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ABSTRACT
Program mutation makes small syntactic alterations to programs’
code in order to artificially create faulty programs (mutants). Mu-
tants creation (generation) tools are often characterized by their
mutation operators and the way they create and represent the mu-
tants. This paper presents Mart, a mutants generation tool, for
LLVM bitcode, that supports the fine-grained definition of muta-
tion operators (as matching rule - replacing pattern pair; uses 816
defined pairs by default) and the restriction of the code parts to
mutate. New operators are implemented in Mart by implementing
their matching rules and replacing patterns. Mart also implements
in-memory Trivial Compiler Equivalence to eliminate equivalent
and duplicate mutants during mutants generation. Mart generates
mutant code as separated mutant files, meta-mutants file, weak
mutation and mutant coverage instrumented files. Mart is publicly
available (https://github.com/thierry-tct/mart). Mart has been ap-
plied to generate mutants for several research experiments and
generated more than 4,000,000 mutants.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
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1 INTRODUCTION
Mutation testing [2] is a fault-based testing technique that is receiv-
ing more and more adoption among practitioners [8, 12]. It has been
shown to be effective at finding faults in software [3]. The mutation
testing process involves seeding artificial faults, called mutants,
into a program under test (mutant generation), then, the mutants
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are executed with some test suites in order to evaluate the tests (mu-
tants execution). The mutants generation process systematically
applies a set of mutation operators (syntactic code transformation
rules) on the specific code parts of interest. This process often leads
to mutants that are semantically equivalent to the program being
mutated (original program), called equivalent mutants, and mu-
tants semantically equivalent with others mutants, called duplicate
mutants [10].

This paper presentMart, a tool that generates mutants for LLVM
bitcode [7] (high-level languages such as C and C++ are compiled to
LLVM intermediate representation for optimization and analysis).
Generating mutants at the bitcode level may lead to inconsistency
with source code mutation (due to loss of structural information
during compilation). Nevertheless, the major advantage of gener-
ating mutants at the LLVM bitcode level is the ability to generate
mutants for multiple high-level programming languages with the
same tool. Two LLVM bitcode mutation tools, namely MuLL [4] and
SRCIROR [5], have been developed recently but they currently sup-
port only few mutation operators and provides limited flexibility of
mutation operators configuration during mutant generation. MuLL
implements Arithmetic Operator Replacement, Condition Nega-
tion, Function Call Deletion and Replacement with Constant, Scalar
Value Replacement. SRCIROR implements Arithmetic Operator Re-
placement, Logical Connector Replacement, Relational Operator
Replacement and Integer Constant Replacement operators. None
of those tools mutate pointers.

Mart mutant generation tool provides:
• A rich set of mutation operators (fine-grained operators [6]),
including operators that simulate high-level programming
language’s complex expressions (such as left increment).

• An in-memory implementation of Trivial Compiler equiva-
lence (TCE) [10] to eliminate equivalent and duplicate mu-
tants.

• A simple description language for mutation operators con-
figuration. The language enables users to apply a mutation
operator based on the class of the operands of the mutated
code’s operation.

• Generation of separated mutant bitcode files, meta-mutants
bitcode file (useful for somemutant execution techniques [15]),
weak mutation instrumented bitcode file and, mutant cover-
age instrumented bitcode file.

Mart has been used to generate mutants for research experi-
ments [11, 14] and, it generated 4,778,157 mutant and detected
2,173,508 equivalent and duplicate mutants.

2 MARTMUTANTS GENERATION
Mart generates mutants for LLVM bitcode programs. Mart takes as
input an LLVM bitcode file and optionally mutation configuration
files to automatically generate mutated LLVM bitcode files.

https://github.com/thierry-tct/mart
https://doi.org/10.1145/3338906.3341180
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Figure 1: LLVM bitcode mutation process of Mart. The rounded edge rectangles with double border lines represent LLVM
bitcode files. The square edge rectangles represent the steps of themutation process. Each step is implemented by a component
of Mart.

