in addition to the running time of the tests
(see below the definition of the problem’s objectives). Each
of these coverage metrics sees the program from a different
perspective: for instance as a sequence of instructions (instruc-
tion coverage) or as a tree (branch coverage). Anyway, our
approach is to some extent agnostic to the different dimensions
(coverage metrics) used. In fact, our goal in this paper is to
compare algorithms that are designed to explore large multi-
dimensional search spaces - and that is why we picked them.
The choice of objectives is in this case of lesser importance.

If a subset of tests T covers, according to a coverage metric
c j, the element p j

k ∈ P j of the program P then we have the
following equation: c j(T, p j

k) = 1. We use this equation to
assess how much of a program is covered by a set of tests,
knowing that a program P is made of all its elements p j

k. We
say that a program P is fully covered, according to coverage
metric c j, by a set of tests T = {t1, t2, . . . , tn} (each ti ∈ T , T
being the original, full, set of tests), if:

∀p j
k ∈ P j, s.t. c j(T, p j

k) = 1 (1)

As said in the introduction of this paper, we see this
problem as a multi-objective optimisation problem, and we
try 3 different combinations of objectives. Each of the different
coverage metrics, as well as the time to run tests, is seen as a
different objective O j ∈ O.

The first coverage objective O1 aims at maximising the line
coverage c1 of lines p1

k ∈ P1 of the program P. The second
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coverage objective O2 aims at maximising the branch coverage
c2 of code branches (control structures with all their branches
executed at least once) p2

k ∈ P2 of the program P. The last
coverage objective O3 is inspired by the modified condition /

decision coverage (MC/DC) where we keep two criteria and
aim at maximising the MC/DC c3 of decision coverage p3

k ∈ P3

of the program P. We consider that a statement if is MC/DC
covered if and only if the two following criteria are met: (i)
each decision takes the value true and false during testing; and
(ii) each condition takes the value true and false during testing
– where a condition is a boolean atomic expression and a
decision is a boolean expression composed of different boolean
operators and conditions. The fourth and final objective O4 we
consider in our work is the cost in execution time of running
all the selected tests.

The multi-objective model of our problem can be described
through the following formulation:

minimise : O j = -
∑
p j

k∈P j

c j(T, p j
k) ∀ j ∈ {1, 2, 3}

O4 =
∑
ti∈T

cost(ti)

sub ject to : T = {t1, t2, . . . , tn} ∈ ℘(T )

(2)

The aim of multi-objective optimisation techniques is to find
the set of Pareto optimal solutions [7] (a.k.a., Pareto front). A
solution T j = {t j

1, t
j
2, . . . , t

j
m} ∈ ℘(T ) is in the Pareto optimal

set (also said as non-dominated) if and only if there is no
solution T k = {tk

1, t
k
2, . . . , t

k
l } ∈

℘(T ) with all objectives (ci’s
and cost in our case) better or equal than the objectives of
T j, with at least one objective strictly better. T j is said to be
dominated by T k if and only if ∀Oi ∈ O, Oi(T k) ≤ Oi(T j) and
∃Ok ∈ O | Ok(T k) < Ok(T j). In short, each solution on the
Pareto front is a good and makes a unique trade-off between
the objectives – in the sense that no other currently found
solution is better than this solution on all dimensions.

IV. GREAP: GReedy Evolutionary Algorithm
Path-relinking

Large and complex search spaces, such as the ones we
are addressing in our work, are challenging for classical
optimisation techniques. Random/greedy techniques generate
a lot of poor solutions and do not work well; Local Search
techniques do not progress quickly enough in such large
search spaces; exact solvers are mostly mono-objective and
require complex scalarisation techniques and do not scale well.
The solutions that seem the most promising are evolution-
ary algorithms [31], [34], sometimes combined with greedy
algorithms [32]. However, they are known to improve the
set of solutions quite slowly, due in part to the poor initial
population (hence the use of greedy algorithms to bootstrap
the evolutionary algorithms).

Our solution uses a three stage method [28], [16] composed
of three optimisation algorithms applied successively: (i) first
we use a modified GRASP [12] in order to ‘aggressively’
produce a good initial population with good values – and
also a good coverage of the non-dominated set of solutions

(i.e., with good variety among the different solutions); (ii) the
second phase is a classic evolutionary algorithm, NSGAII [6]
in our case, but applied to the population produced by the first
phase. This phase aims to exploit information from GRASP
and to produce a good approximation of the Pareto set; and (iii)
finally a third phase pushes locally and aggressively solutions
from previous stages to the Pareto front; in our algorithm
we used a path-relinking [3]. Each of the steps is executed
for a maximum given time based on the overall execution.
The greedy part of the first phase and the third can also be
interrupted if they achieve a certain goal (e.g., when GRASP
generates enough initial solutions, or when the path-relinking
has paired all solutions).

