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Abstract

Mutation analysis is a popular fault-based testing technique. It requires testers
to design tests based on a set of artificial defects. The defects help in performing
testing activities by measuring their ratio that is revealed by the candidate tests.
Unfortunately, applying mutation to real world programs requires automated tools
due to the vast number of the involved defects. In such a case, the strengths of
the method strongly depend on the peculiarities of the employed tools. Thus,
when employing automated tools, their implementation inadequacies can lead to
inaccurate results. To deal with this issue, we cross-evaluate three popular muta-
tion testing tools for Java, namely MUJAVA, MAJOR and the research version of
PIT, PITRV , with respect to their fault detection capabilities. We investigate the
strengths of the tools based on: a) a set of real faults and b) manual analysis of the
mutants they introduce. We find that there are large differences between the tools’
effectiveness and demonstrate that no tool is able to subsume the others. We also
provide results indicating the application cost of the method. Overall, we find that
PITRV achieves the best results. In particular, PITRV outperforms both MUJAVA

and MAJOR by finding 6% more faults than both of the other two tools together.

1 Introduction
Software testing forms the most popular practice for identifying software defects [1]. It
is performed by exercising the software under test with test cases that check whether its
behaviour is as expected. To analyse test thoroughness, several criteria, which specify
the requirements of testing, i.e., what constitutes a good test suite, have been proposed.
When the criteria requirements have been fulfilled they provide confidence on the func-
tion of the tested systems.

Empirical studies have demonstrated that mutation testing is effective in revealing
faults [7], and capable of subsuming, or probably subsuming, almost all the structural
testing techniques [1, 19]. Mutation testing requires test cases that reveal the artificially
injected defects. This practice is particularly powerful as it has been shown that when
test cases are capable of distinguishing the behaviours of the original (non-mutated) and
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the defective (mutant) programs, they are also capable of distinguishing the expected
behaviours from the faulty ones [7].

The defective program versions are called mutants and they are typically intro-
duced using syntactic transformations. Clearly, the effectiveness of the technique de-
pends on the mutants that are employed. For instance if the mutants are trivial, i.e.,
they are found by almost every test that exercises them, they do not contribute the test-
ing process. Therefore, testers performing mutation testing should be cautious about
the mutants they use. Recent research has demonstrated that the method is so sensi-
tive to the employed mutants so that it can lead experiments to incorrect conclusions
[41]. Therefore, particular care has to be taken when selecting mutants in order to
avoid potential threats to validity. Similarly, the use of mutation testing tools can lead
to additional threats to validity or incompetent results (due to the peculiarities of the
mutation testing tools).

To date, many mutation testing tools have been developed and used by researchers
and practitioners [41]. However, a key open question is how effective these tools are
and how reliable are the research results based on them. Thus, in this paper, we seek
to investigate the fault revelation ability of popular mutation testing tools with the goal
of identifying their differences, weaknesses and strengths. In short, our aim is three-
fold: a) to inform practitioners about the effectiveness and relative cost of the studied
mutation testing tools, b) to provide constructive feedback to tool developers on how
to improve their tools, and c) to make researchers aware of the tools’ inadequacies.

To investigate these issues, we compare the fault revelation ability of three widely-
used mutation testing tools for Java, namely MUJAVA, MAJOR and PITRV on a set
of real faults. We complement our analysis using human analysis and comparison
of the tools. Our results demonstrate that one tool, the research version of PIT [8],
named PITRV [18], is significantly more effective than the others, managing to reveal
approximately 6% more real faults than the other two tools together. However, due to
some known limitations of PITRV, it cannot fully subsume the other tools.

Regarding a reference effectiveness measure (control comparison at 100% cover-
age level), we found that PITRV scores best with 91%, followed by MUJAVA with 85%
and MAJOR with 80%. These results suggest that existing tools have a much lower ef-
fectiveness than what they should or what researchers believe they ought to. Therefore,
our findings emphasise the need to build a reference mutation testing tool that will be
strong enough and capable of at least subsuming the existing mutation testing tools.

Another concern, when using mutation, is its application cost. This is mainly due
to the manual effort involved in constructing test cases and due to the effort needed
for deciding when to stop testing. The former point regards the need for generating
test cases while the latter pertains to the identification of the so-called equivalent mu-
tants, i.e., mutants that are functionally equivalent to the original program. Both these
tasks are labour-intensive and should be performed manually. Our study shows that
MUJAVA leads to 138 tests, MAJOR to 97 and PITRV to 105. With respect to the num-
ber of equivalent mutants, MUJAVA, MAJOR and PITRV produced 203, 94 and 382,
respectively.

This paper forms an extended study of our previous one [26], published in the
International Working Conference on Source Code Analysis and Manipulation, which
investigated the effectiveness of the tools based on manual analysis. We extend this
previous study by investigating the actual fault revelation ability of the tools, based on
a benchmark set of real faults and by considering the research version of the PIT tool,
which was realised after the previous study [18]. The extended results demonstrate that
PITRV forms the most prominent choice as it significantly outperforms the other tools
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both in terms of fault revelation and mutant revelation. Overall, the contributions of
the present paper can be summarised in the following points:

1. A controlled study investigating the fault revelation ability of three, widely-used
mutation testing tools for the Java programming language.

2. An extensive, manual study of 5,831 mutants investigating the strengths and
weaknesses of the Java mutation testing tools considered.

3. Insights on the relative cost of the tools’ application in terms of the number of
equivalent mutants that have to be manually analysed and the number of test
cases that have to be generated.

4. Recommendations on specific mutation operators that need to be implemented
in these tools in order to improve their effectiveness.

The rest of the paper is organised as follows: Section 2 presents the necessary
background information and Section 3 outlines our study’s motivation. In Section 4,
we present the posed research questions and the adopted experimental procedure and,
in Section 5, we describe the obtained results. In Section 6, we discuss potential threats
to the validity of this study, along with mitigating actions and in Section 7, previous
research studies. Finally, Section 8 concludes this paper, summarising the key findings.

2 Background
This section details mutation testing and presents the studied mutation testing tools.

2.1 Mutation Testing
Applying mutation testing requires the generation and execution of a set of mutants
with the candidate test cases. Mutants are produced using a set of syntactic rules called
mutation operators. The process requires practitioners to design test cases that are
able to distinguish the mutants’ behaviour from that of the program under test, termed
original program in mutation’s terminology. In essence, these test cases should force
the original program and its mutants to result in different outputs, i.e., they should kill
its mutants.

Normally, the ratio of the killed mutants to the generated ones is an effectiveness
measure that should quantify the ability of the test cases to reveal the system’s defects.
Unfortunately, among the killable mutants, there are some that cannot be killed, termed
equivalent mutants. Equivalent mutants are syntactically different versions of the pro-
gram under test, but semantically equivalent [40, 22]. These mutants must be discarded
in order to have an accurate effectiveness measure, which is called Mutation score, i.e.,
the ratio of killed mutants to the number of killable mutants, and to decide when to
stop testing. The problem of identifying and removing equivalent mutants is known as
the Equivalent Mutant Problem [40, 22].