An overview of the process implemented by Mart, to generate
mutants, is represented in Figure 1. Initially, the input LLVM bitcode
file is pre-processed (re-formatted to ease mutant instrumentation)
and then instrumented by transforming the code using mutation
operators (the instrumentation can be constrained using mutation
configurations). The instrumentation results in a meta-mutants
program that encodes all mutants in a single module. The Meta-
mutants module is then further processed by eliminating equivalent
and duplicate mutants using an in-memory implementation of the
Trivial Compiler Equivalence (TCE) [10]. Equivalent mutants are
mutants that are semantically equivalent to the original program
while duplicate mutants are mutants that are semantically equiv-
alent to other mutants. The TCE elimination results in another
meta-mutants module where equivalent and duplicate mutants,
detectable by TCE, are removed. Information about mutants, such
as mutant type, etc, are also exported. Finally, the post-TCE meta-
mutants module is used to generate separated mutants files for
different mutants, weak mutation instrumented module (to mea-
sure mutants infection) and mutant coverage module (to measure
mutants reachability). The generated mutant files and instrumented
files can be input to third-parties testing frameworks to be executed
with test suites or improve the test suites. We recommend to use
Muteria1 testing framework for test execution (see the guide on
Mart webpage).

In the following sub-sections, we present details about the im-
plementation of components of Mart.

2.1 Preprocessing
The input LLVM bitcode file loaded as LLVM Module is trans-
formed to enable the instrumentation with mutation operators. In
this phase, the phi nodes of LLVM intermediate language are re-
moved by applying a customized reg2mem function (which replaces
registers by local variables). Phi nodes enable LLVM registers to be
assigned and used in different basic blocks. This feature hinders
Mart instrumentation as the instrumentation changes a single basic
block at the time. The pre-processing step replaces registers with
local variables for phi nodes by declaring, for each phi node register,
a local variable which is assigned the register’s value at the register

1https://github.com/muteria/muteria

writing basic block and, the variable is loaded and the value used
in the register reading basic block instead of the register.

2.2 Mutation Instrumentation
The mutation instrumentation of Mart consists of applying the
defined mutation operators on compatible code locations. In this
step, a configuration of the set of mutation operators to apply as
well as a configuration of the code locations to apply those mutation
operators can be used to constrain the mutation.

2.2.1 Mutation Operators Representation. In order to support the
mutation of complex operators of source code (e.g. recognizing C
language arithmetic left increment (++i) or pointer de-reference
followed by right decrement (*p–) on the LLVM bitcode level), we
define abstractions of mutant operators.

Definition 2.1. We define as code fragment any piece of code that
can be expressed as a function. Regarding a mutation, a fragment
is the minimal piece of LLVM code that is syntactically changed
by the mutation. This code may input LLVM registers or constant
values and return some value into another register.

Definition 2.2. A fragments f’ is compatible with another frag-
ment f if and only if f can be replaced by f’ without breaking the
code’s syntax.

Mart represents each mutation operator as a pair of fragments
(f , f ′), where f ′ is compatible with f . To apply the operator (f , f ′)
at a location l of a program P , the fragment f is matched then, if
found, it is replaced by the fragment f ′. the resulting program
M after replacing f by f ′ at l on P is a mutant of P . Figure 2-(b)
illustrate an example of a mutation as executed by Mart.

Implementing New Mutation Operators. Given that frag-
ments need to be matched and/or replaced, Mart provides an in-
terface to implement fragments where matching and replacing
functions need to be implemented. Implementing a new opera-
tor requires to implement the fragments’ interfaces. The matching
function inputs a list of LLVM bitcode instructions, checks whether
the fragment is matched or not and, returns the fragment input
addresses and output register address. The replacing function in-
put the list of matched fragment’s inputs and the list of bitcode
instructions to mutate then, replace the code instructions to mutate.

https://github.com/muteria/muteria
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ADD(V1,@2) -->   type1.1, SUB(@2, 5); type1.2, ASSIGN(V1,@2);
A -->   type2.1, CONSTVAL(0);  type2.2, DELSTMT;

r=x+(y*2);

1
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y 2

MUL

r
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r
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MUL

r=(y*2)-5;

Original Mutant 1.1
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(b) (c)
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MutantsOriginal

r = (y*2) – 5;

r = x = (y*2);

r = x + (y*2);

p = &x;

p = null;

;

Figure 2: Example of bitcode mutation by Mart. Sub-figure
(a) is an example of a mutation operators configuration de-
scription in a simple description language (see section 2.2.3).
Sub-figure (b) illustrates an example of code mutation; the
second fragment in the original code is replaced by a mu-
tant fragment (see section 2.2.1). Sub-figure (c) presents an
example of the mutation using the configuration of (a).

2.2.2 Currently Supported Mutation Operators. Currently, Mart
implements 18 operator groups (pairs of "compatible" fragment
groups). The 18 operator groups are designed to match a large
number of elements of program syntax (additional operator groups
can be implemented). There are 68 fragments implemented and the
default mutation configuration is made of 816 operators (pair of
fragments), including variations due to operand classes (see sec-
tion 2.2.3). These include all those that are supported by modern
mutation testing tools [9]. The 18 operator groups are recorded in
Table 1. "Original fragment group" refers to the matched fragment
and "mutant fragment group" refers to the replacing fragment.