A. First Step: Greedy Algorithm to Generate the Initial Pop-
ulation

The aim of this first step is to produce the initial population
of 100 individuals – required by GREAP’s second step (using
NSGA-II). We use a modified GRASP algorithm [12] to create
a first set of 80 solutions. The algorithm builds a solution from
an empty subset of tests and at each iteration, the algorithm
adds randomly one of the best tests (say, ti) according to a
particular utility function. The utility is the normalised sum
of coverage values ti can add to the solution, divided by the
number of coverage objectives. This value is then multiplied
by a direction λ, then we subtract the sigmoid normalised cost
of the test multiplied also by a direction 1 − λ. This direction
is modified for each solution built to obtain totally different
solutions – each solution has a different “perspective” on the
coverage, and cost, objectives.

Let T ⊆ T be the selected tests at a given iteration of the
GRASP phase, with coverage objectives O

′

j, ∀ j ∈ {1, 2, 3}. Let
O
′′

j , ∀ j ∈ {1, 2, 3} be the new coverage objectives when adding
a test ti ∈ T\T to T . We consider that g j(ti) = O

′

j − O
′′

j , ∀ j ∈
{1, 2, 3} the potential gain on each of the considered coverage
objectives when adding ti to the current set of selected tests
T . We also increase the running time of the set of tests when
adding test ti, w j(ti) = O

′′

4 − O
′

4.
Finally, we define the utility U(ti) of adding a test ti to the

current selection of tests as follows:

x1 =
∑

j∈{1,2,3}
g j(ti)

maxtk∈T {g
j(tk)}

x2 =
w4(ti)

maxtk∈T {w
4(tk)}

U(ti) = x1 ×
λ
3 −

(1−λ)
(1+e−x2 )

(3)

with λ ∈ [0, 1] being the value that allows the exploration
of different directions in the search space.The first two λ
directions picked are 0 and 1. The former builds a solution
with no selected tests (so a cost objective of 0) and the latter
with the maximum coverage in all objectives (not necessarily
selecting all the tests). After that, the directions (values of
λ) are chosen to spread the exploration as much as possible,
playing with coverage and cost (splitting the space covered
by 2 previous values of λ) – λ will successively be 0.5, 0.25,
0.75, 0.125, 0.375, etc.
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At each iteration, the algorithm picks a (new) test from the
original test suite so that the utility function is increased of at
least a factor α ≤ 1. This factor allows the algorithm to pick
good tests, increasing the overall values of the selected set of
tests.The stopping criteria of the algorithm, i.e., the conditions
that stop the algorithm from adding tests are: (i) no tests left
to add, (ii) full coverage of lines, branches and MC/DCs or
(iii) a negative utility for all the tests. In our implementation,
we fixed the value of α at 0.70.

At the end of the algorithm, the set of solutions is made
of diverse good solutions. After that, a path-relinking algo-
rithm [19] is applied. The path-relinking algorithm takes a set
of solutions and for each pair of solutions (a.k.a., “parents”),
the algorithm “navigates” from one parent to the other parent
by adding or removing tests one at a time. After each step
(removing or adding a test) if the current solution is not
dominated by its parents, the algorithm adds it to the set of
solutions.

Finally, to obtain a population of 100 solutions for the
second phase, we sort and keep only the non-dominated
solutions. If the number of non-dominated solutions is greater
than 100, we only keep the solutions having the best crowding
distance [6] (to increase the variety of the solutions). If
the number of non-dominated solutions is less than 100 the
algorithm takes solutions of lower ranks, i.e., solutions that
are dominated only by the non-dominated solutions and so on.
These operations are repeated until the number of solutions is
100.

B. Second Step: Evolutionary Algorithm

GREAP’s second step is an evolutionary algorithm, i.e., a
stochastic optimisation method, inspired by natural evolution –
in particular evolutionary algorithms implement ‘their’ version
of the concepts of mutation, crossover and selection. In our
algorithm, we use the Non-dominated Sorting Genetic Algo-
rithm II (NSGAII) [6]. It is a Pareto-based algorithm, which
aims to select solutions using Pareto dominance and in case of
non domination between two individuals use the density of the
neighbourhood of individuals. The initial population (a critical
element for every evolutionary algorithm) is generated by the
first step of our hybrid algorithm, which (as we’ll see in the
evaluation section) gives a good bootstrap to the evolutionary
algorithm.