Regrettably, the Equivalent Mutant Problem has been shown to be undecidable in
its general form [6], thus, no complete, fully automated solution can be devised to
tackle it. This problem is largely considered an open issue in mutation’s literature,
but recent advances provide promising results towards practical, automated solutions,
albeit partial, e.g., [40, 25, 23].
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Another problem of mutation testing is that it produces many mutants that are re-
dundant, i.e., they are killed when other mutants are killed. These mutants can inflate
the mutation score making it skew. Thus, previous research has shown that these mu-
tants can have harmful effects on the mutation score measurement with the effect of
leading experiments to incorrect conclusions [41]. Therefore, when mutation testing is
used as a comparison basis, there is a need to deflate the mutation score measurement.
This can be done by using the subset of subsuming mutants [41, 2] or disjoint mutants
[24]. Disjoint mutants approximate the minimum “subset of mutants that need to be
killed in order to reciprocally kill the original set” [24]. We utilise the term disjoint
mutation score for the ratio of the disjoint mutants that are killed by the test cases un-
der assessment (which in our case are those that were designed to kill the studied tools’
mutants).

Mutation’s effectiveness depends largely on the mutants that are used [1]. Thus,
the actual implementation of mutation testing tools can impact the effectiveness of the
technique. Indeed, many different mutation testing tools exist that are based on differ-
ent architectural designs and implementations. As a consequence, it is not possible for
researchers, and practitioners alike, to make an informed decision on which tool to use
and on the strengths and weaknesses of the tools.

This paper addresses the aforementioned issue by analysing the effectiveness of
three widely-used mutation testing tools for the Java programming language, namely
MUJAVA, MAJOR and PITRV, based on the results of an extensive manual study. Before
presenting the conducted empirical study, the considered tools and their implementa-
tion details are introduced.

2.2 Selected tools
Mutation is popular [41] and, thus, many mutation testing tools exist. In this study
we choose to work in Java since it is widely used by practitioners and forms the sub-
ject of most of the recent research papers. To select our subject tools, we performed
a mini literature survey on the papers published during 2014 and 2015 in the three
leading Software Engineering conferences (ISSTA, (ESEC)FSE and ICSE) and iden-
tified the mutation testing tools that were used. The analysis resulted in three tools,
MUJAVA [31], MAJOR [20] and PIT [8].

2.2.1 MUJAVA – Source Code Manipulation

MUJAVA [31] is one of the oldest Java mutation testing tools and has been used in
many mutation testing studies. It works by directly manipulating the source code of the
program under test and supports both method-level and class-level mutation operators.
The former handle primitive features of programming languages, such as arithmetic
operators, whereas the latter handle object-oriented features, such as inheritance. Note
that MUJAVA adopts the selective mutation approach [33], i.e., it implements a set of 5
operators whose mutants subsume the mutants generated by other mutation operators
not included in this set. Table 1 presents the method-level operators of the tool, along
with a succinct description of the performed changes. For instance, AORB replaces
binary arithmetic operators with each other and AODS deletes the ++ and -- arithmetic
operators.
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Table 1: Mutation operators of MUJAVA

Mutation Operator Description

AORB: Arithmetic Opera-
tor Replacement Binary

{(op1,op2) | op1,op2 ∈ {+,-,*,/,%} ∧ op1 6=
op2}

AORS: Arithmetic Operator
Replacement Short-Cut

{(op1,op2) | op1,op2 ∈ {++,--}∧op1 6= op2}

AOIU: Arithmetic Operator
Insertion Unary

{(v,-v)}

AOIS: Arithmetic Operator
Insertion Short-cut

{(v,--v),(v,v--),(v,++v),(v,v++)}

AODU: Arithmetic Opera-
tor Deletion Unary

{(+v,v),(-v,v)}

AODS: Arithmetic Operator
Deletion Short-cut

{(--v,v),(v--,v),(++v,v),(v++,v)}

ROR: Relational Operator
Replacement

{((a op b), false),((a op b), true),
(op1, op2) | op1,op2 ∈ {>,>=,<,<=,
==,!=}∧op1 6= op2}

COR: Conditional Operator
Replacement

{(op1,op2) | op1,op2 ∈ {&&,||,∧ }∧op1 6= op2}

COD: Conditional Operator
Deletion

{(!cond,cond)}

COI: Conditional Operator
Insertion

{(cond, !cond)}

SOR: Shift Operator Re-
placement

{(op1,op2) | op1,op2 ∈ {>>,>>>,<<} ∧ op1 6=
op2}

LOR: Logical Operator Re-
placement

{(op1,op2) | op1,op2 ∈ {&,|,∧ }∧op1 6= op2}

LOI: Logical Operator In-
sertion

{(v,∼v)}

LOD: Logical Operator
Deletion

{(∼v,v)}

ASRS: Short-Cut Assign-
ment Operator Replacement

{(op1,op2) | op1,op2 ∈ {+=,-=,*=,
/=,%=,&=,|=,∧ =,>>=,>>>=,<<=} ∧ op1 6= op2}

2.2.2 PITRV – Bytecode Manipulation

PITRV [18] is the research version of PIT [8] which is a mutation testing framework
that targets primarily the industry but has also been used in many research studies. PIT
works by manipulating the resulting bytecode of the program under test and employs
mutation operators that affect primitive programming language features, similarly to
the method-level operators of MUJAVA. PITRV greatly extends PIT’s supported muta-
tion operators with the aim of improving the tool’s effectiveness. It is noted that in the
conference version of this paper we used the original version of PIT and found that it
was significantly less effective than both MUJAVA and MAJOR [26]. Therefore, here
we investigate how does the PITRV compares with the other tools.

Table 2 describes the corresponding operators. By comparing this table with Table
1, it can be seen that PITRV implements most of MUJAVA’s mutation operators, while
implementing some in a different way. For instance, the changes imposed by PITRV’s
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Bitwise Operator Mutation (OBBN) are a subset of the ones of MUJAVA’s Logical
Operator Replacement (LOR). Additionally, it employs mutation operators that are
not implemented in MUJAVA, e.g. the Void Method Calls (VMC) and Constructor
Calls (CC) operators. Finally, it should be mentioned that since PITRV’s changes are
performed at the bytecode level, they cannot always be mapped onto source code ones.

Table 2: Mutation operators of PITRV

Mutation Operator Description
ABS: Absolute Value Inser-
tion

{(v,-v)}

AOD: Arithmetic Operator
Deletion

{((a op b), a),(a op b), b)) | op ∈ {+,-,*,/,%}}

AOR: Arithmetic Operator
Replacement

{(op1,op2) | op1,op2 ∈ {+,-,*,/,%} ∧ op1 6=
op2}

AP: Argument Propagation {(nonVoidMethodCall(..., par), par)}
CRCR: Constant Replace-
ment

{(const,−const),(const,0),(const,1),(const,const−1),
(const,const+1)}

CB: Conditionals Boundary {(op1,op2) | (op1,op2) ∈ {(<,<=),
(<=,<),(>,>=),(>=,>)}}

CC: Constructor Calls {(new AClass(),null)}
I: Increments {(op1,op2) | op1,op2 ∈ {++,--}∧op1 6= op2}
IC: Inline Constant {(c1,c2) | (c1,c2) ∈ {(1,0),

((int) x, x+1),(1.0,0.0),(2.0,0.0),
((float) x, 1.0), (true, false),
(false,true)}}

IN: Invert Negatives {(-v,v)}
M: Math {(op1,op2) | (op1,op2) ∈ {(+,-),

(-,+),(*,/),(/,*),(%,*),(&,|),
(|,&),(∧,&),(<<,>>),(>>,<<), (>>>,<<)}}

MV: Member Variable {(member_var=...,member_var=b) |
b ∈ {false,0,0.0, ’\u0000’,null}}

NC: Negate Conditionals {(op1,op2) | (op1,op2) ∈ {(==,
!=),(!=,==),(<=,>),(>=,<), (<,>=),(>,<=)}}

