
FlakyCat: Predicting Flaky Tests Categories using
Few-Shot Learning

Amal Akli
University of Luxembourg

Luxembourg
amal.akli@uni.lu

Guillaume Haben
University of Luxembourg

Luxembourg
guillaume.haben@uni.lu

Sarra Habchi
Ubisoft
Canada

sarra.habchi@ubisoft.com

Mike Papadakis
University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Yves Le Traon
University of Luxembourg

Luxembourg
yves.letraon@uni.lu

Abstract—Flaky tests are tests that yield different outcomes
when run on the same version of a program. This non-
deterministic behaviour plagues continuous integration with false
signals, wasting developers’ time and reducing their trust in
test suites. Studies highlighted the importance of keeping tests
flakiness-free. Recently, the research community has been push-
ing towards the detection of flaky tests by suggesting many static
and dynamic approaches. While promising, those approaches
mainly focus on classifying tests as flaky or not and, even
when high performances are reported, it remains challenging
to understand the cause of flakiness. This part is crucial for
researchers and developers that aim to fix it. To help with the
comprehension of a given flaky test, we propose FlakyCat, the
first approach to classify flaky tests based on their root cause
category. FlakyCat relies on CodeBERT for code representation
and leverages Siamese networks to train a multi-class classifier.
We train and evaluate FlakyCat on a set of 451 flaky tests
collected from open-source Java projects. Our evaluation shows
that FlakyCat categorises flaky tests accurately, with an F1 score
of 73%. Furthermore, we investigate the performance of our
approach for each category, revealing that Async waits, Unordered
collections and Time-related flaky tests are accurately classified,
while Concurrency-related flaky tests are more challenging to
predict. Finally, to facilitate the comprehension of FlakyCat’s
predictions, we present a new technique for CodeBERT-based
model interpretability that highlights code statements influencing
the categorization.

Index Terms—Software Testing, Flaky Tests, CodeBERT, Few-
Shot learning, Siamese Networks.

I. INTRODUCTION

Continuous Integration (CI) plays a key role in nowadays
software development life cycle [1], [2]. CI ensures the quick
application of changes to a main code base by automatically
running a variety of tasks. Those changes are responsible for
building the program and its dependencies, performing checks
(e.g., static analysis), and running test suites to maintain
code integrity and correctness. An important assumption for
practitioners is that tasks are deterministic, i.e., regardless of
the execution’s context of a same task, results need to remain
similar.

Unfortunately, in practice, this is not always the case. Pre-
vious research has identified test flakiness as one of the main
issues in the application of automated software testing [3]–[5].
A flaky test is a test that passes and fails when executed on
the same version of a program. Flakiness hinders CI cycles
and prevents automatic builds due to false signals, resulting
in undesirable delays. Furthermore, surveys [6]–[8] show that
flakiness affects developers’ productivity, as they spend a
considerable time and effort investigating the nature and causes
of flaky tests.

To alleviate this issue, researchers have proposed tools
that help detect flaky tests. In particular, IDFlakies [9] and
Shaker [10] detect flakiness in test suites by running tests
in different setups. However, rerunning tests, especially for
a large number of times, is resource-intensive and might not
be a scalable solution. For this reason, researchers recently
suggested alternative approaches to detect flaky tests based on
features that do not require any test execution [4], [11]–[13].
Although promising, these approaches mainly focus on classi-
fying tests as flaky or not without any additional explanation.
Unfortunately, the absence of additional information prevents
a proper comprehension of flaky failure causes. Hence, further
investigation is required to understand the nature of flakiness
and identify the culprit code elements that need to be fixed [7].

Another important line of research in the area regards
automated approaches that aim at helping to locate the root
causes and suggest potential flakiness fixes [14]–[16]. How-
ever, research on automatically fixing flakiness is still at an
early stage: tools often focus on one category of flakiness
and with few examples. For instance, iFixFlakies [17] and
ODRepair [18] focus only on dealing with test order dependen-
cies, which is one of the main causes of test flakiness. Flex [19]
automatically fixes flakiness due to algorithmic randomness in
machine learning algorithms.

We believe that both developers and researchers would
benefit from additional information that could assist them in
gaining a better understanding of flaky tests, once they have
been detected. Therefore, we propose FlakyCat, a learning-

based flakiness categorization approach that identifies the key
reason/category of the test failures.

One limitation of previous work, relying on supervised
learning, regards the need for large volumes of available data.
Unfortunately, debugged flaky test data is scarce, inhibiting the
application of learning-based methods. To deal with this issue,
we leverage the Few-Shot learning capabilities of Siamese net-
works, which we combine with the CodeBERT representations
to learn flakiness categories from a limited set of data (flaky
tests).

To evaluate FlakyCat, we gather a set of 451 flaky tests
annotated with their category of flakiness issued from previous
studies and projects that we mined from GitHub.

Our empirical evaluation aims at answering the following
research questions:

• RQ1: How effective is FlakyCat compared to approaches
based on other combinations of test representation and
classifier?
Findings: Our results show that FlakyCat is capable of
predicting flakiness categories with an F1 score of 73%,
outperforming classifiers based on traditional supervised
machine learning.

• RQ2: How effective is FlakyCat at predicting each of
the considered flakiness categories?
Findings: FlakyCat classifies accurately flaky tests re-
lated to Async waits, Test order dependency, Unordered
collection, and Time, with the best F1 score of 81% for
the Async waits category. However, the approach shows
difficulty in classifying concurrency-related flaky tests
(an F1 score of 39%), since these cases are related to
the interaction of threads and processes and are easily
confused with Asynchronous waits.

• RQ3: How do statements of the test code influence the
predictions of FlakyCat?
Findings: We found that some statement types are spe-
cific to certain flakiness categories. This is the case for
assert statements in Unordered collections and statements
using date or time for the Time category. We also found
that some flaky categories have similar statement types
like the presence of thread usages in both Async waits
and Concurrency categories.

In summary, our contributions can be summarized as fol-
lows:

• Dataset We collected 451 flaky tests alongside their
categories.

• Model We present FlakyCat, a new approach using Few-
Shot Learning and CodeBERT to classify flaky tests
based on their flakiness category.

• Interpretability We introduce a novel technique to ex-
plain what information is learnt by models using Code-
BERT as code representation.

To enable the reproducibility of our work, we make the
dataset used to evaluate FlakyCat and the scripts publicly
available in our replication package 1.

1https://github.com/Amal-AK/FLAKYCAT

The paper is organized as followed: Related works are
presented in Section II. Section III presents the designed
implementation of FlakyCat. Section IV introduces our inter-
pretability technique. Section V describes how we collected
our dataset and evaluated our study. Section VI presents the
results of our study. We further discuss different use cases
in Section VII. Finally, Section VIII discusses threats to the
validity of this study.