The fragment groups are defined as following (p refers to pointer
values and s refers to scalar values):

• ANY STMT refers to matching any type of statement (only
original fragment).

• TRAPSTMT refers to a trap, which cause the program to
abort its execution (only mutant fragment).

• DELSTMT refers to the empty statement, thus, replacing by
this is equivalent to deleting the original statement (only
mutant fragment).

• CALL STATEMENT refers to a function call.
• SWITCH STATEMENT refers to a C language like switch

statement.
• SHUFFLEARGS refers to the same function call as the orig-

inal, with arguments of same type swapped (e.g. д(a,b) →
д(b,a)). This can only be a mutant fragment and, requires
the original fragment to be a function call.

• SHUFFLECASESDEST refers to the same switch statement
as the original, with the basic blocks of the cases swapped
(e.g. {case a : B1; case b : B2; de f ault : B3; } → {case a :
B2; case b : B1; de f ault : B3; }). This can only be used as

Table 1: Mutant Types

Mutated Code Original Fragment Group Mutant Fragment Group

STATEMENT

ANY STMT TRAPSTMT

ANY STMT DELSTMT

CALL STATEMENT SHUFFLEARGS

SWITCH STATEMENT SHUFFLECASESDESTS

SWITCH STATEMENT REMOVECASES

EXPRESSION

SCALAR.ATOM SCALAR.UNARY

SCALAR.ATOM SCALAR.BINARY

SCALAR.UNARY SCALAR.UNARY

SCALAR.BINARY SCALAR.UNARY

SCALAR.BINARY SCALAR.BINARY

SCALAR.BINARY TRAPSTMT

SCALAR.BINARY DELSTMT

POINTER.ATOM POINTER.UNARY

POINTER.UNARY POINTER.UNARY

POINTER.BINARY POINTER.UNARY

POINTER.BINARY POINTER.BINARY

DEREFERENCE.BINARY DEREFERENCE.UNARY

DEREFERENCE.BINARY DEREFERENCE.BINARY

mutant fragment and, requires the orignal fragment to be a
switch statement.

• REMOVECASES refers to the same switch statement as the
original, with some cases deleted (the corresponding values
will lead to execute the default basic block) (e.g. {case a :
B1; case b : B2; de f ault : B3; } → {case a : B2; de f ault :
B3; }). This can only be used asmutant fragment and, requires
the orignal fragment to be a switch statement.

• SCALAR.ATOM refers to any non pointer type variable or
constant (only original fragment).

• POINTER.ATOM refers to any pointer type variable or con-
stant (only original fragment).

• SCALAR.UNARY refers to any non pointer unary arithmetic
or logical operation (e.g. abs(s), −s , !s , s + + ...).

• POINTER.UNARY refers to any pointer unary arithmetic
operation (e.g. p + +, − − p ...).

• SCALAR.BINARY refers to any non pointer binary arith-
metic, relational or logical operation (e.g. s1 + s2, s1&&s2,
s1 >> s2, s1 <= s2 ...).

• POINTER.BINARY refers to any pointer binary arithmetic
or relational operation (e.g. p + s , p1 > p2 ...).

• DEREFERENCE.UNARY refers to any combination of pointer
dereference and scalar unary arithmetic operation, or com-
bination of pointer unary operation and pointer dereference
(e.g. (∗p) − −, ∗(p − −) ...).

• DEREFERENCE.BINARY refers to any combination of pointer
dereference and scalar binary arithmetic operation, or com-
bination of pointer binary operation and pointer dereference
(e.g. (∗p) + s , ∗(p + s) ...).

2.2.3 Instrumentation process. Mart mutation instrumentation vis-
its the Control Flow Graph (CFG) of the module under mutation and
for each statement (represented by a group of instructions that are
data-dependent w.r.t. registers) l , create mutated versions l ′1, .., l

′
k .
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A branching instruction is then inserted, to select, based on the
value of a special global variable called "Mutant ID selector", the
statement to execute between l, l ′1, .., l

′
k . The resulting module is a

meta-mutants module where, the module can represent a specific
mutant by just setting the value of the "Mutant ID selector" variable
to its ID.