NVMC: Non Void Method
Calls

{(nonVoidMethodCall(), c) | c ∈ {false,0,0.0,
’\u0000’,null}}

OBBN: Bitwise Operator
Mutation

{(op1,op2) | op1,op2 ∈ {&,|}∧op1 6= op2}

ROR: Relational Operator
Replacement

{(op1, op2) | op1,op2 ∈ {>,>=,<,<=, ==,!=} ∧
op1 6= op2}

RC: Remove Conditionals Removes or negates a conditional state-
ment to force or prevent the execution
of the guarded statements, e.g. {((a op
b), true) or ((LHS && RHS), RHS)}

RI: Remove Increments {(--v,v),(v--,v),(++v,v),(v++,v)}
RS: Remove Switch Changes all labels of the switch to the default one
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Table 2: Mutation operators of PITRV

Mutation Operator Description
RV: Return Values {(return a, return b) | (a,b) ∈

{(true,false),(false,true),(0,1),
((int) x,0),((long) x,x+1), ((float) x,
-(x+1.0)),(NAN,0),(non-null,null),
(null,throw RuntimeException)}}

S: Switch Replaces the switch’s labels with the default one
and vice versa (only for the first label that differs)

UOI: Unary Arithmetic Op-
erator Insertion

{(v,--v),(v,v--),(v,++v),(v,v++)}

VMC: Void Method Calls {(voidMethodCall(),∅)}

2.2.3 MAJOR – AST MANIPULATION

MAJOR [20] is a mutation testing framework whose architectural design places it be-
tween the aforementioned ones: it manipulates the abstract syntax tree (AST) of the
program under test. MAJOR employs mutation operators that have similar scope to the
previously-described ones. The implemented mutation operators of the tool are based
on selective mutation, similarly to MUJAVA. Table 3 summarises MAJOR’s operators
and their imposed changes. Compared to MUJAVA’s operators, it is evident that the
two tools share many mutation operators, but implement them differently. Compared
to PITRV, most operators of MAJOR impose a superset of changes with respect to the
corresponding ones of PITRV and there are operators of PITRV that are completely
absent from MAJOR.

3 Motivation
Mutation testing is important since it is considered as one of the most effective testing
techniques. Its fundamental premise, as coined by Geist et al. [15], is that:

“If the software contains a fault, it is likely that there is a mutant that can
only be killed by a test case that also reveals the fault.”

This premise has been empirically investigated by many research studies which have
shown that mutation adequate test suites, i.e., test suites that kill all killable mutants, are
more effective than the ones generated to cover various control and data flow coverage
criteria [19, 7]. Therefore, researchers use mutation testing as a way to either compare
other test techniques or as a target to automate.

Overall, a recent study by Papadakis et al. [41] shows that mutation testing is
popular and widely-used in research (probably due to its remarkable effectiveness).
In view of this, it is mandatory to ensure that mutation testing tools are powerful and
do not bias (due to implementation inadequacies or missing mutation operators) the
existing research.

To reliably compare the selected tools, it is mandatory to account for mutant sub-
sumption [41] when performing a complete testing process, i.e., using mutation-adequate
tests. Accounting for mutant subsumption is necessary in order to avoid bias from
subsumed mutants [41], while complete testing ensures the accurate estimation of the
tools’ effectiveness. An inaccurate estimation may happen when failing to kill some
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Table 3: Mutation operators of MAJOR

Mutation Operator Description

AOR: Arithmetic Operator
Replacement

{(op1,op2) | op1,op2 ∈ {+,-,*,/,%} ∧ op1 6=
op2}

LOR: Logical Operator Re-
placement

{(op1,op2) | op1,op2 ∈ {&,|,∧ }∧op1 6= op2}

COR: Conditional Operator
Replacement

{(&&,op1), (||,op2) | op1 ∈
{==,LHS,RHS,false}, op2 ∈ {!=,
LHS,RHS,true}}

ROR: Relational Operator
Replacement

{(>,op1),(<,op2),(>=,op3),(<=,op4),
(==,op5),(!=,op6) | op1 ∈
{>=,!=,false}, op2 ∈ {<=, !=,false}, op3 ∈
{>,==,true}, op4 ∈ {<,==,true}, op5 ∈
{<=,>=, false,LHS,RHS}, op6 ∈ {<,>,true,
LHS,RHS}}

SOR: Shift Operator Re-
placement

{(op1,op2) | op1,op2 ∈ {>>,>>>,<<} ∧ op1 6=
op2}

ORU: Operator Replace-
ment Unary

{(op1,op2) | op1,op2 ∈ {+,-,∼}∧op1 6= op2}

STD: Statement Deletion
Operator

{(--v,v),(v--,v),(++v,v),(v++,v),
(aMethodCall(), ∅), (a op1 b, ∅) | op1 ∈
{+=,-=,*=,/=,%=,&=,|=,∧ =, >>=,>>>=,<<=}}

LVR: Literal Value Replace-
ment

{(c1,c2) | (c1,c2) ∈ {(0,1),(0,−1),
(c1,−c1),(c1,0),(true,false), (false,true)}

killable mutants, which consequently results in failing to design tests (to kill these mu-
tants) and, thus, underestimate effectiveness. Even worse, the use of non-adequate test
suites ignores hard to kill mutants which are important [3, 43] and among those that
(probably) contribute to the test process. Since we know that very few mutants con-
tribute to the test process [41], the use of non-adequate test suites can result in major
degradation of the measured effectiveness.

Unfortunately, generating test suites that kill all killable mutants is practically in-
feasible because of the inherent undecidability of the problem [40]. Therefore, from a
practical point of view, examining the partial relationship for the case of non-adequate
test suites is important. Thus, we need to consider both scenarios in order to adequately
compare the tools we study. For all these reasons, we use both mutation adequate test
suites specially designed for each tool that we study (using a small sample of programs)
and non-adequate test suites (using large real world programs).

4 Empirical Study
This section presents the settings of our study, by detailing the research questions, the
followed procedure and the design of our experiments.
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4.1 Research Questions
Mutation testing’s aim is to help testers design high quality test suites. Therefore, the
first question to ask is whether there is a tool that is more effective or at least as effective
as the other tools in real world cases. In other words, we want to measure how effective
are the studied tools in finding real faults. Since we investigate real faults, we are forced
to study the partial relationship between the tools under the “practical” scenario. Hence
we ask:

RQ1: How do the studied tools perform in terms of real fault detection?

This comparison enables checking whether mutation testing tools have different
fault revelation capabilities when applied to large real world projects. In case we find
that the tools have significant differences in terms of fault detection, we demonstrate
that the choice of mutation testing tools really matters. Given that we find significant
differences between the tools, a natural question to ask is:

RQ2: Does any mutation testing tool lead to tests that subsume the others in terms of
real fault detection? If not, which is the relatively most effective tool to use?

This comparison enables the ranking of the tools with respect to their fault revela-
tion capabilities (with respect to the benchmark set we use) and identifying the most
effective mutation testing tool. It also quantifies the effectiveness differences between
the tools in real world settings. Given that the effectiveness ranking offered by the
above comparison is bounded to the reference fault set and the automatically generated
test suites used, an emerging question is how the tools compare with each other under
complete testing, i.e., using adequate test suites. In other words, we seek to investigate
how effective are the studied tools in killing the mutants of the other tools. Hence we
ask:

RQ3: Does any mutation testing tool lead to tests that kill all the killable mutants
produced by the other tools?

This comparison enables checking whether there is a tool that is capable of sub-
suming the others, i.e., whether the mutation adequate tests of one tool can kill all the
killable mutants of the others. A positive answer to the above question indicates that
a single tool is superior to the others, in terms of effectiveness. A negative answer to
this question indicates that the tools are generally incomparable, meaning that there are
mutants not covered by the tools. We view these missed mutants as weaknesses of the
tools. The main differences from the RQ1 and RQ2 are that we perform an objective
comparison under complete testing, which helps reducing potential threats to validity.