II. RELATED WORK

Recently, practitioners from the industry reported struggling
with flakiness and highlighted the need to find solutions to
the problem [3], [4], [20]–[23]. Consequently, researchers
from academia started to draw their attention to the matter.
Luo et al. presented the first empirical study to understand
and categorize the root causes of flakiness, they analyzed
201 flaky tests and identified 10 root causes of flakiness,
the top ones being Asynchronous waits, concurrency, and test
order dependency. Using the same taxonomy defined by Luo
[24], Eck et al. [25] classified 200 flaky tests and identified
four new causes of flakiness. Over the years, several surveys
were carried on to identify the sources, impacts and existing
strategies to mitigate flakiness by interrogating developers
and practitioners [6]–[8], [26]. Parry et al. presented the
state of the art of academic research in another survey [27].
Researchers presented different tools and approaches to detect
flaky tests in a more efficient way. Notably, DeFlaker [28],
IDFlakies [9], Shaker [10] and NonDex [29] attempt to facili-
tate the detection of flaky tests compared to exhaustive reruns.
Because the cost of running tests is viewed as expensive,
researchers also sought to suggest static alternatives for the
detection. Different approaches relying on machine learning
were introduced. Pinto et al. [30] and following replication
studies [31], [32] presented a vocabulary-based model using
elements from the test code to classify tests as flaky or
not. Others investigated the use of test smells [13] and code
metrics [33] for predicting flaky tests. Trying to outperform
the performances of existing approaches, others relied on a
mix of static and dynamic features, like FlakeFlagger [34]
or Flake16 [35]. Fixing flakiness is also an aspect that has
recently been investigated. Shi et al. introduced iFixFlakies
[17] to fix order-dependent flaky tests. At Google, Ziftci et
al. suggested using coverage differences, between passing
and failing executions of flaky tests to guide developers to
understand the underlying problem. Coverage information is
also used by FlakyLoc [16], which leverages spectrum-based
fault localization to locate the root cause of flakiness in web
apps. Logs are also frequently considered to be a useful source
of information in understanding root causes of flakiness [15].
Closer to our work, Flakify [36] used CodeBERT [37] as a
pre-trained language-based model for their predictor but their
goal is to classify tests as flaky or not. To our knowledge, we
are the first to focus on predicting the category of flakiness
for each test. Few-Shot Learning is widely used in computer
vision [38]. In software engineering though, fewer studies used
this approach for their task. Notably, studies suggested using

this model for vulnerability detection [39] and code clone
detection [40], but none were carried out for flakiness. About
pre-trained language models, Wan et al. [41] investigated their
ability to capture the syntax structure of source code and report
that they are efficient for code processing tasks.

III. FLAKYCAT

Fig. 1. An overview of FlakyCat, which combines the use of the pre-trained
model CodeBERT, and Few Shot Learning based on the Siamese network.

In this section, we present the design and implementation
of our approach. Figure 1 presents an overview of the main
steps of FlakyCat, code transformation and classification.

A. Step 1: Flaky test transformation

1) Scope: We rely on the test code to assign flaky tests
to different categories. Previous studies showed that flakiness
finds its root causes in the test in more than 70% of the
cases [24], [42]. Hence, focusing on the test code allows us
to capture the nature of flakiness while minimizing the overall
cost of FlakyCat. Indeed, considering the code under test
would require running the tests and collecting the coverage,
which entails additional requirements and costs.

2) Flaky test vectorization: In order to perform a source
code classification task, we first need to transform the code
into a suitable representation that will be fed to the classifi-
cation model. Among previous studies predicting flaky tests
statically, two main approaches were used to transform code
into vectors: using test smells [13], [34] and using code
vocabulary [12], [31], [32]. Both approaches seem promising,
as different studies report high-performance models. As their
encoding enables flaky test prediction, we believe they could
also be used for flakiness category prediction, and we compare
them with our approach.

Recently, code embeddings from pre-trained language mod-
els were also considered for source code representation [36],
[43]. Pre-trained language models allow the encoding of code
semantics and are intended for general-purpose tasks such
as code completion, code search, and code summarization.
Considering these benefits, we use the pre-trained language
model CodeBERT [44] to generate source code embeddings.
CodeBERT can learn the syntax and semantics of the code and
doesn’t require any predefined features [41]. Considering this
aspect, we decide to rely on the CodeBERT test representation.

CodeBERT has been developed with a multi-layer trans-
former architecture [45] and trained on over six million pieces
of code involving six programming languages (Java, Python,
JavaScript, PHP, Ruby, and Go).

To get the code representation using CodeBERT model, we
first filter out extra spaces such as line breaks and tabs from
the source code. In our case, we use each test method’s source
code as individual sequences. We then tokenise sequences by
converting each token into IDs. Each sequence is passed to
the CodeBERT model, which returns a vector representation.
Figure 2 illustrates this process.

Next, we explain the inputs and outputs of CodeBERT.
a) Inputs: CodeBERT is able to process both source code

and natural language, e.g., comments and documentation. In
our case, we did not exploit the possibility of using comments
as the input length of CodeBERT is limited. Furthermore,
comments can add noise since they represent unstructured
text, possibly written by different developers, so we decided
to solely rely on the code semantics. Hence, the given input
to CodeBERT only considers code tokens, surrounded by two
special tokens for boundaries. This is represented as follows:

[CLS], c1, c2, ..., cm, [SEP].

Where Ci is a sequence of code tokens, the special token [SEP]
indicates the end of the sequence, and [CLS] is a special
token placed in the beginning, whose final representation is
considered as the representation of the whole sequence which
we use for classification.

b) Outputs: CodeBERT output includes two representa-
tions. The first one is the context matrix where each token
is represented by a vector, and the second one is the CLS
representation, having a size of 768, which is an aggregation
of the context matrix and represents the whole sequence. For
the purpose of FlakyCat, we are interested in the CLS vector
that represents the complete test code.

Fig. 2. The process of converting the source code of each test case to a
vector using CodeBERT, going through tokenization, then converting to IDs
and applying the CodeBERT model to get the representation (CLS vector). Ǵ
represent spaces, < s > used for CLS, and < /s > for SEP.

B. Step 2: Flaky test categorization

1) Classification process: Unlike traditional machine learn-
ing classifiers that attempt to learn how to match an input x to
a probability y by training the model in a large training dataset
and then generalizing to unseen examples, Few-Shot Learning
(FSL) classifiers learn what makes the elements similar or

belonging to the same class from only a few data. Facing the
scarcity of data on flaky tests, selecting an FSL classifier seems
then to be a promising choice.

