
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

On the Use of Commit-Relevant Mutants

Miloš Ojdanić1 · Wei Ma1 · Thomas
Laurent · Thierry Titcheu Chekam ·
Anthony Ventresque · Mike Papadakis

Received: date / Accepted: date

Abstract Applying mutation testing to test subtle program changes, such as
program patches or other small-scale code modifications, requires using mu-
tants that capture the delta of the altered behaviours. To address this issue,
we introduce the concept of commit-relevant mutants, which are the mutants
that interact with the behaviours of the system affected by a particular com-
mit. Therefore, commit-aware mutation testing, is a test assessment metric
tailored to a specific commit. By analysing 83 commits from 25 projects in-
volving 2,253,610 mutants in both C and Java, we identify the commit-relevant
mutants and explore their relationship with other categories of mutants. Our
results show that commit-relevant mutants represent a small subset of all mu-
tants, which differs from the other classes of mutants (subsuming and hard-to-
kill), and that the commit-relevant mutation score is weakly correlated with
the traditional mutation score (Kendall/Pearson 0.15-0.4). Moreover, commit-
aware mutation analysis provides insights about the testing of a commit, which
can be more efficient than the classical mutation analysis; in our experiments,
by analysing the same number of mutants, commit-aware mutants have better
fault-revelation potential (30% higher chances of revealing commit-introducing
faults) than traditional mutants. We also illustrate a possible application of
commit-aware mutation testing as a metric to evaluate test case prioritisation.

1 co-first author, equal contribution and importance
Miloš Ojdanić · Wei Ma · Mike Papadakis
SnT, University of Luxembourg, Luxembourg
E-mail: {firstname.surname}@uni.lu

Thomas Laurent · Anthony Ventresque
Lero School of Computer Science, University College Dublin
E-mail: thomas.laurent@ucdconnect.ie, anthony.ventresque@ucd.ie

Thierry Titcheu Chekam
SnT, University of Luxembourg, Luxembourg
E-mail: thierry.titcheu.chekam@ses.com

2 Miloš Ojdanić1 et al.

Keywords mutation testing · change-relevant mutants · continuous integra-
tion · regression testing

Conflict of interest

The authors declare that they have no conflict of interest.

1 Introduction

Software systems are subject to regular modification during their life-cycle.
Modifications are usually made in order to maintain and improve the software
(fixing bugs, refactoring, or improving code quality), or to include new features.
In either case, automated testing is used as gate-keeping, i.e., to establish
confidence that the modifications did not break any of the previously developed
program functionalities.

In such scenarios, developers often assume that the previous (operational)
version of the system was stable and correct. Therefore, they are interested in
testing only the behaviour delta of the changes they performed. This means
that they want to assess the delta of behaviours between their pre- and post-
commit system versions. For such cases developers need metrics quantifying
the extent to which they have tested the error-prone program behaviours af-
fected by their changes. Unfortunately, little research has been devoted to
forming such change-aware test criteria. Change-aware test criteria would of-
fer a viable, from an economic perspective, way of dealing with the continuous
software modifications, as one would only focus on the particular program
changes or commits.

Mutation testing has long been established as one of the strongest test
criteria [50]. It operates by measuring the extent to which test suites can
distinguish the behaviour of the original program from that of some slightly
altered (syntactically altered) program versions, which are called mutants.
Testers can use mutants to design strong test cases, likely to be fault reveal-
ing [2,16] and to perform test assessment as it effectively quantifies the test
suites’ strengths [3].

Mutation testing research assumes a static nature of software, and thus it
is focused on making the mutation score metric accurate with respect to all
possible mutants that one can generate, by using a predefined set of muta-
tion operators, in a given piece code. Thus, existing research is focusing on
using specific mutant types [46]; on detecting equivalent mutants [30,44], i.e.,
mutants that cannot be killed by any test case because they are semantically
equivalent to the original program; or on eliminating redundant mutants [48,
34,31], i.e., mutants that are killed “collaterally” whenever other mutants are
killed [31] (subsumed by the subsuming mutants).

This strategy has the unfortunate effect of blindly using all possible mu-
tants without considering their relevance to the task or to the most recent

On the Use of Commit-Relevant Mutants 3

changes in question. To allow such focused testing, one should use only what we
call commit-relevant mutants, i.e., mutants interacting with the changed pro-
gram behaviours. These mutants are relevant to the program changes, meaning
that they are killed by tests that exercise the committed code and its integra-
tion to the rest of the program under test. In terms of testing, these mutants
form the change-relevant requirements and can be used to judge whether test
suites are adequate in testing commits and, if not, to provide guidance in
improving them (by creating tests that kill commit-relevant mutants).

In an attempt to form such commit-relevant mutants one could use the
entire set of mutants or those that are located on the modified code, assuming
that mutant locations reflect their utility and relevance. Unfortunately, such
solutions are imprecise since they either include large volume of noise (irrele-
vant mutants), or are insufficient to cover all possible interactions between the
unmodified and changed code. We argue that covering all interactions between
unmodified and modified code is particularly important because problematic
regression issues arise from such unforeseen interactions [8,57]. This is demon-
strated by our results, which show that the majority of the altered program
behaviours is captured by mutants located on unmodified code parts. In fact
the majority of the altered program behaviours are captured by mutants lo-
cated on unmodified code parts.

This paper forms an extended study of our previous work [42], published
at the 36th International Conference on Software Maintenance and Evolution
(ICSME), which introduced and evaluated the concept of commit-aware mu-
tation testing. Here, we extend the study by investigating the relationship
of the commit-relevant mutants with other classes of mutants, i.e., subsum-
ing and hard-to-kill mutants, and by demonstrating their use in controlled
experiments. We thus, perform a use case that evaluates the ability of Regres-
sion Test Case Prioritisation techniques to reveal commit-relevant faults. The
extended results demonstrate that commit-relevant mutants can offer useful
insights in evaluating regression testing techniques.

Overall, the contribution of the paper regards the definition of the commit-
relevant mutants and the related commit-relevant mutation-based test assess-
ment. Intuitively, a mutant is commit relevant if it defines a test requirement
(a mutant fault) that depends on the commit, i.e., the test cases that cover
this requirement (detect this mutant fault) exercise the program behaviour
altered by the commit. To ensure a testable link between the mutants and the
commits, we require the existence of an “observable dependence” between the
mutants and the committed code. This means that the presence and absence
of the mutant and the commit code imply an observable behavioural change
under some test execution.

We also show that by identifying those commit-relevant mutants one can
accurately and adequately test program changes. Perhaps more importantly,
we also demonstrate that mutation testing performed with the entire set of
mutants or with the mutants located on the committed code is insufficient
to assess how well subtle program changes have been tested. This implies
that relevant mutants also enable the study of commit-aware fault detection

4 Miloš Ojdanić1 et al.

assessment, in a sense using relevant mutants as a proxy for fault introducing
commits. This aspect is missed by the software testing literature since it mainly
focuses on using mutants as proxy of faulty program versions independently
of the program changes under test. We showcase such a case by using commit-
relevant mutants to evaluate regression test prioritisation techniques.

Taken together, the key research contributions of this present paper can
be summarised as follows:

– We define commit-relevant mutation testing, which is based on the no-
tion of commit-relevant mutants, i.e., mutants capturing the interactions
between modified and unmodified code.

– We show that commit-relevant mutants are a distinct class of mutants,
i.e., it differs significantly from the other mutant classes (subsuming and
hard-to-kill mutants) [47].

– We investigate the extent to which mutation-based test assessment met-
rics such as a) the mutation score (score that includes the entire set of
mutants), b) the delta of mutation scores between pre- and post-commit,
c) the mutation score of mutants located on the committed code, corre-
late with the commit-relevant mutation score. Our results show that all
three metrics have relatively weak correlations (less than 0.4), indicating
the need for a commit-relevant test assessment metric.

– We further examine the potential guidance given by commit-relevant mu-
tation testing by comparing the gains and losses of strategies that use the
entire set of mutants, the mutants located on the committed code and the
commit-relevant mutants. Our findings suggest that commit-relevant mu-
tants have 30% higher fault revelation ability (w.r.t. real commit-introduced
faults) than the other strategies when analysing the same number of mu-
tants.

– We illustrate a possible application of commit-aware mutation testing as a
metric to evaluate test case prioritisation.

2 Background

This section introduces background concepts, definitions, and work around
mutation analysis, different ways of classifying mutants, and test selection.

2.1 Mutation Analysis

Test criteria are metrics quantifying the extent to which systems are tested [2].
They are based on the notion of test requirements, i.e., defining what should
be tested. Depending on which test requirements are covered by a test suite, a
test criterion defines a value that reflects how well it tests the system w.r.t. to
the intended behaviour. Test criteria have been used to drive different aspects
of the testing process, such as test generation [23] or test selection [64]. The
test requirements are then used to decide which new tests are needed, or which

On the Use of Commit-Relevant Mutants 5

tests are redundant. Test criteria can also be used to assess the thoroughness
of a test suite, e.g. to decide if more effort should be devoted to testing or if
sufficient confidence in the proper behaviour of the system has been gained.
Test criteria are also used to assess other criteria [48].

Mutation analysis is a test criterion [39] that measures the capability of a
test suite to detect artificial defects. Multiple versions of the program under
test, called mutants, are created, that contain the artificial defects used as test
requirements. The ability of the test suite to differentiate the program under
test and these mutants is then measured. The artificial defects usually take
the form of small syntactic changes in the code, such as changing “if (a > b)”
into “if (a ≥ b)”.

Mutants are systematically generated, following a set of replacement rules
called mutation operators. Different mutation operators can be used in order
to tailor the mutants created, and thus the test requirements. This allows the
tester to focus on different aspects of the test suite. Similarly, these operators
can be applied only to specific parts of the program, should the tester only
want to focus on those.

Once mutants, i.e., test requirements, are created, the test suite is run
against the program under test and the mutants in order to compare their
behaviour. This behaviour is usually represented by the output of the program,
captured by test or program assertions. If a test triggers different behaviours
between the original program and a mutant, the mutant is considered to be
“killed” (the test requirement represented by this mutant is fulfilled). A test
killing a mutant not only shows that the test executed the mutant, but also
that this execution resulted in an altered state, and that this alteration was
propagated to the output of the program. If the original program and a mutant
behave the same for all tests considered, the mutant is said to be “live”. The
thoroughness of a test suite is measured using the “Mutation Score” (MS), the
ratio of mutants killed by test suites over all killable mutants created.

2.1.1 Different Categories of Mutants: Killing all mutants is not feasible, as
some mutants are semantically equivalent to the original program, i.e., will
behave the same way for all possible inputs, although they are syntactically
different. These mutants are called equivalent, while mutants for which there
exists an input for which their behaviour is different from the original pro-
gram’s, are said to be killable.

When using mutation analysis to measure the thoroughness of a test suite,
we do not want to take equivalent mutants into consideration, as even a per-
fect test suite will not kill them. Equivalent mutants have proven to be a
major challenge in the area of mutation testing [50], as identifying them is an
undecidable problem [9].

