
Keeping Mutation Test Suites Consistent and Relevant with
Long-Standing Mutants

Milos Ojdanic
milos.ojdanic@uni.lu

University of Luxembourg
Luxembourg

Mike Papadakis
michail.papadakis@uni.lu
University of Luxembourg

Luxembourg

Mark Harman
mark.harman@ucl.ac.uk

Meta platforms Inc. and UCL
UK

ABSTRACT
Mutation testing has been demonstrated to be one of the most pow-
erful fault-revealing tools in the tester’s tool kit. Much previous
work implicitly assumed it to be sufficient to re-compute mutant
suites per release. Sadly, this makes mutation results inconsistent;
mutant scores from each release cannot be directly compared, mak-
ing it harder to measure test improvement. Furthermore, regular
code change means that a mutant suite’s relevance will naturally
degrade over time. We measure this degradation in relevance for
143,500 mutants in 4 non-trivial systems, finding that 52% degrade,
on average. We introduce a mutant brittleness measure and use
it to audit software systems and their mutation suites. We also
demonstrate how consistent-by-construction long-standing mutant
suites can be identified with a 10x improvement in mutant relevance
over an arbitrary test suite. Our results indicate that the research
community should avoid the re-computation of mutant suites and
focus, instead, on long-standing mutants, thereby improving the
consistency and relevance of mutation testing.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Evolving Systems, Mutation Testing, Test Adequacy, Continuous
Integration, Software Testing

ACM Reference Format:
Milos Ojdanic, Mike Papadakis, and Mark Harman. 2023. Keeping Mutation
Test Suites Consistent and Relevant with Long-Standing Mutants. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3611643.3613089

1 INTRODUCTION
Mutation Testing has been demonstrated to be one of the Software
Testing community’s most effective software testing techniques
[6]. It seeds artificial faults - known as mutants. When a test distin-
guishes the behaviour of the mutant from the original, the mutant

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613089

is said to be ‘killed’. Test effectiveness is captured and represented
by the mutation score - the proportion of mutants killed [15, 22, 28].

Initial barriers to adoption concerned the computational cost of
the approach [13, 33]. Recent techniques have tackled the mutation
cost problem using intelligent mutant selection [13, 33], higher
order mutation [14, 25], commit awareness [23, 24] and mutant
subsumption [2, 8, 31], thereby removing these cost-based barriers.

We argue that there is a remaining barrier to uptake: mutant
consistency. We need a consistent set of mutants for a project so that
test effectiveness can be consistently tracked against a common
baseline over a series of project releases. Sadly, almost all existing
research on mutation testing assumes that a fresh set of mutants
is created for each release of the system [15, 28]. An alternative
would be to fix a set of mutants as a baseline and use this to measure
ongoing test effectiveness evolution. However, this paper shows,
that such a fixed mutation set will quickly degrade in its ability to
provide a measurement of test effectiveness relevance over time.

We introduce a mutation test brittleness metric, which can be
used to assess a mutation suite, and software project, in terms
of the rate at which mutant relevance decays over a series of re-
leases, w.r.t., allowing the mutant suite to stand watchful of core
test requirements between the releases. Our results demonstrate
that mutants have diverse life spans across program versions. We
show that a high-quality suite of long-standing mutants allows us
to maintain effectiveness over a series of releases: a long-standing
mutant suite provides test effectiveness relevance for at least 10x
longer than a randomly selected suite. In order to increase the
consistency and relevance of mutation testing towards continuous
integration, we provide a vision and with promising preliminary
results, we conclude that the research community should focus on
long-standing mutants, their applications, the opportunities they
open, and the remaining open questions.

Specifically, this paper’s primary contributions are: (1) The in-
troduction of long-standing mutants as an important category war-
ranting further study in the context of continuous integration. (2)
The introduction of metrics for assessing mutant brittleness and
visualisations of how this metric varies for a given project over
time. (3) An empirical study of long-standing mutants based on four
non-trivial systems and 143,500 mutants. (4) The key motivating
finding is that long-standing mutant suites enjoy an order of magni-
tude longer relevance than a randomly selected suite over the four
systems studied. (5) An important ‘special relationship’ between
long-standing and subsuming mutants: mutants that are subsum-
ing in one version have a high probability of subsuming in the
following versions. This relationship opens optimistic prospects for
mutants’ ability to maintain consistency, relevance, effectiveness
and subsumption over a series of releases.

https://orcid.org/0000-0001-8213-3381
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0002-5864-4488
https://doi.org/10.1145/3611643.3613089
https://doi.org/10.1145/3611643.3613089


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Milos Ojdanic, Mike Papadakis, and Mark Harman

Figure 1: Example of mutants standing through 3 chronological sequences of code versions. The example code snippet comes
from Apache commons-io project, while method read() is excerpted from the BoundedReader.java (versions around 81210eb).
The green and red rectangles represent associated commit changes. While java comments (//) describe the set of mutants𝑀𝑖, 𝑗 ,
where 𝑖 is the observed program version, and 𝑗 is a mutant ID.