In FSL, we call the item we want to classify a query,
and the support set is a small set of data containing few
examples for each class used to help the model to make
classifications based on similarity as shown in Figure 1. To
classify flaky tests according to their flakiness category, we
compute the similarity between the query and all examples
of each flakiness category in our Support Set and assign the
label having the maximum similarity with the query. This
classification is obviously performed in a space where all
elements of the same class are similar or close to each other.
This is achieved by a model called Siamese network. Its task
is to transform the data and project it into a space where all
the elements of a same class are close to each other, and then
to classify the elements by computing their similarity.

The Siamese network has knowledge of the similarity of
elements of the same class. It processes two vectors in input
and applies transformations that allow minimizing the distance
between the two vectors if they share similar characteristics.
Figure 3 shows an example of the visualization of flaky
test vectors before and after the Siamese network is applied.
Since CodeBERT has no knowledge of the characteristics of
flaky tests and only generates a general representation of the
source code, the vectors produced are all similar. However, the
Siamese networks learn which characteristics in these vectors
are shared by tests of the same class, and thus allow to project
vectors into a space that groups tests of the same flakiness
category. After this step, it becomes possible to classify them
using a similarity computation.

Fig. 3. Visualization of our data before and after training of the Siamese
network with the triplet loss, which brings together the elements of the same
class.

2) Model training: Siamese networks have two identical
sub-networks, each sub-network processes the input vector and
performs transformations. Both sub-networks are trained by
calculating the similarity between the two inputs and using
the similarity difference as a loss function. Accordingly, the
weights are adjusted to have a high similarity if the inputs
belong to the same class. For the architecture of the sub-
networks, we used a dense layer of 512 neurons and a
normalization layer as shown in Figure 1. We also performed
a linear transformation to keep relations learnt by CodeBERT

using the attention mechanism introduced in the transformer
architecture [46]. This model is trained using a Triplet Loss
function, based on the calculation of similarity difference.

Let the Anchor A be the reference input (it can be any
input), the positive example P is an input that has the same
class as the Anchor, the negative example N is an input
that has a different class than the Anchor, s() is the cosine
similarity function, and m is a fixed margin. The idea behind
the Triplet Loss function is that we maximize the similarity
between A and P , and minimize the similarity between A
and N , so ideally s(A,P) is large and s(A,N) is small. The
formula for this loss function is:

Loss = max(s(A,N)− s(A,P) +m, 0)

m is an additional margin as we do not want s(A,P) to be
very close to s(A,N), which would lead to a zero loss.

To train the Siamese network with the triplet loss, we give
as input batches of pairs with the same classes, and any other
pair of a different class can be used as a negative example.
We select the closest negative example to the anchor, such
as s(A,N) ≃ s(A,P), which generates the largest loss and
constitutes a challenge for model learning.

IV. INTERPRETABILITY TECHNIQUE

Model interpretability refers to one’s ability to interpret the
decisions, recommendations, or in our case the predictions,
of a model. Interpretability is a crucial step to increase trust
in using a machine learning model. Indeed, it allows model
creators to investigate potential biases in the learning processes
and better assess the overall performance of their models.
On top of that, providing developers with information about
how the model came to its prediction can enhance the model
adoption [47].

Flakiness prediction approaches often relied on Information
Gain to explain what features in the model appeared to be the
most useful [13], [30], [34]. In the case of tree-based models,
the reported information gain is given by the Gini importance
(also known as Mean Decrease in Impurity) [48]. Parry et
al. [35] used SHapley Additive explanations (SHAP), which
is another popular technique for model interpretability [49].

As FlakyCat uses the CodeBERT representation of tests as
input, using the previously mentioned techniques would not
give understandable features. To our knowledge, there are no
existing techniques used for CodeBERT-based model inter-
pretability. Thus, we introduce a novel approach to better un-
derstand the decisions of CodeBERT-based models. Following
the main motivation of helping developers better understand
flaky tests once detected, our goal with this interpretability
technique is to arm FlakyCat users with a more fine-grained
explanation for the model’s decision.

Our technique is inspired by delta debugging algorithms.
Delta debugging is used to minimize failure-inducing inputs
to a smaller size that still induces the same failure [50]. In our
case, we are interested in the particular code statements linked
with the most influential information for the model’s decision.

To identify them, we proceed with the following: We classify
all the original test cases and save their similarity scores. We
create new versions of each test. Each version is a copy of the
original test minus one statement that was removed. Next, we
feed the new versions to FlakyCat. Among all new versions
for one test, we keep the one for which the similarity score
endured the biggest drop compared to the original prediction
score. We consider the statement removed in this version as
the most influential one.

V. EVALUATION

In this section, we explain our evaluation setting for Flaky-
Cat. First, we describe our data curation process, then, we
present our approach for answering each of the three research
questions.

A. Data curation

1) Collection: For our study, we had to collect a set of
flaky tests containing their source code and their flakiness
category. We focused our collection efforts on one program-
ming language, as training a classifier using code and tokens
from different programming languages is more challenging.
For the language choice, we opted for Java, which is the
most common language in previous flakiness studies (and thus
datasets). To increase the amount of data used in this study,
we also collected a new set of flaky tests mined from GitHub
that we classified manually.

TABLE I
DATA FILTERING PERFORMED ON THE DIFFERENT DATASETS USED IN THIS

STUDY. COLLECTED REPRESENTS THE NEW DATASET WE RETRIEVED.

Filters Datasets
[24] [51] [52] [17] Collected

Inspected commits 201 170 40 101 270
Commit not found 12 12 4 3 3
Duplicated commit 0 2 0 0 3

Open commit 0 0 0 33 0
Flaky test not found 45 21 13 0 42

Configuration problems 3 8 0 0 0
Not Java 15 5 0 0 8

Category hard to classify 40 57 4 0 22
Considered commits 86 65 19 65 192
Total of extracted tests 109 65 20 65 192

a) Existing datasets: There is no large public dataset of
flaky tests labelled according to their category of flakiness.
Most of the existing studies, such as FlakeFlagger [34] and
DeFlaker [53], are limited to list detected flaky tests which
are later used for binary classification. Regarding the data
classified into flakiness categories defined by Luo et al. [24]
and Eck et al. [25], there is only limited data available in
previous empirical studies about flakiness. We retrieved tests
from the empirical study of flaky tests across programming
languages of Costa et al. [51] and from a recent study about
pinpointing causes of flakiness by Habchi et al. [52]. We also
retrieved the flaky tests from iFixFlakies [17] as Test order
dependency is a flakiness category that received a large interest
in the community [9], [18], [54], [55].

We gathered a total of 512 commits/pull requests from the
existing datasets we could access, referenced in Table I.

b) New dataset: To expand existing datasets, we explore
GitHub projects and search for flakiness-fixing commits for
which developers explained the reason (i.e., category) of
flakiness.