Even among killable mutants, not all mutants have the same value as test
requirements. Some mutants constitute very easy requirements, that can be
captured by almost any test, while some require specific tests to be crafted to
kill them. This difference is captured by the notion of hard to kill mutants,
based on the number of tests killing the mutant among the tests that reach it.

6 Miloš Ojdanić1 et al.

A mutant is hard to kill if it is killed only by a small proportion of the tests
that reach it. On the other hand, if most tests reaching the mutant also kill
it, it is easy to kill.

Interestingly, many killable mutants are equivalent to others, introducing
skew in the Mutation Score. The studies of Papadakis et al. [49] and Kintis
et al. [30] have shown this to be problematic and suggest getting rid of these
“duplicated” mutants (mutants equivalent to others) in order to not count the
same test requirement multiple times.

This idea of mutant redundancy is further captured by the notion of mutant
subsumption [31,33,48]. A mutant M1 subsumes a mutant M2 if killing M1

implies killing M2, i.e., if fulfilling the requirement represented by M1 means
fulfilling the requirement represented by M2. More formally, let M1, M2 be two
observed mutants, T the universe of possible tests, and T1 ⊆ T and T2 ⊆ T
the sets of tests that kill M1 and M2, respectively. M1 subsumes M2 when
T1 6= ∅, T2 6= ∅, and T2 ⊆ T1.

Using the subsumption relationship, Ammann et al. define the minimal
mutant set [1], the smallest set of mutants that subsumes the set of all analysed
mutants, i.e., the set of mutants with the least redundancy. Killing all minimal
mutants ensures killing all mutants, i.e., minimal mutants represent the same
test requirements as all mutants, but greatly reduce the number of mutants
to consider, and thus the cost of mutation analysis.

As determining true subsumption relationships is not possible (it is not
possible to run all possible tests), the notion of dynamic subsumption approx-
imates the subsumption relationship w.r.t. a given test suite. In this work,
subsuming and minimal mutants are based on dynamic subsumption.

2.1.2 Regression Mutation Testing: Applying mutation during regression test-
ing has long been proposed. In particular, Cachia et al. [10] proposed applying
change-based mutation testing by considering only the mutants located on the
altered code. Zhang et al. [67] proposed Regression Mutation Testing, a tech-
nique that speeds up mutant execution on evolving systems by incrementally
calculating the mutation score (and mutant status, killed/live). As such, they
assume that testers should use the entire set of mutants when testing evolving
software systems.

Existing mutation testing tools, such as Pitest [17], include some form of in-
cremental analysis in order to calculate the mutation score (and mutant status,
killed/live) of the entire systems or class under test. Petrovic and Ivankovic [53]
use mutation within code review phase, by randomly picking some mutants
located on the altered code areas.

From the above discussion it should be clear that existing techniques are
either targeting the entire set of mutants or those (or some) located on the
modified code areas. In the following we evaluate the appropriateness of this
practice w.r.t. to changed behaviours.

On the Use of Commit-Relevant Mutants 7

2.2 Test Case Prioritisation

Testing is a key process in Software Engineering, but can also be a very ex-
pensive one. Test case prioritisation aims at ordering the different tests that
are executed against the system in order to achieve some desired goal more
efficiently. Tests are ordered to reveal a fault as early as possible in the ex-
ecution of the test suite, providing faster feedback to testers and developers
[64].

Much work has been done on test case prioritisation in the context of
regression testing [27,64,29]. In this context, tests can be ordered based on
their contribution to some test criterion on the previous version of the system,
either totally or additionally [66]. Examples of test criteria used for regression
test case prioritisation include code coverage [18], logic coverage [22], and also
mutation score [60].

Mutation analysis has also been used as a metric to evaluate and compare
different test prioritisation methods [27]. The different tests orderings are then
compared based on how much each new test execution improves the mutation
score, i.e., how fast the best possible mutation score is achieved by an ordering.

3 Commit-Relevant Mutants

Informally, a commit-aware test criterion should reflect the extent to which
test suites have tested the altered program behaviours. This means that test
suites should be capable of testing and making observable any interaction
between the altered code and the rest of the program. We argue that mutants
can capture such interactions by considering both the behavioural effects of the
altered code on mutants’ behaviour and visa versa. This means that mutants
are relevant to a commit when their behaviour is changed by the regression
changes. Indeed, changed behaviour indicates a coupling between mutants and
regressions, suggesting relevance.

3.1 Rationale Behind Commit-Aware Mutation Testing

Since relevant mutants form commit-aware test requirements they should be
killed by tests that exercise/test the committed code and its integration to
the rest of the program. This means that relevant mutants should be killed by
tests that are capable of detecting, i.e., making observable, any potential fault
that depends on the commit.

To identify such mutants we check, for each mutant, whether there is at
least one test case that can make observable any behavioural difference be-
tween the mutant and:

1. the program version that includes only the mutant (mutant in the pre-
commit version).

8 Miloš Ojdanić1 et al.

2. the program version that includes only the committed changes (post-commit
version).

These two conditions ensure the presence of “observable dependencies” be-
tween the mutant and the committed code since the removal of either of them
impacts (changes) the behaviour of the program under the same test execution.
Figure 1 illustrates the use of the above conditions. In particular, given the
pre- and post-commit versions, and a mutant located on lines unmodified by
the commit, denoted as pre-M and post-M, we can identify relevant mutants
by checking whether there is any test case (if there exists at least one) that
can make observable the differences between pre-M and post-M and between
post-commit and post-M.

More formally:

– let m be a mutant of the post-commit version of the program under anal-
ysis.

– let t be a test case from a set T of all possible test cases for this program.
– let Ov(t) be an execution function of a test t on a program version v. Where
v takes format of:
– post - the post-commit version of the program.
– mpost - m mutated post-commit version of the program.
– mpre - m mutated pre-commit version of the program.

– let denote A as a set of commit non-relevant mutants.
– let denote B as a set of commit-relevant mutants.

Definition 1 Commit Non-Relevant mutant

m ∈ A := ∀ (t) ∈ {T} : Ompost(t) = Opost(t) ∨Ompost(t) = Ompre(t) (1)

Definition 2 Commit Relevant mutant

m ∈ B := ∃ (t) ∈ {T} : Ompost(t) 6= Opost(t) ∧Ompost(t) 6= Ompre(t) (2)

3.2 Demonstrating Example

Figure 2 illustrates the concept of relevant mutants. The example function
takes 2 arguments (integer arrays x and y of size 3), sorts them, makes some
computations, and outputs an integer. The commit modification alters the
statement at line 7 by changing the value assigned to the variable L from 1
to 0, denoted with the pink-highlighted line (starting with ‘-’) for the pre-
commit version and green-highlighted line (starting with ‘+’) for the post-
commit version.

On the Use of Commit-Relevant Mutants 9

Fig. 1: A mutant is relevant if it impacts the behaviour of the committed
code and the committed code impacts the behaviour of the mutant. This

means that there is at least one test case (test - t) that can distinguish both
the behaviours of Pre-M from Post-M and Post from Post-M.

Mutant M1 (Relevant)

int func (int x[3], int y[3]) {
1. int L, R, vL = 0, vR = 0;
2. sort(x); sort(y);
3. R = 2; // R = 0;
4. if (x[R] > y[R]) {
5. vR = 1;
6. } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8. if (x[L] > y[L])
9. vL = 1;
10. }
11.
12. if (x[0] > y[2])
13. return -1;
14.
15. return vL + vR;
}

Mutant M2 (Non-relevant)

int func (int x[3], int y[3]) {
1. int L, R, vL = 0, vR = 0;
2. sort(x); sort(y);
3. R = 2;
4. if (x[R] > y[R]) {
5. vR = 1; // vR = 0;
6. } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8. if (x[L] > y[L])
9. vL = 1;
10. }
11.
12. if (x[0] > y[2])
13. return -1;
14.
15. return vL + vR;
}

Mutant M3 (Non-relevant)

int func (int x[3], int y[3]) {
1. int L, R, vL = 0, vR = 0;
2. sort(x); sort(y);
3. R = 2;
4. if (x[R] > y[R]) {
5. vR = 1;
6. } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8. if (x[L] > y[L])
9. vL = 1;
10. }
11.
12. if (x[0] > y[2]) // if (x[0] >= y[2])
13. return -1;
14.
15. return vL + vR;
}

No test can execute both the
mutated statement (line 5) and the
modification (line 7) in both pre and

post commit versions

Any test that kills the mutant post-commit must fulfil
the condition 𝑥𝑥 0 == 𝑦𝑦[2]. Any test that fulfil the
above condition will make the mutant output -1 for

pre and post commit versions. Thus no test can make
the mutation interact with the modification.

For test input: x = {0, 3 ,4} and y = {0, 2, 3},
the return codes are following:

• Mutant post-commit: 0
• Mutant pre-commit: 1
• Original post-commit: 1

≠
≠

Fig. 2: Example of relevant and non-relevant mutants. Mutant 1 is relevant
to the committed changes. Mutants 2 and 3 are not relevant.

The sub-figure on the left side shows mutant M1. M1 is characterised by
the mutation that changes the statement R = 2 into R = 0 in line 3 (the C
language style comment represents the mutant’s statement). We observe that,
with an input t such that t : x = {0, 3, 4}, y = {0, 2, 3}, the original program
post-commit has an output value of 1, the mutant M1 pre-commit outputs 1
and the mutant M1 post-commit outputs 0. Based on the definition of relevant
mutants, M1 is relevant to the commit modification.

The sub-figure in the center shows mutant M2 (mutation changes the state-
ment vR = 1 into vR = 0 in line 5). We observe that the mutated statement
(in line 5) and the modification (in line 7) are located in two mutually un-
reachable nodes of the control-flow graph. Thus, no test can execute both the
changed statement and M2. M2 is not relevant to the commit modification.

10 Miloš Ojdanić1 et al.

The sub-figure on the right side shows mutant M3 (mutation changes the
expression x[0] > y[2] into x[0] >= y[2] in line 12). We observe that some
tests execute both the commit modification and the mutated statement. How-
ever, no test can kill M3 in the post-commit version and at the same time
differentiate between the outputs of the pre-commit and post-commit versions
of mutant M3. The reason is that any test that kills M3 in the post-commit
version must fulfil the condition x[0] == y[2]. Any such test makes both the
pre- and post-commit versions of M3 to output −1, thus, not fulfilling the
condition to be relevant. Since, there exists no such test, M3 is not relevant
to the commit modification.

Note that in case a modification inserts statements, all killable mutants
(in the post-commit version) located on these statements (new statements)
are relevant to the modification. In case of deletion (modifications remove
statements), the mutations located on these statement do not exist in the
post-commit version, and thus, are not considered.

4 Experimental Setup

4.1 Research Questions

We start our analysis by recording the prevalence of commit-relevant mutants
in code commits. Thus, we ask:

RQ1: (Mutant distributions) What ratio of mutants is relevant, is located on
changed code, and is located on non-changed code?

Answering this question will help us understand the extent of “noise” in-
cluded in the mutation score and will provide a theoretical upper bound on
the application cost of commit-aware mutation testing.