C. Third Step: Path-relinking

Finally, the third step is a path-relinking applied on the re-
sult of the second phase. We use the same idea seen in the first
step: for every pair of solutions, the path-relinking algorithm
looks for intermediary (feasible) solutions between them by
adding or removing tests (one at a time). The intermediary
solutions are then added to the list of good solutions if they are
non-dominated. The algorithm runs for a certain time budget
or until there is no more pair of solutions that have not been
tried. The aim of the path-relinking step of GREAP is to “fill
in” the gaps between solutions belonging to the Pareto front
and to push this front as much as possible. We picked this
algorithm and not any other local search algorithm (e.g., PLS

as in other related work using three step methods[28], [29],
[27]) as the search space in our problem is not too constrained
and most intermediary solutions are feasible.

V. Experimental Setup

We present here the setup of our experiments: the metrics
used to evaluate our algorithms, the different subjects, the time
budget for each phase of GREAP, and the other algorithms we
compare GREAP against.

A. Metrics

Comparing different sets of non-dominated solutions in a
multi-objective context is a well-known problem [24]. First of
all, because of the complexity and the size of the problem, it
is usually not possible to obtain the exact Pareto frontier, i.e.,
the exact solutions. Second of all, because of the difficulties
to compare (and visualise) solutions in a multi-dimensional
space. Different metrics have been proposed in the literature,
often to measure the sets of non-dominated solutions from
various perspectives – namely the quality of the sets of
solutions and the spread of the sets of solutions. Some of
the metrics require to have the exact set of non-dominated
solutions (the ideal Pareto front). As we do not have this (it
is in practice often impossible to obtain) we use a classical
estimation: the best set solutions given by all the algorithms.
All of the metrics we use are known to be good ones for the
comparison of sets of non-dominated solutions [24].
• We use the Hypervolume (HV) [35] (one of the most

popular metrics) to assess the quality and the diversity
of the sets of solutions. The Hypervolume computes the
space between all solutions from the non-dominated set
of solutions and a reference point. The exact Pareto front
produces the best Hypervolume, as its solutions get the
best values in every objective. Because of its well-known
utility, popularity [24] and good performance when it
comes to comparing solutions, the Hypervolume is our
favourite metric (and many of our experiments will only
consider this one).

• The second metric, which focuses on quality, is the
generational distance (GD) [30] which computes the
average Euclidean distance between solutions from the
result of an algorithm and the nearest solution from our
approximation of the exact Pareto front. The smaller the
GD the better the solution is.

• The third metric is the inverted generational distance
(IGD) [5], similar to the generational distance but com-
putes the minimum distance between the result set of an
algorithm and the approximated Pareto set. IGD can be
used for both diversity and quality, and it is also to be
minimised.

• The generalised spread metric (GS) [24] computes the
spread of a population using the lower and upper bounds
of objective values found and can be used for the diversity
of solution sets. This metric is useful if the sets of
solutions have similar qualities. For the generalised spread
metric, the lower the better.



5

Data-set
gzip-v3 gzip-v4 space-v38 schedule-

v2
totinfo-v1 tcas-v1 space13k-

v38
grep sed make-v1

LOC 7259 7359 6199 413 407 174 6199 10068 14427 35545
# tests 214 214 150 2650 1052 1608 13585 809 370 1044

Table I
Characteristics of our data set: 9 subjects and their number of lines of code (LOC) and number of tests.

• We also use the Pareto front size metric (PFS), which
returns the number of solutions in the result set of an
algorithm that also belongs to the Pareto front. PFS is
diversity-oriented, and the higher the better for PFS.

• Finally, our last metric is the epsilon metric (ε) [36],
which estimates the minimal distance to transform every
solution of a result set into a solution on the Pareto front.
ε addresses both diversity and quality and the lower ε the
better.

All these metrics are computed with the metric tool of
JMetal [9].

B. Data Set

We have picked 6 out of 10 subjects based on recent and/or
widely considered state-of-the-art studies [31], [34]. We also
selected larger subjects, doing what we think is a thorough
analysis1 We summarise the most interesting characteristics of
the subjects in Table I. In particular, we report the number of
lines of code (LOC) and number of tests. All the subjects (see
Table I) are C programs, obtained from the Software-artifact
Infrastructure Repository (SIR [8], [1]), a large repository of
software artefacts popular in academia.

We use the tool Gcov to measure the coverage metrics. Gcov
is a source code coverage analysis and profiling tool that gives
which line/instruction/branch is executed by which test. We
also collected the execution time of all tests – which gives us
the cost value for each test.