In this search, we use flakiness-related keywords such as
Flaky and Intermit in the commit messages. To ensure that
the commit refers to a flakiness category, we further filter
commits by specific keywords related to each category: thread,
concurrence, deadlock, race condition for Concurrency, time,
hour, seconds, date format, local date for Time, port, server,
network, http, socket for Network and rand for Random. After
the search, we rely on the developer’s explanation in the
commit message and on the provided fix to classify tests into
the different flakiness categories listed in the literature. This
collection allowed us to obtain 270 commits fixing flaky tests
to be classified manually.

2) Filtering: The previous step allowed us to collect a total
of 782 categorized commits/issues. In this step, we filter out
commits and data that are not adequate for our study. We filter
out commits hard to classify, duplicated ones, and those where
flaky tests are not written in java. Costa et al. [51] classified
issues, and Luo et al. [24] classified old SVN revisions. In
some cases, the corresponding commit could no longer be
found in the projects. Some data points were missing necessary
attributes, such as the name of the flaky test. Particularly,
in commits where the fix is in the production code or in a
configuration file, and the test name of the involved flaky
test is not indicated in the commit message, we were not
able to identify the flaky test, so we filtered them out. The
number of tests extracted for each dataset is shown in Table
I. The considered commits row accounts for commits where
all information needed was present i.e., the test name, source
and category of flakiness. Note that the number of considered
commits and extracted tests vary in some cases as developers
sometimes addressed more than one flaky test per commit. We
obtained a total of 259 flaky tests after filtering the existing
datasets. For the data we collected ourselves, we successfully
extracted 192 test cases. To ensure the correctness of our
manual classification and filtering, the first two authors of
the paper performed a double-check on the newly collected
dataset.

3) Processing: After filling in all the necessary attributes:
the test case name, flakiness category, test file name, and
project URL, we download the code files and extract test
methods using the spoon library2. At this stage, all comments
have been deleted from the source code to restrict CodeBERT
to code statements.

4) Final dataset: The final dataset contains 451 flaky tests
distributed over 13 flakiness categories. Table II illustrates this
distribution.

The collected flaky tests are not distributed evenly across
categories of flakiness. Just as shown in past empirical stud-

2https://github.com/INRIA/spoon

ies [24], [56], some categories, such as Async waits, are more
prevalent than others. Our approach uses FSL to learn from
limited datasets. Still, it requires a certain amount of examples
to learn common patterns from each category. We decided
to have at least 30 tests in a category to consider it. This
number is commonly accepted by statisticians as a threshold
to have representativeness [57], since learning from very
few examples is not feasible. In our dataset, some flakiness
categories contain no more than 5 flaky tests. We were not
able to gather more data for those non-prevalent categories and
thus decided to focus on five of the most common flakiness
categories, highlighted in grey in the table: Async waits, Test
order dependency, Unordered collections, Concurrency, and
Time.

5) Data augmentation: Facing the challenge of learning
from few data, we over-sampled our training set similarly to
SMOTE [58] by applying elementary perturbations. In the
same way, as we increase the imagery data by rotating and
resizing, for the source code, we generate variants of our tests
by mutating only the code elements that have no influence
on flakiness. This includes variable names, constants such as
strings, test method names, and by adding declarations of
unused variables. In this way, the model will learn useful
code elements instead of learning from variable names and
strings. We used the Spoon library for the detection of these
elements, and we replaced them with randomly generated
significant words. As a result, the total number of tests after
data augmentation is 964.

TABLE II
FINAL DATASET. THE HIGHLIGHTED ROWS ARE THE DATA USED TO TRAIN

AND TEST THE MODEL. THE ORIGINAL DATA REFERS TO THE DATA WE
COLLECTED, SHORT DATA ARE TESTS WITH LESS THAN 512 TOKENS, AND

THE AUGMENTED DATA ARE THE DATA WE OBTAINED AFTER
AUGMENTATION.

Class Data
Original Short Augmented

Async waits 125 97 300
Test order dependency 103 100 284
Unordered collections 51 48 146

Concurrency 48 40 124
Time 42 38 110

Network 31 25 /
Randomness 17 14 /

Test case timeout 14 9 /
Resource leak 10 7 /

Platform dependency 2 2 /
Too restrictive range 3 2 /

I/O 2 2 /
Floating point operations 3 1 /

TOTAL 451 385 964

B. Experimental design

1) Baseline:
To the best of our knowledge, we are the first to introduce an
automatic classification of flaky tests according to their cate-
gory. However, to get a better appreciation of the performance
of the solution we propose in this paper, we seek to compare
FlakyCat with test representations commonly used by flaky test

detection approaches. Our intuition is that test representations
giving good performance in binary classification (i.e., detect-
ing flaky tests and non-flaky tests) have a good chance to be
helpful for the classification of tests according to their category
of flakiness. Thus, we use the following representations for
our multi-classification task: the vocabulary-based approach
[12] which is a keyword-based approach, and the smell-
based approach [13] which exploits the correlation between
test smells and test flakiness. Our overall motivation is to
determine whether it is possible to make this classification
based on limited data and to know which combination of
classifier and code representation delivers the best results.

For the classification based on test smells, we use the 21
smells detected by tsDetect [59], to generate vectors indicating
the presence of each smell detected by the tool, in the
same way as in the study of Camara et al. [13]. As for
the vocabulary-based classification, we use token occurrence
vectors, as in the article by Pinto et al. [12]. We tokenize the
code and apply standard pre-processing like stemming, then
calculate occurrences of each token.

In addition to various test representations, we compare
our FSL-based approach with traditional classifiers from the
Scikit-learn library [60] used by previous studies on flakiness
prediction [12], [13], [32]: Random Forest (RF), Support
Vector Machine (SVM), Decision Tree (DT) and K-Nearest
Neighbour (KNN).

To validate each model, we split our data into 75% for
training and 25% for final validation. We use a 10-fold
stratified cross-validation on the training data to select the best
model parameters and use those parameters to evaluate the
model on the unseen hold-out set.

As the augmented samples in our dataset are variants of the
original ones, it was important to keep them in the same sets,
to ensure that no similar data pairs are included in both the
training and test sets. For the support set used for classification,
we select the most centred examples to represent each class.

FlakyCat relies on a Siamese network. It is trained with
combinations of data by indicating whether these data are
similar or not so that the model can learn what makes them
similar. Since we train with combined data, the balancing of
data is not required, because it is automatically over-sampled.

2) Parameters:
We tuned FlakyCat’s parameters on the training set using the
Random Search method [61] and a 10-fold cross-validation, by
testing random combinations of the most important parameters
that have a direct impact on the model performance, which
include the similarity margin used in the triplet loss function,
the learning rate, the number of warm-up steps, and the support
set size.