As we shall show, the majority of the mutants are irrelevant to the com-
mitted code, indicating that using all mutants is sub-optimal in terms of ap-
plication cost. Perhaps more interestingly, using such an unbalanced set could
result in a score metric with low precision. Therefore, we need to check the
extent to which mutation score is adversely influenced by irrelevant mutants.
Thus, we investigate:

RQ2: (Metrics relation) Does the mutation score (MS), computed based on
all mutants, on mutants located on the committed/modified code, and the
delta of the pre- and post- commit MS correlate with the relevant mutation
score (rMS)?

Knowing the level of these correlations can provide evidence in support (or
not) of the commit-aware assessment (i.e., the extent to which mutation score
reflects the level at which the altered code has been tested). In particular,
in case there is a strong correlation, we can infer that the influence of the
irrelevant mutants is minor. Otherwise, the effects of the irrelevant mutants
may be distorting.

On the Use of Commit-Relevant Mutants 11

While the correlations reflect the influence of the irrelevant mutants on
the assessment metric, they do not say much about the extent to which irrele-
vant mutants can lead to tests that are relevant to the changed behaviours (in
case mutants are used as test objectives). In other words, it is possible that
by killing random mutants (the majority of which is irrelevant), one can also
kill relevant mutants. Such a situation happens when considering the relation
between mutants and faults, where mutant killing ratios have weak correla-
tion with fault detection rates but killing mutants significantly improves fault
revelation [51]. Hence we ask:

RQ3: (Test selection) To what extent does the killing of random mutants
result in killing commit-relevant mutants?

We answer this question by simulating a scenario where a tester analyses
mutants and kills them. Thus, we are interested in the relative differences
between the relevant mutation scores when testers aim at killing relevant and
random mutants. We use the random mutant selection baseline as it achieves
the current best results [34,12]. We compare here on a best effort basis, i.e., the
commit-relevant mutation score achieved by putting the same level of effort,
measured by the number of mutants that require analysis. Such a simulation
is typical in mutation testing literature [16,34] and aims at quantifying the
benefit of one mutant selection approach over another.

Answering the above question provides evidence that killing relevant mu-
tants yields significant advantages over the killing of random mutants. While
this is important and demonstrates the potential of killing commit-relevant
mutants in terms of relevance, still the question of actual test effectiveness
(actual fault revelation) remains. This means that it remains unclear what
the fault revelation potential of killing commit-relevant mutants is when the
commit is fault-introducing. Therefore we seek to investigate:

RQ4: (Fault Revelation) How does killing commit-relevant mutants compare
with killing of random mutants w.r.t. to (commit-introduced) fault revela-
tion?

To answer this question we investigate the fault revelation potential of
killing commit-relevant mutants based on a set of real fault-introducing com-
mits. We follow the same procedure as in the previous research question (RQ3)
in order to perform a best effort evaluation. While answering the question
about mutant’s fault revelation ability, and showing their usefulness and prac-
ticality in finding faults, we would like to know whether commit-aware mutants
can be found through different classes of mutants. If the majority of the rele-
vant mutants are also part of other mutant classes, it indicates that the other
classes can be used as a proxy to relevant mutants. This is important since
previous research [55,66,19,27] heavily relied on other mutant classes to eval-
uate regression testing techniques. Moreover, by investigating the relationship
with other mutant classes we can better understand the nature of relevant mu-
tants and their fundamental differences (and similarities) with other classes.
In particular, by investigating the relationship with Subsuming mutants, we

12 Miloš Ojdanić1 et al.

can see how many subsuming mutants are relevant, which represents the rel-
evant behaviours captured by the mutants over all behaviours, i.e., ratio of
relevant over all mutants after minimising the noise from redundant mutants.
This allows us to have a better understanding of the discrepancies and poten-
tial wasted effort caused by irrelevant mutants. Similarly, the comparison with
hard-to-kill mutants can show whether relevant mutants are not that difficult
to kill and somehow distinct from the other classes. Thus, we are engaged in
knowing:

RQ5: (Mutants Classes) How different the relevant mutants are to the classes
of subsuming and hard-to-kill mutants?

We answer this question by investigating the relationship and overlap
among the three sets of relevant mutants, hard-to-kill mutants, and subsum-
ing mutants. As a reminder for our reader, hard-to-kill mutants are the set of
mutants killed by few tests.

Overall, answering the above questions will improve the understanding of
the potential of the cost-effectiveness application of commit-aware mutation
testing.

4.2 Analysis Procedure

We performed mutation testing on the selected subject using all the mutation
operators supported by Mart [14] and Pitest [17] (the mutation testing tools we
use). For the C programs, before conducting and running any experiment we
discarded all the trivially equivalent mutants (including the duplicated ones),
using the TCE method [30,49] in order to reduce their impact on our results.
This is an important step in order to avoid influence from trivially equivalent
mutants that could anyway be reduced using the TCE method. Therefore, we
applied our analysis on the resulting sets of mutants i.e., those that are not
trivially equivalent.

Identifying relevant mutants requires excessive manual analysis, thus we
approximate them based on test suites (this is a typical experimental procedure
[1,34,50]). To do so we composed large test pools, which approximate the input
domain. The pools are composed of the post-commit version developer tests
(mined from the related repository). For C programs we augment the pools
with automatically generated tests, similarly to the process followed by Kurtz
et al. [34] and Papadakis et al. [50].

Using the test pools, we execute all the mutants (on both pre- and post-
commit versions) and construct the mutation matrix that records the test
execution output of each test on each mutant. For C programs, the output
is the standard output produced when running the test, while for the Java
programs it is the status (pass/fail) of the test run.

By using this information, i.e., test execution outputs on every related ver-
sion, we approximate the relevant mutant set based on Algorithm 1. In the

On the Use of Commit-Relevant Mutants 13

algorithm, the function calls postCommitOrigOutput, postCommitMutOutput
and preCommitMutOutput compute the output of the execution of test case
‘test’ on the post-commit original program, post-commit version of mutant
‘mut’ and pre-commit version of mutant ‘mut’, respectively. In particular, in
C the function calls postCommitOrigOutput, postCommitMutOutput and pre-
CommitMutOutput return the exact concrete value of a test case output when
executed on a mutant or the original program. While in Java they provide
standard unit-level oracle pass/fail output. The generated output of the exe-
cution of test case ‘test’, on each version of a software (post-commit version,
mutant M generated on the pre- and post-commit version) is compared be-
tween the versions to identify a difference in behavior between mutant pre-M
and post-M.

Besides the relevant mutant set, we also extract the modification mutant
set, made of mutants that are located on a statements modified or added
by the commits. This set is computed by extracting the modified or added
statements from the commit diff and collecting the mutants that mutate those
statements. Note that, by definition, the killable modification mutants are also
relevant mutants, as their pre-commit output is not defined, and thus different
from their post-commit output.

Therefore, we have a set of all the mutants generated on a post-commit ver-
sion of a program (post-M), which can be divided into two subsets; those that
are identified as commit-relevant by our approach (commit-relevant) and those
that are identified as commit-irrelevant (non-relevant). The set of post-commit
mutants located on statements modified or added by regression changes forms
the (modification) subset of mutants. As already mentioned the modification
set of mutants includes both relevant and irrelevant mutants. In RQ2, we want
to know the correlations between the mutation scores of the aforementioned
mutant sets. To do so, we select arbitrary test sets of various sizes and record
the mutation scores on each mutant set and compute their correlations.

Algorithm 1: Approximate Relevant Mutants Set
Data: TestSuite, Mutants
Result: Relevant Mutants
RelevantMuts← ∅;
for mut ∈Mutants do

for test ∈ TestSuite do
origV 2← postCommitOrigOutput(test);
mutV 2← postCommitMutOutput(test,mut);
mutV 1← preCommitMutOutput(test,mut);
if origV 2 6= mutV 2 ∧mutV 2 6= mutV 1 then

RelevantMuts← RelevantMuts ∪ {mut};
break;

end

end

end
return RelevantMuts ;

14 Miloš Ojdanić1 et al.

In RQ2 we arbitrary pick sets of tests representing 10%, 20%, ..., 90% of
the test pool. As these sets are randomly sampled we selected multiple sets
(500 for C and 100 for Java) per size considered and per program commit
(each subset of test can be seen as a testing scenario). For every test set, we
computed the mutation score for each of the three mutant sets. We name as
MS, rMS and mMS the mutation scores for the whole mutant set, relevant
mutant set and modification mutant set, respectively. The mutation scores are
computed on the post-commit versions and using the mutation matrix. Thus,
for each commit and each test size, we have three statistical variables (MS,
rMS and mMS), whose instances are the corresponding mutation scores for
each test set.

Having collected the data for the statistical variables MS, rMS and mMS,
we compute the correlations between rMS and MS as well as the correlation
between rMS and mMS. If the correlation between rMS and MS (mMS) is
high, it means that MS (mMS) can be used as a proxy fo rMS. Otherwise,
MS (mMS) is not a good proxy for rMS and thus, rMS should be targeted
directly.

We also computed, for each test set, the mutation score in the pre-commit
version. Then we compute the absolute change of mutation score (named
deltaMS), on the analyzed mutant set, incurred by a commit modification
(delatMS = |MSpost−commit −MSpre−commit|), and we compute the corre-
lation between rMS and deltaMS. A strong correlation would mean that the
absolute change of mutation score between versions is a proxy for rMS. Weak
correlation would mean that rMS cannot be represented by delatMS.

In RQ3, we simulate a scenario where a tester selects mutants and designs
tests to kill them. This is a typical evaluation procedure [34,50] where a test
that kills a randomly selected mutant (from the studied mutant set) is selected
from the test pool. This test is then used to determine the killed mutants,
which are discarded from the studied mutant set. The process continues (by
picking the next live mutant) until all mutants have been killed. If a mutant
is not killed by any of the tests, we treat it as equivalent. This means that our
effort measure is the number of mutants picked (either killable or not) and
effectiveness measure is the relevant mutation score. Since we perform a best-
effort evaluation we focus on the initial few mutants (up to 50) that the tester
should analyse in order to test the commits under test. We repeat this process
(killing all mutants) 100 times and compute the relevant mutation score.

For RQ4, we repeat the same procedure as in RQ3. However, instead of
computing the relevant mutation score, we compute the fault revelation prob-
ability.

For RQ5, we calculate the overlap of three different categories of mutants:
relevant mutants, hard-to-kill mutants, and subsuming mutants. We compute
the set of subsuming mutants following the standard subsumption theory de-
scribed in Section 2.1.1. As typically performed, we use the available tests to
compute the subsumption relationships [50,34]. Based on these relationships,
we determine the subsuming mutants set. When it comes to the set of hard-to-
kill mutants, we consider as hard-to-kill any mutant killed by less than 2.5%

On the Use of Commit-Relevant Mutants 15

of covering tests, i.e., a mutant M is hard-to-kill if and only if less than 2.5%
of the tests that cover M also kill M . For analysis of our results, we calcu-
late relation between the corresponding sets of mutants, following percentage
formula: sample/population × 100.