2 BACKGROUND AND RELATEDWORK
Commit-Relevant Mutants. Applying traditional mutation test-
ing in CI processes is impractical due to its cost. Meanwhile, Commit-
Aware Mutation Testing scales and defines commit-relevant mu-
tants as a set of mutants affected by the changed program behaviour
that serve as commit-relevant test requirements to guide test as-
sessment by aiming at the changed program functionality [4, 24].
Learning-based approaches [19] emerged capable of learning the
commit-relevant mutants thus showing potential and opening a
direction towards learning mutant’s behaviour in evolving context.
However - it is necessary to realise that to improve the testing
process continuously and thus quantify overall testing quality - it
would require applying the technique after each program change
cycle to not indebt and lose test requirements. The merit of reap-
pearing mature mutants is that they preserve test requirements and
thus complement commit-relevant mutants. In particular, the long-
standing mutants promise to keep overlooked testing requirements
from oblivion and provide test assessment for a prolonged time.

Table 1: Observed files through projects evolution
Observed Files Time points Mutants Commons Project

CSVParser 31 8757 csv
CSVRecord 16 2656 csv
Lexer 21 10688 csv
CSVLexer 17 11208 csv
CSVFormat 47 52432 csv
CSVPrinter 21 20382 csv

IterableUtils 10 6441 collections

CharSequenceUtils 10 6802 lang

WordUtils 15 24128 text

Subsuming Mutants. In an attempt to further scale and make test
assessment affordable, many recent studies (consult the survey by
Papadakis et al. [26–28]) consider subsuming mutants to reduce
the number of mutants required to measure test adequacy [28].
Specifically, a subsumption relationship between mutants emerges
from mutant behaviours, implying that the majority of the mutants
fall into the redundancy basket since distinguishing subsuming
mutants will lead to the identification of all other mutants [16].

More formally, given a finite set of mutants M and a finite set
of tests T, mutant𝑚𝑖 is said to dynamically subsume mutant𝑚 𝑗

if every test in T that kills 𝑚𝑖 also kills 𝑚 𝑗 [2]. Calculating test
effectiveness over subsumingmutants offers amuch better indicator

than the traditional mutation score since subsuming mutants have
an almost linear relationship between the number of tests, providing
more practicality for determining how much testing work remains
over how much has been completed [17].

Although the evidence is strong and the benefits are multi-fold,
calculating subsumption in real time requires knowledge of mu-
tant’s behaviour, usually represented through test execution, which
is unpractical in real-time. Knowing whether the mutants can carry
the subsumption information from version to version promises in-
sights into their redundancy, cost utilization and testing investment
- priority. Recently few approaches have used learning-based meth-
ods to target subsuming mutants with a certain level of confidence,
considering their location and properties [8]. In this paper, we reuse
the guarantee of the quality of test assessment when the mutants
are also long-standing.

3 LONG-STANDING MUTANTS
3.1 Motivating Example
A key challenge in the current state of mutation regression testing is
a sequential version to version execution. Suppose we keep a record
of generated mutants to the same element on which the mutant is
generated and version them from one version to another. Figure 1,
depicts a chronological sequence of 3 different versions of method
read() extracted from Apache Commons-io project. Following the
evolution of the code, we can observe the evolution of the mutant
set. We notice that most mutants reside in the same place across
the versions. When a mutant location is unchanged from version to
version, we consider that it stands through time. While the number
of versions the mutant occurs on the same element is continuous,
it promises to serve as a priority weight since unchanged code
elements usually cease core logic whose test requirement ought
to be preserved. If a mutant does not occur in the next version,
being a brittle mutant, we consider it to stop standing, e.g., 𝑀2,4
does not exist as𝑀3,4 due to deletion changes. From the example,
we can observe when a system reaches maturity, as in the case of
commons-io, the majority of the changes do not touch the core
logic and most mutants𝑀1,𝑛 are long-standing (still exist as𝑀3,𝑛)
precisely six out of eight. In particular, among various opportunities,
this novel category suggests the potential reuse of past subsumption
knowledge, avoids redundancy, addresses technical testing debt
and aspires towards test completeness of mature code components.



