
Search-Based Adversarial Testing and Improvement of
Constrained Credit Scoring Systems

Salah Ghamizi
University of Luxembourg

Luxembourg
salah.ghamizi@uni.lu

Maxime Cordy
University of Luxembourg

Luxembourg
maxime.cordy@uni.lu

Martin Gubri
University of Luxembourg

Luxembourg
martin.gubri@uni.lu

Mike Papadakis
University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Andrey Boystov
University of Luxembourg

Luxembourg
andrey.boystov@uni.lu

Yves Le Traon
University of Luxembourg

Luxembourg
yves.letraon@uni.lu

Anne Goujon
BGL BNP Parisbas

Luxembourg
anne.goujon@bgl.lu

ABSTRACT

Credit scoring systems are critical FinTech applications that con-
cern the analysis of the creditworthiness of a person or organization.
While decisions were previously based on human expertise, they
are now increasingly relying on data analysis and machine learning.
In this paper, we assess the ability of state-of-the-art adversarial
machine learning to craft attacks on a real-world credit scoring
system. Interestingly, we find that, while these techniques can gen-
erate large numbers of adversarial data, these are practically useless
as they all violate domain-specific constraints. In other words, the
generated examples are all false positives as they cannot occur
in practice. To circumvent this limitation, we propose CoEvA2, a
search-based method that generates valid adversarial examples (sat-
isfying the domain constraints). CoEvA2 utilizes multi-objective
search in order to simultaneously handle constraints, perform the
attack and maximize the overdraft amount requested. We evalu-
ate CoEvA2 on a major bank’s real-world system by checking its
ability to craft valid attacks. CoEvA2 generates thousands of valid
adversarial examples, revealing a high risk for the banking system.
Fortunately, by improving the system through adversarial training
(based on the produced examples), we increase its robustness and
make our attack fail.

CCS CONCEPTS

·Applied computing→ Online banking; ·Computingmethod-

ologies→Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409739

KEYWORDS

Search-based, Adversarial attacks, FinTech, Random Forest, Credit
Scoring

ACM Reference Format:

Salah Ghamizi, Maxime Cordy, Martin Gubri, Mike Papadakis, Andrey
Boystov, Yves Le Traon, and Anne Goujon. 2020. Search-Based Adversar-
ial Testing and Improvement of Constrained Credit Scoring Systems. In
Proceedings of the 28th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’20), November 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3368089.3409739

1 INTRODUCTION

The banking industry increasingly relies on machine learning to
support decision making based on customers’ historical data. One
prominent application case is credit scoring, i.e., ła set of decision
models and their underlying techniques that aid credit lenders in
the granting of creditž [25]. By learning from history ś credit cases
and their outcomes (whether the credit was returned in time) ś
supervised models can automate the approval and rejection of new
credit requests with limited human intervention.

Our industrial partner, the Data Science Lab of BGL BNP Paribas
Luxembourg (henceforth referred to as łBGL BNP Paribasž) has
recently engineered such a credit scoring system. Their system
deals with the approval of overdraft requests, which occur when a
transaction causes the balance of the account to drop below zero.
Then, it is up to the bank employees to allow or reject this transac-
tion. BGL BNP Paribas implemented an automated system relying
on random forests. That is, the approval of overdraft requests is
seen as a binary classification problem (approved or rejected). The
system approves or rejects overdrafts automatically, based on data
about the requested transaction and the customers’ history. If the
overdraft is rejected by the system, an expert re-analyzes the re-
quest and may overrule the decision. If it is accepted, the system
later checks whether the overdraft has been reimbursed in time.

1089

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409739
https://doi.org/10.1145/3368089.3409739

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

The first challenges faced by our partner were feature engineer-
ing and model selection. As these have been widely researched (see,
e.g., [8, 11, 23]), they benefited from the available body of knowl-
edge and techniques to build a quality system that achieved a test
accuracy of 80%. As of now, this system has processed more than
400,000 overdraft requests over a span of 30 months.

Yet, the stringent security requirements forced upon the banking
sector oblige them to protect their credit scoring system against
malicious third parties. In our partner’s context, the threat lies in
the capability of the third-party to modify the requested credits
and the profile of customers to make the system accept overdrafts
that it should have rejected.

In machine learning, such malicious inputs are called adversarial
examples and are crafted by altering benign inputs in such a way
that they fool the classification system. Adversarial examples are
mainly studied in the context of computer vision and deep neural
networks [1, 6, 24], where elusive alterations to the pixels of images
cause misclassifications. Such research has shown that adversarial
examples can be crafted by a systematic procedure ś the adversar-
ial attack ś which typically utilizes information about the neural
network’s gradients to find the slightest perturbation that would
change the output class.

Interestingly, the application of adversarial attacks to FinTech
and random forests remains largely unexplored [20]. This is surpris-
ing given the widespread use of these techniques in industrial appli-
cations. To our knowledge, the state-of-the-art attack for random
forest classification algorithms is the one designed by Papernot et
al. [21]. It consists of a stochastic procedure that visits and attempts
to flip the individual decision nodes of the forest’s trees until the
classification outcome is changed. An alternative approach could
be to built a łsurrogatež deep neural network (using the training
data), based on which we could apply a prominent gradient-based
attack (with the hope that this attack will be transferable to the
random forest model).

Nevertheless, all adversarial attack techniques lean on the in-
ternal computations of the classification models and disregard the
fact that altering the original input may produce false positives, i.e.,
infeasible in the real world, or invalid for the software system inputs
that are acceptable by the classification model. While this phenom-
enon is less likely to occur in image recognition, where slightly
altering an image can easily produce a valid image, application
domains such as FinTech are subject to hard domain constraints
delimiting the set of valid inputs. For instance, a credit scoring
system relies on financial information such as customers’ account
balance, contracted credits, monthly income, and indebtment rate.
Such data are naturally constrained (e.g., income is positive), in-
terdependent (indebtment rate depends on contracted credits and
monthly income) or bounded (e.g., the maximum overdraft amount
authorized by the bank). Thus, any successful attack should respect
these domain constraints and produce examples that satisfy them.

Moreover, we conduct experiments with the current state-of-the-
art, i.e., the Papernot attack, on our partner’s system.1 Interestingly,
we show that while the attack successfully generated adversar-
ial examples that flipped the classification results for 75% of the
cases (its gross success rate), none of them satisfied the domain

1We report on these experiments in Section 5.

constraints. This means that the attack has an actual success rate of
0%. These results indicate that state-of-the-art adversarial attacks
cannot generate domain-constrained test inputs.

Dealing with domain constraints is a recurrent problem in soft-
ware engineering [2]. In the case of generating adversarial examples,
one cannot handle/satisfy the domain constraints independently
of the attack technique. The issue is that on top of the constraints
(many of which are imposed by other systems/components), one
needs to craft the attacks and fulfil some additional objectives (e.g.
cause misclassification, maximize the overdraft amount). Therefore,
reducing the problem to constraint satisfaction is not enough.

To deal with this issue, we propose a search-based method that
generates constrained adversarial examples for banking applica-
tions. We formulate the generation of adversarial examples satis-
fying the domain constraints as a multi-objective search problem
and show that search-based techniques offer suitable solutions.
Our method, called Constrained Evolutionary Adversarial Attack
(CoEvA2), operates in a grey-box way; it relies on the feature repre-
sentation of the inputs but is independent of the internal parameters
of the classification model.