4.3 Statistical Analysis

We perform a correlation analysis to evaluate whether the mutation score,
when considering all mutants, correlates with the relevant mutation score. To
this end, we use two correlation metrics: Kendall rank coefficient (τ) (Tau-
a) and Pearson product-moment correlation coefficient (r). In all cases, we
considered the 0.05 significance level.

The Kendall rank coefficient τ , measures the similarity in the ordering
of the studied scores. We measure the mutation score MS and the relevant
mutation score rMS when using test suites of size 10%, ..., 90% of the test
pools. The Pearson product-moment correlation coefficient (r) measures the
covariance between theMS and rMS values. These two coefficients take values
from -1 to 1. A coefficient of 1, or -1, indicates a perfect correlation while a
zero coefficient denotes the total absence of correlation.

To evaluate whether the achieved mutation scores MS and relevant mu-
tation scores rMS are significantly different, we use a Mann-Whitney U Test
performed at the 0.05 significance level. This statistical test yields a proba-
bility called p-value which represents the probability that the MSs and rMS
are equal. Thus, a p-value lower than 0.05 indicates that the two metrics are
statistically different. We use paired and two-tailed U test, to account for the
different commits and programs.

4.4 Program Versions Used

To answer RQs 1-3 we used the C programs of GNU Coreutils1, used in many
existing studies [32,13,11]. GNU Coreutils is a collection of text, file, and
shell utility programs widely used in Unix systems. The whole code-base of
Coreutils is made of approximately 60,000 lines of C code2. In order to obtain
a commit benchmark of Coreutils programs we used to following procedure
to mine recent commits from the Coreutils github repository. (1) We set the
commit date interval from year 2012 to 2019. This resulted in 5,000 commits
considered. (2) Next, we filtered out the commits that do not alter source
code files. This resulted in 1,869 commit remaining. (3) Then, we only kept
the commits that affect only the main source file of a single program (This
enable better control of test execution, because other programs of Coreutils
are often used to setup the test execution of a tested program). (4) After that,

1 https://www.gnu.org/software/coreutils/
2 Measured with cloc (http://cloc.sourceforge.net/)

16 Miloš Ojdanić1 et al.

Table 1: C Test Subjects

Benchmark #Programs #Commits # Mutants #Test cases

CoREBench [7] 6 13 154,396 8,828

Benchmark-1 13 34 338,390 11,866

we filtered out commits that are very large (commits whose modification has
an edit actions of more than 5 according to GumTree [21]). This resulted in
218 commits. (5) Due to the large execution time of the experiments, approx. 2
weeks of CPU time per commit, we randomly sampled 34 commits among the
remaining commits for the experiments. This constitutes our Benchmark-1.

In order to further strengthen our experiment and answer RQ4, we also
use 13 commits from the CoREBench [7] that introduce faults. We selected
these commits to validate the fault revelation ability of relevant mutants. Since
we approximate relevant mutants, we needed commits where automated tests
generation frameworks could run. Thus, we limit ourselves to the 18 fault in-
troducing commits of Coreutils that we can run with Shadow symbolic execu-
tion [32]. Among these faults, two were discarded due to technical difficulties in
compiling the code (the build system uses very old versions of the build tools).
Three faults were discarded due to the excessively high required execution
time to run the mutants (we stopped after 45 days).

Table 1 summarizes the information about the C language benchmarks
used in the experiments.

To answer RQs 1-3, we also consider a set of commits from well-known
and well-tested Java programs. We extract these commits from projects in
the Apache Commons Proper repository3, a set of reusable Java component
projects, from Joda Time4, a time and date library, and Jsoup5, an HTML
manipulation library. For each of the projects, we manually gathered the most
recent commits meeting the following conditions from the project’s history:
(1) only source code is modified, no modification to configuration files, (2)
the commit introduces a significant change, not a trivial one such as a typo
fix, (3) test contracts are not modified, in order to meaningfully compare
pre- and post-commit outputs and (4) both pre- and post-commit versions
of the project build successfully. Overall, we gathered 36 commits, Table 2
summarises information about the commits used from each project.

4.5 Mutation Mapping Across Versions

As mutation testing tools generate mutants for a given program version instead
of regression pairs, we need to identify the common mutants between the two

3 https://commons.apache.org/
4 https://github.com/JodaOrg/joda-time/
5 https://github.com/jhy/jsoup

https://commons.apache.org/
https://github.com/JodaOrg/joda-time/
https://github.com/jhy/jsoup

On the Use of Commit-Relevant Mutants 17

Table 2: Java Test Subjects

Project # Commits # Mutants # Test cases

commons-cli 9 61,419 3,247

commons-collections 5 323,584 55,076

commons-io 3 105,181 3,972

commons-net 6 345,130 1,478

joda-time 5 561,782 20,962

jsoup 8 330,125 4,985

versions. In other words, we need to map each mutant from its pre- to post-
commit version of the program.

To establish such a mapping in the case of C programs, we unify the commit
modifications into a single program, as done in the literature [32], and apply
any standard (unmodified) mutation tool to generate the mutants. The code
unification of the commit modification is done through annotation that has
no side-effect. The annotations are made through a special function called
“change” that takes 2 arguments/values (the arguments are the value of the
pre-commit and post-commit versions, respectively) and return one of the two
values.

The annotations are manually inserted in the program, according the se-
mantics presented in previous studies [32].

Note that the statement insertion can be annotated by wrapping the in-
serted statement with if(change(false, true)); and a statement deletion can
be annotated by wrapping the deleted statement with if(change(true, false)).

The choice of the version to use, for each mutant, is decided at runtime (by
specifying the version to use through an environment variable recognizable by
the change function).

For the Java programs, we perform the mapping of mutants from both sets
of mutants of pre- and post- commit versions and the commit diff. First we
start by generating the mutants for both pre- and post-commit versions of the
program using the mutation tool. We then map pre- and post- commit line
numbers by parsing the commit diff, such as that we can identify which lines
have been altered between the versions. Then, we use this mapping of altered
line numbers to map pre- and post-commit mutants: using the line number,
bytecode instruction number and mutation operator of the mutants to match
both sets. We adopt this way for the Java programs in order to avoid making
drastic changes on Pitest (the mutation testing tool we use).

18 Miloš Ojdanić1 et al.

4.6 Mutation Testing Tools and Operators

As test suites are needed in our experiment, we use the developer tests suites
for all the projects that we studied. These were approximately 4,194 tests in
total for C programs.

To strengthen the test suites used in our study, we augment them in two
phases. First, we use KLEE [11], with a robust timeout of 2 hours, to perform
a form of differential testing [20] called shadow symbolic execution [32], which
generates 234 test cases. Shadow symbolic execution generates tests that ex-
ercise the behavioural differences between two different versions of a program,
in our case the pre-commit and the post-commit program versions.

In order to also expose behavioural difference between the original program
and the mutants, we used SEMu [13], with a robust timeout of 2 hours, to
perform test generation to kill mutants in the post-commit program versions.
SEMu generates 17,915 test cases.

These procedures resulted in large test suites of 22,343 test cases for C
programs in total. Since we compare program versions, we use the programs
output as an oracle. Thus, we consider as distinguished or killed, every mutant
that results in different observable output than the original program.

We use Mart [14], a mutation testing tool that operates on LLVM bitcode,
to generate mutants. Mart implements 18 operators (including those supported
by modern mutation testing tools), composed of 816 transformation rules.

To reduce the influence of redundant and equivalent mutants, we enabled
Trivial Compiler Equivalence (TCE) [30,49,26] in Mart to detect and re-
move TCE equivalent and duplicate mutants.TCE detected 13,322 and 460,072
equivalent and redundant mutants.

For the Java programs, we use the developer test suites available. We per-
form mutation analysis using Pitest[17], a state of the the art mutation testing
tool that mutates JVM bytecode. We use all mutation operators available in
Pitest, which are described in [36].

5 Results

5.1 RQ1: Relevant mutant distribution

We start our analysis by examining the prevalence of commit-relevant mutants,
i.e., mutants that affect the altered program behaviours. Figure 3 records
the distribution of the relevant and non-relevant mutants among the studied
commits. Based on these results we see that only a small portion of the mutant
population produced by the selected mutation operators is actually relevant.
This portion ranges from 0.5% to 47%, among which 3.6% is located on the
changed program lines, while the rest is located on the rest of the code. For
the large portion, it is possible to happen when the source code is not large,
and the change is located in the crucial position.

On the Use of Commit-Relevant Mutants 19

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f M
ut

an
ts

Non-Relevant Mutants
Relevant Mutants outside Modification
Relevant Mutants in Modification

(a) C programs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Commit ID

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f M
ut

an
ts

Non-Relevant Mutants
Relevant Mutants outside Modification
Relevant Mutants in Modification

(b) Java programs

Fig. 3: The distribution of killable, non-relevant, relevant outside the
modification and relevant on the modification mutants among the studied

commits.

Interestingly, the presence of so many “irrelevant” mutants, can have major
consequences when performing mutation testing. Such consequences are a dis-
torting effect on the accuracy of the mutation score, and a waste of resources
when executing and trying to kill non-relevant to the commit mutants. We
further investigate these two points in the following sections.

5.2 RQ2: Relevant mutants and mutation score

Figure 4 visualizes our data; each data point represents the mutation score and
relevant mutation score of a selected test suite. As can be seen from the scatter
plots, there is no visible pattern or trend among the data. We can also see that
there is a large variation between mutation scores and relevant mutants scores
in almost all the cases. These observations indicate that the examined variables
differ significantly. In other words, one cannot predict/infer one variable using
the other one. To further explore the relationship between mutation score
and relevant mutation score within our data we perform statistical correlation
analysis.

Finding a strong correlation would suggest that the two metrics have sim-
ilar behaviours (an increase or decrease of one implies a relatively similar
increase or decrease of the other). Figure 5 displays the results for the two
correlation coefficients that have statistically significant values for randomly
selected test suites (from our test suite pool) of different sizes6. Interestingly,
we observe that most of the correlations are relatively weak with their major-
ity ranging from 0.15 to 0.35. Additionally, we see that both coefficients we
examine are aligned, indicating a weak relationship when either ordering test
suites or considering their score differences.

One may assume that the relevant mutation score may be well approxi-
mated by the mutants that are located on the modified code, assuming that
mutants’ location reflects their utility and relevance. Similarly, one may as-
sume that the commit-relevant score could be approximated by the delta of
the pre- and post-commit mutation scores. We investigate these cases and find

6 We observe similar trends with Pearson correlation. Due to lack of space, Pearson cor-
relation results can be found in the accompanying website.

20 Miloš Ojdanić1 et al.

0.0
0.2
0.5
0.8
1.0

0.0
0.2
0.5
0.8
1.0

0.0
0.2
0.5
0.8
1.0

0.0
0.2
0.5
0.8
1.0

0.0 0.2 0.5 0.8 1.0
0.0
0.2
0.5
0.8
1.0

0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0
MS

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S

(a) C programs

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

0.0 0.2 0.5 0.8 1.0
0.0

0.2

0.5

0.8

1.0

0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.00.20.50.81.00.0 0.2 0.4 0.6 0.8 1.0
MS

0.0

0.2

0.4

0.6

0.8

1.0

RM
S

(b) Java programs

Fig. 4: The relationship between Mutation Score and Relevant Mutation
Score.

that most of the correlations are relatively weak with their majority ranging
from -0.1 to 0.1.