C. Algorithms

We have compared our own solution (GREAP) against
two well-known evolutionary algorithms: NSGAII [6] and
MOEAD [33]. They are both executed in the exact same
conditions as our solution. NSGA-II is one of the most popular
genetic algorithm – note that we use NSGA-II in the second
phase of GREAP (see Section IV-B). MOEAD has recently
been used in a multi-objective test selection work [34] and
has proven to have very good results.

Note that we did not have access to the implementation
provided by the authors of [34] and [6]. We decided to stay
as generic and impartial as possible, and we used the MOEA
framework [20]. MOEA is a free and open source Java library
with a panel of multi-objective evolutionary algorithms imple-
mented and ready to use. Our algorithm is also implemented
in Java, and also use the MOEA framework for its second
phase (NSGA-II). The parameters used for the two algorithms

1Running much larger subjects would have been tricky anyway for our
study, as they would require a lot of pre-processing (identifying individual
tests and running them is not always an easy task) and the evaluation would
also require a lot of resources (computing resources and time). We believe
the subjects we have picked are relevant for our study as they are recognised
by the community and of decent size.

and for our second phase are the default values from MOEA
framework (population sizes equal to 100).

D. Setting the Time Budget for Each Phase

GREAP is a three step hybrid algorithm, and we need to al-
locate an execution time for each of the steps. We have selected
12 different triplets of parameters, each parameter representing
the percentage of time allowed to the corresponding phase. We
ran GREAP 10 times with each triplet on one of the hardest
problem (i.e., Schedule with 4 objectives) and evaluated the
average results on all our metrics.

Table II reports the triplets alongside their average result
metrics with the following format: a triplet “a, b, c” corre-
sponds to a% of the time allowed on the first phase, b% on the
second phase and c% on the last. In bold are the best values.
The results show the importance of the first and third steps: the
worst results are coming from parameters with no time allowed
to the first or the third steps. However, cases with a long time
allowed for these two steps (first and third) do not produce
good solutions either. Secondly, two different parameters seem
better and distinct from the others: “10,80,10” and “10,70,20”.
The former favours the quality of the solution, whereas the
latter produces more solutions and a better diversity. Therefore,
we decide to pick the last triplet for all following experiments
in this work: 10% for the first phase, 75% for the second
and 15% for the last, which offers the best trade-off between
diversity and quality, with a good set of quality metrics, close
to the best “10,80,10” and a good diversity, second best after
“10,70,20”.

E. Experimental Process

Our experiments2 were run on the ten subjects presented
earlier, for the three combinations of objectives (two, three,
four) and the three algorithms (NSGAII, MOEA/D and
our own GREAP). Because evolutionary algorithms and our
greedy step are stochastic methods, we performed 10 runs for
each algorithm in each experimental set up to minimise the
impact of randomness.

We varied the number of objectives for the problem, using 2,
3 or 4 objectives by taking (in this order): (i) the cost, (ii) the
line coverage, (ii) the branch coverage and (iv) the MC/DC
coverage. The more objectives there are in the problem the
more difficult the problem is. We also varied the time budget
(see Table III) for the algorithms, starting with a value T
that corresponds to what was allowed in [34] for the six first
subjects – we then decreased that value to T/2 and T/4.
We also evaluated the algorithms on a larger budget, 2T to

2Note that we report in the following Section VI only the most relevant
results, but that all our results will be uploaded online upon acceptance of
this paper.
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Data-set Metric Parameters
00,90,10 0,80,20 10,90,00 10,80,10 10,70,20 20,80,00 20,70,10 20,60,20 20,40,40 33,33,33 40,40,20 10,75,15

Schedule

HV 0.9638 0.9635 0.6018 0.9649 0.9635 0.6110 0.9624 0.9639 0.9640 0.9631 0.9631 0.9644
GD 0.2248 0.0105 0.0703 0.0102 0.0097 0.0709 0.0093 0.0114 0.0107 0.0078 0.0104 0.0094
IGD 0.1622 0.0497 0.0498 0.0501 0.0495 0.0503 0.0494 0.0500 0.0499 0.0500 0.0497 0.0498
ε 0.0014 0.0015 0.0295 0.0012 0.0015 0.0296 0.0017 0.0014 0.0016 0.0015 0.0015 0.0014

PFS 12.4 27.0 11.9 28.7 31.7 10.9 27.2 28.4 29.0 30.0 28.0 30.4
GS 0.9041 0.9196 1.0787 0.9064 0.8943 1.1036 0.9077 0.9305 0.9338 0.9011 0.9384 0.9008

Table II
Evaluation of the time allowed for each of the three steps of our hybrid algorithm GREAP. Each column corresponds to a triplet of percentage values (1
for each of the three steps of GREAP). We show the results for every metric, when running the Schedule subject, with 4 objectives and a global execution

time of 100 seconds. Best results are in bold.