Keeping Mutation Test Suites Consistent and Relevant with Long-Standing Mutants ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 2: Mutant sets for observed files through studied his-
tory (timeline). Each cell in the heat map represents a nor-
malised proportion of a subject history length, and the colour
represents a percentage of mutants from the initial set over
time through versions. The results show that mutants have
diverse longevity, with brittleness, on average, of 52%.

3.2 Implementation Details - Mapping
To reusemutants and follow their standing (w.r.t. how long amutant
‘stands’ in one location without being altered), in this exploratory
preliminary study, we map mutants considering changed lines and
the context of change from git diff tool [9]. We take two program
versions and map their code statements. Figure 1 indicates informa-
tion of line numbers shift from version to version. Note that for the
purpose of this study, the history length of a mutant is computed from
the first studied version till the last chronologically observed version.

We start our analysis by extracting files with the most extended
change history from the open-source mature Apache Commons
projects. Then, we use the state-of-the-art PIT mutation testing
tool [7] to generate mutants per each changed (committed) file,
followed by the execution of tests and generation of the killing
matrix. Next to the killing matrix, for each file, we keep metadata
(info. about hunks, timestamps, mutants bytecode index, location
etc.). Using extracted metadata, we create a regression history for
each file, making a file-specific historical timeline. In the timeline of
each file, a time-point represents a commit that introduces changes
to the file. For each time-point, we calculate subsuming mutants
(reminder: the mutants when distinguished, distinguish all others).

Besides the set of mutants, each time-point contains information
about mapping changes to the consecutive points. Hence, long-
standing mutation metric is a function 𝐹 (𝑀𝑡 ,change_map) = 𝑀 ′

𝑡 .
Where𝑀𝑡 is a mutant from time t, and 𝑐ℎ𝑎𝑛𝑔𝑒_𝑚𝑎𝑝 is a map con-
taining information about code transition from time t→t’, while𝑀 ′

𝑡

is the mutant at time t’. Formally, long-standing mutants definition
is:

Definition. Given n and m as timepoints of the first and last versions
under the study of program P, where n > m. A mutant M is said to
be long-standing if it exists on the same code element E throughout
consecutive versions 𝑃𝑛 , 𝑃𝑛+1, ... ,𝑃𝑚 until the point when the mutant
M due to a committed program change does not appear on the code
element E of a program version 𝑃𝑚+1.

Given that mutants can ‘stand’ for several versions or just a
few, we argue that the rate at which a mutation suite and mutant
relevance decays over a series of releases suggests a mutation test

brittleness. Knowing the degree to which mutants hold high-quality
tests for a series of releases helps provide more prolonged test
effectiveness. Accordingly, we introduce the mutation brittleness
metric that measures mutants’ longevity and assesses mutation
suite test-effectiveness between series of versions.

4 INITIAL EVALUATION AND EARLY RESULTS
Evaluation data. Table 1 shows our subject data. From 4 different
well maintained Apache Commons projects, we extracted nine
files with the longest history of change and their corresponding
commits. It is important to emphasize that due to technical reasons
(e.g., PIT mutation testing tool requires green test suite to run),
the time gap between commits is rather "longer" than one commit.
Nevertheless, this did not stop us from mapping and observing
long-standing mutants through the history of evolving systems, as
strictly sequential commits can only improve our results.

Mutation Brittleness. Figure 2 depicts brittleness of mutants over
time. In particular, it tells us how many mutants of a specific file
exist through time, from their inception, on the same initial code
elements, w.r.t., a code change has not altered mutants. From the
figure, we can observe the diversity of the longevity distribution.
Moreover, for the file Lexer, the ratio of long-standing mutants is
significant, over 80% over observed time-points. On the contrary,
we can see that the CsvPrinter file contains significant changes, and
the ratio of the mutants degrade below 50% after the first half of
observed points and below 20% in the second half of the observed
history points. For other observed files, we see changes do not
impact over 70% of mutants in the first quartile of the timeline
and between 40-60 % for the rest of the time-points. These results
demonstrate that mutants have a diverse lifetime over different evo-
lution timelines, which suggests further investigation of whether
mutants keep subsuming dynamic relationships over time and how
mutant selection can affect test assessment.