Figure 4 shows the resulting weighted F1 score for
each tested parameter combination using a 10-folds cross-
validation. A high learning rate and a number of warm-up
steps have a negative impact on the performances, while other
parameters have a lower influence. Following these results,
for the final validation on the hold-out set, we use the best
parameter combination identified in the Figure 4: a similarity

margin of 0.30, a learning rate of 0.001, a number of warm-up
steps of 400, and a support set with 10 examples from each
category.

For baseline classifiers, we keep the standard values used by
previous works. We varied the number of trees in the Random
Forest classifier, we tested values from 100 to 1000 with a step
of 100. We observed that this does not make much difference
regarding the F1 score (≤ 3%), and we identified 1000 as the
number giving the best results.

Fig. 4. F1 score for different values of parameter combinations using Random
Search and a 10-Folds cross-validation. The combinations on the Y axis have
the form : (learning rate, number of warm-up steps, similarity margin, support
set size).

3) Evaluation metrics:
We use the standard evaluation metrics to compare classifiers,
including precision, recall, Matthews correlation coefficient
(MCC), F1 score, and Area under the ROC curve (AUC).
These metrics have been used to evaluate the performance of
classifiers, including binary classification of flaky tests [12],
[13], [36]. Since our dataset is unbalanced, weighted metrics
are more suitable for our evaluation.

4) Research questions:
a) RQ1: How effective is FlakyCat compared to ap-

proaches based on other combinations of test representation
and classifier?: This question aims to evaluate FlakyCat
and compare it to other test representation techniques, i.e.,
vocabulary and test-smell-based and traditional classifiers, i.e.,
SVM, KNN, decision tree and random forest.

b) RQ2: How effective is FlakyCat in predicting
each of the considered flakiness categories?: This question
evaluates FlakyCat’s ability to classify the different categories
of flakiness. To perform this, we split the dataset into five sets
following the categories: Async waits, Test order dependency,
Unordered collections, Concurrency, and Time. Then, we use
the same settings as for RQ1 to tune the Siamese network,
train it, and evaluate it for each category.

c) RQ3: How do statements of the test code influence
the predictions of FlakyCat?: We applied the technique
we introduced in Section IV for CodeBERT-based model
interpretability to FlakyCat. We classified all original short
data (323 tests). For 16 tests, the score doesn’t decrease by
deleting one statement, and thus we collected 307 statements
of interest, important for FlakyCat’s decision-making. To

better understand what information emerges, we proceeded
with the following analysis. First, we regroup statements by
category of flakiness (according to the flaky test they belong
to). Then, we want to share information on what type of
statements FlakyCat found useful. To do so, we look through
the list of statements and attempt to identify recurring code
statements and categorize them. The process of identifying
statement types is exploratory and inspired by qualitative
research. Two of the authors of this paper went through the list
of statements and identified nine recurring types of statements:

• Control flow: Includes decision-making statements,
looping statements, branching statements, Exception han-
dling statements.

• Asserts: All types of assertions in tests.
• Threads: statements related to threads and runnables.
• Constants: Constant values such as strings, numbers

and boolean values independent of variables, and final
variables.

• Waits: All explicit wait statements.
• Usage of date/time: Statements that perform operations

on time values, dates.
• Network: Statements related to data exchange in a local

or external network between two endpoints, and session
management.

• I/O: Statements related to input/output, database and file
access.

• Global variables: Includes the use of global variables.
With this question, we investigate the prevalence of these

statement types in each flakiness category.

VI. RESULTS

A. RQ1: How effective is FlakyCat compared to approaches
based on other combination of test representation and classi-
fier?

Following the outlined experimental design, we trained and
tested FlakyCat and the four traditional classifiers, using the
three source code representations, the vectors obtained from
CodeBERT, the vectors based on vocabulary, and the ones
based on test smells. The obtained results are presented in
Table III. The results show that FlakyCat achieves the best
performance for all evaluation metrics. It obtained an average
weighted F1 score of 73% and a precision of 74%. We get
an MCC of 0.65 (bounds for this metric are between -1 and
1), being close to 1 means a perfect classification. Finally, the
AUC of 0.83 shows that the model is able to distinguish flaky
tests from different classes.

a) Representation effect: Regarding the three code repre-
sentations, CodeBERT achieves the best performance for RF,
KNN, and FSL, with an F1 score between 0.51 and 0.73 for
the three classifiers. When using the vocabulary-based vectors,
SVM and DT perform better than using CodeBERT. With this
representation, all classifiers do not exceed an F1 score of
0.67. The representation based on test smells yields lower
results, with the best F1 score being 0.29. The CodeBERT
representation seems then promising to use when learning to
classify flaky tests according to their categories.

TABLE III
COMPARING PERFORMANCES OF FLAKYCAT (CODEBERT AND FEW-SHOT LEARNING) WITH TRADITIONAL MACHINE LEARNING CLASSIFIERS

Model Smells-based Vocabulary-based CodeBERT-based
Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC

SVM 0.11 0.34 0.00 0.17 0.50 0.61 0.52 0.37 0.45 0.66 0.27 0.43 0.22 0.33 0.60
KNN 0.24 0.37 0.11 0.29 0.55 0.44 0.48 0.31 0.45 0.65 0.56 0.53 0.37 0.51 0.68
DT 0.31 0.33 0.10 0.23 0.53 0.53 0.53 0.39 0.52 0.69 0.49 0.50 0.34 0.49 0.67
RF 0.32 0.34 0.12 0.24 0.54 0.72 0.61 0.49 0.56 0.72 0.68 0.66 0.55 0.62 0.76

FSL 0.13 0.18 -0.01 0.13 0.50 0.69 0.68 0.58 0.67 0.79 0.74 0.73 0.65 0.73 0.83

b) Classifier effect: Regarding the choice of classifier,
we find that the FSL classifier based on similarity achieves
the best performance using the representations based on Code-
BERT and vocabulary. Among traditional classifiers, Random
Forest obtains the best results, as reported in previous flaky
test classification studies [30], [31]. Classifiers relying on the
smell-based representation have more difficulty to classify
flaky tests. Using this code representation, the KNN classifier
achieved the best F1 score: 0.29. Two categories had a positive
impact to achieve this score: Async wait, and Test order
dependency. This can be explained by the presence of test
smells strongly related to these two categories, including
Sleepy test and Resource optimism. Other flakiness categories
seem to be more challenging to predict using existing test
smells.

c) Random-guessing comparison: In the previous para-
graph, we compared different models and different code repre-
sentations and saw that FlakyCat gave the best results. Because
all the existing approaches were designed to detect flaky tests
from non-flaky tests, they might not be suitable for the specific
task of classifying flaky tests according to their categories.
As no other category-based classification technique exist so
far, we show the performance of a random guesser as another
baseline. We consider two random guessing approaches, the
first one where we randomly affect a class to each flaky test
and the second one where we weigh the random affectation
according to the prevalence of flaky tests in each category.
Both approaches are considered as the dataset balance might
be different from the one found in various projects. Results
are listed in Table IV. F1 scores for Random and Weighted
Random are respectively of 0.21 and 0.25. With an F1 score
of 0.73, we see that FlakyCat performs better than the two
considered random-guessing approaches.

