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ABSTRACT

LTL solvers check the satisfiability of Linear-time Temporal Logic
(LTL) formulas and are widely used for verifying and testing critical
software systems. Thus, potential bugs in the solvers’ implemen-
tations can have a significant impact. We present SpecBCFuzz, a
fuzzing method for finding bugs in LTL solvers, that is guided by
boundary conditions (BCs), corner cases whose (un)satisfiability
depends on rare traces. SpecBCFuzz implements a search-based
algorithm that fuzzes LTL formulas giving relevance to BCs. It inte-
grates syntactic and semantic similarity metrics to explore the vicin-
ity of the seeded formulas with BCs. We evaluate SpecBCFuzz on
21 different configurations (including the latest and past releases) of
four mature and state-of-the-art LTL solvers (NuSMV, Black, Aalta,
and PLTL) that implement a diverse set of satisfiability algorithms.
SpecBCFuzz produces 368,716 bug-triggering formulas, detecting
bugs in 18 out of the 21 solvers’ configurations we study. Over-
all, SpecBCFuzz reveals: soundness issues (wrong answers given
by a solver) in Aalta and PLTL; crashes, e.g., segmentation faults,
in NuSMV, Black and Aalta; flaky behaviors (different responses
across re-runs of the solver on the same formula) in NuSMV and
Aalta; performance bugs (large time performance degradation be-
tween successive versions of the solver on the same formula) in
Black, Aalta and PLTL; and no bug in NuSMV BDD (all versions),
suggesting that the latter is currently the most robust solver.

KEYWORDS

Fuzzing, Search-Based Software Engineering, Linear-time Temporal
Logic
ACM Reference Format:

Luiz Carvalho, Renzo Degiovanni, Maxime Cordy, Nazareno Aguirre, Yves
Le Traon, and Mike Papadakis. 2024. SpecBCFuzz: Fuzzing LTL Solvers with
Boundary Conditions. In 2024 IEEE/ACM 46th International Conference on

Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639087

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639087

1 INTRODUCTION

LTL solvers are tools that automatically check the satisfiability of
Linear-time Temporal Logic (LTL) formulas [56]. LTL solvers are
typically used in software verification [6, 7, 38, 76, 77], software
requirements analysis [28, 29], controller synthesis [10, 18], test
generation and fuzzing [5, 43, 59], thereby playing a key role in the
quality assurance of safety-critical systems.

Given that LTL solvers are used in the development of critical
systems, their correctness and reliability are of paramount impor-
tance. For instance, when solvers are used as part of verification
tools, incorrect solver results can leave large portions of programs
under analysis unverified, with the unfortunate effect of increasing
the risk of missing potential bugs and vulnerabilities. Thus, solvers
are constantly engineered to fix bugs.

Testing LTL solvers is particularly challenging. The reason is
that LTL solvers base their satisfiability analyses on the intrinsically
complex temporal semantics of LTL formulas, which involves rea-
soning about infinite traces. Moreover, this complexity is increased
since in order to efficiently produce solutions, solvers are continu-
ously optimized via analytical and heuristic-based algorithms, e.g.,
via machine learning-based LTL SAT prediction [39, 53, 55] and
other techniques. This gives rise to various types of bugs, such as
erroneous results (wrong satisfiability responses), system crashes
(solver aborts exceptionally, e.g., due to segmentation faults), flaky
behaviors (different conclusions across different re-runs of the
solver on the same formula), and performance issues (large perfor-
mance divergences between successive versions of the solver on
the same formula).

Moreover, checking the satisfiability of non-trivial LTL formulas
often depends on corner cases (rare and subtle traces), that if solvers
miss to explore, may lead to incorrect results. This makes LTL solver
development challenging, and calls for the development of effective
testing techniques, aiming to uncover the different types of bugs
that can occur in LTL solving software. While fuzzing approaches
exist for testing SAT and SMT solvers [31, 42], the problem of
testing LTL solvers remains largely unexplored. To the best of our
knowledge, there is no approach aiming at automatically testing
LTL solvers beyond some benchmark sets of formulas [68]. Thus,
there is a lack of principled methods to purposely test LTL solvers.

We fill this gap by proposing SpecBCFuzz, a fuzzing method
for LTL solvers that is guided by the particularities of LTL seman-
tics. The key idea is to generate formulas that are likely to drive
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the solvers towards corner cases – a general principle that has
been applied successfully in other testing areas, e.g., Boundary-
Value Analysis [2]. In our context, corner cases are formulas whose
(un)satisfiability depends on few and unique traces (cases that re-
quire a “global” analysis that force the solver to make a complete
computation and cross-check of the entire formula). In contrast,
formulas for which solvers can conclude their (un)satisfiability from
multiple common traces are less interesting because they do not
require an in-depth exploration of the entire formula semantics (in
a sense offering multiple opportunities based on which one can
determine unsatisfiability).