Data-set Two objectives Three objectives Four objectives
gzip-v3 176.12 224.01 335.38
gzip-v4 179.38 254.06 319.70

schedule-v2 716.48 764.61 844.12
tcas-v1 204.75 217.88 243.72

tot info-v1 294.38 297.70 335.00
Space-v38 170.00 240.00 310.00

Space13k-v38 1,000.00 1,100.00 1,200.00
grep 290.00 290.00 330.00
sed 200.00 240.00 350.00

make 295.00 300.00 340.00
Table III

Summary of the execution times T for each instance according to the number
of objectives – see [34] for details.

see how well the algorithms performed in a less constrained
environment. Note that in the work of [34] they do not run their
experiments on Space with three or four objectives, therefore
we chose arbitrary times, similar to the ones used for the two
versions of gzip. For Space13k, also not used during previous
papers, we allow a big arbitrary time for 2 objectives, but
afterwards for 3 and 4 objectives, times are computed using a
similar scale as the increase of times alongside objectives for
the three big data-sets (Tcas, Totinfo and Schedule). Finally
for Make, Grep and Sed, also arbitrary times are used, picked
to have similar behaviour than other data-sets.

VI. Experiments
We aim at answering the following four questions in our

study:
• RQ 1: Is GREAP robust against the increase of the

number of objectives, which is known to be challenging?
• RQ 2: Is GREAP more effective (better quality and

diversity) than the others evolutionary algorithms?
• RQ 3: How does GREAP compare to other algorithms

when the time budget shrinks?
• RQ 4: Does GREAP react well to an increase of the test

suite size (when we vary the test subjects)?
All the results presented in the current section are average

values of ten runs. In order to be more readable, the values
are rounded; yet, in all cases we kept enough decimals to still
be able to compare the algorithms.

Values in bold are the best values from a particular per-
spective (described in the tables) and by default they are
statistically significant (we used a Mann-Whitney U test) with
a p-value below 0.05. If these (best) values (in bold) are
followed by an asterisk (*) this means they are not statistically
significant.

A. RQ1: Robustness against a Varying Number of Objectives

In Table IV, we report the evolution of the Hypervolume
when the number of objectives increases (from 2 to 4) for

each subject. The time used in the experiments is T – as this
is the typical time budget in related studies. In short, we fix
the metric (Hypervolume) and the time (T ) and we only vary
the number of objectives.

In general, the results show better performance for GREAP
than for the other algorithms. Furthermore, the values are
always statistically significant. However, these values are close
for small subjects (the two versions of Gzip and Space),
but this gap tends to increase with the size of the subjects
(for medium subjects such as Grep and Sed but also for
larger data-sets: Totinfo, Tcas, Schedule, Make and Space13k).
Moreover, the performance of GREAP becomes clearer with
the increase of the number of objectives: the efficiency of the
other evolutionary algorithms tends to drop faster than for
GREAP. Indeed, our algorithm has good Hypervolume values
for the simpler case (2 objectives), but keeps good Hyper-
volume values when the problem becomes more complex (3
then 4 objectives): GREAP is less impacted by the increase
in the number of objectives than the other algorithms. For
Space13k, in the 3 combinations of objectives, evolutionary
algorithms can’t produce good solutions. However, GREAP
manages to always find a good set of solutions, even for the
hardest problem with 4 objectives.

This first set of experiments proves that GREAP does not
struggle against more complex problems (more objectives) as
other evolutionary algorithms do.

B. RQ2: Efficiency of our Algorithm

Table V is a thorough evaluation of the algorithms against
various metrics, for all the subjects and with a fixed number of
objectives (we chose four objectives to be in the most difficult
context, for all algorithms). We also chose to compare with
same times: T . In short, we fix the number of objectives and
the time (T ) and we only vary the metrics.

First, we notice that GREAP gets significantly better quality
results (given by the four metrics: HV, IGD, GD and ε) than
the other algorithms. The only quality result for which GREAP
is not the best algorithm is GD for Tcas and Grep, and IGD
for Sed. This is anyway a good demonstration that GREAP is
the best algorithm for all quality metrics (37 best values out
of 40 quality metrics), with at least 3 out of 4 metrics showing
better results for GREAP for all subjects.