Constrained Mutation. The instrumentation process is sub-
ject to possible configuration. Users can restrict the corresponding
source code’s source files and functions to mutate by specifying the
values in a JSON file that is used during mutation instrumentation.
The operators to apply can also be specified in a file where each
line is a key-value with the key the matching pattern and value the
list or replacing patterns (This makes a simple mutation operator
description language). Each pattern is made of the fragment name
and the list of its indexed arguments’ classes. The arguments classes
are constant (C), scalar variable (V), address (A), pointer variable (P)
and any expression (@). The set of argument classes in the replacing
pattern is a subset of those from the matching pattern (except for
constants). Refer to the tool web page2 for more details on the
mutation operator description language. The mutation operation
configuration file can easily be created automatically with a script
available with the tool. Figure 2 shows an example of a mutant
operator description configuration where 4 mutation operators are
defined (2 operators for matching the sum of a variable and any
expression and, 2 for matching an address).

2.3 In-Memory Equivalent and Duplicate
Mutants Elimination

Mart eliminates equivalent and duplicate mutants by applying Triv-
ial Compiler Equivalence (TCE) [10], on the mutated functions, in-
memory. Our implementation of TCE applies LLVM optimizations,
for each mutant, to the mutated function and uses a customized
version of llvm-diff3 tool to check for the difference between the
optimized functions of the mutants and the original program’s.

2.4 Final Mutated Files Generation
After TCE equivalent and duplicate mutants have been eliminated
from the meta-mutants module, separated mutants files are gener-
ated by dumping the mutants functions used during TCE (which
are also linked with the un-mutated function to make complete mu-
tant bitcode). weak mutation and mutants coverage instrumented
bitcode modules are generated by replacing, in the meta-mutants
module, each mutant’s code by label (function call that writes, into
a file, the mutant ID of the mutants whose label is covered during
test execution). A mutant coverage label is covered by any test that
reaches it (the mutant location). A weak mutation label is covered
by any tests that infect the mutant.

3 IMPLEMENTATION AND USAGE
Mart is implemented as a static analysis tool for LLVM bitcode
(Mart loads the input LLVM bitcode file as an LLVM module and
manipulates the module using the LLVM API). Currently, Mart has
been tested for LLVM versions 3.4, 3.7, 3.8 and 3.9, and on Ubuntu
(Linux) operating system.
2https://github.com/thierry-tct/mart
3https://llvm.org/docs/CommandGuide/llvm-diff.html

Table 2: Mart in Practice

Benchmark # of Programs # Generated Muts. # TCE Eq./Dup. Muts.

CoREBench [1] 46 1,564,614 715,996

Codeflaws [13] 1,692 3,213,543 1,457,512

Mart can be used to mutate programs written in any language
compilable into LLVM bitcode (compile complex C/C++ projects
withwllvm4). The users are required to compile the codewith debug
information enabled in order to keep the information about source
code location for mutants information. If no debug information is
found in the program to mutate, the mutants information will not
contain the source code locations information of the mutants.

Mart can be used through the command lines interface (CLI) or
through its application programming interface API. Users of Mart
can provide mutation configuration files (mutants operators and
mutation scope), decide whether to apply in-memory TCE, decide
whether to output weak mutation bitcode file, mutant coverage
bitcode file and separated mutant files. A demonstration video is
available online5. See the tool weblink to get started.

4 EXPERIMENTINGWITH MART
Mart has already been used to generate mutants for 2 research
experiments [11, 14]. The experiments applied Mart on a set of C
language projects. The experiments (shown in table 2) generated a
total of more than 4 million mutants and, in-memory TCE detected
more than 2 million equivalents and duplicate mutants.

5 CONCLUSION
Mart mutants generation tool is designed to provide flexibility to
configure mutants generation and the possibility to design bitcode
mutation that can capture some of the semantics of source code
mutation of complex operations. Mart provides a simple format
for the description of mutants operators to apply on bitcode, a
large number of implemented mutation operators, an interface
to implement new operators, and an in-memory trivial compiler
equivalence to detect equivalent and duplicate mutants. Mart is
designed to only generate and compile mutants from LLVM bitcode,
leaving the mutant-test execution to the user. This choice gives
flexibility to the user on the test execution framework to use. Mart
has been used to conduct research experiments and successfully
generated a large number of mutants on real software. Thus, Mart
can be used by both researchers and practitioners. Mart has the
same limitation of all bitcode mutation tools, which is the inability
to precisely mutate specific features of higher level languages.

Future plans on the development of Mart involve implementing
additional operator groups to handlemore program syntax elements
such as loops. Mart is made publicly available, open-source with
MIT License, at the following web link https://github.com/thierry-
tct/mart
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