We apply CoEvA2 to BGL BNP Paribas’s credit scoring system
and show that it can generate thirteen thousand of valid adver-
sarial examples from 8.45% of the real overdrafts. This drastically
improves over state-of-the-art adversarial attacks, which failed com-
pletely. Then, we show that we can make our partner’s systemmore
robust by performing adversarial training (i.e., retrain the model
using the produced adversarial examples). After such training, the
system resists to our attack (applied under similar conditions).

In summary, the contributions of this paper are:

• Wedemonstrate the need for domain-constrained adversarial
attack techniques for industrial financial systems. We also
show that existing attacks are inapplicable to real-world
credit scoring systems, such as the one of our partner.
• We develop CoEvA2, a new adversarial attack method (for
random forest applications) based on multi-objective search.
Given a classificationmodel and domain constraints, CoEvA2
effectively generates valid adversarial examples.
• We evaluate CoEvA2 on our partner’s system and empirically
show that it can craft adversarial examples with an actual
success rate of 8.45%, leading to thousands of examples.
• We demonstrate that our method helps to improve the sys-
tem’s robustness (to adversarial attacks). Indeed, retraining
the system on adversarial examples results in improving its
robustness significantly.

2 RELATED WORK

2.1 Credit Scoring

The study of Louzada et al. [15] presents a comprehensive survey of
classification methods in the context of credit scoring automation.
While focusing on classification models, Louzada et al. also reported
the different problems tackled by the surveyed papers, with none
of them been related to model robustness or adversarial attacks.

Much research has been conducted on feature engineering and
model selection for credit scoring. For example, DeMelo and Banzhaf
[8] combined Kaizen programming and logistic regression to find
the best non-linear combination of features. Saia et al. [23] proposed

1090

Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

a wavelet-based feature engineering method and evaluated its per-
formance using multiple types of models. Feng et al. [11] proposed a
feature selection approach based on filters and a novel index named
new separation degree. These techniques are orthogonal to ours as
they do not target adversarial attacks or robustness.

2.2 Adversarial Examples

Adversarial examples were first mentioned by the studies of Biggio
et al. [5] and Szegedy et al. [24] in the context of deep neural
networks for image classification. Their intriguing property resides
in the small perturbations needed to change the predicted label.

According to Biggio et al. [5] white-box attacks assume perfect
knowledge on the model, its parameters, training set, and features.
Grey-box attacks use some knowledge about the targeted system
but assume another part to be unknown. Black-box attacks rely
on the (raw) input space and the system’s outputs to generate
adversarial examples.

In the recent years, the ever-increasing literature has studied
adversarial examples, mainly for computer vision (e.g., [1, 6]) with
applications to autonomous cars and facial recognition and, to a
lesser extent, natural language processing [4] and software security
[6, 13].

Papernot et al. [20] mention the potential threats of adversar-
ial examples for financial fraud detection. Yet, to the best of our
knowledge, there exists no prior work applying adversarial attacks
to industrial systems from the financial domain.

In another paper [21], Papernot et al. present an attack to deci-
sion trees. While this attack is straightforward to extend to random
forests, it does not support domain constraints. As we show later,
this makes it incapable of generating adversarial examples satisfy-
ing the constraints.

Kantchelian et al. [14] have also proposed another random forest
attack. It transforms the decision nodes to formula, forming them
as misclassification objective, and uses a SAT solver to generate
solutions. Thus, any solution corresponds to an adversarial example.
While this attack can theoretically solve the problem of generating
constrained adversarial examples (by adding constraints into the
formula), in practice, it faces scalability issues due to the inherent
problems and limitations of the SAT solvers.

Indeed, we conducted an exploratory experiment based on the
HELOC dataset2 which has half the number of features compared to
our partner’s dataset and simple constraints involving at most two
features. After 20 hours, the Kantchelian attack could not generate
any adversarial example satisfying the constraints.

Our method overcomes the limitations of state-of-the-art attacks
and designs a search-based (evolutionary) algorithm to generate
adversarial examples that cause misclassification and satisfy the
domain constraints while minimizing the perturbation and maxi-
mizing the business impact (i.e., the accepted overdraft amount).

The idea of using search-based algorithms to perform adversarial
attack is not new. Alzantot et al.[3] have proposed a black-box attack
on image recognition models (viz. deep neural networks). Being
focused on images, the problem they tackle is different and does
not involve domain constraints.

2https://community.fico.com/s/explainable-machine-learning-challenge

2.3 Constrained Test Generation

The problem of generating test inputs under domain constraints
is not new [18] and was tackled by several works in the context
of traditional (code-based) software, as witnessed by the survey of
McMinn [17]. More recently, Ali et al. [2] evaluate different search-
based methods in generating test inputs satisfying OCL constraints.
In the context of Combinatorial Interaction Testing (CIT), Garvin
et al [12] propose to reorganize the search space of metaheuristics
to reflect the structure of the CIT problems and their inherent
constraints. Compared to such works, the novelty of our research is
that it targets machine learning systems under adversarial settings.

An alternative to multi-objective GA search would require the
use of a SAT solver to find all valid configurations then choosing
the optimal ones with regards to the other objectives. However,
the combination of both search spaces and the complexity of the
constraints make it computationally expensive.

3 INDUSTRIAL CREDIT SCORING SYSTEM

3.1 Process and Datasets

When a customer initiates, through any channel, a transaction
whose amount exceeds the customer’s account balance, the pay-
ment engine asks the credit scoring system (CSS) for permission.
The CSS examines the customer’s profile and either approves the
credit overdraft or it suggests the operator reject the request. In
the latter case, the operator can follow the suggestion of the CSS
or overrule it and accept the request.

To make informed decisions, the CSS pulls information from
a dozen sources. In addition to basic features like the transaction
amount and the customer’s current balance, much information
about the customer’s history is consolidated. In the end, an overdraft
request is represented as a vector of 46 features.

After approving an overdraft request, the bank expects the cus-
tomer to return the credit in due time. In case the customer does
not do so, the bank considers that it was wrong to allow the over-
draft; otherwise it considers that it was correct. Through this post-
analysis, we can associate each approved overdraft credit with a
binary label (true or false). Such labels form the ground truth and
are used to assess the accuracy of the CSS. A similar process is
used for rejected overdraft and analyzes, based on the customer’s
future transactions, whether the overdraft credit would have been
returned in time should it have been approved.

Overall, the CSS dataset comprises 400,000 overdraft credit re-
quests with their associated label, out of which 275,000 are used for
training and 125,000 for testing.

3.2 Model Requirements and Characteristics

The rationale behind our partner’s project is to reduce human in-
tervention in overdraft approval by automatically approving safe
overdraft requests (sending only rejected overdraft to human ex-
perts) while minimizing the acceptance of risky overdrafts (e.g.
transactions of large amount). Our partner also expects the system
to run online, in real-time, and efficiently so that it does not com-
promise the efficiency of the other services. Finally, the selected
model should be interpretable, as explaining hardly-interpretable

1091

https://community.fico.com/s/explainable-machine-learning-challenge

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

models can be inefficient and even dangerous in high-stake decision-
making processes [22] such as overdraft approval.

To satisfy those requirements, our partner performed feature
engineering in close collaboration with business experts. They
performed model selection (considering decision trees, random
forest and gradient boosted trees) and used grid search to find
optimal model parameters. AUC for ROC curve was used as an
optimization criterion for the grid search, while F1 score was the
criterion to choose the optimal classification threshold. The final
model is a random forest with 500 estimators up to 8-level deep.