To generate corner cases, we rely on goal divergences, a concept
originated in goal-oriented requirements engineering [74]. When a
specification S is composed of a (satisfiable) conjunction of goals∧

𝑖 𝐺𝑖 (each 𝐺𝑖 is an LTL formula), a divergence, also known as
a boundary condition, is a condition 𝛿 whose occurrence makes
the specification inconsistent, i.e., its conjunction with the whole
set of goals is unsatisfiable, while its conjunction with any strict
subset of the goals remains satisfiable. As an example, consider
a mine pump controller [45] with the following two goals: “the
pump shall be on when the water level is above the high threshold”,
and “the pump shall be off when methane is detected in the mine”.
These can be formalized as𝐺1 : 2(ℎ𝑤 → 𝑝) and𝐺2 : 2(𝑚 → ¬𝑝),
where ℎ𝑚,𝑚 and 𝑝 stand for “high water”, “methane” and “pump
on”, respectively. Although these goals are globally consistent, e.g.,
they are satisfiable in cases where methane is not detected in the
mine, they are conditionally inconsistent (unsatisfiable) when the
water level is high and methane is present at the same time. Thus,
a boundary condition for 𝐺1 and 𝐺2 is 𝛿 : 3(ℎ𝑚 ∧𝑚).

Our approach works in two steps. First it considers a satisfiable
(seed) formula S and produces a set of unsatisfiable formulas {S ∧
𝛿𝑖 } based on the set of boundary conditions 𝛿𝑖 for S, automatically
generated from S. Then it generates mutated versions S′ of the
formulaS based on which a set of potentially unsatisfiable formulas
{S′ ∧ 𝛿𝑖 } are produced. Thus, our aim, given an original seed
formula, is to explore its vicinity, i.e., formulas that are close to the
original, together with the vicinity of the possible divergences of
the formula, as illustrated in Figure 1. Starting from a satisfiable
formula S, SpecBCFuzz produces a set of unsatisfiable formulas
{S ∧ 𝛿𝑖 } by computing a set of boundary conditions 𝛿𝑖 for S and
then explores their nearby solutions (shaded areas).

We claim that boundary conditions are good for triggering faults

in LTL solvers because they include two important (semantic) prop-
erties: i) the conjunction of S with 𝛿 moves the specification from
the satisfiable plane to the unsatisfiable plane thereby further chal-
lenging the solvers; ii) it forces the solvers to consider all goals
and the boundary condition to prove the unsatisfiability of the
formula (divergence definition property). Overall, boundary condi-
tions force the solvers to perform an in-depth exploration that has
a good potential to trigger bugs as shown by our results.

Proper fuzzing also requires the selection of diverse seeds. This
brings two challenges for SpecBCFuzz: 1) the selection of formulas
that have many divergences and 2) the computation of boundary
conditions. In our analysis we used 25 specifications from the litera-
ture and computed a total of 346 boundary conditions, an average of
13.84 boundary conditions per specification. To efficiently produce
tests, SpecBCFuzz relies on a search-based algorithm that explores

SATUNSAT

# models# conflicts

S

BC1

BC2

BC3

SATUNSAT

S
<latexit sha1_base64="t+X4O4nN5zFLcr3Zq62DnWHdSXw=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLixmVF+4B2KJk004ZmMkNyRyhDwZ9w40IRt36NO//GTNuFth4IHM654Z57gkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdJP7rUeujYjVA44T7kd0oEQoGEUrdboRxSGjMruf9Eplt+JOQZaJNydlmKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/GwaeUJOrdInYaztU0im6u8fGY2MGUeBncwjmkUvF//zOimGV34mVJIiV2y2KEwlwZjk95O+0JyhHFtCmRY2K2FDqilD21LRluAtnrxMmtWKd16p3l2Ua9dPszoKcAwncAYeXEINbqEODWAQwzO8wpuDzovz7nzMRleceYVH8AfO5w+yqZHs</latexit>