To further compare mutation testing tools and identify their weaknesses, we need to
assess the quality of the test suites that they lead to. This requires either an independent,
to the used mutants, effectiveness measure or a form of “ground truth”, i.e., a golden set
of mutants. Since both are not known, we constructed a reference mutant set, the set of
disjoint mutants, from the superset of mutants produced by all the studied tools together
and all generated test cases. We use the disjoint set of mutants to avoid inflating the
reference set from the duplicated, i.e., mutants equivalent to each other but not to the
original program [40], and redundant mutants, i.e., mutants subsumed by other mutants
of the merged set of mutants [41]. Both duplicated and redundant mutants inflate the
mutation score measurement with the unfortunate result of committing Type I errors
[41]. Since in our case these types of mutants are expected to be numerous, as the tools
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support many common types of mutants, the use of disjoint mutants was imperative.
Therefore we ask:

RQ4: How do the studied tools perform compared to a reference mutant set? Which
is the relatively most effective tool to use?

This comparison enables the ranking of the tools with respect to their effective-
ness. The use of the reference mutant set also helps aggregate all the data and quantify
the relative strengths and weaknesses of the studied tools in one measure (the disjoint
mutation score). Given the effectiveness ranking offered by this comparison, we can
identify the most effective mutation testing tool and quantify the effectiveness differ-
ences between the tools.

This is important when choosing a tool to use but does not provide any constructive
information on the weaknesses of the tools. Furthermore, this information fails to pro-
vide researchers and tool developers constructive feedback on how to build future tools
or strengthen the existing ones. Therefore, we seek to analyse the observed weaknesses
and ask:

RQ5: Are there any actionable findings on how to improve the effectiveness of the
studied tools?

Our intentions thus far have been concentrated on the relative effectiveness of the
tools. While this is important when using mutation, another major concern is the cost
of its application. Mutation testing is considered to be expensive due to the manual
effort involved in identifying equivalent mutants and designing test cases. Since we
manually assess and apply the mutation testing practice of the studied tools we ask:

RQ6: What is the relative cost, measured by the number of tests and number of equiv-
alent mutants, of applying mutation testing with the studied tools?

An answer to this question can provide useful information to both testers and re-
searchers regarding the trade-offs between cost and effectiveness. Also, this analysis
will better reflect the differences of the tools from the cost perspective.

4.2 Assessing Fault Revelation Ability
In order to assess the fault revelation capabilities of the studied tools, we used De-
fects4J [21] (version 1.1.0), which is a benchmark set of reproducible real faults mined
from source code repositories. The benchmark is composed of 395 faults carefully lo-
cated and isolated using the version control and bug tracking systems of 6 open source
projects. For each one of the faults, the benchmark contains a buggy and a fixed pro-
gram version and at least one test case that reproduces the faulty behaviour. Table 4
presents the name of the projects (first column), a small description of their application
domain (second column), the source code lines as reported by the cloc tool (third col-
umn) and the number of faults available per project (fourth column). Additional details
about the benchmark set and its construction can be found in the demo paper of the
Defects4J [21] and on its GitHub page1.

Unfortunately, the benchmark contains only some developer tests that were recorded
on the repository. This is potentially problematic in our case as developer tests are gen-
erally weak (they typically achieve low coverage) and as a consequence very few of

1https://github.com/rjust/defects4j
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Table 4: Fault Benchmark Set Details
Test Subject Description LoC #Real Faults #Gen. Tests #Faults Found

JFreeChart A chart library 79,949 26 3,758 17
Closure Closure compiler 91,168 133 3,552 12
Commons Lang Java utilities library 45,639 65 6,408 30
Commons Math Mathematics library 22,746 106 8,034 53
Mockito A mocking framework 5,506 38 - -
Joda-Time A date and time library 79,227 27 1,667 13
Total - 324,235 395 23,419 125

these tests reveal the faults. Furthermore, these have not been generated using any con-
trolled or known procedure and thus, they can introduce several threats to the validity
of our results as they are few and may only kill trivial mutants, underestimating our
measurements. To circumvent this problem, we simulated the mutation-based test pro-
cess using multiple test suites generated by two state-of-the-art test generation tools,
namely EvoSuite [13] and Randoop [35]. Although this practice may introduce the
same threats to validity as the developer test suites, it has several benefits as the tests
are generated with a specific procedure, they are multiple and they represent our current
ability of generating automated test suites.

4.2.1 Automated Test Suite Generation

For the generation of the test suites, we used version 1.0.3 of EvoSuite and 3.0.8 of
Randoop. To configure and execute the tools, we used the scripts accompanying De-
fects4J. Overall, we proceed with the following procedure:

1. For each fault, we run EvoSuite and Randoop on the fixed version of the project
to generate 3 test suites, two with EvoSuite and one with Randoop, for the classes
that were modified in order to fix the corresponding buggy version.

2. We systematically removed problematic test cases from the generated test suites,
e.g. test cases that produced inconsistent results when run multiple times, using
the available scripts of Defects4J.

3. Run the generated test suites against the buggy versions of the projects to identify
the faults they reveal.

The aforementioned procedure identified the faults (from all the faults of Defects4J)
that could be discovered by our automatically generated test suites. In the remainder
of the paper, we call as “triggering test suite” a test suite that contains at least one test
case capable of revealing the fault that it is referring to. Table 4 presents more de-
tails about the results of the previously-described procedure. More precisely, column
“#Gen. Tests” presents the number of test cases in the triggering test suites per project
and column “#Faults Found”, the number of the corresponding discovered faults. Note
that we did not include any results for the Mockito project because most of the result-
ing test cases were problematic. In total, our real fault set consists of 125 real faults
from 5 open source projects and our triggering test suites are composed of 23,419 test
cases.
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4.3 Manual Assessment
To complement our analysis we manually applied the tools to parts of several real-
world projects. Since manual analysis requires considerable resources, analysing a
complete project is infeasible. Thus, we picked and analysed 12 methods from 6 Java
test subjects for 3 independent times, once per studied tool. Thus, in total, we manually
analysed 36 methods and 5,831 mutants which constitutes one of the largest studies in
the literature of mutation testing, e.g., Yao et al. [44] consider 4,181 mutants, Baker
and Habli [4] consider 2,555. Further, the present study is the only one in the literature
to consider manually analysed mutants when comparing the effectiveness of different
mutation testing tools (see also Section 7). The rest of this section discusses the test
subjects, tool configuration and the manual procedure we followed in order to perform
mutation testing.

We selected 12 methods to perform our experiment; 10 of them were randomly
picked from 4 real-world projects (Commons-Math, Commons-Lang, Pamvotis and
XStream) and another 2 (Triangle and Bisect) from the mutation testing literature [1].
Details regarding the selected subjects are presented in Table 5. The table presents
the name of the test subjects, their source code lines as reported by the cloc tool, the
names of the studied methods, the number of generated and disjoint mutants per tool
and the number of the resulting mutants of the reference mutant set.

4.3.1 Selection of Mutation Testing Tools

We used the three mutation testing tools for Java that were mentioned in the papers
published during 2014 and 2015 in the ISSTA, (ESEC)FSE and ICSE conferences.
Thus, we used version 3 of MUJAVA, version 1.1.8 of MAJOR and the research version
of PIT, PITRV [18], and applied all the provided mutation operators. In the case of
MUJAVA, only the method-level operators were employed, since the other tools do not
provide object-oriented operators.