Thismodel is built and integratedwithin aDataikuDSS pipeline 3.
It achieves acceptable performance: 0.99 AUC and 0.99 accuracy on
the training set; 0.88 AUC, 0.80 accuracy and 0.70 F1-score on the
test set.

4 PROBLEM FORMULATION

4.1 Unconstrained Adversarial Attack

Let 𝑓 (.) be a binary classification model defined over a input space
𝐼 . For simplicity, assume 𝐼 to be normalized such that 𝐼 = [0..1]𝑚

and 𝑓 (𝑖) ∈ {1, 0} for any 𝑖 ∈ 𝐼 . Let x0 ∈ 𝐼 represents an original
example correctly classified by 𝑓 (.).

Adversarial attacks generate altered inputs that are close to
their original counterparts, yet are misclassified by the model. In
traditional, unconstrained adversarial attacks, the ideal adversarial
example x∗ crafted from x0 to fool 𝑓 (.) is defined as:

x
∗
= argmin

x

∥x − x0∥𝑝

such that

𝑓 (x) = 1 − 𝑓 (x0)

{x, x0} ⊂ 𝐼

and where ∥.∥𝑝 is the 𝐿𝑝 norm (e.g. 𝐿2).
The p-norm distance between a perturbed input and an initial

one is a good first indication of the effort required to generate the
adversarial example. However, to be acceptable, the perturbed input
has to satisfy inherent domain constraints. This is a fundamental
difference with image recognition, where it is generally admitted
that a small distance between x and x0 ensures that x has a strong
perceptual similarity to x0 and, thus, constitutes a valid image.

Therefore, the problem of generating adversarial attacks for ML-
based FinTech systems takes a different form: both the original and
the adversarial examples must be part of the subspace of inputs
that are considered valid. To characterize this subspace, we proceed
by first eliciting the different domain constraints.

4.2 Formalization of the Constraints

A first validity criterion demands that the adversarial example still
represents an overdraft, that is, the transaction amount remains
above the current balance of the customer’s account. Additionally,
we consider this amount relevant if it is higher than 1,000.00 cur-
rency units. Features4 can also be interdependent. For instance, the
indebtment rate must be positive and is obtained by dividing the

3https://www.dataiku.com/
4Due to NDA we cannot reveal the exact features used. The examples of feature we
provide are different from the ones used by our partner. However, their interrelations
are of the same level of complexity.

monthly credit reimbursement by the monthly income. There also
exist categorical features that can only take values from a finite set.
For example, each customer can be associated with a personal level
of risk (e.g. on a 1ś10 scale) based on its profile and past interviews
with the bank. The corresponding feature can only take as value
any integer between 1 and 10.

This highlights the types of constraints that our method must
support: features can be bounded, each by a different bound, some
may only take certain values, and there may exist numerical de-
pendencies between them. Accordingly, we define that a formula 𝜙
encoding such constraints (i.e. a constraint formula) over a set 𝐹 of
features is formed according to the following grammar:

𝜙 := 𝜙1 ∧ 𝜙2 | | 𝑓 ⪰ 𝜓 | 𝑓 ∈ {𝑐1 . . . 𝑐𝑘 }

𝜓 := 𝑐 | 𝑓 | 𝜓1 ⊕𝜓2

where 𝑓 ∈ 𝐹 ; 𝑐, 𝑐1, . . . , 𝑐𝑘 are constant values; 𝜙, 𝜙1, 𝜙2 are con-
straint formulae; ⪰∈ {<, ≤,=,≠, ≥, >};𝜓,𝜓1,𝜓2 are numerical for-
mulae and ⊕ ∈ {+,−, ∗, /}.

In addition to satisfying such formula, an adversarial attack may
not be able to modify some features. For instance, the level of risk
associated to a customer is under control of the bank and cannot
be changed by the customer himself. The same holds for features
resulting from the aggregation of data over time. Thus, we enforce
the requirement that the attack can only alter the subset F ⊆ 𝐹 of
mutable features. The other features (which the attack cannot alter)
are immutable. In BGL BNP Paribas’s CSS, 16 features are mutable
and the other 30 are immutable. This means that the attacker’s
capability to succeed strongly depends on the 30 features it cannot
change. We thus consider the features of different customers as
different starting points for our search algorithm.

We cannot disclose the features of our partner’s model, or its spe-
cific constraints, but we provide in the GIT repository a replication
example on the Lending Club Load Datase5

4.3 Constrained Adversarial Attack

Let 𝐼 = [0..1]𝑚 be the feature vector space over the feature set
𝐹 = {𝑓1 . . . 𝑓𝑚}, F ⊆ 𝐹 be the set of mutable features and 𝜙 be the
formula over 𝐹 encoding the domain constraints. Furthermore, let 𝐼𝜙
denote the subspace of valid feature vector, i.e. 𝐼𝜙 = {𝑖 ∈ 𝐼 : 𝑖 |= 𝜙}.

Given a binary classification model 𝑓 (.) and an original input
x0 = {(x0)1, . . . (x0)𝑚} ∈ 𝐼𝜙 , the ideal adversarial example x∗ gen-
erated from x0 to fool 𝑓 (.) is defined as

x
∗
= argmin

x

∥x − x0∥𝑝

such that

𝑓 (x) = 1 − 𝑓 (x0)

{x, x0} ⊂ 𝐼𝜙

𝑓𝑖 ∉ F ⇒ (x0)𝑖 = (x)𝑖 ,∀1 ≤ 𝑖 ≤ 𝑚.

Here, the difficulty of performing such attack lies in that it can only
alter features in F and in a way that 𝜙 remains satisfied.

5https://www.kaggle.com/wendykan/lending-club-loan-data

1092

Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Success rates and average perturbation produced by

existing adversarial attacks applied on our partner’s system.

While every method manages to generate adversarial exam-

ples, none of these satisfy the domain constrains.

Attack Gross success rate Actual success rate Avg 𝐿2
Papernot 74.86% 0.00% 10.64

PGD 17.30% 0.00% 0.10
CW2 80.00% 0.00% 0.37

5 MOTIVATION: HOWHELPFUL ARE
EXISTING ATTACK TECHNIQUES?

We start our study by assessing the capability of existing (uncon-
strained) attacks to generate valid adversarial examples in our real-
world use case. We assess the gross success rate of these attacks
(percentage of times they manage to create an example misclas-
sified by the model), their actual success rate (after removing the
examples that do not satisfy the domain constraints) and the aver-
age amount of perturbation applied (measured as the 𝐿2 distance to
the original input). The amount of perturbation is meant to serve
as a metric comparison between the attacks.

5.1 Random Forest Attack

First, we consider the attack proposed by Papernot et al. [21] ś
henceforth named the Papernot attack ś which was originally de-
signed to cause misclassifications in decision trees by visiting all
nodes in the tree and making them flip until the misclassification
is achieved.

This is the only attack relevant to our case. So, we adapt it (to
random forests) by iteratively applying the Papernot attack to every
tree of the forest until the classification outcome of the random
forest changes. We call this method Iterative Papernot.

We evaluated Iterative Papernot on all original test inputs of
our use case where the model makes correct classifications. The
results are recorded in Table 1 and reveal that the attack seems
successful, as it manages to generate adversarial examples (causing
misclassification) in 74.86% of our starting points/inputs, with an
average 𝐿2 distance (to the corresponding original inputs) of 10.64.
However, it turned out that none of the generated inputs satisfied
the domain constraints, leading to an actual success rate of 0%.