S ^ �1
<latexit sha1_base64="r8yMuaFJJDTla+7TSolJcmk8rPQ=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgETyWpgh4rXjxWtB/QlDLZbNqlm03Y3QglFHrxr3jxoIhX/4Q3/42btgdtfTDweG+GmXl+wpnSjvNtFVZW19Y3ipulre2d3T17/6Cp4lQS2iAxj2XbB0U5E7Shmea0nUgKkc9pyx/e5H7rkUrFYvGgRwntRtAXLGQEtJF69pEXgR4Q4Nn9GHscRIC9gHINPbdnl52KMwVeJu6clNEc9Z795QUxSSMqNOGgVMd1Et3NQGpGOB2XvFTRBMgQ+rRjqICIqm42/WGMT40S4DCWpoTGU/X3RAaRUqPIN535xWrRy8X/vE6qw6tuxkSSairIbFGYcqxjnAeCAyYp0XxkCBDJzK2YDEAC0Sa2kgnBXXx5mTSrFfe8Ur27KNeuJ7M4iugYnaAz5KJLVEO3qI4aiKAJekav6M16sl6sd+tj1lqw5hEeoj+wPn8AnP6X5A==</latexit>

S 0
<latexit sha1_base64="ONHqV0aSfOee0PxpxvI+FzcYJ/U=">AAAB83icbVDLSgMxFL2pr1pfVZdugkV0VWaqoMuKG5cV7QM6Q8mkmTY0kxmSjFCGgl/hxoUibv0Zd/6NmbYLbT1w4XDOveTkBIng2jjONyqsrK6tbxQ3S1vbO7t75f2Dlo5TRVmTxiJWnYBoJrhkTcONYJ1EMRIFgrWD0U3utx+Z0jyWD2acMD8iA8lDTomxkudFxAwpEdn95LRXrjhVZwq8TNw5qcAcjV75y+vHNI2YNFQQrbuukxg/I8pwKtik5KWaJYSOyIB1LZUkYtrPppkn+MQqfRzGyo40eKr+vshIpPU4CuxmnlEvern4n9dNTXjlZ1wmqWGSzh4KU4FNjPMCcJ8rRo0YW0Ko4jYrpkOiCDW2ppItwV388jJp1aruebV2d1GpXz/N6ijCERzDGbhwCXW4hQY0gUICz/AKbyhFL+gdfcxWC2he4SH8Afr8ARdNkh0=</latexit>

S 0 ^ �1
<latexit sha1_base64="ZwuzI2W0ia6MpmLVKATnG6w/rOg=">AAACBHicbVDLSsNAFJ34rPUVddnNYBFdlaQKuqy4cVnRPqAJ4WYybYdOJmFmIpRQ0I2/4saFIm79CHf+jdPHQlsPXDiccy/33hOmnCntON/W0vLK6tp6YaO4ubW9s2vv7TdVkklCGyThiWyHoChngjY005y2U0khDjlthYOrsd+6p1KxRNzpYUr9GHqCdRkBbaTALnkx6D4Bnt+OjrHHQUTYiyjXELiBXXYqzgR4kbgzUkYz1AP7y4sSksVUaMJBqY7rpNrPQWpGOB0VvUzRFMgAerRjqICYKj+fPDHCR0aJcDeRpoTGE/X3RA6xUsM4NJ3jk9W8Nxb/8zqZ7l74ORNppqkg00XdjGOd4HEiOGKSEs2HhgCRzNyKSR8kEG1yK5oQ3PmXF0mzWnFPK9Wbs3Lt8mEaRwGV0CE6QS46RzV0jeqogQh6RM/oFb1ZT9aL9W59TFuXrFmEB+gPrM8fBCiYFQ==</latexit>

S ^ �2
<latexit sha1_base64="1MgOiajX4zzksOkEcg7zgxCwv/w=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgETyWpgh4rXjxWtB/QhDLZbNulm03Y3QglFHrxr3jxoIhX/4Q3/42btgdtfTDweG+GmXlBwpnSjvNtFVZW19Y3ipulre2d3T17/6Cp4lQS2iAxj2U7AEU5E7Shmea0nUgKUcBpKxje5H7rkUrFYvGgRwn1I+gL1mMEtJG69pEXgR4Q4Nn9GHscRIi9kHIN3WrXLjsVZwq8TNw5KaM56l37ywtjkkZUaMJBqY7rJNrPQGpGOB2XvFTRBMgQ+rRjqICIKj+b/jDGp0YJcS+WpoTGU/X3RAaRUqMoMJ35xWrRy8X/vE6qe1d+xkSSairIbFEv5VjHOA8Eh0xSovnIECCSmVsxGYAEok1sJROCu/jyMmlWK+55pXp3Ua5dT2ZxFNExOkFnyEWXqIZuUR01EEET9Ixe0Zv1ZL1Y79bHrLVgzSM8RH9gff4AnoKX5Q==</latexit>