Overall, our results indicate that irrelevant mutants have a major influ-
ence on the mutation score calculation, and that using the overall mutation
score does not reflect the actual value of interest, i.e., how well the altered
behaviours are tested, which is represented by relevant mutation score (rMS).
Approximating the rMS using either the deltaMS or the mutants of the al-
tered lines is also not sufficient. Hence, our results suggest that MS and other
direct metrics are not good indicators of commit-related test effectiveness. We
envision that future research should develop techniques capable of identifying
relevant mutants at testing time, i.e., prior to any test generation and mutant
analysis, in order to support testers.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Proportion of Test Suite

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ke
nd

al
l C

or
re

la
tio

n

RMS and MS

(a) C programs

10% 20% 30% 40% 50% 60% 70% 80% 90%
Proportion of Test Suite

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ke
nd

al
l C

or
re

la
tio

n

RMS and MS

(b) Java programs

Fig. 5: Correlation between Mutation Score and Relevant Mutation Score for
different test suite sizes on different languages.

On the Use of Commit-Relevant Mutants 21

5 10 15 20 25 30 35 40 45 50
Number

0

20

40

60

80

100

Ki
lle

d
Ra

tio
 o

f R
el

ev
an

t M
ut

an
ts

, %

Random
Relevant
Modification

(a) C programs

5 10 15 20 25 30 35 40 45 50
Number

0

20

40

60

80

100

K
ill

ed
 R

at
io

 o
f R

el
ev

an
t M

ut
an

ts
, %

Random
Relevant
Modification

(b) Java programs

Fig. 6: Test suite improvement of mutation-based testing with random
(traditional mutation) and relevant mutants.

Table 3: Â12. rMS when aiming at Relevant, Random and Modification
related mutants.

#Mutants 5 10 20 30 40 50

Relevant-Random 0.90 0.95 0.98 0.98 0.98 0.97

Relevant-Modification 0.89 0.96 0.99 0.99 0.99 0.99

5.3 RQ3: Test Selection

Recent research has shown that mutation testing is particularly effective at
improving test suites and revealing faults (guiding testers to design test cases
that reveal faults), while at the same time mutation score is weakly correlated
with fault detection [51]. In view of this, it is possible that despite the weak
correlations we observe in our case, traditional mutation could successfully
guide testers towards designing tests that collaterally kill relevant mutants.

Results are recorded in Figure 6 for the first 1-50 mutants to be analysed by
the tester. We observe a large divergence (approximately 50%-60%) between
the random, commit-based and relevant mutants. This suggests that by ana-
lyzing mutants in interval of 5, from selected 5 mutants to selected 50 mutants
at random, one would miss approximately 60% and 50% of commit-relevant
mutants for C and Java programming languages, respectively. This difference
is statistically significant and with large effect size (Effect Size values are
recorded on Table 3). Moreover, what we can observe that as we start increas-
ing the number of analyzed mutants (5-50 mutants), the difference between
the killed ratio of relevant mutants decreases. This is expected since putting
more effort essentially results in selecting more mutants thereby increasing
the chances to select some relevant. Taking together the weak correlations we
found in the previous section with these results, we conclude that traditional
mutation testing is sub-optimal and cannot be used to assess or guide (in a
best-effort basis) the testing of committed code. Therefore, to support prac-
titioners, future research should aim at identifying and using commit-relevant
mutants. Similarly, controlled experiments should be based on relevant mu-
tants when aiming at assessing change-aware test effectiveness.

22 Miloš Ojdanić1 et al.

Table 4: Â12. Fault revelation when aiming at Relevant, Random and
Modification related mutants.

% Relevant mutants analysed 10% 20% 50% 75% 100%

Relevant-Random 0.55 0.59 0.64 0.66 0.64

Relevant-Modification 0.57 0.59 0.69 0.73 0.70

5.4 RQ4: Fault Revelation

To demonstrate the importance of commit-aware mutation testing, we further
compare the ability of the traditional mutants and commit-relevant mutants
to reveal commit-introduced faults (real faults). We follow the same procedure
as in the previous section but evaluate w.r.t. to the rate of faults revealed by
the selected test suites.

The fault revelation results are depicted in Figure 7. From this data, we
can see that a significant fault revelation difference (approximately 30-40%)
between the compared approaches can be recorded. This difference is statisti-
cally significant with large effect size (Effect Size values are recorded on Table
4). Here it must be noted that these results can be achieved by an effort equiv-
alent to analysing 0.4% of the mutants, which is 27 mutants per commit (on
average).

Overall, our results demonstrate that by aiming at relevant mutants one
can achieve significant fault revelation benefits (approximately 30%) over the
traditional way of using mutation testing.

1 11 21 31 41 51 61 71 81 91 100
Percentage of Mutants

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t R
ev

el
at

io
n

Relevant Random Modification

Fig. 7: Fault revelation of mutation-based testing with random (traditional
mutation) and relevant mutants.

On the Use of Commit-Relevant Mutants 23

5.5 RQ5: Mutant Classes

Figure 8 shows the overlap among the relevant, subsuming, and hard-to-kill
mutant classes for the C and Java benchmarks. From these results we can
conclude:

Commit-Relevant vs. Subsuming: Our results show that most of the relevant
mutants are also non-subsuming, more precisely 59.79% and 84.45% (11.03 /
(11.03+0.2+0.23+1.6) * 100) for both C and Java benchmark. Suggesting that
relevant mutants have many redundancies, similarly to other mutants. Now,
if we measure overlapping just between those two categories, commit relevant
and subsuming mutants, we see an overlap of 11.38% and 0.21% for both
languages, respectively. This overlap is small implying an imbalanced case,
i.e., by targeting subsuming mutants one wastes significant resources than if
targeting commit relevant mutants.

An interesting finding here is that most of the commit-relevant mutants
are also non-subsuming, meaning that relevant mutants have many redundan-
cies, similarly to other mutant classes. This is important since it indicates
that mutant selection may also benefit and be improved by emerging work on
subsuming mutant selection [44,25,24].

Commit-Relevant vs. Hard-To-Kill: The results of the comparison with Hard-
to-kill mutants shows that relevant mutants are not that difficult to kill and
somehow distinct from the other categories. Among the union of mutants,
19.63% and 2.69% represent hard-to-kill mutants that do not fall under other
classes, both for C and Java, respectively. More precisely, 33.39% and 32.84%
of mutants from the hard-to-kill set do not overlap with other classes, while we
can observe the overlap of 17.06% and 1.12% for both languages. The overlap
is small because the committed changes are in relevantly easy-to-reach points
of the programs.

In conclusion, relevant mutants is a distinct class of mutants that is hardly
approximated by other mutant classes. This means that if one would like
to use mutation testing to assess change-relevant fault detection (simulating
faults introduced by commits), will need to rely on relevant mutants since any
other form is inherently different.

6 ShowCase the use of Relevant Mutants in assessing Regression
Test Prioritisation methods

The primary purpose of regression testing is to validate whether the changes
performed to the software break any of the unchanged program functional-
ity. Therefore, test prioritization is used to support the regression testing of
commits, giving rise to the question of how well they perform against commit-
relevant faults. We, therefore, use commit-relevant mutant score as a metric to
evaluate the ability of test prioritization techniques to detect change-relevant

24 Miloš Ojdanić1 et al.

39.28%
19.63%

16.73%

1.39%
0.54%

13.27%
9.15%

Relevant Mutant Hard-Killable Mutant

Subsuming Mutant

(a) C programs

11.03%
2.69%

0.23%

79.18%

1.6% 5.07%
0.2%

Relevant Mutant
Hard-Killable Mutant

Subsuming Mutant

(b) Test Java programs

Fig. 8: Relevant Mutants intersection with Subsuming and Hard-to-Kill
Mutants

faults. Our motivation is to showcase the use of relevant mutants in a regres-
sion scenario where mutants serve as a proxy for the introduced faults (from
the commits) and use them to assess test case prioritization approaches, i.e.,
assess how well test case prioritization techniques reveal faults introduced by
the commits. This is important since previous research [55,66,19,27] heavily
relied on other mutant classes to evaluate regression testing techniques.

Fig. 9: Test Prioritisation Pipeline

To demonstrate the use of commit-relevant mutants, we illustrate their ap-
plication in evaluating regression test case prioritisation techniques. We thus,
apply popular test case prioritisation techniques to the commits that we used in
our experiments and evaluate their performance w.r.t commit-relevant muta-
tion score. In particular, for every commit, we collect the statement-, branch-,
and mutant-coverage information of the available tests (the same tests used
in Section 4) on the pre-commit version of the programs. Each test is then
run in isolation and produces a trace of units (statements, branches, mutants)
covered. These traces direct the different test prioritisation methods, which
are listed in Table 5. This study considers the most popular priorization tech-
niques, i.e., total incremental coverage test prioritisation methods [66], as de-
scribed in the related literature [56].

On the Use of Commit-Relevant Mutants 25

On the post-commit version of the programs, we execute different test or-
derings generated from each pre-commit coverage. Each new test, executed
following the ordering, may kill new commit-relevant mutants and thus in-
crease the commit-relevant mutation score. This evolution of the relevant mu-
tation score along the test ordering is recorded and represent a curve. The
area under that curve divided by the total number of test cases represents the
average Average Percentage of Fault Detected (APFD) [56]. Note that in our
context, the (artificial) faults are the commit-relevant mutants. The APFD
shows the average commit-relevant mutation score achieved across all possible
numbers of tests, taken according to the orderings. The APFD shows how well
the ordering prioritises tests killing commit-relevant mutants, i.e., tests that
are relevant to the commit. The higher the APFD, the more commit-relevant
tests are prioritised.

Figure 9 visualises the process of the use case we conduct.

Table 5: Test Prioritisation Criteria

Acronym Name Prioritisation Objective

TR Random Cover by randomised ordering
TB Total Branch Cover the maximum number of branches
TAB Additional Branch Cover the maximum number of uncovered

branches
TM Total Mutant Cover the maximum number of killed mutants
TAM Additional Mutant Cover the maximum number of mutants not

yet killed
TS Total Statement Cover the maximum number of statements
TAS Additional State-

ment
Cover the maximum number of uncovered
statements

Figure 10 shows the experimental results, aggregated across commits for
both the C (Figure 10(a)) and Java (Figure 10(b)) benchmarks. For each test
prioritisation technique (see Table 5), it records the APFD values achieved by
the method.

The results on C programs, shown in Figure 10(a), do not indicate signifi-
cant benefits from the total coverage methods (TS , TB , TM) over random selec-
tion (TR). Additional coverage methods (TAM ,TAS) result in higher APFD val-
ues, showing that the test orderings produced by these methods better detect
commit-relevant mutants. However, the improvements are relatively small, in-
dicating that further research, perhaps change-aware test prioritisation should
be considered when testing such cases.