RQ1 Overall, our results show that automatic classi-
fication of flaky test categories with a limited amount
of data is a challenging but feasible and promising
task. The representation based on CodeBERT gives
better results compared to the ones based on test smells
and vocabulary. We also found that Few Shot Learn-
ing performs better than traditional machine learning
classifiers.

TABLE IV
PERFORMANCE OF RANDOM GUESSING APPROACH

Method Precision Recall MCC F1 AUC
Random 0.25 0.20 -0.01 0.21 0.50

Weighted Random 0.25 0.26 0.02 0.25 0.51

Fig. 5. Precision and Recall per flakiness category using FlakyCat

B. RQ2: How effective is FlakyCat in predicting each of the
considered flakiness categories?

Figure 5 shows performances achieved by FlakyCat for
each of the five flakiness categories. Results show that the
category Async wait is the easiest for the model to classify,
with an F1 score of 0.81. The category Test order dependency,
Unordered collections and Time respectively have an F1 score
of 0.80, 0.78 and 0.66. Concurrency performances are lower
with an F1 score of 0.39. We suspect that concurrency issues
happen in many cases in the code under test. As FlakyCat
only relies on the test source code, this would indeed
explain why performances are lower in this case. Another
supposition is that concurrency issues and asynchronous waits
are sometimes closely related. We discuss an example of this
in Section VII-A.

RQ2 While the four flakiness categories Async waits,
Test order dependency, Unordered collections, and
Time show good ability to be detected automatically,
Concurrency remains difficult to detect by relying only
on the test case code.

TABLE V
PREVALENCE OF DIFFERENT TYPES OF STATEMENTS IN EACH FLAKINESS CATEGORY FOR TRUE POSITIVE PREDICTIONS

#Statements Control flow Constants Asserts Threads Waits Network Global variables Usage of Date/time I/O
Async Waits 80 16,25% 55% 20% 20% 27,5% 25% 11,25% 3,75% 6,25%
Concurrency 34 23,53% 47,06% 17,65% 29,41% 14,70% 14,70% 5,88% 17,65% 2,94%

Test order dependency 69 8,69% 60,87% 13,04% 0% 4,35% 8,69% 2,90% 7,25% 47,82%
Time 32 18,75% 56,25% 50% 0% 0% 0% 9,375% 62,5% 6,25%

Unordered collections 42 4,76% 66,67% 38,09% 0% 0% 2,38% 4,76% 0% 4,76%

C. RQ3: How do statements of the test code influence the
predictions of FlakyCat?

Table V reports the prevalence (%) of the different types
of statements among all influential statements per flakiness
category, e.g., 100% Asserts in the Time category would mean
that all influential statements for the Time category contain
assert statements.

Compared to other flakiness categories, the percentage of
assertions in the influential statements of Time and Unordered
collections is high, 50% and 38.09% respectively. Based on
our analysis, this includes in particular assertions that perform
exact comparisons, such as assertEquals(), between
constant values and collection items, or dates for example.
29,41% of influential statements in the Concurrency category
include thread manipulation, and 20% for the Async Waits
category, while the rest of the categories have none. State-
ments containing explicit waits represent respectively 27,5%
and 14,7% for Async Waits and Concurrency categories, but
below 5% for Test order dependency and zero for the others.
Statements containing date or time values are most common
in the Time category with 62,5%. We note that they appear
as well in a small proportion, 17,65%, for Concurrency.
Statements from the I/O calls group are mainly found in
the Test order dependency. For Control flow, Constants, and
Global variables statements are almost evenly distributed. We
include a spreadsheet containing all statements analyzed in our
replication package.

RQ3 The interpretability technique we presented en-
able us to find which statements impact FlakyCat’s
decision. We also find hints that specific flakiness
categories have distinct statement types (e.g., Usage
of Date/time for the Time category) while some others
have similar prevalence (e.g., Threads for Async Waits
and Concurrency categories). By highlighting these
statements, our interpretability technique may provide
information to developers to better understand flaky
tests, their categories and their causes.

VII. DISCUSSION

A. Reasoning about the statements influencing FlakyCat and
the usage of flakiness categories

Listing 1 gives an example of a flaky test taken from
the Neo4J project3 found during the data collection part. As

3https://github.com/neo4j/neo4j/commit/c77e579b40b02087

explained in the commit message, the flakiness was caused by
a race condition and thus, we affected it to the Concurrency
category. FlakyCat classified this test as Async wait. The
interpretability technique that we introduced in Section IV
reveals that the statement on line 6 is the most influential for
the model’s decision. It contains the await() function, and
this is likely the reason why the flaky test was categorized as
Async wait. Furthermore, similarity score for the Concurrency
category is high, and it comes as FlakyCat’s second guess.

When looking at the test, we understand that an
asynchronous wait was performed to wait for a thread.
We also found similar examples concerning other categories,
such as waits relying on network resources. First, we argue
that our interpretability technique can help to understand the
cause of flakiness, even when FlakyCat apparently mislabelled
the test. Secondly, we advance that flakiness categories as
commonly defined in research studies [7], [24] can overlap,
i.e., a flaky test can belong to several categories. The
application of machine learning to determine the causes of
flakiness is promising and should receive attention. It would
also benefit from a more precise, orthogonal classification of
flakiness categories.

1 @Test
2 public void shouldPickANewServer[...]() throws

Throwable {
3 [...]
4 Thread thread = new Thread(() -> {
5 try {
6 startTheLeaderSwitching.await();
7 CoreClusterMember theLeader = cluster.
8 awaitLeader();
9 switchLeader(theLeader);

10 } catch (TimeoutException |
InterruptedException e) {

11 // ignore
12 }});
13 [...]
14 }

Listing 1. A flaky test belonging to two categories

B. The effect of considering an additional category

Our results showed that flakiness categories can be classified
automatically. We carried out our main experiments with five
categories of flakiness for which we had a reasonable number
of tests. Still, we believe that one interesting aspect of our
study is to understand the impact of adding other categories to
FlakyCat. For this, we investigate the performance of FlakyCat
for each category (similarly to RQ2), but we add to our set the
Network category, which is the next category with the most

samples in our dataset (25 tests). F1 scores and the accuracy
obtained for each category are presented in Figure 6.