4.3.2 Manual Analysis Procedure

The primary objective of this experiment is to accurately measure the effectiveness of
the studied tools. Thus, we performed complete manual analysis (by designing tests
that kill all the killable mutants and manually identified the equivalent mutants) of the
mutants produced by the selected tools. Performing this task is labour-intensive and
error-prone. Thus, to avoid bias from the use of different tools we asked different
users to perform mutation testing on our subjects. To find this number of qualified
human subjects we turned to third- and fourth-year Computer Science students of the
Department of Informatics at the Athens University of Economics and Business and
adopted a two-phase manual analysis process:

• The selected methods were given to students attending the “Software Validation,
Verification and Maintenance” course (Spring 2015 and Fall 2015), taught by
Prof. Malevris, in order to analyse the mutants of the studied tools, as part of
their coursework. The participating students were selected based on their overall
performance and their grades at the programming courses. Additionally, they
all attended an introductory lecture on mutation testing and appropriate tutorials
before the beginning of their coursework. To facilitate the smooth completion of
their projects and the correct application of mutation, the students were closely
supervised, with regular team meetings throughout the semester.
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• The designed test cases and detected equivalent mutants were manually analysed
and carefully verified by at least one of the authors.

To generate the mutation adequate test suites, the students were first instructed to
generate branch adequate test suites and then to randomly pick a live mutant and at-
tempt to kill it based on the RIP Model [1]. Although the detection of killable mutants
is an objective process, i.e., the produced test case either kills the corresponding mutant
or not, the detection of equivalent ones is a subjective one. To deal with this issue, all
students were familiarised with the RIP Model [1] and the sub-categories of equiva-
lent mutants described by Yao et al. [44]. Also, all detected equivalent mutants were
independently verified.

It should be noted that for the PITRV mutants, one of the authors of this paper
extended our previous manual analysis of the PIT mutants [26] by designing new test
cases that kill (or identify as equivalent) the PITRV mutants that remained alive after
the application of PIT’s mutation adequate test suites. To support replication and wider
scrutiny of our manual analysis, we made all its results publicly available [27].

4.4 Methodology
To answer the stated RQs, we applied mutation testing by independently using each
one of the selected tools. As the empirical study involves two parts, an experiment on
open source projects with real faults and a manual analysis on sampled functions, we
simulate the mutation testing process in two ways.

For the large-scale experiment (using open source projects with real faults), we
constructed a test pool composed of multiple test suites that were generated by Evo-
Suite [13] and Randoop [35]. We then identified the triggering test suites, i.e., the test
suites that contain at least one test case that reveals the studied faults and discarded all
the Defects4J faults for which no triggering test suite was generated.

Related to the sampled functions, we manually generated three mutation adequate
test sets (one for every analysed tool) per studied subject. We then minimised these
test sets by checking, for each contained test case, whether its removal would result
in a decreased mutation score [1]. In case the removal of a test does not result in
any decrease of mutation score, it is redundant (according to the used mutation testing
tool) and has to be removed. As redundant tests do not satisfy any of the criterion
requirements, they can artificially result in overestimating the strengths of the test suites
[1]. We used the resulting tests and computed the set of disjoint mutants produced by
each one of the tools. We then constructed the reference mutant set by identifying the
disjoint mutants (using all the produced tests) of the mutant set composed of all mutants
of all the studied tools. To compute the disjoint mutant set we need a matrix that records
all test cases that kill a mutant. The construction of such a matrix is available in the
case of PITRV. For MUJAVA, we extended the corresponding script to handle certain
cases that it failed to work, e.g., a case where a class that belonged to a package was
given as input. Finally, in the case of MAJOR, we utilised the scripts accompanying
Defects4J to produce this matrix. The disjoint set of mutants was computed using the
“Subsuming Mutants Identification” process that is described in the study of Papadakis
et al. [41]. Here, we use the term “disjoint” mutants, instead of “subsuming” ones
since this was the original term that was used by the first study that introduced them
and suggested their use as a metric that can accurately measure test effectiveness [24].

In RQ1 we are interested in the fault revelation ability of mutation-based test suites.
Thus, we want to see whether mutation-driven test cases can reveal our faults. We
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measure the fault revelation ability of the studied mutation testing tools by evaluating
the fault revelation of the test cases that kill their mutants. More precisely, we consider
a fault as revealed when there is at least one mutant which is killed only by triggering
test cases for that particular fault. Thus, based on our generated test suites, if this
mutant is killed, a test case that reveals the respective fault is bound to be generated.
To answer the research question, we compare the number of revealed faults per tool
and project and rank them accordingly, thus, answering RQ2.

To answer RQ3, we used the selected methods and the manually generated test
suites. For each selected tool we used its mutation adequate test suite and calculated
the mutation score and disjoint mutation score that it achieves when it is evaluated with
the mutants produced by the other tools. This process can be viewed as an objective
comparison between the tools, i.e., a comparison that evaluates how the tests designed
for one tool perform when evaluated in terms of the other tool. In case the tests of one
tool can kill all the mutants produced by the other tool, then this tool subsumes the
other. Otherwise, the two tools are incomparable.

To answer RQ4, we used the tests that were specifically designed for each one
of the studied tools (from the manually analysed subjects) and measured the score
they achieve when evaluated against the reference mutant set. This score provides the
common ground to compare the tools and rank them with respect to their effectiveness
and identify the most effective tool.

To answer RQ5, for each tool we manually analysed the mutants that were not
killed by the tests of the other tools with the intention of identifying inadequacies in
the tools’ mutant sets. We then gathered all these instances and identified how we could
complement each one of the tools in order to improve its effectiveness and reach the
level of the reference mutant set. Finally, to answer RQ6, we measured and report the
number of tests and equivalent mutants that we found.

5 Empirical Findings
This section presents the empirical findings of our study per posed research question.

5.1 RQ1: Tools’ Real Fault Revelation Ability
This question investigates whether one of the studied tools subsumes the others in terms
of fault revelation ability. Table 6 records our results. The first column of the table
presents the ids of the 125 real faults of our benchmark set (per project); the remainder
of the table is divided into three parts (columns “MAJOR”, “PITRV”, “MUJAVA”) and
each of these parts is divided into two sub-columns. The first sub-column presents
whether the corresponding tool can run on the corresponding fixed program version
(sub-column “Runs?”) and whether it manages to reveal the corresponding fault (sub-
column “Reveals?”), i.e., whether there is at least one generated mutant which is killed
only by test cases that also reveal the respective fault.

By examining the table, it can be seen that PITRV and MAJOR were run success-
fully on all studied program versions whereas MUJAVA only on 66 of them. This fact
indicates that PITRV and MAJOR have higher chances of being used in practice than
MUJAVA due to their higher applicability rate. Since MUJAVA does not work properly
on all the projects, we compare the tools in a pairwise manner by considering only
the projects that both compared tools operate. Based on the table’s results, it becomes
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evident that none of the tools subsumes the others; there are faults that are only re-
vealed by killing test cases of mutants generated by only one tool and not the others
and, as a consequence, none of the tools alone can reveal all the faults studied. Specif-
ically, MAJOR reveals 2 unique faults (Time-27 and Math-55) compared to PITRV
and 29 faults compared to MUJAVA. MUJAVA reveals one unique fault (Math-27) com-
pared to MAJOR; when compared to PITRV, all MUJAVA-revealed faults are also re-
vealed by PITRV. Finally, PITRV reveals 9 unique faults (Lang-56, Math-6, Math-22,
Math-27, Math-89, Math-105, Closure-27, Closure-49, Closure-52) compared
to MAJOR and 31 unique faults compared to MUJAVA. One interesting finding is that 2
faults (Math-75, Math-90) are not revealed by any tool. Overall, PITRV managed to
reveal 121 real faults out of 125 for which it run successfully, MAJOR revealed 114 out
of 125 and MUJAVA 34 out of 66.