5.2 Gradient-Based Attacks

Another popular family of adversarial attacks are the gradient-
based attacks. These attacks were designed to generate adversarial
examples on Deep Neural Networks (DNNs). We note that during
learning, a DNN iteratively adjusts its neurons’ weight according
to the gradient of its cost function (which depends on the weights).
Gradient-based attacks exploit the same information to produce
a perturbation that changes the output of the last neuron layer,
thereby changing the classification outcome.

Being gradient-based, those methods can apply only on models
relying on differentiable cost functions. Thus, they do not work out

of the box on random forests.

A common way to circumvent this limitation is to build a surro-
gatemodel (a DNN) that mimics the random forest. That is, we train
this DNN on the same input set and use the outputs (classification
results) of the random forest as the ground truth for the DNN. Then,
we perform the gradient-based attack on the surrogate DNN and
obtain an adversarial example. The underlying assumption of this
method is that any adversarial example that fools the DNN also
fools the mimicked model.

For our experiments, we consider two gradient-based attacks:
Projected Gradient Descent (PGD) [16] and CW2 [7], which are
considered among the most effective attacks. We apply each attack
on all original test inputs that the model correctly classifies. We im-
plement a DNN model using the Tensorflow/Keras frameworks and
we use the implementation of the gradient-based attacks provided
by the IBM robustness library [19].

Results are shown in Table 1. PGD succeeds in generating ad-
versarial examples (causing misclassification) in only 17.30% of the
attempts, yet it does so with the smallest average amount of pertur-
bation amongst all techniques (𝐿2 distance of 0.10). Nevertheless,
none of the generated adversarial satisfy the domain constraints.
CW2 has a much higher gross success rate (80%) at the cost of
a higher perturbation than PGD (0.37), yet much lower than the
Papernot attack. Like the other two methods, CW2 fails to generate
a single example satisfying the constraints.

Overall, our analysis shows that, by focusing on classification
method and outcome, while being unaware of the domain con-
straints, state-of-the-art attacks fail to generate valid adver-

sarial examples. This fact demonstrates the need for new constraint-
aware attacks, i.e., attacks that satisfy the constraints by design.

6 RESEARCH QUESTIONS

Having shown that state-of-the-art adversarial attacks are not use-
ful in our case, we look for ways to circumvent their limitations and
successfully generate valid adversarial examples. We focus more
particularly on the use case where a malicious third party aims at
fooling the system, i.e., making it approve overdrafts that should
be rejected. This use case is deemed relevant by our partner as it
induces a risk of financial loss for the bank.

To this end, we investigate whether simple methods satisfying
the domain constraints can solve our problem. Thus, in our first
question, we check whether altering the initial points while keeping
constraints satisfied is sufficient. Hence, we ask:

RQ1 Can we generate successful adversarial examples by just

satisfying the domain constraints?

To answer this question, we investigate two solutions. The first is
to extend the Iterative Papernot attack in order to make it consider
the constraints as it searches through the nodes. The second is to
search for solutions (using single objective search) that satisfy the
constraints. Then, we can check whether the produced examples
are adversarial.

As our results shall show, these single-objective methods can
craft examples that either change the classification outcome or
satisfy the domain constraints, but not both at the same time. We
conjecture that, on the one hand, the iterative nature of the Papernot
attack blocks it into a narrow part of the landscape and, on the

1093

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

other hand, the random search does not benefit from the knowledge
of the original input (causing arbitrary perturbation). This means
that an effective search should not only be guided with additional
criteria (e.g., minimize the perturbation) but also explore a diverse
space.

To achieve this, we experimented with evolutionary (genetic)
algorithms. Such techniques are directed by some feedback, aka
fitness function, that quantifies how close the current solutions are
to the sought ones. At the same time, the random alterations they
apply to the candidate solutions create disruption in the search and,
doing so, avoids falling into local optima.

Our definition of constrained adversarial attack (see Section 4.3)
hints that such a search algorithm needs to handle multiple ob-
jectives: minimize perturbation, flip the classification, satisfy the
domain constraints (changing only mutable features). Addition-
ally, a malicious third party looks for optimizing a domain-specific

objective: maximize the overdraft amount.
Thus, we design a genetic algorithm that handles all these con-

straints and objectives. We assess its performance and investigate,
in particular, which fitness function (combination of objectives)
performs the best. Thus, we ask:

RQ2 How effective is our fitness function at generating con-

strained adversarial examples?

We answer this question by presenting our algorithm, named Co-

EvA2, and empirically evaluating it using different variants of the
fitness function.

Having shown that our method constitutes an effective attack,
we aim to improve the defence mechanism of our partner’s sys-
tem, in order to eliminate any risk that real-world attacks succeed.
Therefore, we turn our attention toward improving the robustness
of the CSS. To achieve this, we used adversarial training, which
consists of re-training the model with generated (successful) ad-
versarial examples, together with their correct classification label.
Such a practice is widely popular and has been shown to improve
the robustness of machine learning models. We, therefore, use ad-
versarial training to improve our partner’s system and check the
scale of this improvement. Hence, we ask:

RQ3 How much adversarial training based on CoEvA2 can

increase the robustness of the system?

We answer this question by checking the success rate of CoEvA2
when applied on various starting points.

7 SEARCH-BASED GENERATION OF
CONSTRAINED ADVERSARIAL EXAMPLES

Figure 1 displays an overview of the CoEvA2 process. Starting from
a set of samples (randomly selected from the test set), we iterate
over the elements of this set. At each iteration, CoEvA2 starts from
the sampled element (named the initial state) and creates an initial
population of new examples. Then, it evolves this population with
the aim of finding valid adversarial examples.

7.1 Population

Since only a subset of the features are mutable (16 out of 46 in
our industrial case), an adversarial example can differ from the
initial state only by the value of its mutable features. Thus, given

an initial state 𝑠 and a feature vector space 𝐼 , the population is a
subset 𝑃 ⊂ 𝐼 of feature vectors such that any individual 𝑝 ∈ 𝑃 has
the same value as 𝑠 for all immutable features. We can, therefore,
reduce the genotype of an individual as a single chromosome,
which is the vector of its mutable features. Any gene is an element
of this chromosome and contains the value of the corresponding
mutable features.

Note that we do not require any individual to satisfy the domain
constraints 𝜙 or to cause a misclassification. Indeed, we allow the
algorithm to produce invalid and benign examples throughout the
evolution process. This provides a smooth landscape for the search,
allowing it to explore efficiently this large search space. Constraint
satisfaction and misclassification are actually encoded into the
fitness/objective functions (see Section 7.2), in a way that valid
adversarial examples are considered better than invalid and benign
ones. Since misclassification is one of the objective, the evaluation
of the individuals makes use of the attacked model (in a black-box
way, using only the output class probabilities).

7.2 Fitness Function

We formulate the generation of constrained adversarial examples
as an optimization problem with four objectives. Each objective
can be independently assessed through an objective function.

The first objective function 𝑓1 models the requirements of caus-
ing misclassification, that is, maximizing the probability that the
example is classified in the targeted class. It is defined as the dis-
tance between the example and the incorrect class targeted by the
adversarial attack.

Without loss of generality we assume the target class is 0 (the
correct class is 1). When provided with an input x, a binary classifi-
cation model outputs 𝑝 (x), the prediction probability that x lies in
class 1. If 𝑝 (x) is above the classification threshold (a hyperparam-
eter of the model), the model classifies it in class 1; otherwise, in
class 0. Thus, we see 𝑝 (x) as the distance of x to class 0. By seeking
an input x∗ that minimizes this distance, we increase the likelihood
of misclassification regardless of the actual classification threshold.
Thus, we have:

𝑓1 (x) = 𝑝 (x).