Long-Standing Subsuming Mutants. Figure 3 demonstrates to
what extent subsuming mutants convey their dynamic behaviour
and how mutation selection can affect the test assessment capabil-
ity of mutation testing over time. In particular, the figure depicts
the scenario in which we select subsuming mutants at a certain
point in time and observe the capacity in which they exist over
time together with how well they can perform test assessment
w.r.t., measuring mutation score. We randomly sample 10-30% of
mutants (100 times to remove the threat of randomness; we choose
these selection intervals as obviously selecting all mutants leads to
traditional mutation testing) from each observed file and consider
the file history length - the figures show aggregated results since each
subject has different history length. Figure 3a illustrates the need
for intelligent mutant selection as we can significantly distinguish
between two sets, a) sets of mutants more optimal as they stand
longer throughout observed history; hence longer enjoying mutant
suites relevance and b) other sub-optimal sets that suffer relevance
degradation, w.r.t., represent obsolete test requirements. Interest-
ingly, optimal mutant selection promises continuous tracking of
test effectiveness as the margin of degradation is ≈10% on the ratio
of selected mutants. In comparison, we observe a worst-case sets
of mutants which indicate obsolete test requirements and typical
arbitrary sets as if there was no other way to select, then we would



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Milos Ojdanic, Mike Papadakis, and Mark Harman

(a) Long-Standing Subsuming mutants for different observed
files throughout their studied history. An optimal set of mutants
- when selected - shows a long-standing prospect. In contrast,
a worst-case set of mutants when selected shows brittleness -
indicating obsolete test requirements. A ‘special relationship’ be-
tween long-standing and subsumingmutants exists and indicates
that subsuming mutants in one version are probably subsuming
in the following versions.

(b) Mean Square Error of Mutation Score of initially selected
and long-standing subsuming mutants. The optimal set of long-
standing subsuming mutants demonstrates a capability to per-
form test assessments over time - preserving subsumption re-
lationships - unlike the worst-case or typical sets which show
higher MSE. An optimal set of long-standing mutant suites enjoy
an order of magnitude longer relevance.

Figure 3

end up with a random. To observe how capable those mutants are
of affecting test assessment over time - keeping their subsump-
tion relationships - we calculate the mean square error (MSE) of
mutation score (MS) between the initially selected set and those
long-standing mutant sets. In Figure 3b we assess the difference in
the MSE of MS between the optimal and suboptimal sets of long-
standing mutants. We observe that the optimal set of long-standing
subsuming mutants keeps MS high over time (low MSE ≈ 0.01%-
0.04%), indicating a gradual loss in MS as the mutants stand longer
in time, thus preserving mutant suite relevance. Accordingly, it
is important to realize the potential in conveying knowledge of
previously calculated dynamic relationships of mutants for at least
10x longer than a random selection. In particular, by selecting the
sub-optimal sets of mutants, the threat of not preserving the knowl-
edge appears, w.r.t., mutants less capable of test assessment over
time, suggesting their low priority (higher MSE ≈0.01%-0.20%).

5 VISIONS OF THE FUTURE
We believe that long-standing mutants are an interesting category
in their own right, worthy of further research and will serve to
inspire the practitioners. They have implications not only for mu-
tation testing, but also beyond mutation testing. In this section we
set out future plans for further evaluation and investigation of the
properties of long-standing mutants and their applications.

Implications regarding subsuming long-standing mutants: Despite
showing that subsuming relationships can be preserved from ver-
sion to version and that mutants’ utility can be reused, we do not yet
fully understand why subsuming mutants tend to last longer than
subsumed mutants. A detailed study is needed to fully understand
the subsumption and longevity drivers.

Implications for mutation testing tools: Our results also have im-
plications for the development of future mutation testing tools. In
particular, our results suggest the development of a robust mutant
versioning system. Existing tools [5, 7, 21] focus on the generation
of mutants, but not sophisticated mutant versioning. In future work,

we need to investigate mutation testing tools that allow logging
mutants’ maturity, execution history, and fluctuation over time,
supporting approaches that learn mutant behaviour and relating
this to code changes. Previous work on flaky mutant detection [30],
predictive modelling [1] and hyper-heuristics [11] (in particular
that focused on mutation testing [32]) may form a good starting
point for this research agenda.