S ^ �3
<latexit sha1_base64="m1/Hvkxev/5ph6IXBIWnMQ4xyt4=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4Kkkr6LLixmVF+4AmhJvJtB06mYSZiVBCoRt/xY0LRdz6E+78G6ePhbYeuHA4517uvSdMOVPacb6tldW19Y3NwlZxe2d3b98+OGyqJJOENkjCE9kOQVHOBG1opjltp5JCHHLaCgc3E7/1SKViiXjQw5T6MfQE6zIC2kiBfezFoPsEeH4/wh4HEWEvolxDUA3sklN2psDLxJ2TEpqjHthfXpSQLKZCEw5KdVwn1X4OUjPC6ajoZYqmQAbQox1DBcRU+fn0hxE+M0qEu4k0JTSeqr8ncoiVGsah6ZxcrBa9ifif18l098rPmUgzTQWZLepmHOsETwLBEZOUaD40BIhk5lZM+iCBaBNb0YTgLr68TJqVslstV+4uSrXr8SyOAjpBp+gcuegS1dAtqqMGImiMntErerOerBfr3fqYta5Y8wiP0B9Ynz+gBpfm</latexit>

S ^ �4
<latexit sha1_base64="iIcNIOknyVw/wgeKQP55UELiVYY=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4Kkkt6LLixmVF+4AmhJvJtB06mYSZiVBCoRt/xY0LRdz6E+78G6ePhbYeuHA4517uvSdMOVPacb6tldW19Y3NwlZxe2d3b98+OGyqJJOENkjCE9kOQVHOBG1opjltp5JCHHLaCgc3E7/1SKViiXjQw5T6MfQE6zIC2kiBfezFoPsEeH4/wh4HEWEvolxDUA3sklN2psDLxJ2TEpqjHthfXpSQLKZCEw5KdVwn1X4OUjPC6ajoZYqmQAbQox1DBcRU+fn0hxE+M0qEu4k0JTSeqr8ncoiVGsah6ZxcrBa9ifif18l098rPmUgzTQWZLepmHOsETwLBEZOUaD40BIhk5lZM+iCBaBNb0YTgLr68TJqVsntRrtxVS7Xr8SyOAjpBp+gcuegS1dAtqqMGImiMntErerOerBfr3fqYta5Y8wiP0B9Ynz+hipfn</latexit>

Figure 1: Exploring the vicinity of the divergences.

the vicinity ofS and finds other formulas 𝑆 ′ for which the boundary
conditions Δ = {𝛿𝑖 } (previously computed from S) remain relevant.
To increase the likelihood that 𝛿𝑖 is also a boundary condition for
𝑆 ′, the search is guided to preserve 𝑆 ′ as similar as possible to 𝑆 .

SpecBCFuzz implements a Non-dominated Sorted Genetic Algo-
rithm (NSGA-III) [26] to evolve andmutate the original specification
S, guided by amulti-objective fitness function.Within this function,
two similarity metrics – one syntactic and one semantic – compare
the seeded formula S and the mutated formula S′. SpecBCFuzz
uses the Levenshtein edit distance [52] to measure syntactic similar-
ity and an LTL model counting heuristic [13] as a semantic-related
metric. To effectively explore the search space close to S, we also
consider an additional objective: to explore as many combinations
as possible of the divergences captured by boundary conditions in
Δ. This objective aims at exploring a wide spectrum characterized
by the divergences from the sat plane to the unsat one.

Once the mutated formulas have been generated, SpecBCFuzz
conjuncts them with the previously computed boundary conditions
(yielding S′ ∧ 𝛿𝑖 ) as inputs for fuzzing the LTL solvers. To bypass
the oracle problem, SpecBCFuzz cross-checks the answers given
by different solvers (when looking for soundness bugs), different
versions of the same solver (for performance bugs), and different
runs of the same version on the same formula (for flakiness bugs).

To evaluate SpecBCFuzz, we conducted experiments on mul-
tiple releases (including the latest) of 4 LTL solvers under differ-
ent settings. Our evaluation comprises: two variants of the Aalta
(v1 and v2) solver based on tableaux [50, 51]; three variants of
the PTLT (multipass-based and graph-based) solver, two based on
tableaux [69, 78] and one based on BDDs [34, 58]; BLACK, based on
tableaux [36, 37]; and two variants of NuSMV (v2.4.3, v2.5.4, v2.6.0),
one based on BMC [20] and one based on BDDs [19]. In total, our
evaluation involves 21 solvers’ configurations.