The second objective is to minimize the amount of perturbation
measured between the initial state and the adversarial example, a
common requirement of adversarial attacks [5]. We use a conven-
tional measure of this amount: the normalized 𝐿2 distance between
the two inputs. Thus, given an initial state x0, the distance from an
example x and x0 is given by

𝑓2 (x) = 𝐿2 (x, x0) .

The third objective is the actual domain objective, that is, maxi-
mizing the approved overdraft credit amount. By convenience, we
transform this objective into a (normalized) minimization problem.
Let x be an example and (x)𝑡 be the value of the feature encoding
the requested overdraft amount. Then, the objective function 𝑓3
can be defined as

𝑓3 (x) =
1

(x)𝑡

Thus, this objective considers that the most successful solution
is the one that reaches the highest overdraft amount. In practice,

1094

Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: Overview of CoEvA2. Adversarial examples are generated from benign inputs (sampled from the test set).

though, our partner (like most banks) specifies a maximal overdraft
amount above which the transaction is always rejected.

The fourth and last objective concerns the satisfaction of the
domain constraints. As mentioned, we allow individuals to violate
the constraints as the evolution progresses. Yet, to converge to-
wards valid adversarial examples, we transform the satisfaction of
each (numerical) constraint into a (normalized) penalty function to
minimize, representing how far an example x is from satisfying the
constraint. More precisely, we transform each constraint into an
inequality of the form of 𝐶 (𝑋) ≥ 0 (e.g. 3𝑓 ≥ 𝑔 yields 3𝑓 − 𝑔 ≥ 0).
If the constraint is not satisfied, 𝐶 (𝑋) < 0 and we use the abso-
lute value of C(X) as distance. The overall distance to constraint
satisfaction is the mean of the normalized individual distances.

Thus, assuming 𝜙 =
∧

𝑖=1..𝑘 𝜙𝑖 , the fourth objective function is
defined as:

𝑓4 (x) =
1

𝑘

∑

𝜙𝑖

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (x, 𝜙𝑖) .

In our implementation, the transformation of the constraints into
these penalty functions is automatically handled by the framework
we use (see more in Section 8). Other heuristics to compute such
distance to satisfaction exist [17, 18] and could be considered in
future work.

Overall, we consider that the success of an adversarial example
can be measured by the trade-off between the likelihood of flipping
the classification outcome, the applied perturbation, the overdraft
amount and the satisfaction of the constraints. To objectively quan-
tify this trade-off, we define our fitness function as a linear equation
over the four objective functions, that is:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (x) = 𝛼 × 𝑓1 (x) + 𝛽 × 𝑓2 (x) + 𝛾 × 𝑓3 (x) + 𝛿 × 𝑓4 (x)

where 𝛼, 𝛽,𝛾, 𝛿 > 0 are meta-parameters that specify the relative
importance of the four objective. Overall the search process will
attempt to generate examples that minimize this fitness function
and simultaneously fulfil the four objectives.

In practice, we set these meta-parameters according to our part-
ner’s requirements and experience. The rationale was to reflect the
domain requirements:

• Constraints: These shape the valid input space, meaning
that any non-conforming input is invalid/infeasible. It is

Input: x0, an initial state;

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 , a fitness function;

𝑁𝑔𝑒𝑛 , a number of generations;

𝐿, a population size;
Output: A population 𝑃 of adversarial examples

minimizing the 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 function;

1 𝑃 ← 𝑖𝑛𝑖𝑡 (x0, 𝐿) ;

2 for 𝑗 = 1 to 𝑁𝑔𝑒𝑛 do

3 𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑒 ← 𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑃, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠);

4 𝑃𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑆𝐵𝑋_𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑒);

5 𝑃 ← 𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑒 ∪ 𝑝𝑜𝑙𝑦𝑀𝑢𝑡𝑎𝑡𝑒 (𝑃𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔);

6 end

7 return 𝑃

Algorithm 1: Generation process of CoEvA2

imperative to satisfy the constraints and hence, we make
them our most important objective (𝛿 = 1, 000).
• Maximise overdraft: For a bank, minimising the potential
loss of money is of utmost importance. Indeed, the overdraft
amount represents the potential gain for the attacker, which
forms the objective to maximize (𝛾 = 100).
• Cause misclassification: we also deemed it more important
to cause misclassification than to minimizing perturbation
(𝛼 = 2, 𝛽 = 1), such that the perturbation should only serve
to rank adversarial examples that are successful and valid.

As revealed by our experiments, our fitness function provides
a feasible and practical solution to our problem. Alternatively,
we could have relied on search methods to automatically set the
weights. Another option is to define four fitness functions (one
per objective), thereby reducing our problem to multi-objective
optimization and search for Pareto fronts. While studying these
alternatives is of interest, it is unlikely that they will make major dif-
ferences under such interdependent constraints. The github reposi-
tory proposes both a grid-search optimisation of the weights and
a non-dominated multi-objective approach (NSGA-2) and shows
limited performance improvements in comparison with the weights
proposed by our domain-expert.

1095

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

7.3 Generation Process

Algorithm 1 formalizes the generation process of our genetic algo-
rithm. From a given initial state x0, we generate an initial population
𝑃 including 𝐿 individuals, by randomly setting the mutable features
of x0 (Line 1). The only constraints we enforce are the categorical
constraints of the form 𝑓 ∈ {𝑐,1 . . . , 𝑐𝑘 } and the boundary con-
straints of the form 𝑓 ⪰ 𝑐 where 𝑓 is a feature, ⪰∈ {<, ≤,=,≠, ≥, >},
and 𝑐, 𝑐1, . . . , 𝑐𝑘 are constant values. This allows reducing the num-
ber of invalid examples without biasing the generation (since the
boundary constraints involve only one feature each).

Then, we make the population evolve for a predefined number
𝑁𝑔𝑒𝑛 of generations (Lines 2ś6). At each iteration (generation),
we evaluate the fitness function of each individual of the current
population 𝑃 . This is achieved by, first, combining the genotype of
each individual (its mutable features) with the immutable features
of x0. Then, we can input any resulting example x into the fitness
function (as defined previously) and obtain the fitness value of x.

What follows is the application of selectors and alterers to form
the next generation. We first use tournament selection that keeps
the best individuals (according to the fitness function) out of sam-
ples of two (Line 3). Thus, half of the population disappear.

As for alterers, we randomly apply crossover and mutation oper-
ators. For the crossover (Line 4), we randomly pick pairs of individ-
uals (that survived the tournament selection) and use a simulated
binary crossover [10] to create two new offsprings from the nu-
merical and categorical features of the parents. We assign the same
probabilistic importance to each parent. At the end of the crossover,
we obtain anew a population of size 𝐿 (half parents, half offsprings).

Next, we apply mixed polynomial mutation to alter randomly the
mutable features of the offspring (Line 5). Each feature has a proba-
bility 𝑝𝑚 to be altered (set to 𝑝𝑚 = |F |−1 in our experiments). Like
the initialisation process of the population, the applied mutation
operators take into account the nature (categorical/integer or real)
and boundaries of each feature. At the end of the mutation process,
we obtain a new population 𝑃 𝑗 to proceed in the next generation.

After the specified number of generations passed, the algorithm
returns the examples of the last generation that satisfy the con-
straints. In addition to these individuals, the algorithm also returns
the associated values of fitness and objective functions.