Regarding the diversity metrics (PFS and GS), results show
that many more solutions are provided by GREAP than by
the two evolutionary algorithms. The generalised spread of
the solutions is not always in favour of GREAP though, but
when another algorithm gets better results than GREAP, this
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# Obj. Algorithm Subjects
gzip-v3 gzip-v4 Space Schedule Totinfo Tcas Space13k Grep Sed Make

2 objectives
GREAP 0.952425 0.9491085 0.96230 0.9748 0.7924 0.8495 0.96870 0.9448 0.93541 0.9954
NSGAII 0.952423 0.9491078 0.96225 0.0022 0.7893 0.1477 0.0 0.8610 0.93528 0.8948
MOEAD 0.806236 0.8038152 0.82380 0.0 0.3774 0.0049 0.0 0.2117 0.32200 0.7821

3 objectives
GREAP 0.92674 0.918496 0.95732 0.9746 0.7883 0.8476 0.96385 0.9232 0.9103 0.9939
NSGAII 0.92671 0.918474 0.95724 0.0195 0.7870 0.01966 0.0 0.7704 0.9092 0.8650
MOEAD 0.79580 0.786363 0.85937 0.0025 0.4147 0.0191 0.0 0.2388 0.3073 0.7635

4 objectives
GREAP 0.8792 0.8693 0.8174 0.9639 0.7331 0.6843 0.90710 0.8660 0.8655 0.9773
NSGAII 0.8789 0.8687 0.8153 0.0447 0.7101 0.1668 0.0 0.7255 0.8539 0.8054
MOEAD 0.7329 0.7229 0.6942 0.0 0.3071 0.0150 0.0 0.3347 0.3748 0.6711

Table IV
Hypervolume for all the algorithms running with a time budget T against all the subjects and for a various number of objectives (2, 3 and 4). Best and

statistically significant results in bold. Note that the most complex (yet realistic) scenarios have more objectives.

Data-set Algorithm Metric
HV GD IGD ε PFS GS

gzip-v3
GREAP 0.8792 0.00026 0.00023 0.0002 2114.8 0.997
NSGAII 0.8789 0.00032 0.00025 0.0014 1403.6 0.965
MOEAD 0.7329 0.00131 0.00496 0.1123 40.3 0.905

gzip-v4
GREAP 0.8693 0.00027 0.000197 0.000197 2616.2 0.9456
NSGAII 0.8687 0.00037 0.000204 0.00189 1562.3 0.9497*
MOEAD 0.7229 0.00178 0.004236 0.140752 42.1 0.8870

Space
GREAP 0.8174 0.0007 0.00027 0.001 2389.4 0.812
NSGAII 0.8153 0.0010 0.00031 0.005 1450.7 0.771
MOEAD 0.6942 0.0030 0.00763 0.214 57.1 0.841*

Schedule
GREAP 0.9639 0.0113 0.0495 0.0013 27.7 0.9054
NSGAII 0.0477 0.0314 0.1368 0.0592 4.2 0.9164
MOEAD 0.0 0.0901 0.1599 0.0678 1.1 0.9979

Totinfo
GREAP 0.7331 0.0114 0.0120 5e-0.5 39.1 0.6892
NSGAII 0.7101 0.0130 0.0151 0.001 27.6 0.7992
MOEAD 0.3071 0.0280 0.0835 0.005 2.9 0.8920

Tcas
GREAP 0.6843 0.1008 0.1160 0.0 10.5 0.6609
NSGAII 0.1688 0.0516 0.1728 0.009 4.6 0.7887
MOEAD 0.0150 0.1050 0.2416 0.013 1.9 0.9356

Space13k
GREAP 0.90710 0.00008 0.00008 0.30526 4136.1 0.6229
NSGAII 0.0 11.24289 0.13241 15.94575 1.1 0.9997
MOEAD 0.0 12.63097 0.143561 17.28161 1.0 1.0

Grep
GREAP 0.8660 0.00050 0.00071 0.0276 5098.1 0.6956
NSGAII 0.7255 0.00039 0.00259 0.0595 551.8 0.6095
MOEAD 0.3347 0.00439 0.00916 0.1787 10.0 0.9784

Sed
GREAP 0.8655 0.00015 0.00019 0.0020 4600.1 0.75
NSGAII 0.8539 0.00020 0.00017 0.0069 838.3 0.6448
MOEAD 0.3748 0.00230 0.00848 0.4573 16.3 0.9174

Make
GREAP 0.9773 0.00007 0.00003 0.8270 3355.5 0.6834
NSGAII 0.8054 0.00157 0.00276 2.8760 54.8 1.1120
MOEAD 0.6711 0.01420 0.00388 4.9919 13.9 1.0690

Table V
Results for all the metrics for all the algorithms running with a time budget T against all the subjects and 4 objectives. Best and statistically significant

results in bold. Results with an asterisk (*) are not statistically significantly better.

algorithm has very poor quality and size values – which to
some extent beats the purpose of multi-objective optimisation.