Our experimental analysis uses as seeds 25 requirements specifi-
cations collected from the literature [28], for which a set of bound-
ary conditions are automatically computed. In total, SpecBCFuzz

generates 368,716 bug-triggering formulas, revealing bugs in 18 out
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of the 21 solver configurations (except in the 3 configurations of
NuSMV BDD). Furthermore, SpecBCFuzz reveals:
• Soundness issues (wrong solving results) in Aalta (v1 & v2) and
PLTL (BDD).
• Crashes in 10 configurations of three solvers (NuSMVBMC, Black
& Aalta).
• Flaky behavior in NuSMV BMC (3 versions of this solver) and
Aalta (v1 & v2).
• Performance bugs in 7 versions of three solvers (Black, Aalta,
and PLTL).
• No bugs in NuSMV BDD (all versions), suggesting that this is
currently the most robust solver.
Our results also demonstrate that all search objectives of SpecBC-

Fuzz (the use of boundary conditions, the syntactic and semantic

similarity metrics) contribute in finding bug triggering LTL formulas.

Finally, our analysis shows that SpecBCFuzz outperforms a typical

grammar-based fuzzer, that was specifically implemented and tuned
for fuzzing LTL solvers.

2 BACKGROUND

2.1 LTL, SAT and Model Counting

Linear-time Temporal Logic (LTL) is a formalism used for for-
mal property specification of reactive systems [56]. Several for-
mal methodologies, e.g., KAOS [73], have adopted LTL to express
requirements [73] and perform analyses.

LTL assumes a linear topology of time, i.e., each instant is fol-
lowed by a unique future instant, and LTL formulas are evaluated
over infinite traces, that can be interpreted as system executions.
Let AP be a set of propositional variables. LTL formulas are induc-
tively defined using the standard logical connectives and temporal
operators ⃝ andU, as follows: (i) constants true and false are LTL
formulas; (ii) every 𝑝 ∈ AP is an LTL formula; and (iii) if 𝜑1 and
𝜑2 are LTL formulas, then so are ¬𝜑1, 𝜑1 ∨ 𝜑2, 𝜑1 ∧ 𝜑2, ⃝𝜑1 and
𝜑1U𝜑2.

LTL formulas are evaluated over infinite traces of the form 𝜎 =

𝑠0 𝑠1 . . ., where each 𝑠𝑖 is a propositional valuation on 2AP, i.e.,
𝜎 ∈ 2AP𝜔 . Formulas with no temporal operators are evaluated in
the first valuation of a trace. Given a trace 𝜎 , ⃝𝜑 is true in 𝜎 if and
only if 𝜑 is true in 𝜎 [1..] (the trace obtained by removing the first
valuation from 𝜎), and 𝜑1U𝜑2 is true in 𝜎 if and only if there is
a position 𝑖 such that 𝜑2 holds in 𝜎 [𝑖 ..], and for all 0 ≤ 𝑗 < 𝑖 , 𝜑1
holds in 𝜎 [ 𝑗 ..]. We consider the typical definitions for the operators
2 (always), 3 (eventually) andW in terms of ⃝, U and logical
connectives.

An LTL formula 𝜑 is satisfiable (SAT) iff there exists at least one
trace satisfying 𝜑 ; otherwise, it is unsatisfiable (UNSAT).

Model counting computes the number of traces that satisfy a
formula. Since LTL formulas are defined over infinite traces, this
involves the computation of the number of canonical finite rep-
resentations of infinite traces, such as lasso traces, as also done
in bounded model checking [8]. Since computing the exact num-
ber of lasso traces is expensive [32], Brizzio et. al [13] proposed a
bounded model counting approximation to compute the number
of lasso traces satisfying an LTL formula, based on symbolic LTL
automata representation and matrix multiplication. Thus, given
an LTL formula 𝜑 and a bound 𝑘 , we denote by #Approx(𝜑, 𝑘),

the approximated number of lasso traces of length 𝑘 satisfying
𝜑 . SpecBCFuzz employs #Approx model counting to compare the
semantics of LTL formulas.

2.2 LTL Solvers

LTL satisfiability is a decidable problem [67], and tools implement-
ing such checking are called LTL (SAT) solvers. Existing LTL solvers
are designed to be efficient [68], to support diverse temporal op-
erators [37], and to be expressive [48]. Some of the best known
techniques for LTL solving include those based on bounded model
checking (BMC), on binary decision diagrams (BDDs), on Tableaux,
and on automata-theoretic approaches.

Bounded Model Checking (BMC) encodes LTL formulas as
propositional formulas [8, 24, 49], for a given bound 𝑘 . Each satis-
fying valuation of the encoding corresponds to a lasso trace of 𝑘
states. NuSMV [19] implements a traditional BMC algorithm.

BDD-based Model Checking employs a symbolic representa-
tion of LTL formulas as binary decision diagrams (BDD), based on
the formula’s elementary sub-formulas [21, 23]. The BDD is built
by applying rules that capture the semantics of the LTL operators.
The satisfying instances are obtained by traversing paths in the
BDD. NuSMV [19] and PLTL implement a traditional BDD-based
SAT algorithm.