8 EMPIRICAL EVALUATION

8.1 Experimental Setup

To address our research questions, we implemented CoEvA2. The
tool was developed in Python on top of PyMoo, an established
framework formodelling and executing genetic algorithms in Python.
Our implementation is publicly available.6 All experiments were
run on our partner’s internal server with about 6 cores allocated
for our experiments.

We set the meta-parameters of the genetic algorithm as follows.
Population size was set to 40 to maintain an acceptable computa-
tion time (CoEva2 run on 4,000 initial states takes about 24 days).
Exploratory experiments showed that a higher population size does
not affect our results. Also, we stop the algorithm after 10,000 gener-
ations. These numbers were found experimentally to be sufficient in

6https://github.com/UL-SnT-Serval/coeva2/tree/fse

making our technique to craft successful adversarial examples. For
selection, mutation and crossover, we kept their default parameters
which worked well in our case. During our experimentation, we
performed exploratory trials with alternative settings and observed
minor differences. This is in line with the study of Zamani and
Hemmati [26] on the sensitivity of search-based testing methods
to their hyper-parameters.

All our experiments focus on our partner’s case study, i.e. gener-
ating feasible, adversarial overdraft requests approved by the CSS.
To that end, we consider our partner’s real-world data comprising
400,000 requests. The 275,000 were used by our partner to train the
CSS’s random forest. Out of the 125,000 remaining (the test set),
we keep only those which are rejected overdraft requests correctly
classified by the CSS. The rationale is that in realistic settings, an
attacker can only manipulate future transactions and account status
(which are inherently outside the training set) with the aim to make
previously-rejected requests accepted by the system and, doing so,
retrieving money illicitly.

This leaves us with 19,274 data points. We use two random sam-
ples of this set, each of which contains 4,000 initial states (customer
account and transaction history): the first sample is used in RQ1
and RQ2 while the second is used to assess the adversarial training
in RQ3. Thus, for each RQ we execute CoEvA2 4,000 times, once
on each initial state. This is sufficient to rule out random effects.

Here it must be noted, that the above settings are common to
all RQs we investigate. Still the related settings required to answer
each specific RQ are given at the beginning of the result Sections,
i.e., those that answer RQ1 and RQ2 (Sections 8.2, 8.3, 8.4).

8.2 RQ1: Constrained Papernot and Random
Search

Our first series of experiments consider (1) the Papernot attack
extended to consider the domain constraint and (2) a random search
that only considers the satisfaction of the constraints as objective
(aka CoEvA2 with the same meta-parameters but using only 𝑓4
as the fitness function). We regard these two attacks as baseline
methods that we seek to improve.

Our extension of the Papernot attack differs from the original in
three ways. First, it avoids visiting the nodes related to immutable
features (thus, it never changes these features). Second, it checks
the satisfaction of boundary constraints on the fly, each time a
feature is altered. Third, it attempts to satisfy the other constraints
by updating the dependent features.

To allow for fine-grained analysis of their results, we define four
objective indicators. Each indicator reports the percentage of initial
states from which a given method can produce a valid adversarial
example. The objective corresponding to these indicators are:

O1: satisfy the domain constraints
O2: cause misclassification
O3: satisfy O1 and O2
O4: satisfy O3 and create a relevant overdraft (more than 1,000

currency units)

We evaluate the two baseline methods on a sample of 4,000 initial
states (randomly picked from 19,274 rejected overdrafts). That is,
we run each method 4,000 times (once per sampled initial state).

1096

Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: Objective indicators of random search and con-

strained Papernot attacks

Success rate
Objective Random search Papernot

Constraints (O1) 0.00% 0.20%
Misclassification (O2) 57.15% 25.85%

O1 and O2 (O3) 0.00% 0.00%

O3 and overdraft amount (O4) 0.00% 0.00%

Results are shown in Table 2. Interestingly, none of the generated
adversarial examples (by any of the two attacks) are valid (none of
them satisfy O4). In the case of Papernot, a small number of the
generated examples satisfy the domain constraints and about one-
fourth overall cause misclassification. However, there is none that
fulfil both objectives. This shows that straightforward extensions
to unconstrained attacks (to make them consider the constraints)
remain ineffective.

In the case of the random search, we observe that more than half
of the returned examples cause misclassification. Interestingly, none
of them satisfy the constraints although this is the only objective
forced upon the search. A detailed investigation of the generated
examples reveals that the perturbation amount ranges from 0.2
to more than 1,000. This is significantly more than the Papernot
attack and the aforementioned gradient-based methods (see our
preliminary study Section 5). From these observations, we hypo-
thesize that minimizing the perturbation would allow restricting
the exploration within a reasonable area around the initial state.
Doing so, the search would increase the likelihood to find valid
adversarial examples around this initial state (in particular, when
initializing the population and performing mutation).

8.3 RQ2: Coeva2 and Its Fitness Function

Given that the baseline methods do not generate valid adversarial
examples, we implement and evaluate CoEvA2. We execute the
algorithm on the same randomly-picked set of the 4,000 initial states
that was used in RQ1. We also consider the same four objective
indicators as in RQ1 to allow for fine-grained analysis.

To identify and form a good fitness function, we consider multi-
ple variants of CoEvA2, each of which uses a different subset of the
objective functions. In addition to the random search guided only
by the constraint satisfaction (previously studied in RQ1), we con-
sider three variants: the full CoEvA2, another variant where only
the 𝑓2 (perturbation minimization) part is removed and another one
where only the 𝑓3 (overdraft maximization) part is removed. Mis-
classification and constraint satisfaction are minimum mandatory
criteria in order to generate valid examples and thus, all the three
CoEvA2 variants we examine include them.

Table 3 summarizes our results. It shows that the variant of
CoEvA2 with all parts of the objective function activated is the
only one capable of generating adversarial examples that cause
misclassification, satisfy the constraints and engender relevant
overdrafts.

CoEvA2 is successful for 8.45% of the initial states. Thus, on
average, only 12 initial states are needed to perform a successful
attack. An interesting observation here is that from one initial

(a) f1: Prediction probability (lower is better)

(b) f2: Perturbation, 𝐿2 distance (lower is better)

(c) f3: Overdraft amount (higher is better)

(d) f4: Constraints violation error (lower is better)

Figure 2: Mean value (red) and boundaries (blue between the

maximum and the minimum values) of each objective func-

tion over 4,000 initial states and for 10,000 generations.

state we can generate more than one valid adversarial example.
This results in more than thirteen thousand of valid adversarial
examples bypassing the banking system. These results seem to
suggest that the fitness function we form is effective and that all its
parts are important.

This last point can be confirmed by the rest of the recorded re-
sults. These show that all the objective function parts are necessary
to generate successful adversarial examples. Without the pertur-
bation minimization objective (one-before-last column), CoEvA2
generates slightly more misclassified examples (for 31.18% of the

1097

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

Table 3: Objective indicators achieved by CoEvA2, using different fitness functions.

Objective indicators Random search (𝑓4) CoEvA2 (all) CoEvA2 (𝑓1, 𝑓3, 𝑓4) CoEvA2 (𝑓1, 𝑓2, 𝑓4)
Constraints (O1) 0.00% 58.9% 0.00% 100.00%

Misclassification (O2) 57.15% 27.1% 31.18% 18.79%
O1 and O2 (O3) 0.00% 17.2% 0.00% 18.79%

O3 and overdraft amount (O4) 0.00% 8.45% 0.00% 0.00%

Figure 3: Adversarial training process.

initial states instead of 27.10%) but none of them satisfies the con-
straints. This confirms our previous hypothesis that not restricting
the perturbation makes the algorithm create examples much differ-
ent from the original (valid) example. In highly constrained search
space, this increases the likelihood of generating invalid examples.