The results on Java programs, shown in Figure 10(b), however, show clear
benefits from all coverage-based test prioritisation techniques over the random
test prioritisation, as well as more difference between the different criteria.
Mutation-based prioritisation performs best in terms of the APFD values,
while statement-based prioritisation performs the worst. Similar to the results
shown for the C programs, additional coverage based methods perform better

26 Miloš Ojdanić1 et al.

than total coverage based methods. Additional mutant coverage prioritisation
TAM performs best, achieving over 0.9 APFD for most commits.

Furthermore, what is also interesting to observe in the box plot is the high
APFD value for TAM . It indicates that mutation-based prioritisation remains
robust in the presence of the committed changes.

TR TB TAB TM TAM TS TAS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP
FD

 o
f R

el
ev

an
t M

ut
an

t S
co

re

APFD of All Programs

(a) C programs

TR TB TAB TM TAM TS TAS

0.5

0.6

0.7

0.8

0.9

1.0

AP
FD

 o
f R

el
ev

an
t M

ut
an

t S
co

re

APFD of All Programs

(b) Java programs

Fig. 10: Test Prioritisation.

Overall, we have shown that the approaches featuring the “total” strategy
perform worst, in contrast to the additional strategy which offers more robust
test prioritisation. This conclusion conforms with the one in [27], which shows
that the best approaches reach the APFD median of approximately equal to
87%. In our case, our best additional approaches reach APFD median of ap-
proximately 95%, while the best approach TAM , reaches the average value
above 95% for 75% of commits and above 90% for 100% of commits. One
key insight out of the above is that test prioritisation offers relatively small
improvements, indicating that further research, should be directed towards
change-aware test prioritisation.

7 Discussion

7.1 Difference between C and Java programs and mutants

We experimented with programs written in both Java and C programming
languages. Naturally, we observe some differences between these two languages.
This is because we use different mutation testing tools, i.e., in C we use Mart, a
tool that operates on LLVM bitcode, while in Java we used Pitest, which reflect
properties of the underlying languages. To this end, the number of mutants
generated in Java is considerably higher than that of C, but at the same time,
the committed changes are smaller, as a ratio of lines of code changed to a
total number of lines of code involved (due to program’s size). This discrepancy
results in significantly more subsuming mutants than commit-relevant in Java
than in C. Nevertheless, our key conclusion regards the difference between the
two sets of mutants which is significant in both languages we study.

On the Use of Commit-Relevant Mutants 27

7.2 Analysis of commit relevant mutants

Our relevance definition include the set of mutants that can be impacted by
the committed changes by at least one test case. Strictly speaking this defini-
tion allows the inclusion of mutants that may be killed by tests irrelevant to
the committed code. Though, we consider them as interesting as these tests
exercise code parts, the parts where these mutants are located, that depend
on the changed introduced by the commits. Therefore, these tests indirectly
exercise the committed code. In view of this, one can define different levels of
relevance by considering the strength of the dependence between the mutants
and the commits. We can thus define a strong relevance relationship by man-
dating an observable difference between pre-M and post-M by every test case
that kills mutant M. In such a case we can define a weak relevance relationship,
w.r.t., complete relevance relationship, as we do in this paper, by mandating
an observable difference between pre-M and post-M by at least one test case
that kills mutant M.

Fig. 11: Illustration of different levels of relevance. The outer rounded
rectangle represents all tests of the program under test. Set of tests Tx (red

circle) includes all tests t that make observable the differences between
post-commit and mutated post-commit version of a program under test
(Definition 2). Set of tests Ty (blue circle) includes all tests t that make

observable the differences between mutated post-commit version and
mutated pre-commit version (Definition 2). We identify three cases, a)

Non-Relevant mutants, i.e., no test t belongs to both Tx and Ty, b)
weakly-relevant mutants case with least one test t that belongs to Tx and not
to Ty, c) strongly-relevant mutants where every test t that satisfies Tx also

satisfies Ty.

Formally:

– let m be a mutant of the post-commit version of the program under anal-
ysis.

– let t be a test case from a set T ′ of all test cases that kill mutant m.
– let Ov(t) be an execution function of a test t on a program version v. Where
v takes format of:

28 Miloš Ojdanić1 et al.

– mpost - m mutated the post-commit version of the program.
– mpre - m mutated the pre-commit version of the program.

– let denote D as a set of strong commit relevant mutants.

Definition 3 Strong commit relevant mutant

m ∈ D := ∀ (t) ∈ {T ′} : Ompost(t) 6= Ompre(t) (3)

This definition allows selecting mutants that always lead to commit-relevant
tests, i.e., tests that directly exercise the committed code. Informally, the mu-
tant relevance leans on the strength of dependency between a mutant and
commit changes, expressed through the number of tests that observe the de-
pendency over the number of tests that kill the mutant. The value of relevance
lies between 0 and 1. When relevance takes value 0 there is no observable be-
havioural difference on test outputs impacted by code-change. As the value of
relevance increases, the mutant is assessed to be more relevant, until the value
equals 1, in which case the behavioural difference can be observed with every
test, making a mutant strongly relevant.

Formally, let’s consider the same notations as for the definition of strong
commit relevant mutants. Let t be a test case from a set T of all possible test
cases for a program under analysis. Thus, formal definition of mutant relevance
level can be defined as follows:

Definition 4 Relevance

relevance(m) =
|∀ (t) ∈ T : t ∈ T ′ ∧Ompost(t) 6= Ompre(t)|

|T ′|
(4)

Furthermore, in RQ5 (Mutants Classes) we witnessed that most of the
relevant mutants are non-subsuming. This phenomenon suggests that many
relevant mutants are redundant. This means that one could envision an op-
timised scenario where redundancies among relevant mutants are minimised.
Thus, we can define subsuming commit relevant mutants, which is the set of
relevant mutants that subsumes the set of all relevant mutants. Formally, let
M be a set of mutants {m0, ...,mn} for post-commit version of the program
under test. Let RM be a set of commit-relevant mutants, whereas RM ⊂M .
Let subsuming(M) be a function that returns the subsuming mutant subset
of M [28,1]. Thus, the set of subsuming commit-relevant mutants SRM can
be defined as:

Definition 5 Subsuming commit-relevant mutants

SRM = subsuming(RM) : SRM ⊂ RM ⊂M (5)

On the Use of Commit-Relevant Mutants 29

8 Threats to validity

External validity: We selected commits that do not modify test contracts.
Such commits are common in industrial CI pipelines [37] but rare in open
source projects. To mitigate this threat, we performed our analysis on a rela-
tively large set of commits given the computational limits posed by mutation
analysis. In C, our experiment required on average approximately 2 weeks of
CPU time to complete, per commit studied (executions performed using Mute-
ria [15]). In addition, we used an established research benchmark (CoREBench
[7]) where we found similar results. Unfortunately, we consider fault introduc-
ing commits only in C as the Java datasets do not adhere to our non-changed
test contract requirement.

Another threat may relate to the mutants we use. To reduce this concern
we used a variety of operators covering the most frequently used language
features including the operators adopted by the modern tools [36], in both C
and Java.

Another threat may relate to the occurrence of flaky tests. We believe
that we bypassed this threat by running 5 times all test cases of each project
and its corresponding version. However, we consider more than one reason
why flaky tests should not change conclusions related to our results. First, we
worked with open-source software that does not contain solid environmental
dependencies, one of the leading root causes of flakiness [35]. Second, all the
programs we used as a benchmark for our study are well-studied projects
with a reliable test suite with no previous reports on the occurrence of flaky
tests. And as third, we consider that we study versatile and various projects for
both C and Java programming languages. Thus, we have reduced any potential
external validity related to the flaky tests.

Internal validity: Such threats lie in the use of automated tools, the way
we treated live mutants and non-adequate test suites. To diminish these con-
cerns, we used KLEE, a state of the art test generation tool and strong mature
developer test suites. Nevertheless, the current state of practice [53] relies on
non-adequate test suites, so our results should be relevant to at least a similar
level of practice. To ensure our results, we carefully checked our implementa-
tion and performed a manual evaluation on a sample of our results. Moreover,
we use established tools also employed by numerous studies.

To deal with randomness and minimize stochastic effects, we repeated our
experiments 100 times and used standard statistical tests and correlations.

Construct validity: Our effort related measurement, number of analysed
mutants, essentially captures the manual effort involved in test generation.
Automated tools may reduce this effort and change our best-effort results.
Still, we used the current standards, i.e., TCE [30] to remove all trivially
equivalent mutants before conducting any experiment and KLEE (including a
mutation-based test generation approach [13]). In test generation, we acknowl-
edge that automated tools may generate test inputs that kill mutants, but we
note that they fail to generate test oracles. Therefore, even if such tools are
used, the test oracles will still require human intervention, i.e., introduce some

30 Miloš Ojdanić1 et al.

effort. Here it should be noted that we consider the mutant execution cost as
negligible since it is machine time and our focus is on the human time involved
when performing mutant analysis. Moreover, existing advances [65] promises
to reduce this cost to a practically negligible level.

Overall, we believe that our effort measurements approximate well (in rel-
ative terms) the human effort involved. All in all, we aimed at minimizing
potential threats by using various metrics, well-known tools and benchmarks,
real and artificial faults and following methodological guidelines [50]. Addi-
tionally, to enable reproducibility and replication we make our tools and data
publicly available7.

9 Related Work

There are various methods aiming at identifying relevant coverage-based test
requirements in the literature. For instance, it has been proposed to consider
as relevant every test element that can be affected by the changes (by doing
some form of slicing, i.e., following all control and data dependencies from the
changed code) [55,5]. As such, these methods aim at considering conservatively
every test requirement affected by the change, resulting in sets with a large
number of irrelevant requirements. Nevertheless, applying such an approach to
mutation testing is equivalent to mutating the sliced program. This of course
inherits all the limitations of program slicing such as scalability and precision
[6], it is conservative (results in large number of false positives) and does not
account for equivalent mutants located on potentially infected code.

To circumvent the problems of coverage, researchers have proposed the
propagation-based techniques [4,57,58,59], which aim at identifying the pro-
gram paths that are affected by the program changes. They rely on dependence
analysis and symbolic execution to form propagation conditions and decide
whether changes propagate to a user-defined distance. Although promising,
these techniques are complex and inherit the limitations from symbolic execu-
tion.

Researchers have also investigated techniques to automatically augment
test suites by generating tests that trigger program output differences [54], in-
crease coverage [63] and increase mutation score [62,61]. Along the same lines
differential symbolic execution [52], KATCH [45] and Shadow symbolic execu-
tion [32] aim at generating tests that exercise the semantic differences between
program versions by incrementally searching the program path space from the
changed locations and onwards. These methods are somehow complementary
to ours as they can be used to create tests that satisfy the commit-relevant
test requirements.