Tableau is a well-known logical satisfiability approach, based on
the decomposition of the formula being assessed according to the
semantics of its logical operators, to search for satisfying valuations.
While a tableau for a positional formula is a finite tree capturing
its semantics, a tableau for an LTL formula is a graph capturing the
semantics of temporal operators in the formula.

There exist different particular variants of the process to build
the tableau structure, classified as the so-called One-pass and Multi-
pass tableaux methods. Among these, PLTL [69] implements the
Schwendimann method, while BLACK [36, 37] implements the
Reynolds method [66].

Automata-based approaches encode LTL formulas into au-
tomata, and then check for the emptiness of the languages cor-
responding to such automata [47, 75]. Different automata repre-
sentations are used to improve the performance of solvers, such as
the alternating automata (more efficient and succinct than other
kinds of automata) [47, 75]. Additional heuristics are also used. For
instance, Aalta (v.1) implements an on-the-fly automaton explo-
ration [50].

2.3 Fuzzing

Fuzzing is a technique that generates input strings [60], used for test-
ing activities [80] such as system and integration testing, semantic-
oriented testing [64, 71], and security testing [9, 33].

Coverage-guided fuzzers, such as the American Fuzzy Lop
(AFL) and its variants, implement various fuzzing strategies. For
instance, AFLFast implements grey-box fuzzing guided by code
coverage [16]; AFLGo implements a simulation annealing search
guided by an inter-procedural distance measure [12]; and Zest
implements a property-based fuzzing mechanism [63, 64].

Grammar-based Fuzzing typically takes a (context-free) gram-
mar that describes the shape of the inputs, and produces random
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inputs by traversing the grammar production rules. These are com-
monly used for testing compilers. Their objective is to efficiently
produce many and diverse inputs, increasing the chances of trig-
gering syntactic or semantic bugs.

Seeds are bootstraps of the bug finding process [40]. Good seeds
are typically collected from a large number of representative cases
or domain-specific scenarios, and have some meaningful semantics
for the software under test. For instance, seeds can be built by crawl-
ing the internet [40], or can be user provided [59, 61]. Collected
seeds are exploited by mutation and search-based strategies for
generating semantically meaningful inputs.

Mutation Fuzzing introduces small changes to the given seeds
with the aim of triggering additional behaviors in the target system.
Preferably, the mutations should maintain the syntactic validity
of the input. Common mutation operators remove, insert, and flip
single elements of the inputs.

Search-based Fuzzing leverages mutation fuzzing by also guid-
ing the seeds selection and evolution with one or more fitness
functions [65]. The optimized meta-heuristics are domain-specific
for the target system. Typical fitness metrics focus on the code
coverage and structure of the generated inputs.

In this work, we present SpecBCFuzz, a search-based fuzzing
approach that takes LTL specifications with boundary conditions
as seeds. SpecBCFuzz implements a set of evolutionary operators
(mutation and crossover) to evolve LTL formulas, and two similarity
metrics (one syntactic and one semantic) to search in the vicinity of
the given seeds, with the aim of finding critical bugs, e.g., soundness
issues, crashes, and flakiness problems, in LTL solvers.

3 THE SPECBCFUZZ APPROACH

Figure 2 shows an overview of SpecBCFuzz. It follows four steps to
generate and evolve LTL formulas for testing LTL solvers. Firstly,
given a seeded formula S (a goal-oriented requirements specifica-
tion), SpecBCFuzz computes a set Δ = {𝛿1, . . . , 𝛿𝑘 } of boundary
conditions that capture divergences in S.

The second step focuses on evolving S into other LTL formulas
S′ that are likely to also be divergent with respect to the boundary
conditions in Δ. To do so, SpecBCFuzz implements a multi-objective
search algorithm (more precisely, NSGA-III [26]) that applies ge-
netic operators (mutation and crossover) to produce new formulas.
The multi-objective function SpecBCFuzz relies on is driven by
formula similarity metrics; it seeks to increase the likelihood of
the new formulas to be divergent with respect to the boundary
conditions computed from the seeded specification S.

Once a formula S′ has been produced, it is conjoined with each
𝛿𝑖 to form a new set {S′ ∧ 𝛿𝑖 }𝑖 that SpecBCFuzz tests each solver
with (step 3). In our experiments we considered 21 configurations
of four mature and state-of-the-art LTL solvers, including their
corresponding latest versions, namely, NuSMV, Aalta, PLTL and
Black. Of course, other solvers and future versions of the considered
solvers may be easily integrated in the future.