Finally, without the objective ofmaximizing the overdraft amount
(last column), CoEvA2 generates examples satisfying the constraints
in every case. However, only 18.79% of them cause misclassifica-
tion. None of these achieve a sufficient overdraft amount (1,000
currency units). This is because the algorithm applies only small
variations and only to the other mutable features, which reduces
the likelihood of violating the constraints and of misclassification.

To better understand how CoEvA2 handles the trade-off between
the four objective functions, we show in Figure 2 how the value
of each of them evolves over the generations when applied to the
initial states for which it managed to generate valid adversarial
examples over 10,000 generations.

At each generation, we average the objective function scores
obtained by the current population. Thus we obtain, for each initial
state and each objective function, 10,000 values (one per generation).
Then, we show the minimum, mean and maximum values of each
(averaged) score over all the initial states. The red line is the mean,
whereas the blue area denotes the minimal and maximal scores.

The four plots confirm that constraint satisfaction is the first
objective fulfilled by the algorithm, and it does so always in the
early generations (after about 100). The figure also shows that
the overdraft amount is the second-most dominant objective and
is always achieved within the first 200 generations, reaching 108

currency units, the maximum amount authorized by the CSS. All
the individuals of the population in all the next generations inherit

this maximum value and keep satisfying the constrains. Meanwhile,
the 𝐿2 distance fluctuates around 0.9, which is 10 times less than
the Papernot attack. The average prediction probability stabilizes
around 0.35, which is slightly below the prediction threshold.

Interestingly, taken together these results suggest that a careful
choice of the initial state allows CoEvA2 to find valid adversarial
examples after a limited number of generations (200). Moreover,
these examples make the system overdraft of high amount (close
to the strict maximum authorized by the bank). While frightening,
these results also mean that we can focus on specific initial states to
build countermeasures and increase the robustness of the system.

Overall, our results corroborate the conclusion that all four parts
of our fitness function play a crucial role in crafting valid adversarial
examples. At the same time, our approach demonstrates that it is
indeed feasible to craft valid adversarial examples in real-world
critical systems. This motivates the need for appropriate defence
mechanisms to reinforce the robustness of the system against such
attacks. We investigate this in the next research question.

8.4 RQ3: Adversarial Training

Figure 3 shows the adversarial training process we designed to
improve the robustness of our partner’s system against our (previ-
ously successful) adversarial attack. First, we generate 4,000 valid
adversarial examples (overdrafts accepted by the model that should
be rejected) and re-train the model to classify them correctly. To
do so, we use the 4,000 initial states used in RQ2. After re-training
the model, we execute again CoEvA2 4,000 times using each time
a new initial state that was not used to produce the adversarial

1098

Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

training set. We check whether the attack managed to generate any
adversarial examples.

It results that the adversarial training makes CoEvA2 incapable
of generating valid adversarial examples. Thus, our adversarial
training method grants protection against the very same attack
that was previously effective. This is a positive outcome that can be
used by our partner in order to improve the robustness of the CSS.
As our system is still in testing phase, it is used in parallel to the
original model. Thus, an overdraft approved by the existing model
and rejected by ours is likely to be an adversarial example. In all
the other cases, one should follow the decision of the first model.

8.5 Threats to Validity

Validity threats to our results may arise by the implementations we
used. Thus, potential bugs either in our or the underlying frame-
works may influence our results. We do not consider this threat
as important since we thoroughly checked our code and many
of the adversarial examples we generated were verified by our
partner. Moreover, we rely on widely used and relatively reliable
frameworks, Scikit-Learn and Tensorflow for the machine learning
algorithms, and reputable libraries like the Adversarial Toolbox
from IBM[19] for adversarial attacks and Pymoo from the Michigan
State University 7 for multi-objective genetic algorithms.

Another potential threat concerns the specificity of the dataset
and classification model we used. Both are from our partner’s real
production system and since our partner is a major player, its data
and practices should be representative of other companies. More-
over, a verification of historical data revealed remarkable results for
the last year. Due to the specificity of our industrial case, the results
we obtained may not fully transfer to other industries (namely out-
side of credit scoring domain). Nevertheless, our endeavour shows
that the problem exists in the real world and formalises it to facili-
tate the design of similar solutions to other cases. Moreover, our
algorithm and approach have been designed to be generic enough
to be adjusted to other use cases, and we provide the algorithm and
all the hyper-parameters of our approach for reproducibility.

To reduce the impact of random effects, all our experiments con-
sider 4,000 different initial states (customer account and transaction
history) and run the studied methods once per state. Since we make
4,000 independent executions, multiple runs per execution can only
make a difference in isolated cases and not in the overall perfor-
mance (expected case). This is because initial states can be seen as
independent repetitions.

In our experiment, we perform a single run per state since we
focus on trends. Thus, we run our approach on 4,000 cases and
found adversarial cases in 341. These are sufficiently large num-
bers to rule out random effects. Yet, multiple repetitions and more
generally additional search time-budget may improve the results of
the search. We run the random method 4, 000 × 40, 000 times (4,000
initial states × 1,000 generations with 40 individuals), and found
0 adversarial cases, which demonstrates the ineffectiveness of the
random method.

7https://pymoo.org

9 CONCLUSION

In this paper, we studied the problem of testing a machine-learning-
based industrial credit scoring system against malicious inputs. In
particular, we considered the case where an attacker manipulates
the related features, with the aim to cause a misclassification by a
binary classification model. To this end, we evaluated the current
state-of-the-art adversarial attacks, both in a full-knowledge context
and a limited-knowledge using our partner’s dataset and system.
Based on this study, we shew that approaches proposed in the liter-
ature can indeed generate adversarial examples but these are not
useful since they do account for domain constraints. This limitation
of the methods results in generating implausible examples. To deal
with this situation, we proposed a search-based method overcoming
these limitations. We showed that our new attack constitutes a real
security threat to FinTech systems relying on machine learning. At
the same time, we exploit this threat to improve the defence mech-
anisms of our industrial system. In the end, the system becomes
immune to our attack.

10 ARTIFACT

Our library is available on Github and can be extended to any
constrained adversarial attack task. The two main branches are:

• fse: this branch tackles the implementation presented in this
paper and the experiments to reproduce our results. Our
dataset being proprietary and private, we provide a similar
open-source dataset, Lending Club Load Dataset8 to evaluate
our approach. The tool is built around configuration files
(located in /configurations folder) where you can define the
constraints of your problem, your objective functions, etc...
The folder /src contains the actual implementation of our
algorithm, while the folder /experiments provides scripts to
easily run each of the Research Questions’ experiments.
• master: this branch is the ongoing iteration of the library.
It provides an extension of the approach using Grid and
Random search to optimize the weights of each objective,
and MoEva2 an NSGA-2 [9] extension of our approach that
uses non-dominated multi-objective evolution. This branch
will contain the stable evolutions of the library, in particular
all elements mentioned as future or ongoing work.

ACKNOWLEDGMENTS

Thiswork is supported by the LuxembourgNational Research Funds
(FNR) CORE project C18/IS/12669767/STELLAR/Le Traon.

This work is a collaborative work between the University of
Luxembourg and the DataScience Lab of BGL BNP Parisbas.

Special thanks to Thibault Simonetto from the University of
Luxembourg who made our library open to the public and extended
it to support publicly available datasets for replication purposes.