Interestingly, the problem of commit-relevant test requirements has not
been investigated by the mutation testing literature [50]. Perhaps the closest
work to ours is the regression mutation testing by Zhang et al. [67] and the

7 The paper presents a subset of our results. Our data and results are openly accessible
on the following Github link: https://github.com/relevantMutationTesting

https://github.com/relevantMutationTesting

On the Use of Commit-Relevant Mutants 31

predictive mutation testing by Zhang et al. [65] and Mao et al. [43]. Regression
mutation testing aims at identifying affected mutants in order to incrementally
calculate mutation score, while predictive mutation testing aims at estimating
the mutation score without mutant execution. Apart from the different focus
(we focus on commit-relevant mutants and refined score, while they focus
on speeding up test execution and mutation score) and approach details, our
fundamental difference is that we statically target killable mutants (both killed
and live by the employed test suites) that are relevant to the changed code
(we ignore irrelevant code parts and mutants).

Mutation-based test prioritisation has been studied w.r.t the appropriate
mutant operator [41], mutant priority [38], mutants in the change [40] or the
diversity of the mutants [60]. However, none of them directly use the mutants
related to the program behaviour change in the test prioritisation. Our exper-
iments show that most of the relevant mutants are outside the commit change
code. Commit-relevant mutants are more purposeful for the test prioritisation
in the regression testing.

10 Conclusion

We proposed commit-aware mutation testing, a mutation-based assessment
metric capable of measuring the extent to which the program behaviors af-
fected by some committed changes have been tested. We showed that commit-
aware mutation testing has a weak correlation with the traditional mutation
score and other regression testing approximations (such as the delta on muta-
tion score between the pre- and post- commit versions and mutants located on
modified code), indicating that it is a distinct metric. Furthermore, we investi-
gated and concluded that the relevant-mutants set is a distinct mutant set that
cannot be found or expressed through proxies in different mutant classes. Our
results also showed that traditional mutant selection is non-optimal for evolv-
ing and commit-oriented systems as it loses approximately 50%-60% of the
commit-relevant mutants when analyzing 5-25 mutants. Moreover, we demon-
strated that by focusing attention on commit relevant mutants, over randomly
selected ones and the mutants occurring on a modification, one has 30% more
chances of revealing commit-introducing faults. Additionally, to provide fur-
ther evidence of the importance and diversity of commit-relevant mutants’
applicability, we demonstrate a potential use case of the commit-relevant mu-
tants and illustrate their application in evaluating regression test-case prior-
itization techniques. We show that commit-relevant mutants can be used to
evaluate test case prioritization techniques.

In future, we plan to study relevant mutants and their occurrence through
commit-history. The exploratory study of relevant mutants will shed more light
on the properties of this particular category of mutants and their usability.
Moreover, we want to study the properties of mutants in combination with
commit-changes properties to identify potential correlations that can lead to

32 Miloš Ojdanić1 et al.

more autonomous techniques and the development of machine learning models
for automatic commit-relevant mutant selection.

References

1. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal sets of mu-
tants. In: 2014 IEEE Seventh International Conference on Software Testing, Verification
and Validation, pp. 21–30. IEEE (2014)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2008). DOI 10.1017/CBO9780511809163. URL https://doi.org/10.1017/

CBO9780511809163
3. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis for

assessing and comparing testing coverage criteria. IEEE Trans. Software Eng. 32(8),
608–624 (2006). DOI 10.1109/TSE.2006.83. URL https://doi.org/10.1109/TSE.2006.

83
4. Apiwattanapong, T., Santelices, R.A., Chittimalli, P.K., Orso, A., Harrold, M.J.: MA-

TRIX: maintenance-oriented testing requirements identifier and examiner. In: Test-
ing: Academia and Industry Conference - Practice And Research Techniques (TAIC
PART 2006), 29-31 August 2006, Windsor, United Kingdom, pp. 137–146 (2006). DOI
10.1109/TAIC-PART.2006.18. URL https://doi.org/10.1109/TAIC-PART.2006.18

5. Binkley, D.W.: Semantics guided regression test cost reduction. IEEE Trans. Software
Eng. 23(8), 498–516 (1997). DOI 10.1109/32.624306. URL https://doi.org/10.1109/

32.624306
6. Binkley, D.W., Gold, N.E., Harman, M., Islam, S.S., Krinke, J., Yoo, S.: ORBS and

the limits of static slicing. In: 15th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2015, Bremen, Germany, September 27-28,
2015, pp. 1–10 (2015). DOI 10.1109/SCAM.2015.7335396. URL https://doi.org/10.

1109/SCAM.2015.7335396
7. Böhme, M., Roychoudhury, A.: Corebench: studying complexity of regression errors. In:

International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,
USA - July 21 - 26, 2014, pp. 105–115 (2014). DOI 10.1145/2610384.2628058. URL
https://doi.org/10.1145/2610384.2628058

8. Böhme, M., d. S. Oliveira, B.C., Roychoudhury, A.: Regression tests to expose change
interaction errors. In: Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, pp. 334–
344 (2013). DOI 10.1145/2491411.2491430. URL https://doi.org/10.1145/2491411.

2491430
9. Budd, T.A., Angluin, D.: Two Notions of Correctness and Their Relation to Testing.

Acta Informatica 18(1), 31–45 (1982)
10. Cachia, M.A., Micallef, M., Colombo, C.: Towards incremental mutation testing. Electr.

Notes Theor. Comput. Sci. 294, 2–11 (2013). DOI 10.1016/j.entcs.2013.02.012. URL
https://doi.org/10.1016/j.entcs.2013.02.012

11. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, p. 209–224.
USENIX Association, USA (2008)

12. Chekam, T.T., Papadakis, M., Bissyandé, T.F., Traon, Y.L., Sen, K.: Selecting fault
revealing mutants. Empirical Software Engineering 25(1), 434–487 (2020). DOI 10.
1007/s10664-019-09778-7. URL https://doi.org/10.1007/s10664-019-09778-7

13. Chekam, T.T., Papadakis, M., Cordy, M., Traon, Y.L.: Killing stubborn mutants with
symbolic execution (2020). URL http://arxiv.org/abs/2001.02941

14. Chekam, T.T., Papadakis, M., Traon, Y.L.: Mart: a mutant generation tool for LLVM.
In: Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019, pp. 1080–1084 (2019). DOI 10.1145/
3338906.3341180. URL https://doi.org/10.1145/3338906.3341180

https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TAIC-PART.2006.18
https://doi.org/10.1109/32.624306
https://doi.org/10.1109/32.624306
https://doi.org/10.1109/SCAM.2015.7335396
https://doi.org/10.1109/SCAM.2015.7335396
https://doi.org/10.1145/2610384.2628058
https://doi.org/10.1145/2491411.2491430
https://doi.org/10.1145/2491411.2491430
https://doi.org/10.1016/j.entcs.2013.02.012
https://doi.org/10.1007/s10664-019-09778-7
http://arxiv.org/abs/2001.02941
https://doi.org/10.1145/3338906.3341180

On the Use of Commit-Relevant Mutants 33

15. Chekam, T.T., Papadakis, M., Traon, Y.L.: Muteria: An extensible and flexible multi-
criteria software testing framework. In: In AST ’20: International Conference on Au-
tomation of Software Test (AST ’20), October 7–8, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 4 pages (2020). DOI 10.1145/3387903.3389316. URL
https://doi.org/10.1145/3387903.3389316

16. Chekam, T.T., Papadakis, M., Traon, Y.L., Harman, M.: An empirical study on mu-
tation, statement and branch coverage fault revelation that avoids the unreliable clean
program assumption. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pp. 597–608 (2017).
DOI 10.1109/ICSE.2017.61. URL https://doi.org/10.1109/ICSE.2017.61

17. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: PIT: a prac-
tical mutation testing tool for java (demo). In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Ger-
many, July 18-20, 2016, pp. 449–452 (2016). DOI 10.1145/2931037.2948707. URL
https://doi.org/10.1145/2931037.2948707

18. Di Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: Coverage-based regression test
case selection, minimization and prioritization: A case study on an industrial system.
Software Testing, Verification and Reliability 25(4), 371–396 (2015)

19. Do, H., Rothermel, G.: On the use of mutation faults in empirical assessments of test
case prioritization techniques. IEEE Transactions on Software Engineering 32(9), 733–
752 (2006)

20. Evans, R.B., Savoia, A.: Differential testing: a new approach to change detection. In:
Proceedings of the 6th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007, pp. 549–552 (2007). DOI
10.1145/1287624.1287707. URL http://doi.acm.org/10.1145/1287624.1287707

21. Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained and
accurate source code differencing. In: ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pp.
313–324 (2014). DOI 10.1145/2642937.2642982. URL http://doi.acm.org/10.1145/

2642937.2642982

22. Fang, C., Chen, Z., Xu, B.: Comparing logic coverage criteria on test case prioritization.
Science China Information Sciences 55(12), 2826–2840 (2012)

23. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. IEEE Trans.
Software Eng. 38(2), 278–292 (2012). DOI 10.1109/TSE.2011.93. URL https://doi.

org/10.1109/TSE.2011.93

24. Garg, A., Ojdanic, M., Degiovanni, R., Chekam, T.T., Papadakis, M., Traon, Y.L.: Cere-
bro: Static subsuming mutant selection. IEEE Transactions on Software Engineering
DOI 10.1109/TSE.2022.3140510

25. Gheyi, R., Ribeiro, M., Souza, B., Guimarães, M.A., Fernandes, L., d’Amorim, M.,
Alves, V., Teixeira, L., Fonseca, B.: Identifying method-level mutation subsumption
relations using Z3. Inf. Softw. Technol. 132, 106496 (2021). DOI 10.1016/j.infsof.2020.
106496. URL https://doi.org/10.1016/j.infsof.2020.106496

26. Hariri, F., Shi, A., Fernando, V., Mahmood, S., Marinov, D.: Comparing mutation
testing at the levels of source code and compiler intermediate representation. In: 12th
IEEE Conference on Software Testing, Validation and Verification, ICST 2019, Xi’an,
China, April 22-27, 2019, pp. 114–124 (2019). DOI 10.1109/ICST.2019.00021. URL
https://doi.org/10.1109/ICST.2019.00021

27. Henard, C., Papadakis, M., Harman, M., Jia, Y., Le Traon, Y.: Comparing white-box
and black-box test prioritization. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 523–534 (2016). DOI 10.1145/2884781.2884791

28. Jia, Y., Harman, M.: Higher order mutation testing. Information & Software Technology
51(10), 1379–1393 (2009). DOI 10.1016/j.infsof.2009.04.016. URL https://doi.org/

10.1016/j.infsof.2009.04.016

29. Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Tumeng, R.: Test case prioritization ap-
proaches in regression testing: A systematic literature review. Information and Software
Technology 93, 74–93 (2018)

https://doi.org/10.1145/3387903.3389316
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1145/2931037.2948707
http://doi.acm.org/10.1145/1287624.1287707
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1016/j.infsof.2020.106496
https://doi.org/10.1109/ICST.2019.00021
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.infsof.2009.04.016

34 Miloš Ojdanić1 et al.

30. Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Traon, Y.L., Harman, M.: Detecting
trivial mutant equivalences via compiler optimisations. IEEE Trans. Software Eng.
44(4), 308–333 (2018). DOI 10.1109/TSE.2017.2684805. URL https://doi.org/10.