Maximising long-standing mutant fault revelation: By focusing on
long-standing mutants, we favour mutants that reside in relatively
unchanging parts of the code. There is a natural concern that this
may, in turn, lead to us favouring test suites that do not tend to
reveal faults in changing parts of the code. Fortunately, the fact
that a mutant lies in code region 𝐴 does not render it insensitive
to bugs that lie in (lexically separate) code region 𝐵. If there are
transitive dependencies between 𝐴 on 𝐵 then we can expect high
degrees of mutant coupling and even subsumption between the two
regions. Suggesting future work to identify mutants that have high
‘transitive dependence reach’ through their transitive dependencies
using techniques such as slicing [3] and chopping [12].

Implications of long-standing mutants beyond mutation testing re-
search: The findings reported in this paper have implications beyond
mutation testing to automated program repair[10, 20] and genetic
improvement [18, 29]. It is often been argued that program repair
is the inverse of mutation testing. Instead of inserting faults, repair
seeks to remove them. Long-standing mutants are therefore also
likely to find applications and implications in the field of program
repair and genetic improvement research. For example, it would
be interesting to explore ‘long-standing’ repairs as a counterpoint
to long-standing mutants. One might reasonably conjecture that
such repairs would remain relevant for longer than repairs in areas
of code subject to high degrees of churn. However, the empirical
assessment remains an open problem for future work.

Acknowledgment: This work is supported by the Luxembourg Na-
tional Research Funds (FNR) through the CORE project grant
C20/IS/14761415/TestFlakes.



Keeping Mutation Test Suites Consistent and Relevant with Long-Standing Mutants ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] Wasif Afzal and Richard Torkar. 2011. On the application of genetic programming

for software engineering predictive modeling: A systematic review. Expert
Systems Applications 38, 9 (2011), 11984–11997.

[2] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. 2014. Establishing
theoretical minimal sets of mutants. In 2014 IEEE seventh international conference
on software testing, verification and validation. IEEE, 21–30.

[3] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin
Yoo. 2014. ORBS: Language-Independent Program Slicing. In 22𝑛𝑑 ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE 2014).
Hong Kong, China, 109–120.

[4] Mark Anthony Cachia, Mark Micallef, and Christian Colombo. 2013. Towards
incremental mutation testing. Electronic Notes in Theoretical Computer Science
294 (2013), 2–11.

[5] Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: a
mutant generation tool for LLVM. In Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019. ACM, 1080–1084. https://doi.org/10.1145/3338906.3341180

[6] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
2017. An Empirical Study on Mutation, Statement and Branch Coverage Fault
Revelation that Avoids the Unreliable Clean Program Assumption. IEEE/ACM
International Conference on Software Engineering.

[7] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo).
In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. ACM, 449–452.
https://doi.org/10.1145/2931037.2948707

[8] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu Chekam, Mike
Papadakis, and Yves Le Traon. 2022. Cerebro: Static Subsuming Mutant Selection.
IEEE Transactions on Software Engineering (2022), 1–1. https://doi.org/10.1109/
TSE.2022.3140510

[9] Git. 2022. Git-Diff. Retrieved September 29, 2022 from https://git-scm.com/docs/
git-diff

[10] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[11] Mark Harman, Edmund Burke, John A. Clark, and Xin Yao. 2012. Dynamic
Adaptive Search Based Software Engineering (Keynote Paper). In 6𝑡ℎ IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM
2012). Lund, Sweden, 1–8.

[12] Daniel Jackson and Eugene J. Rollins. 1994. A New Model of Program Depen-
dences for Reverse Engineering. In Symposium on the Foundations of Software
Engineering (FSE ’94). 2–10.

[13] Yue Jia and Mark Harman. 2009. Higher order mutation testing. Information and
Software Technology 51, 10 (2009), 1379–1393.

[14] Yue Jia and Mark Harman. 2009. Higher Order Mutation Testing. Journal of
Information and Software Technology 51, 10 (2009), 1379–1393.