Compared to the results previously reported in Table III, we
observe that the performances of each category are slightly
impacted. The Async waits category is the most impacted
one. Indeed, after adding the Network category, we get an
overall F1 score of 0.68. The added category gets the worst
results. This performance drop can be explained by multiple
factors. First, having more categories to differentiate makes it
more challenging for FlakyCat to distinguish between them.
Secondly, the overall F1 score is strongly affected by the poor
performance observed in the new category. The performance
for the Network category can be a result of the too low number
of examples in this category (25). Despite using FSL, the
model still requires enough data points in each category. While
collecting data, we noticed that flaky tests caused by Network
were not common. These findings align with the ones about
the prevalence of the different categories reported in previous
empirical studies [7], [24]. In addition, flaky tests related to
Network issues could also be considered as Asynchronous
waits in many cases, as previously explained.

Fig. 6. Precision and Recall per flakiness category when adding the category
”Network”

VIII. THREATS TO VALIDITY

a) Internal validity: One threat to the internal validity is
related to the dataset we used in our study. Flaky tests were
gathered from different sources, as explained in Section V-A.
It is possible that flaky tests were assigned to the wrong
label, which would impact the training and evaluation of our
model. Certifying the category based on the test source code is
complex and can as well be subjective. To ensure the quality
of the data, the first two authors reviewed the collected flaky
tests and confirmed their belonging to the assigned category.

Similarly, the identification of statement types in RQ3
required a manual analysis of the most influential statements.
Hence, the identified types can be subjective and the assign-
ment of statements is prone to human errors. To mitigate this
risk, we kept the statement types factual, e.g., control flow
and asserts. This allows us to avoid assignment ambiguities
and intersections between the different statement types.

b) External validity: The first threat to external validity
is the generalizability of our approach. In this study, we
train a model to recognize flaky tests from four of the most

prevalent categories, but we are not sure of the performances in
other categories. We discussed the addition of two categories
(Network and Randomness), and retrieved that the number of
examples is one of the influencing factors.

c) Construct validity: One potential threat to construct
validity regards the metrics used for the evaluation study.
To alleviate this threat, we report MCC, F1 score, and AUC
metrics in addition to the commonly-used precision and recall.
As our data is not evenly distributed across the different
categories, we report the weighted F1 score.

IX. CONCLUSION

Test flakiness is considered as a major issue in software
testing as it disrupts CI pipelines and breaks trust in regression
testing. Detecting flaky tests is resourceful, as it can require
many reruns to reproduce failures. To facilitate the detection,
more and more studies suggest static and dynamic approaches
to predict if a test is flaky or not. However, detecting flaky
tests constitutes only a part of the challenge, since it remains
difficult for developers to understand the root causes of flaki-
ness. Such understanding is vital for addressing the problem,
i.e., fixing the cause of flakiness. At the same time, researchers
would gain more insights based on this information. So far,
only a few automated fixing approaches were suggested and
these are focusing on one category of flakiness. Knowing the
category of flakiness for a given flaky test is thus a piece of
key information.

With our work, we propose a new approach to this problem
that aims at classifying previously identified flaky tests into
their corresponding category. We propose FlakyCat, a Siamese
network-based multi-class classifier that relies on CodeBERT’s
code representation. FlakyCat addresses the problem of data
scarcity in the field of flakiness by leveraging the Few-
Shot Learning capabilities of Siamese networks to allow the
learning of flakiness categories from small sets of flaky tests.
As part of our evaluation of FlakyCat, we collect and make
available a dataset of 451 flaky tests with information about
their flakiness categories.

Our empirical evaluation shows that FlakyCat performs the
best compared to other code representations and traditional
classification models used by previous flakiness prediction
studies. In particular, we reach an F1 score of 73%. We also
analyzed the performances with respect to each category of
flakiness, showing that flaky tests belonging to Async waits,
Test order dependency, Unordered collections, and Time are
the easiest to classify, whereas flaky tests from the Concur-
rency category are more challenging. Finally, we present a
new technique to explain CodeBERT-based machine learning
models. This technique helps in explaining what code elements
are learnt by models and give more information to developers
who wish to understand flakiness’s root causes.

ACKNOWLEDGMENT

This work is supported by the Luxembourg National
Research Funds (FNR) through the CORE project grant
C20/IS/14761415/TestFlakes.

REFERENCES

[1] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[2] M. Rehkopf, “What is continuous integration — atlassian,”
https://www.atlassian.com/continuous-delivery/continuous-integration,
(Accessed on 01/12/2021).

[3] J. Micco, “The State of Continuous Integration Testing Google,” 2017.
[4] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing

transition-based test selection algorithms at google,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP). IEEE / ACM, 2019, pp. 101–
110.

[5] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, and J. Micco, “Taming google-scale continuous testing,” in 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017,
pp. 233–242.

[6] S. Habchi, G. Haben, M. Papadakis, M. Cordy, and Y. L. Traon, “A
qualitative study on the sources, impacts, and mitigation strategies of
flaky tests,” International Conference on Software Testing (ICST), 2022.

[7] M. Eck, M. Castelluccio, F. Palomba, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” arXiv, pp. 830–840, 2019.

[8] M. Gruber and G. Fraser, “A survey on how test flakiness affects
developers and what support they need to address it,” in Proceedings of
the 15th IEEE International Conference on Software Testing, Verification
and Validation, ser. ICST ’22, 2022.

[9] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A
framework for detecting and partially classifying flaky tests,” Proceed-
ings - 2019 IEEE 12th International Conference on Software Testing,
Verification and Validation, ICST 2019, pp. 312–322, 2019.

[10] D. Silva, L. Teixeira, and M. D’Amorim, “Shake It! Detecting Flaky
Tests Caused by Concurrency with Shaker,” Proceedings - 2020 IEEE
International Conference on Software Maintenance and Evolution, IC-
SME 2020, pp. 301–311, 2020.

[11] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
Bayesian Network Model for Predicting Flaky Automated Tests,” 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 100–107, 2018.

[12] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in Proceedings
of the 17th International Conference on Mining Software Repositories,
2020, pp. 492–502.

[13] B. Camara, M. Silva, A. Endo, and S. Vergilio, “On the use of test smells
for prediction of flaky tests,” in Brazilian Symposium on Systematic and
Automated Software Testing, 2021, pp. 46–54.

[14] C. Ziftci and D. Cavalcanti, “De-flake your tests : Automatically locating
root causes of flaky tests in code at google,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
736–745.

[15] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root Causing Flaky Tests in a Large-Scale Industrial Setting,” in
Proceedings ofthe 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’19). Beijing, China: ACM Press,
2019, pp. 101–111.