To bypass the oracle problem, SpecBCFuzz relies on differential
testing to cross-check the behavior of the different solvers and
runs (step 4). More precisely, SpecBCFuzz looks for soundness bugs
(different solvers giving different satisfiability answers), crashes (a
solver aborts the execution exceptionally), flakiness (different runs

of the same solver version on the same formula yields different
answers), and performance bugs (large performance differences
between different versions of the same solver on a same given
formula).

In what follows, we detail the above-mentioned steps and, in
particular, how the evolutionary search process and the solver
testing steps intertwine.

3.1 Computing Divergences

In goal-oriented methodologies, e.g., KAOS [73], requirements are
organized as a set of domain properties (𝐷𝑜𝑚) and a set of goals
({𝐺𝑖 }). Intuitively, the goals are the properties we expect the sys-
tem to achieve, while domain properties capture assumptions and
descriptive statements of the environment, e.g., physical or norma-
tive laws. Since requirements descriptions can be ambiguous and
incomplete, and different stakeholders may have different expecta-
tions from the system, specified goals can contradict one another
(i.e., they can be conflicting) [73, 74]. If there is a strong conflict
between the goals and the domain properties, they cannot be sat-
isfied together (𝐷𝑜𝑚 ∧ (∧𝑖 𝐺𝑖 ) |= 𝑓 𝑎𝑙𝑠𝑒), and the specification is
said to be inconsistent.

For consistent goals, there exists a weaker form of conflict, named
divergence [73, 74]. It represents a condition whose occurrence
makes the goals inconsistent (i.e., they cannot be satisfied under
the condition that the divergence occurs). Formally, a set 𝐺 =

{𝐺1, . . . ,𝐺𝑛} of goals is divergent with respect to 𝐷𝑜𝑚 if there
exists a boundary condition (a formula) 𝛿 such that the following
conditions hold together:

𝐷𝑜𝑚 ∧ 𝛿 ∧ ( ∧
1≤𝑖≤𝑛

𝐺𝑖 ) |= false (logical inconsistency)

𝐷𝑜𝑚 ∧ 𝛿 ∧ (∧
𝑗≠𝑖

𝐺 𝑗 ) ̸|= false, for each 1 ≤ 𝑖 ≤ 𝑛 (minimality)

𝛿 ≠ ¬(𝐺1 ∧ . . . ∧𝐺𝑛) (non-triviality)

The first condition establishes that, when 𝛿 holds, the whole set
of goals cannot be simultaneously satisfied. The second condition
states that, if any of the goals are disregarded, then consistency is
recovered. Also, it prevents 𝛿 from being false, since it has to be
consistent with the domain 𝐷𝑜𝑚. The third condition prohibits a
boundary condition to be simply the negation of the goals.

SpecBCFuzz relies on divergences and their corresponding bound-
ary conditions to create LTL formulas that force solvers to make
in-depth analyses to conclude about satisfiability, leaning on the
three properties of boundary conditions. The rationale is that, since
𝛿 semantically connects all the goals of the formula, it can compli-
cate the variable splitting heuristics implemented by the solvers,
forcing them to perform a more exhaustive search.

To have meaningful formulas, SpecBCFuzz uses requirements
specifications from the literature as seeds, and computes their
boundary conditions using the automated approach by Degiovanni
et al. [28]. However, because this approach and its alternatives
[29, 54] are computationally expensive, their application through-
out the search process (i.e., on all formulas S′ that SpecBCFuzz
generates in the vicinity of S) would require prohibitively expen-
sive computation time (in our experiments, the approach in [28]
requires 2,183 seconds for computing boundary conditions, on av-
erage). This is a clear obstacle for fuzzing, that is based on fast
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Figure 2: Evolutionary search implemented by SpecBCFuzz.

generation of tests. Therefore, we only generate boundary condi-
tions on the original specifications/formulas (seeds).

3.2 Search Process

Algorithm 1 describes how SpecBCFuzz combines and intertwines
the evolutionary search steps (NSGA-III) and the on-the-fly testing
of the LTL solvers.

Given seeded formula S = (𝐷𝑜𝑚,𝐺), SpecBCFuzz starts by com-
puting a set Δ of boundary conditions capturing S’s divergences
(Line 2). In Line 3, it initializes the sets where the different kinds
of bug-triggering inputs will be saved, and in Line 4 it initializes
the set of candidate inputs (population) 𝐼 , i.e., the NSGA-III set of
non-dominated individuals, with the seeded formula S.