We can conclude from this set of experiments that GREAP
provides better solutions in terms of quality and produces
solution sets with better diversity. Consequently, we conclude a
better efficiency for GREAP than for evolutionary algorithms.

C. Impact of the Time Budget on the Algorithms

Now (see Table VI), we answer RQ 3, and show the
‘aggressive’ behaviour of GREAP. In this set of experiments
we decrease the time budget (from T to T/2 and then T/4)
assigned to the algorithms, making the problem more difficult.
We also increase the time budget (2T ) to evaluate whether this
has a different impact on the other algorithms than on GREAP.
In short, we fix the number of objectives and the metrics, and
we only vary the time (T ).

First, all the results show statistically better performance
for GREAP. Furthermore, we observe an increase of this
improvement when the time budget decreases. This says that

while the other evolutionary algorithms are impacted substan-
tially by the decrease in time budget, GREAP keeps good
Hypervolume values - especially for the six hardest subjects
(Grep, Make, Space13k, Schedule, Totinfo and Tcas). For
these six subjects, the other algorithms perform really poorly
(Hypervolume values can even tend to 0 in the hardest cases)
while GREAP does not vary much. Note that for the small
subjects the impact on the other algorithms’ performance is
limited, due to the simpler nature of these subjects.

Anyway, GREAP always keeps good Hypervolume values
even with smaller time budgets. The decrease in performance
is not significant for small subjects and stays acceptable for
larger ones. Furthermore, because of the small evolution of the
Hypervolume in some cases, GREAP seems to have already
converged to good solutions in four out of the ten subjects (The
two Gzip versions, Space and Schedule), for the smallest time
(T/4). For the other subjects, good solutions are already found
at T/4, but GREAP keeps improving a bit the solutions.It’s
only for Space13k, the hardest subject, that GREAP improves
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Time Algorithm Data-set
gzip-v3 gzip-v4 Space Schedule Totinfo Tcas Space13k Grep Sed Make

2T
GREAP 0.87920 0.86933 0.81758 0.9698 0.7347 0.7190 0.91952 0.8698 0.8666 0.9791
NSGAII 0.87908 0.86896 0.81612 0.2242 0.7252 0.3485 0.0 0.7889 0.8553 0.8462
MOEAD 0.73826 0.72709 0.70408 0.0957 0.3609 0.1257 0.0 0.3647 0.4072 0.7568

T
GREAP 0.8792 0.8693 0.8174 0.9639 0.7331 0.6843 0.90710 0.8660 0.8655 0.9773
NSGAII 0.8789 0.8687 0.8153 0.0447 0.7101 0.1668 0.0 0.7255 0.8539 0.8054
MOEAD 0.7329 0.7229 0.6942 0.0 0.3071 0.0150 0.0 0.3347 0.3748 0.6711

T/2
GREAP 0.8791 0.8693 0.8169 0.9623 0.7296 0.6911 0.90273 0.8554 0.8642 0.9734
NSGAII 0.8788 0.8685 0.8147 0.0 0.6766 0.0282 0.0 0.6192 0.8525 0.7142
MOEAD 0.7284 0.7173 0.6498 0.0 0.2147 0.0 0.0 0.2930 0.3378 0.5012

T/4
GREAP 0.8790 0.8691 0.8167 0.9635 0.7121 0.6799 0.82848 0.8387 0.8624 0.9436
NSGAII 0.8786 0.8681 0.8137 0.0 0.6061 0.0 0.0 0.4977 0.8500 0.3420
MOEAD 0.7229 0.7066 0.5914 0.0 0.0804 0.0 0.0 0.2204 0.2760 0.0

Table VI
Hypervolume values for all the algorithms running with different time budgets (T , T/2, T/4 and 2T ) against all the subjects and 4 objectives. Best and

statistically significant results in bold.

the Hypervolume significantly after T/4.
In terms of improvement figures, if we look at the impact

on the performance of the algorithms when the time budget
is reduced from T to T/4, we see that GREAP loses only
2% of quality, while NSGA-II (34%) and MOEAD (45%)
are impacted much more and cannot get any solutions in
some cases (Space13k, Schedule and Tcas). If we focus on
a time budget of T (reminder: we have 4 objectives here) then
GREAP is 268% better than the other algorithms (when they
find any solutions at all).