1109/TSE.2017.2684805

31. Kintis, M., Papadakis, M., Malevris, N.: Evaluating mutation testing alternatives: A
collateral experiment. In: J. Han, T.D. Thu (eds.) 17th Asia Pacific Software Engineering
Conference, APSEC 2010, Sydney, Australia, November 30 - December 3, 2010, pp.
300–309. IEEE Computer Society (2010). DOI 10.1109/APSEC.2010.42. URL https:

//doi.org/10.1109/APSEC.2010.42

32. Kuchta, T., Palikareva, H., Cadar, C.: Shadow symbolic execution for testing software
patches. ACM Trans. Softw. Eng. Methodol. 27(3), 10:1–10:32 (2018). DOI 10.1145/
3208952. URL https://doi.org/10.1145/3208952

33. Kurtz, B., Ammann, P., Delamaro, M.E., Offutt, J., Deng, L.: Mutant subsumption
graphs. In: 2014 IEEE Seventh International Conference on Software Testing, Verifica-
tion and Validation Workshops, pp. 176–185. IEEE (2014)

34. Kurtz, B., Ammann, P., Offutt, J., Delamaro, M.E., Kurtz, M., Gökçe, N.: Analyzing
the validity of selective mutation with dominator mutants. In: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016, pp. 571–582 (2016). DOI 10.
1145/2950290.2950322. URL https://doi.org/10.1145/2950290.2950322

35. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing
flaky tests in a large-scale industrial setting. ISSTA 2019, p. 101–111. Association for
Computing Machinery, New York, NY, USA (2019). DOI 10.1145/3293882.3330570.
URL https://doi.org/10.1145/3293882.3330570

36. Laurent, T., Papadakis, M., Kintis, M., Henard, C., Le Traon, Y., Ventresque, A.: As-
sessing and improving the mutation testing practice of pit. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pp. 430–435. IEEE
(2017)

37. Leong, C., Singh, A., Papadakis, M., Traon, Y.L., Micco, J.: Assessing transition-based
test selection algorithms at google. In: Proceedings of the 41st International Conference
on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Mon-
treal, QC, Canada, May 25-31, 2019, pp. 101–110 (2019). DOI 10.1109/ICSE-SEIP.
2019.00019. URL https://doi.org/10.1109/ICSE-SEIP.2019.00019

38. Li, L., Zhou, Y., Yu, Y., Zhao, F., Wu, S., Yang, Z.: An empirical study of mutation-
based test case clustering prioritization and reduction technique. ICSEA 2019 p. 13
(2019)

39. Li, N., Praphamontripong, U., Offutt, J.: An experimental comparison of four unit test
criteria: Mutation, edge-pair, all-uses and prime path coverage. In: 2009 International
Conference on Software Testing, Verification, and Validation Workshops, pp. 220–229.
IEEE (2009)

40. Lou, Y., Hao, D., Zhang, L.: Mutation-based test-case prioritization in software evolu-
tion. In: 2015 IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE), pp. 46–57 (2015). DOI 10.1109/ISSRE.2015.7381798

41. Luo, Q., Moran, K., Poshyvanyk, D., Di Penta, M.: Assessing test case prioritization on
real faults and mutants. In: 2018 IEEE international conference on software maintenance
and evolution (ICSME), pp. 240–251. IEEE (2018)

42. Ma, W., Laurent, T., Ojdanić, M., Chekam, T.T., Ventresque, A., Papadakis, M.:
Commit-aware mutation testing. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 394–405. IEEE (2020)

43. Mao, D., Chen, L., Zhang, L.: An extensive study on cross-project predictive mutation
testing. In: 12th IEEE Conference on Software Testing, Validation and Verification,
ICST 2019, Xi’an, China, April 22-27, 2019, pp. 160–171 (2019). DOI 10.1109/ICST.
2019.00025. URL https://doi.org/10.1109/ICST.2019.00025

44. Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson, L.:
Time to clean your test objectives. In: M. Chaudron, I. Crnkovic, M. Chechik, M. Har-
man (eds.) Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 456–467. ACM (2018).
DOI 10.1145/3180155.3180191. URL https://doi.org/10.1145/3180155.3180191

https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1145/3208952
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1109/ICST.2019.00025
https://doi.org/10.1145/3180155.3180191

On the Use of Commit-Relevant Mutants 35

45. Marinescu, P.D., Cadar, C.: KATCH: high-coverage testing of software patches. In:
Joint Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, pp. 235–245 (2013). DOI
10.1145/2491411.2491438. URL https://doi.org/10.1145/2491411.2491438

46. Offutt, A.J., Rothermel, G., Zapf, C.: An experimental evaluation of selective mu-
tation. In: Proceedings of the 15th International Conference on Software Engineer-
ing, Baltimore, Maryland, USA, May 17-21, 1993, pp. 100–107 (1993). URL http:

//portal.acm.org/citation.cfm?id=257572.257597

47. Papadakis, M., Chekam, T.T., Traon, Y.L.: Mutant quality indicators. In: 2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops,
ICST Workshops, Väster̊as, Sweden, April 9-13, 2018, pp. 32–39. IEEE Computer Soci-
ety (2018). DOI 10.1109/ICSTW.2018.00025. URL http://doi.ieeecomputersociety.

org/10.1109/ICSTW.2018.00025

48. Papadakis, M., Henard, C., Harman, M., Jia, Y., Traon, Y.L.: Threats to the validity of
mutation-based test assessment. In: Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pp. 354–365 (2016). DOI 10.1145/2931037.2931040. URL https://doi.org/10.1145/

2931037.2931040

49. Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler equivalence: A large
scale empirical study of a simple, fast and effective equivalent mutant detection tech-
nique. In: A. Bertolino, G. Canfora, S.G. Elbaum (eds.) 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Vol-
ume 1, pp. 936–946. IEEE Computer Society (2015). DOI 10.1109/ICSE.2015.103. URL
https://doi.org/10.1109/ICSE.2015.103

50. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Chapter six -
mutation testing advances: An analysis and survey. Advances in Computers 112, 275–
378 (2019). DOI 10.1016/bs.adcom.2018.03.015. URL https://doi.org/10.1016/bs.

adcom.2018.03.015

51. Papadakis, M., Shin, D., Yoo, S., Bae, D.: Are mutation scores correlated with real fault
detection?: a large scale empirical study on the relationship between mutants and real
faults. In: Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 537–548 (2018). DOI
10.1145/3180155.3180183. URL https://doi.org/10.1145/3180155.3180183

52. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic execu-
tion. In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008,
pp. 226–237 (2008). DOI 10.1145/1453101.1453131. URL https://doi.org/10.1145/

1453101.1453131

53. Petrovic, G., Ivankovic, M.: State of mutation testing at google. In: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 163–
171 (2018). DOI 10.1145/3183519.3183521. URL https://doi.org/10.1145/3183519.

3183521

54. Qi, D., Roychoudhury, A., Liang, Z.: Test generation to expose changes in evolving
programs. In: ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, pp. 397–406 (2010).
DOI 10.1145/1858996.1859083. URL https://doi.org/10.1145/1858996.1859083

55. Rothermel, G., Harrold, M.J.: Selecting tests and identifying test coverage requirements
for modified software. In: Proceedings of the 1994 International Symposium on Software
Testing and Analysis, ISSTA 1994, Seattle, WA, USA, August 17-19, 1994, pp. 169–184
(1994). DOI 10.1145/186258.187171. URL https://doi.org/10.1145/186258.187171

56. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: An empir-
ical study. In: Proceedings IEEE International Conference on Software Maintenance-
1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No. 99CB36360), pp.
179–188. IEEE (1999)

57. Santelices, R.A., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.: Test-
suite augmentation for evolving software. In: 23rd IEEE/ACM International Conference

https://doi.org/10.1145/2491411.2491438
http://portal.acm.org/citation.cfm?id=257572.257597
http://portal.acm.org/citation.cfm?id=257572.257597
http://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00025
http://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00025
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1145/1858996.1859083
https://doi.org/10.1145/186258.187171

36 Miloš Ojdanić1 et al.

on Automated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy,
pp. 218–227 (2008). DOI 10.1109/ASE.2008.32. URL https://doi.org/10.1109/ASE.

2008.32

58. Santelices, R.A., Harrold, M.J.: Exploiting program dependencies for scalable multiple-
path symbolic execution. In: Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, pp. 195–
206 (2010). DOI 10.1145/1831708.1831733. URL https://doi.org/10.1145/1831708.

1831733

59. Santelices, R.A., Harrold, M.J.: Applying aggressive propagation-based strategies for
testing changes. In: Fourth IEEE International Conference on Software Testing, Ver-
ification and Validation, ICST 2011, Berlin, Germany, March 21-25, 2011, pp. 11–20
(2011). DOI 10.1109/ICST.2011.46. URL https://doi.org/10.1109/ICST.2011.46

60. Shin, D., Yoo, S., Papadakis, M., Bae, D.H.: Empirical evaluation of mutation-based
test case prioritization techniques. Software Testing, Verification and Reliability 29(1-
2), e1695 (2019)

61. Smith, B.H., Williams, L.: On guiding the augmentation of an automated test suite
via mutation analysis. Empirical Software Engineering 14(3), 341–369 (2009). DOI
10.1007/s10664-008-9083-7. URL https://doi.org/10.1007/s10664-008-9083-7

62. Smith, B.H., Williams, L.: Should software testers use mutation analysis to augment a
test set? Journal of Systems and Software 82(11), 1819–1832 (2009). DOI 10.1016/j.
jss.2009.06.031. URL https://doi.org/10.1016/j.jss.2009.06.031

63. Xu, Z., Kim, Y., Kim, M., Rothermel, G., Cohen, M.B.: Directed test suite augmen-
tation: techniques and tradeoffs. In: Proceedings of the 18th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM,
USA, November 7-11, 2010, pp. 257–266 (2010). DOI 10.1145/1882291.1882330. URL
https://doi.org/10.1145/1882291.1882330

64. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a
survey. Softw. Test., Verif. Reliab. 22(2), 67–120 (2012). DOI 10.1002/stv.430. URL
https://doi.org/10.1002/stv.430

65. Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., Zhang, L.: Predictive mutation
testing. IEEE Trans. Software Eng. 45(9), 898–918 (2019). DOI 10.1109/TSE.2018.
2809496. URL https://doi.org/10.1109/TSE.2018.2809496

66. Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H.: Bridging the gap between the
total and additional test-case prioritization strategies. In: 2013 35th International Con-
ference on Software Engineering (ICSE), pp. 192–201. IEEE (2013)

67. Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: Regression mutation testing. In:
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis,
MN, USA, July 15-20, 2012, pp. 331–341 (2012). DOI 10.1145/2338965.2336793

https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1145/1831708.1831733
https://doi.org/10.1145/1831708.1831733
https://doi.org/10.1109/ICST.2011.46
https://doi.org/10.1007/s10664-008-9083-7
https://doi.org/10.1016/j.jss.2009.06.031
https://doi.org/10.1145/1882291.1882330
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/TSE.2018.2809496