5.2 RQ2: Better Performing Tool
Overall, we found that PITRV is the most effective tool at revealing faults. PITRV
achieves a higher fault revelation (w.r.t. the studied fault set) than MAJOR in 9 cases,
equal in 106 and lower in 2 cases. In summary, these results indicate that PITRV
has higher fault revelation ability than MAJOR by 6%. Therefore, we conclude that
according to our fault sample PITRV is the most effective tool.

Table 6: MAJOR’s, PITRV and MUJAVA fault revelation on real faults
studied

Project-BugID MAJOR PITRV MUJAVA
Runs? Reveals? Runs? Reveals? Runs? Reveals?

Chart-1 X X X X
Chart-2 X X X X X X
Chart-4 X X X X
Chart-5 X X X X X X
Chart-6 X X X X X X
Chart-8 X X X X X
Chart-11 X X X X X
Chart-14 X X X X
Chart-15 X X X X
Chart-16 X X X X X
Chart-17 X X X X
Chart-18 X X X X X X
Chart-19 X X X X
Chart-22 X X X X X
Chart-23 X X X X
Chart-24 X X X X X X
Chart-26 X X X X
Time-1 X X X X X
Time-2 X X X X X
Time-4 X X X X
Time-5 X X X X X
Time-6 X X X X
Time-8 X X X X X
Time-9 X X X X X X
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Table 6: MAJOR’s, PITRV and MUJAVA fault revelation on real faults
studied

Project-BugID MAJOR PITRV MUJAVA
Runs? Reveals? Runs? Reveals? Runs? Reveals?

Time-11 X X X X
Time-12 X X X X X
Time-13 X X X X
Time-15 X X X X X
Time-17 X X X X X
Time-27 X X X
Lang-5 X X X X X X
Lang-7 X X X X X
Lang-9 X X X X
Lang-10 X X X X
Lang-11 X X X X X X
Lang-12 X X X X X X
Lang-16 X X X X X
Lang-19 X X X X X X
Lang-23 X X X X
Lang-24 X X X X X
Lang-27 X X X X X X
Lang-33 X X X X
Lang-35 X X X X
Lang-36 X X X X X X
Lang-37 X X X X
Lang-39 X X X X
Lang-41 X X X X
Lang-43 X X X X
Lang-44 X X X X X
Lang-45 X X X X X X
Lang-46 X X X X X
Lang-47 X X X X X X
Lang-49 X X X X X X
Lang-52 X X X X X
Lang-54 X X X X X X
Lang-56 X X X
Lang-58 X X X X X
Lang-59 X X X X X X
Lang-60 X X X X X X
Lang-61 X X X X X X
Math-1 X X X X X X
Math-3 X X X X
Math-4 X X X X X
Math-5 X X X X
Math-6 X X X X
Math-8 X X X X
Math-10 X X X X
Math-11 X X X X X X
Math-14 X X X X X X
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Table 6: MAJOR’s, PITRV and MUJAVA fault revelation on real faults
studied

Project-BugID MAJOR PITRV MUJAVA
Runs? Reveals? Runs? Reveals? Runs? Reveals?

Math-22 X X X X
Math-23 X X X X X X
Math-24 X X X X X X
Math-25 X X X X X
Math-27 X X X X X
Math-29 X X X X
Math-31 X X X X X
Math-32 X X X X
Math-35 X X X X X X
Math-36 X X X X
Math-37 X X X X
Math-42 X X X X
Math-45 X X X X
Math-46 X X X X
Math-47 X X X X
Math-49 X X X X
Math-51 X X X X
Math-55 X X X X
Math-56 X X X X X X
Math-59 X X X X
Math-60 X X X X X X
Math-61 X X X X X
Math-63 X X X X
Math-66 X X X X X X
Math-70 X X X X
Math-73 X X X X
Math-75 X X
Math-77 X X X X X
Math-85 X X X X X X
Math-86 X X X X X
Math-87 X X X X
Math-89 X X X
Math-90 X X
Math-92 X X X X
Math-93 X X X X
Math-95 X X X X X X
Math-97 X X X X
Math-98 X X X X X X
Math-99 X X X X
Math-101 X X X X X X
Math-102 X X X X X
Math-103 X X X X X
Math-104 X X X X X
Math-105 X X X X
Closure-7 X X X X
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Table 6: MAJOR’s, PITRV and MUJAVA fault revelation on real faults
studied

Project-BugID MAJOR PITRV MUJAVA
Runs? Reveals? Runs? Reveals? Runs? Reveals?

Closure-27 X X X
Closure-33 X X X X
Closure-42 X X X X
Closure-49 X X X
Closure-52 X X X
Closure-54 X X X X
Closure-56 X X X X X X
Closure-73 X X X X
Closure-82 X X X X
Closure-103 X X X X
Closure-106 X X X X X

Total 125 114 125 121 66 34

5.3 RQ3: Tool’s Cross-evaluation
This question investigates whether one of the studied tools subsumes the others in
terms of mutant killability. Table 7 presents the respective results. The table is divided
into three parts (columns “MAJOR”, “PITRV”, “MUJAVA”) and each of these parts
is divided into two columns that correspond to the mutation adequate test sets of the
remaining tools. Finally, each of these columns is split into two sub-columns that
depict the mutation scores achieved by the corresponding test suites when considering
all generated mutants (column “All”) and the disjoint ones (column “Dis.”).

By examining Table 7, it becomes evident that none of the tools subsumes the
others; all generated test suites face effectiveness losses when evaluated against the
mutants of the other tools. Specifically, PITRV’s mutation adequate test suites perform
the best, with an effectiveness of approximately 100% with respect to MUJAVA and
98% with respect to MAJOR when all mutants are considered; for the disjoint ones,
this score drops to approximately 90% for MAJOR and 96% for MUJAVA. The next
better performing tool is MUJAVA, whose mutation adequate test suites achieve an ef-
fectiveness of 96% and approximately 99% for MAJOR and PITRV, when all mutants
are considered and 91% and approximately 82% for the disjoint ones, respectively. Fi-
nally, MAJOR comes last, with an effectiveness of approximately 97% for PITRV and
MUJAVA for all generated mutants; for the disjoint ones, its effectiveness drops to 72%
and 85%, respectively.

5.4 RQ4: Comparison with Reference Mutation Tool
This question investigates how the tools’ mutation adequate test suites fare against
a reference mutation testing tool, simulated by the disjoint mutants of the union of all
mutants of the studied tools. Figure 1 depicts the obtained findings. The figure presents
the percentage of the mutants that can be killed by the corresponding mutation adequate
test suites per method, along with the average score for all methods. Although, the
performance of the tools varies depending on the considered method, it can be seen
that, on average, PITRV realises an 91% effectiveness score, followed by MUJAVA and
MAJOR with 85% and 80%, respectively. An interesting observation from these results
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Figure 1: Comparison of Mutation Adequate Test Suites against Reference Mutation
Set

is that all tools have important inadequacies that range from 0-66%. On average, the
differences are 20%, 15% and 9% for MAJOR, MUJAVA and PITRV.

Overall we found that PITRV is the top ranked tool, followed by MUJAVA and
MAJOR. PITRV achieves a higher mutation score (w.r.t. the reference mutant set) than
MUJAVA in 9 cases, equal in 1 and lower in 2. Compared to MAJOR, PITRV performs
better in 7 cases, equal in 2 and lower in 3. Therefore, we conclude that according to
our sample PITRV is the most effective tool.