8https://www.kaggle.com/wendykan/lending-club-loan-data

1099

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA S. Ghamizi, M. Cordy, M. Gubri, M. Papadakis, A. Boystov, Y. Le Traon, and A. Goujon

REFERENCES
[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep

learning in computer vision: A survey. IEEE Access 6 (2018), 14410ś14430.
[2] Shaukat Ali, Muhammad Zohaib Z. Iqbal, Andrea Arcuri, and Lionel C. Briand.

2013. Generating Test Data from OCL Constraints with Search Techniques. IEEE
Trans. Software Eng. 39, 10 (2013), 1376ś1402. https://doi.org/10.1109/TSE.2013.17

[3] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui
Hsieh, and Mani B. Srivastava. 2019. GenAttack. Proceedings of the Genetic and
Evolutionary Computation Conference (Jul 2019). https://doi.org/10.1145/3321707.
3321749

[4] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-JhangHo,Mani Srivastava,
and Kai-Wei Chang. 2019. Generating Natural Language Adversarial Examples.
Association for Computational Linguistics (ACL), 2890ś2896. https://doi.org/10.
18653/v1/d18-1316 arXiv:1804.07998

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion Attacks against
Machine Learning at Test Time. Lecture Notes in Computer Science (2013), 387ś402.
https://doi.org/10.1007/978-3-642-40994-3_25

[6] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition 84 (December 2018), 317ś331.
https://doi.org/10.1016/j.patcog.2018.07.023 arXiv:1712.03141

[7] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. 2017 IEEE Symposium on Security and Privacy (SP) (May 2017).
https://doi.org/10.1109/sp.2017.49

[8] Vinícius Veloso de Melo and Wolfgang Banzhaf. 2016. Improving Logistic Re-
gression Classification of Credit Approval with Features Constructed by Kaizen
Programming. In Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion - GECCO ’16 Companion. ACM Press, Denver, Colorado,
USA, 61ś62. https://doi.org/10.1145/2908961.2908963

[9] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182ś197.

[10] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. 2007. Self-Adaptive
Simulated Binary Crossover for Real-Parameter Optimization. In Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation (London,
England) (GECCO ’07). Association for Computing Machinery, New York, NY,
USA, 1187ś1194. https://doi.org/10.1145/1276958.1277190

[11] Hongwei Feng, Shuang Li, Dianyuan He, and Jun Feng. 2019. A novel feature
selection approach based on multiple filters and new separable degree index for
credit scoring. In Proceedings of the ACM Turing Celebration Conference - China
on - ACM TURC ’19. ACM Press, Chengdu, China, 1ś5. https://doi.org/10.1145/
3321408.3323928

[12] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. 2009. An Improved Meta-heuristic
Search for Constrained Interaction Testing. In 2009 1st International Symposium
on Search Based Software Engineering. 13ś22.

[13] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2017. Adversarial examples for malware detection. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Vol. 10493 LNCS. Springer Verlag, 62ś79.
https://doi.org/10.1007/978-3-319-66399-9_4

[14] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. 2016. Evasion and Harden-
ing of Tree Ensemble Classifiers. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48 (New York, NY,
USA) (ICML’16). JMLR.org, 2387ś2396.

[15] Francisco Louzada, Anderson Ara, and Guilherme B. Fernandes. 2016. Classifica-
tion methods applied to credit scoring: Systematic review and overall comparison.
Surveys in Operations Research and Management Science 21, 2 (Dec. 2016), 117ś134.
https://doi.org/10.1016/j.sorms.2016.10.001

[16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards Deep Learning Models Resistant to Adversarial
Attacks. , 27 pages. arXiv:1706.06083 http://arxiv.org/abs/1706.06083

[17] Phil McMinn. 2004. Search-based software test data generation: a survey. Softw.
Test. Verification Reliab. 14, 2 (2004), 105ś156. https://doi.org/10.1002/stvr.294

[18] Zbigniew Michalewicz and Marc Schoenauer. 1996. Evolutionary Algorithms for
Constrained Parameter Optimization Problems. Evol. Comput. 4, 1 (1996), 1ś32.
https://doi.org/10.1162/evco.1996.4.1.1

[19] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish
Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen,
Heiko Ludwig, Ian Molloy, and Ben Edwards. 2018. Adversarial Robustness
Toolbox v1.2.0. CoRR 1807.01069 (2018). https://arxiv.org/pdf/1807.01069

[20] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 372ś387.

[21] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016. Trans-
ferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples. CoRR abs/1605.07277 (2016). arXiv:1605.07277 http:
//arxiv.org/abs/1605.07277

[22] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Machine
Intelligence 1, 5 (May 2019), 206ś215. https://doi.org/10.1038/s42256-019-0048-x

[23] Roberto Saia, Salvatore Carta, and Gianni Fenu. 2018. A Wavelet-based Data
Analysis to Credit Scoring. In Proceedings of the 2nd International Conference
on Digital Signal Processing - ICDSP 2018. ACM Press, Tokyo, Japan, 176ś180.
https://doi.org/10.1145/3193025.3193039

[24] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[25] Lyn C. Thomas, David B. Edelman, and Jonathan N. Crook. 2002. Credit Scoring
and Its Applications. Society for Industrial and Applied Mathematics. https:
//doi.org/10.1137/1.9780898718317

[26] Shayan Zamani and Hadi Hemmati. 2019. Revisiting Hyper-Parameter Tuning
for Search-Based Test Data Generation. Lecture Notes in Computer Science (2019),
137ś152. https://doi.org/10.1007/978-3-030-27455-9_10

1100

https://doi.org/10.1109/TSE.2013.17
https://doi.org/10.1145/3321707.3321749
https://doi.org/10.1145/3321707.3321749
https://doi.org/10.18653/v1/d18-1316
https://doi.org/10.18653/v1/d18-1316
https://arxiv.org/abs/1804.07998
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1016/j.patcog.2018.07.023
https://arxiv.org/abs/1712.03141
https://doi.org/10.1109/sp.2017.49
https://doi.org/10.1145/2908961.2908963
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1145/3321408.3323928
https://doi.org/10.1145/3321408.3323928
https://doi.org/10.1007/978-3-319-66399-9_4
https://doi.org/10.1016/j.sorms.2016.10.001
https://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
https://doi.org/10.1002/stvr.294
https://doi.org/10.1162/evco.1996.4.1.1
https://arxiv.org/pdf/1807.01069
https://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1145/3193025.3193039
https://doi.org/10.1137/1.9780898718317
https://doi.org/10.1137/1.9780898718317
https://doi.org/10.1007/978-3-030-27455-9_10

	Abstract
	1 Introduction
	2 Related work
	2.1 Credit Scoring
	2.2 Adversarial Examples
	2.3 Constrained Test Generation

	3 Industrial Credit Scoring System
	3.1 Process and Datasets
	3.2 Model Requirements and Characteristics

	4 Problem Formulation
	4.1 Unconstrained Adversarial Attack
	4.2 Formalization of the Constraints
	4.3 Constrained Adversarial Attack

	5 Motivation: How helpful are existing attack techniques?
	5.1 Random Forest Attack
	5.2 Gradient-Based Attacks

	6 Research Questions
	7 Search-based Generation of Constrained Adversarial Examples
	7.1 Population
	7.2 Fitness Function
	7.3 Generation Process

	8 Empirical Evaluation
	8.1 Experimental Setup
	8.2 RQ1: Constrained Papernot and Random Search
	8.3 RQ2: Coeva2 and Its Fitness Function
	8.4 RQ3: Adversarial Training
	8.5 Threats to Validity

	9 Conclusion
	10 Artifact
	References