D. Impact of Subjects Size

Finally, looking at the previous three tables, we can evaluate
the quality and the diversity of the solutions produced by the
three algorithms when the size of the subjects vary. To simplify
the analysis, we classify the subjects into three categories:
small-scale (Gzip v3, Gzip v4 and Space), medium-scale
(Totinfo, Grep and Sed) and large-scale (Space13k, Make,
Tcas and Schedule).

The first thing we notice is that the quality and diversity
of the evolutionary algorithms is inversely impacted by the
size of the subjects: the larger the subject the poorer the
results. For bigger subjects, evolutionary algorithms have a bad
performance, and the number of solutions found is decreasing
with the size of the test suites. We see that NSGAII and
MOEAD struggle to find a good set of solutions to push toward
the Pareto frontier. We can conclude that those algorithms do
not scale well when the size of the problem/subjects increases.

On the contrary, GREAP has good performance when
dealing with all scales, and while the results are a little less
impressive for medium- and large-scale subjects they are still
good and better than for the other algorithms.

As an example, take Space13k, the hardest problem/subject.
In the different experiments, the two evolutionary algorithms
find only one solution (except for one run of NSGAII in the 4
objectives case, where two solutions are found when allowing
time T or more). This can be explained by the structure of
the problem: the subject has a large test suite and a small
number of LOC so the tests tend to have a large overlap
between them (they cover similar elements of the subjects).
Only a small number of tests from the original test suite are
already enough to obtain an optimal quality. Therefore, the
random initialisation of the evolutionary algorithms is full of
mostly redundant tests, making it hard for the evolutionary

algorithms to improve on what’s already a (near) optimal set
of solutions. As a consequence, we see in our experiments
that the two evolutionary algorithms optimise only the cost
(and with a lot of difficulty). Anyway, GREAP manages to
offer more solutions, with different qualities and with smaller
costs than the initial set of tests. The solutions are of a good
diversity over the different objectives, which helps the second
phase to explore a larger search space and more trade-offs.
This difference is due to the first and third phases, which
provide a good initial population with small test suites and then
a good shape at the end. We can conclude that the search space
is mostly composed of solutions with the same quality as the
initial test suites and a random initialisation poorly performs.
GREAP is the algorithm that addressed the problems the best
with a big test suite. This observation can be generalised to
explain the difficulties of NSGAII and MOEAD to optimise
the other difficult subjects.

Furthermore, GREAP successfully provides a larger set
of solutions with both a good quality and a good diversity
for the large-scale problems, in all different combinations of
objectives. Even for the hardest problems, our algorithm has
good solutions for small times. The larger the test suite the
more GREAP outperforms the other evolutionary algorithms.

Finally, we can conclude that with the increase of the initial
test suite size, the gap between GREAP and evolutionary
algorithms is increasing, and while GREAP is slightly better
for small subjects, it outperforms by far other algorithms for
harder problems.

VII. Conclusion

Test selection is a very challenging yet critical problem
in software testing. The number of tests that are associated
with a program can be huge and running all of them is often
impossible or at least prohibitively expensive. In this paper, we
propose a novel hybrid algorithm (GREAP) to address this
problem. Our method is composed of three steps: a greedy
algorithm to find quickly some good solutions, a genetic
algorithm to increase the search space covered and a local
search algorithm to refine the solutions. We answer 4 research
questions through a thorough empirical evaluation (based on
what the previous state-of-the-art technique [34] was evaluated
against):
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• The answer to RQ 1: Is GREAP robust against the
increase in the number of objectives, which is known to
be challenging? is Yes.

• The answer to RQ 2: Is GREAP more effective (better
quality and diversity) than the other evolutionary algo-
rithms? is Yes.

• The answer to RQ 3: How does GREAP compare to other
algorithms when the time budget shrinks? is It is a really
reliable algorithm that is not impacted (as much as
others) by the time budget.

• The answer to RQ 4: Does GREAP react well to an
increase of the test suite size (when we vary the test
subjects)? is Yes.

Now that we have proven that a three step method, such as
GREAP, is faster at finding good solutions, and is more reliable
and more robust than the state-of-the-art techniques, we would
like to explore further the combination of the three steps. We
know from observation that each step has a different impact
on the solutions: the third phase impacts the diversity, the first
one impacts the quality. To understand this better we would
need to run large numbers of experiments combining each of
these phases and so on. We would also like to use our 3 step
method on other Software Engineering problems to evaluate
how general this technique is, as on test suite minimisation
which is really close to our problem, and will probably have
the same difficulties to scale on large instances.
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