5.5 RQ5: Tools’ Weaknesses and Recommendations
This question is concerned with ways of improving the mutation testing practice of
the studied tools. To this end, Figure 2 presents the mutants per tool (divided into
mutation operators) that remained alive after the application of the mutation adequate
test suites of the other tools. The figure is divided into six parts, each one illustrating
the live mutants of a corresponding tool with respect to the mutation adequate test suite
of another tool.

5.5.1 Recommendations: PITRV

As can be seen from Figure 2, PITRV’s mutation adequate test suites fail to kill mu-
tants generated by the COR operators of MUJAVA and MAJOR. This operator, although
implemented differently in the two tools, affects compound conditional expressions.
Unfortunately PITRV lacks support for such an operator, primarily because the tool
manipulates the bytecode and such expressions are not present in bytecode. Thus,
the mutation practice of PITRV can be improved by finding a way to simulate COR’s
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Figure 2: Cross-Evaluation Experiment: Number of Alive Mutants per Mutation Op-
erator, Test Suite and Tool

changes in the bytecode. Additionally, PITRV’s CRCR operator can be enhanced be-
cause it misses certain cases that MAJOR’s LVR is applied to due to the aforementioned
problem. For instance, at line 410 of the gcd method of the Commons-Math test subject
MAJOR mutates the statement if (u > 0) to if (u > 1). This change is not made
by PITRV’s CRCR operator because in the bytecode the zero constant is never pushed
into the stack. In order to make PITRV more effective such cases should be handled
accordingly.

5.5.2 Recommendations: MAJOR

By examining Figure 2, it can be seen that MAJOR’s tests fail to cover MUJAVA’s
AOIS mutants and the analogous mutants of PITRV (generated by the UOI operator).
Thus, the tool’s practice can be enhanced by implementing the changes imposed by
these operators. Additionally, MAJOR will benefit by adding an operator that negates
arithmetic variables, analogous to MUJAVA’s AOIU and PITRV’s ABS and implement-
ing PITRV’s AOD operator which manipulates arithmetic expressions by deleting the
corresponding operands one at a time. Finally, we observed that the tests of MAJOR
failed to kill some mutants generated by MUJAVA’s and PITRV’s ROR operators. Re-
call that MAJOR implements a specialised version of ROR that induces only a subset
of its changes. The live mutants indicate a weakness in this specialised set that can
lead to test effectiveness loss. An example of such a weakness manifested at line
161 of the decodeName method where MUJAVA’s ROR changed the sub-expression c

== escapeReplacementFirstChar to c > escapeReplacementFirstChar. It is
noted that the issue with the ROR mutants is an implementation choice of MAJOR as
detailed in Table 3 and discussed in the study of Lindström and Márki [30].
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Table 8: Tools’ Application Cost: Number of Equivalent Mutants and Required Tests

MAJOR PITRV MUJAVA

Method #Eq. #Tests #Eq. #Tests #Eq. #Tests

gcd 17 6 70 7 23 7
orthogonal 3 8 22 8 5 9
toMap 5 7 18 6 7 5
subarray 5 6 12 5 8 6
lastIndexOf 2 8 10 8 4 12
capitalize 6 5 22 4 14 9
wrap 8 10 36 7 19 7
addNode 11 8 57 22 33 34
removeNode 2 5 14 5 7 6
classify 7 25 42 22 38 27
decodeName 24 5 57 7 28 10
sqrt 4 4 22 4 17 6

Total 94 97 382 105 203 138

5.5.3 Recommendations: MUJAVA

As can be seen from Figure 2, MUJAVA’s weaknesses centre around mutation operators
that affect literal values, namely MAJOR’s LVR and PITRV’s IC and CRCR opera-
tors. Thus, MUJAVA will benefit by implementing such operators. Furthermore, we
found MUJAVA’s implementation of the ROR mutation operator inconsistent; for ex-
ample, at line 25 of the wrap method, the tool did not replace the original statement,
if (newLineStr == null), with if (true), as it was supposed to, leading to in-
adequacies in the resulting test suites. Similar examples are present at line 248 of
toMap and 1282 of lastIndexOf. These implementation defects lower the test effec-
tiveness of the resulting mutation adequate test suites and addressing them will improve
the tool’s test quality. Finally, the tool will benefit from implementing PITRV’s AOD
operator, as it was the case with MAJOR.

5.6 RQ6: Tools’ Application Cost
The answer to this question provides insights on the relative cost of the studied tools’
application in terms of the number of equivalent mutants that have to be manually
analysed and the number of test cases required. Table 8 presents the corresponding
findings. The table is divided into three parts, each one for a studied tool, and presents
the examined cost metrics in the sub-columns of these parts (“#Eq.” and “#Tests”).

We can observe that 12% of MAJOR’s and PITRV’s mutants are equivalent and
11% of MUJAVA’s ones. Although the tools generate the same percentage of equivalent
mutants with respect to the total generated ones, MAJOR generated the least number of
equivalent mutants, PITRV the greatest and MUJAVA was placed in the middle. Thus,
MAJOR requires the least amount of human effort in identifying the generated equiva-
lent mutants, whereas PITRV the greatest. Regarding the number of killing test cases
the tools require, MAJOR requires 97 test cases, PITRV 105 and MUJAVA 138. Thus,
MAJOR and PITRV require the least amount of effort in generating mutation adequate
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Figure 3: Contribution of Mutation Operators to Generated and Equivalent Mutants per
Tool

test suites and MUJAVA the greatest. It is interesting to notice that althought PITRV
generates a high number of mutants, it requires a considerably low number of mutation
adequate test cases indicating that the current version of the tool faces high mutant re-
dundancy, which in turn suggests that the efficiency of the tool can be greatly improved.
Future version of PITRV should take this finding into account.

The previously-described results indicate that MAJOR is the most efficient tool and
PITRV the most expensive one, with MUJAVA standing in the middle. Considering
that PITRV was found the most effective tool both in terms of fault revelation and
mutant killability, it is no surprise that it is the least efficient one. Analogously, MAJOR
requires less effort, a fact justified by its lower performance.

To better understand the nature of the generated equivalent mutants, Figure 3 illus-
trates the contribution of each mutation operator to the generated killable and equiv-
alent mutants per tool. In the case of MUJAVA, AOIS and ROR generate most of the
tool’s equivalent mutants. For MAJOR, ROR generates most of the equivalent mu-
tants, followed by LVR, AOR and COR. In the case of PITRV, UOI generates the most
equivalent mutants, followed by ROR, CRCR and ABS.

6 Threats to Validity
As every empirical study, this one faces several threats to its validity. Here we discuss
these threats along with the actions we took to mitigate them.

External Validity. External validity refers to the ability of a study’s results to gen-
eralise. Such threats are likely due to the programs, faults or test suites that we use,
as they might not be representative of actual cases. To mitigate the underlying threats,
we utilised a publicly available benchmark (Defects4J), which was built independently
from our work and consists of 6 real world open source projects and real faults. We
also used 6 additional test subjects and manually analysed 12 methods whose applica-
tion domain varies. Although we cannot claim that our results are generalisable, our
findings indicate specific inadequacies in the mutants produced by the studied tools.
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These involve incorrect implementation or not supported mutation operators, evidence
that is unlikely to be case-specific.