[16] J. Morán, C. Augusto, A. Bertolino, C. de la Riva, and J. Tuya,
“Flakyloc: Flakiness localization for reliable test suites in web
applications,” J. Web Eng., vol. 19, no. 2, pp. 267–296, 2020. [Online].
Available: https://doi.org/10.13052/jwe1540-9589.1927

[17] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies : A
Framework for Automatically Fixing Order-Dependent Flaky Tests,”
in 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations ofSoftware Engineering (ESEC/FSE
’19), 2019.

[18] C. Li, C. Zhu, W. Wang, and A. Shi, “Repairing order-dependent flaky
tests via test generation,” in Proceedings of the 44th International
Conference on Software Engineering - ICSE ’22. ICSE, 2022.

[19] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Mis-
ailovic, “Detecting flaky tests in probabilistic and machine learning
applications,” ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 211–
224, 2020.

[20] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in Proceedings of the 39th International Conference on
Software Engineering, ser. ICSE ’17. IEEE Press, 2017, p. 712–723.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.71

[21] M. contributors, “Test verification - mozilla — mdn,”
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test Verification,
March 2019, (Accessed on 01/12/2021).

[22] M. Harman and P. O’Hearn, “From Start-ups to Scale-ups: Opportunities
and Open Problems for Static and Dynamic Program Analysis,” in
2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, sep 2018, pp. 1–23.
[Online]. Available: https://ieeexplore.ieee.org/document/8530713/

[23] J. Palmer, “Test flakiness – methods for identifying
and dealing with flaky tests : Spotify engineering,”
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-
identifying-and-dealing-with-flaky-tests/, November 2019, (Accessed
on 01/12/2021).

[24] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, vol. 16-21-November-2014, nov
2014, pp. 643–653.

[25] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 830–840. [Online]. Available:
https://doi-org.sndl1.arn.dz/10.1145/3338906.3338945

[26] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “Surveying the
developer experience of flaky tests,” in Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2022.

[27] O. Parry, “A Survey of Flaky Tests,” ACM transactions on software
engineering and methodology, vol. 31, no. 1, 2021.

[28] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in Proceedings of the
40th International Conference on Software Engineering - ICSE ’18.
New York, New York, USA: ACM Press, 2018, pp. 433–444. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3180155.3180164

[29] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov, “Nondex:
A tool for detecting and debugging wrong assumptions on java api speci-
fications,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 993–997.

[30] G. Pinto, B. Miranda, S. Dissanayake, M. D’Amorim, C. Treude, and
A. Bertolino, “What is the Vocabulary of Flaky Tests?” Proceedings
- 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020, pp. 492–502, 2020.

[31] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon, “A
Replication Study on the Usability of Code Vocabulary in Predicting
Flaky Tests,” Proceedings of the International Conference on Mining
Software Repositories (MSR), 2021.

[32] B. Camara, M. Silva, A. T. Endo, and S. Vergilio, “What
is the vocabulary of flaky tests? an extended replication,” in
2021 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC) (ICPC). Los Alamitos, CA, USA: IEEE
Computer Society, may 2021, pp. 444–454. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICPC52881.2021.00052

[33] V. Pontillo, F. Palomba, and F. Ferrucci, “Toward static test flakiness
prediction: A feasibility study,” in Proceedings of the 5th International
Workshop on Machine Learning Techniques for Software Quality Evo-
lution, 2021, pp. 19–24.

[34] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “Flakeflagger:
Predicting flakiness without rerunning tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1572–1584.

[35] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “Evalu-
ating features for machine learning detection of order-and non-order-
dependent flaky tests,” in 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2022, pp. 93–104.

[36] S. Fatima, T. A. Ghaleb, and L. Briand, “Flakify: A black-box, language
model-based predictor for flaky tests,” IEEE Transactions on Software
Engineering, pp. 1–17, 2022.

[37] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[38] X. Sun, B. Wang, Z. Wang, H. Li, H. Li, and K. Fu, “Research progress
on few-shot learning for remote sensing image interpretation,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 14, pp. 2387–2402, 2021.

[39] M. Khajezade, F. H. Fard, and M. S. Shehata, “Evaluating few shot and
contrastive learning methods for code clone detection,” arXiv preprint
arXiv:2204.07501, 2022.

[40] Y. He, W. Wang, H. Sun, and Y. Zhang, “Vul-mirror: a few-shot
learning method for discovering vulnerable code clone,” EAI Endorsed
Transactions on Security and Safety, vol. 7, no. 23, p. e4, 2020.

[41] Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin, “What do they
capture?–a structural analysis of pre-trained language models for source
code,” arXiv preprint arXiv:2202.06840, 2022.

[42] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta,
“A study on the lifecycle of flaky tests,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1471–1482. [Online]. Available:
https://doi.org/10.1145/3377811.3381749

[43] X. Zhou, D. Han, and D. Lo, “Assessing generalizability of codebert,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2021, pp. 425–436.

[44] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1536–1547.
[Online]. Available: https://aclanthology.org/2020.findings-emnlp.139

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[46] ——, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[47] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, p. 832, 2019.

[48] “Feature importances with a forest of trees —
scikit-learn 1.1.1 documentation,” https://scikit-
learn.org/stable/auto examples/ensemble/plot forest importances.html,
(Accessed on 06/24/2022).

[49] S. Lundberg, “Shap documentation,” https://shap.readthedocs.io/, 2018,
(Accessed on 06/23/2022).

[50] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[51] K. Costa, R. Ferreira, G. Pinto, M. d’Amorim, and B. Miranda, “Test
flakiness across programming languages,” IEEE Transactions on Soft-
ware Engineering, pp. 1–14, 2022.

[52] S. Habchi, G. Haben, J. Sohn, A. Franci, M. Papadakis, M. Cordy, and
Y. Le Traon, “What made this test flake? pinpointing classes responsible
for test flakiness,” arXiv e-prints, pp. arXiv–2207, 2022.

[53] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp.
433–444.

[54] C. Li and A. Shi, “Evolution-aware detection of order-dependent flaky
tests,” in Proceedings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, 2022, pp. 114–125.

[55] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “Evalu-
ating features for machine learning detection of order-and non-order-
dependent flaky tests,” in 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2022, pp. 93–104.

[56] M. Gruber, S. Lukasczyk, F. Krois, and G. Fraser, “An Empirical Study
of Flaky Tests in Python,” Proceedings - 2021 IEEE 14th International
Conference on Software Testing, Verification and Validation, ICST 2021,
pp. 148–158, 2021.

[57] R. V. Krejcie and D. W. Morgan, “Determining sample size for research
activities,” Educational and psychological measurement, vol. 30, no. 3,
pp. 607–610, 1970.

[58] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[59] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “Tsdetect: An open source test smells detection
tool,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1650–1654. [Online].
Available: https://doi.org/10.1145/3368089.3417921

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[61] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