[15] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[16] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2010. Evaluating Mutation
Testing Alternatives: A Collateral Experiment. In 17th Asia Pacific Software En-
gineering Conference, APSEC 2010, Sydney, Australia, November 30 - December 3,
2010. IEEE Computer Society, 300–309. https://doi.org/10.1109/APSEC.2010.42

[17] Bob Kurtz, Paul Ammann, Jeff Offutt, and Mariet Kurtz. 2016. Are We There
Yet? How Redundant and Equivalent Mutants Affect Determination of Test
Completeness. IEEE International Conference on Software Testing, Verification and
Validation, 142–151. https://doi.org/10.1109/ICSTW.2016.41

[18] William B. Langdon and Mark Harman. 2010. Evolving a CUDA Kernel from
an nVidia Template. In 2010 IEEE World Congress on Computational Intelligence,
Pilar Sobrevilla (Ed.). IEEE, Barcelona, 2376–2383. https://doi.org/doi:10.1109/
CEC.2010.5585922

[19] Wei Ma, Thierry Titcheu Chekam, Mike Papadakis, and Mark Harman. 2021.
MuDelta: Delta-Oriented Mutation Testing at Commit Time. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 897–909. https:
//doi.org/10.1109/ICSE43902.2021.00086

[20] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE)
Software Engineering in Practice (SEIP) track. Montreal, Canada.

[21] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez,
Gabriele Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshy-
vanyk. 2018. Mdroid+: A mutation testing framework for Android. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). IEEE, 33–36.

[22] A.J. Offutt, G. Rothermel, and C. Zapf. 1993. An experimental evaluation of
selectivemutation. In Proceedings of 1993 15th International Conference on Software
Engineering. 100–107. https://doi.org/10.1109/ICSE.1993.346062

[23] Milos Ojdanic, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2022. On the use of commit-relevant mutants.
Empir. Softw. Eng. 27, 5, 114. https://doi.org/10.1007/s10664-022-10138-1

[24] Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and Yves
Le Traon. 2022. Mutation Testing in Evolving Systems: Studying the Relevance
of Mutants to Code Evolution. ACM Trans. Softw. Eng. Methodol. (apr 2022).
https://doi.org/10.1145/3530786 Just Accepted.

[25] Elmahdi Omar, Sudipto Ghosh, and Darrell Whitley. 2013. Constructing subtle
higher order mutants for Javer and AspectJ programs. In International Symposium
on Software Reliability Engineering (ISSRE’13). IEEE, 340–349.

[26] Mike Papadakis, Thierry Titcheu Chekam, and Yves Le Traon. 2018. Mutant
Quality Indicators. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops, Västerås, Sweden, April
9-13, 2018. IEEE Computer Society, 32–39. https://doi.org/10.1109/ICSTW.2018.
00025

[27] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Compiler
Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective Equiv-
alent Mutant Detection Technique. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. IEEE
Computer Society, 936–946. https://doi.org/10.1109/ICSE.2015.103

[28] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis and Survey.
Advances in Computers, Vol. 112. Elsevier, 275–378. https://doi.org/10.1016/bs.
adcom.2018.03.015

[29] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(June 2018), 415–432. https://doi.org/doi:10.1109/TEVC.2017.2693219

[30] August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the effects
of flaky tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, Dongmei Zhang and Anders Møller (Eds.). ACM, 112–122.
https://doi.org/10.1145/3293882.3330568

[31] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent
and Stubborn Mutation Operators Using Human Analysis of Equivalence. In
Proceedings of the 36th International Conference on Software Engineering (Hy-
derabad, India) (IEEE/ACM International Conference on Software Engineering
2014). Association for Computing Machinery, New York, NY, USA, 919–930.
https://doi.org/10.1145/2568225.2568265

[32] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2019. Predictive Mutation Testing. IEEE Transactions on Software Engineering 45,
9 (2019), 898–918. https://doi.org/10.1109/TSE.2018.2809496

[33] Lingming Zhang and Darko Marinov. 2012. Regression Mutation Testing. The
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
341.

Received 2023-05-03; accepted 2023-07-19

https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/TSE.2022.3140510
https://doi.org/10.1109/TSE.2022.3140510
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-diff
https://doi.org/10.1109/APSEC.2010.42
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/doi:10.1109/CEC.2010.5585922
https://doi.org/doi:10.1109/CEC.2010.5585922
https://doi.org/10.1109/ICSE43902.2021.00086
https://doi.org/10.1109/ICSE43902.2021.00086
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1007/s10664-022-10138-1
https://doi.org/10.1145/3530786
https://doi.org/10.1109/ICSTW.2018.00025
https://doi.org/10.1109/ICSTW.2018.00025
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/doi:10.1109/TEVC.2017.2693219
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1109/TSE.2018.2809496

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Long-Standing Mutants
	3.1 Motivating Example
	3.2 Implementation Details - Mapping

	4 Initial Evaluation and Early Results
	5 Visions of the Future
	References