Internal Validity. Internal validity includes potential threats to the conclusions we
draw. Our conclusions are based on a benchmark fault set, automatically generated
test suites and manual analysis, i.e., on the identified equivalent mutants and mutation
adequate test suites. Thus, the use of the tools might have introduced errors in our
measurements. For instance, it could be the case where test oracles generated by the
tools are weak and cannot capture mutants or the studied faults. We also performed
our experiments on the clean (fixed) program versions, which may differ from that
of the buggy version [7], because the existing Java tools only operate on passing test
suites. Moreover this is common practice in this type of experiments. To mitigate
these threats, we carefully checked our scripts, verified some of our results, performed
sanity checks and generated multiple test suites using two different tools. However, we
consider these threats of no substantial importance since our results are consistent in
both the manual and automated scenarios we analyse.

Other threats are due to the manual analysis we performed. To control this fact,
we ensured that this analysis was performed by different persons to avoid any bias in
the results and that all results produced by students were independently checked for
correctness by at least one of the authors. Another potential threat is due to the fact that
we did not control the test suite size. However, our study focuses on investigating the
effectiveness of the studied tools when used as a means to generate strong tests [36].
To cater for wider scrutiny, we made publicly available all the data of this study [27].

Construct Validity. Construct validity pertains to the appropriateness of the mea-
sures utilised in our experiments. For the effectiveness comparison, we used fault
detection (using real faults), mutation score and disjoint mutation score measurements.
These are well-established measures in mutation testing literature [41]. Another threat
originates from evaluating the tools’ effectiveness based on the reference fault and mu-
tant set that are revealed by the manually generated or automatically generated test
suites. We deemed this particular measure appropriate because it constitutes a metric
that combines the overall performance of the tools and enables their ranking. Finally,
the number of equivalent mutants and generated tests might not reflect the actual cost
of applying mutation. We adopted these metrics because they involve manual analysis
which is a dominant cost factor when testing.

7 Related Work
Mutation testing is a well-studied technique with a rich history of publications, as
recorded in the surveys of Offutt [34] and Yia and Harman [19].

The original suggestion of mutation was a method to help programmers generate
effective test cases [10]. Since then, researchers has used it to support various other
software engineering tasks [34]. In particular, mutation analysis has been employed
in: test generation [36], test oracle selection and assessment [14], debugging [38], test
assessment [41] and in regression testing [46]. It has also been applied to artefacts
other than source code, such as models [12] and software product lines configurations
[17].

The main problems of mutation testing are the large number of mutants and the
so-called equivalent mutant problem [40, 22]. To tackle these problems several mutant
selection strategies were suggested. Mutant sampling is perhaps the simplest and most
effective way of doing so. Depending on the sampling ratio it provides several trade-
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offs between reduced number of mutants and effectiveness loss (fault detection) [37],
e.g., sampling ratios of 10% to 60% have a loss on fault detection from 26% to 6%.
Selective mutation [33] is another form of mutant reduction that only applies specific
types of mutants. However, recent research has shown that there are not significant
differences between selective mutation and random sampling [45, 28]. To deal with
the equivalent mutant problem researchers has adopted compiler optimisations [40],
constraint based techniques [32] and verification techniques [5]. However, despite the
efforts this problem remains open especially for the case of Java. This is the main
reason why we manually identified and report on the equivalent mutants produced by
the tools.

Another problem related to mutation testing regards the generation of redundant
mutants. These mutants do not contribute to the testing process, while at the same time
they introduce noise to the mutation score measurement. Papadakis et al. [41] exper-
imented and demonstrated that there is a good chance of drawing wrong conclusions
(approximately 60%) for arbitrary experiments when measuring test thoroughness us-
ing all mutants rather than with only the disjoint/subsuming ones. Unfortunately, the
above-mentioned result suggests that it is likely to conclude that one testing method
is superior to another one but in fact it is not. The problem of redundant mutants has
been initially identified by Kintis et al. [24] with the notion of disjoint mutants. Later
Ammann et al. [2] formalised the concept based on the notion of dynamic subsump-
tion. Unfortunately, these techniques focus on the undesirable effects of redundant
mutants and not their identification. Perhaps the only available technique that is capa-
ble of identifying such mutants is “Trivial Compiler Equivalence” (TCE) [40]. TCE
is based on compiler optimisations and identifies duplicated mutants (mutants that are
mutually equivalent but differ from the original program). According to the study of
Papadakis et al. [40], 21% of the mutants are duplicated and can be easily removed
based on compiler optimisations. All these studies identified the problems caused by
trivial/redundant mutants but none of them studied the particular weaknesses of mod-
ern mutation testing tools as we do here. Additionally, to deal with trivial/redundant
mutants we used: (1) the mutation score, (2) the disjoint mutation score, and (3) the
fault detection as effectiveness measures.

Manual analysis has been used extensively in the mutation testing literature. Yao
et al. [44] analysed 4,181 mutants to provide insights into the nature of equivalent
and stubborn mutants. Nan et al. [29] manually analysed 2,919 mutants to compare
test cases generated for mutation testing with the ones generated for various control
and data flow coverage criteria. Deng et al. [11] analysed 5,807 mutants generated by
MUJAVA to investigate the effectiveness of the SDL mutation operator. Papadakis et
al. [39] used manual analysis to study mutant classification strategies and found that
such techniques are helpful only to partially improve test suites (of low quality). Older
studies on mutant selection involved manual analysis to identify equivalent mutants
and generate adequate test suites [33].

Previous work on the differences of mutation testing frameworks for Java is due
to Delahaye and Du Bousquet [9]. Delahaye and Du Bousquet compare several tools
based on various criteria, such as the supported mutation operators, implementation
differences and ease of usage. The study concluded that different mutation testing
tools are appropriate to different scenarios. A similar study was performed by Rani
et al. [42]. This study compared several Java mutation testing tools based on a set of
manually generated test cases. The authors concluded that PIT generated the smallest
number of mutants, most of which were killed by the employed test suite (only 2%
survived), whereas, MUJAVA generated the largest number of mutants, 30% of which

26



survived.
Gopinath et al. [16] investigated the effectiveness of mutation testing tools by us-

ing various metrics, e.g., comparing the mutation score (obtained by the test subjects’
accompanying test suites) and number of disjoint/minimal mutants that they produce.
They found that the examined tools exhibit considerable variation of their performance
and that no single tool is consistently better than the others.

The main differences between our study and the aforementioned ones are that we
compare the tools based on their real fault revelation ability and cross-evaluated their
effectiveness based on the results of complete manual analysis. The manual analysis
constitutes a mandatory requirement (see Section 3) for performing a reliable effective-
ness comparison between the tools. This twofold comparison is one of the strengths
of the present paper as it is the first one in the literature to compare mutation testing
tools in such a way. Further, we identified specific limitations of the tools and provided
actionable recommendations on how each of the tools can be improved. Lastly, we
analysed and reported the number and characteristics of equivalent mutants produced
by each tool.

8 Conclusions
Mutation testing tools are widely used as a means to support research. This practice
intensifies the need for reliable, effective and robust mutation testing tools. Today
most of the tools are mature and robust, hence the emerging question regards their
effectiveness, which is currently unknown.

In this paper, we reported results from a controlled study that involved manual
analysis (on a sample of program functions selected from open source programs) and
simulation experiments on open source projects with real faults. Our results showed
that one tool, PITRV, the research version of PIT, performs significantly better than the
other studied tools, namely MUJAVA and MAJOR. At the same time our results showed
that the studied tools are generally incomparable as none of them always subsumes the
others. Nevertheless, we identified the few deficiencies of PITRV and made actionable
recommendations on how to strengthen it and improve its practice.

Overall, our results demonstrate that PITRV is the most prominent choice of muta-
tion testing tool for Java, as it successfully revealed 97% of the real faults we studied
and performed best in our manual analysis experiment.
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