From Lines 5-16, the algorithm relies on specific features of
NSGA-III, such as the prioritization, selection and evolution of indi-
viduals (formulas) for fuzzing the LTL solvers, until a termination
condition is met, e.g., a specific execution time or number of gener-
ations is reached. Particularly, in Line 6, the algorithm picks 𝐶 , one
of the non-dominated candidate formulas produced so far. Then, in
Line 7, SpecBCFuzz applies the implemented genetic operators to𝐶 ,
i.e., the mutation and cross-over especially designed for manipulat-
ing LTL formulas (see Section 3.3), and iterates on each generated
formula S′.

In this inner loop, for each boundary condition 𝛿 ∈ Δ, SpecBC-
Fuzz generates a candidate bug-triggering formula 𝑖 by combining it
with the mutated formula, yielding S′ ∧𝛿 (Line 9). Then, it invokes
each solver under test and gathers their corresponding outputs, i.e.,
𝑜 𝑗 = 𝑆𝑜𝑙𝑣𝑒𝑟 𝑗 (𝑖), 1 ≤ 𝑗 ≤ 𝑁 (Line 10). SpecBCFuzz analyses the
outputs and, whenever a bug is detected, it saves relevant informa-
tion useful to reproduce it later, e.g., the solver’s name, version and
configuration as well as the bug-triggering formula 𝑖 . In Line 13,
SpecBCFuzz computes the multi-objective fitness value for the mu-
tated formula S′ (see Section 3.4). Finally, SpecBCFuzz updates the
set 𝐼 of non-dominated individuals according to the just computed
fitness values for S′, which can survive for the next generations.

Algorithm 1 takes a formula S = (𝐷𝑜𝑚,𝐺) and its divergences
as input and returns correctness, crashes, flaky and performance
⟨B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ⟩ issue-triggering inputs.

1: function SpecBCFuzz(S, BC𝑠 ): ⟨B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ⟩
2: Δ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝐶𝑠 (S) ⊲ Set of boundary conditions
3: B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ← ∅, ∅, ∅, ∅ ⊲ Set of bugs found
4: 𝐼 ← {S} ⊲ Set of evolved formulas
5: while 𝐼 ≠ ∅ and ¬(termination-criteria) do
6: 𝐶 ← 𝑃𝑖𝑐𝑘𝐵𝑒𝑠𝑡 (𝐼 ) ⊲ NSGA-III non-dominated individual
7: for all S′ ∈ 𝐸𝑣𝑜𝑙𝑣𝑒 (𝐶) do ⊲ NSGA-III genetic operators
8: for all 𝛿 ∈ Δ do

9: 𝑖 ← S′ ∧ 𝛿 ⊲ candidate bug-triggering input
10: ⟨𝑜1, . . . 𝑜𝑁 ⟩ ← 𝑆𝑜𝑙𝑣𝑒𝑟1 (𝑖), . . . , 𝑆𝑜𝑙𝑣𝑒𝑟𝑁 (𝑖)
11: B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑢𝑔𝑠 (𝑖, 𝑜1, . . . , 𝑜𝑁 )
12: end for

13: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (S,S′,Δ, 𝑜1, . . . 𝑜𝑁 )⊲ NSGA-III multi-objectives
14: 𝐼 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡 (𝐼 ,S′) ⊲ NSGA-III prioritization
15: end for

16: end while

17: return ⟨B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ⟩
18: end function

In the remainder of this section, we present the details regarding
the genetic operators and the multi-objective fitness computation.

3.3 LTL Genetic Operators

SpecBCFuzz implements the standard mutation and cross-over
operators for LTL formulas [28, 54].

To illustrate these operators, consider the formula F : 2(𝑝 →
¬𝑞∧𝑟 ). Figure 3 shows four examples of mutations that SpecBCFuzz
applies. For instance, mutant𝑀1 replaces the unary operator 2 in
F by 3; mutant 𝑀2 replaces proposition 𝑝 by 𝑟 ; in 𝑀3, binary
operator→ is replaced by ∨; while mutant𝑀4 removes part of the
formula. All mutations are guaranteed to respect the LTL syntax,
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F : ⇤(p ! �¬q ^ r)
<latexit sha1_base64="1UGYCYv5dYFOsNsa0UGwD8J5wgA="></latexit>

M1 : ⌃(p ! �¬q ^ r)
<latexit sha1_base64="Bqzg7vqvXK722eSSqPsMGgvuhl4="></latexit>

M2 : ⇤(r ! �¬q ^ r)
<latexit sha1_base64="pUAkz6Gb5BDE4cHuQSF8AT+oMME="></latexit>

M3 : ⇤(p_� ¬q ^ r)
<latexit sha1_base64="6o5gKCK7ARqTfgmy8UHZ+6MjtgA="></latexit>

M4 : ⇤(p ! �¬q ^ r)
<latexit sha1_base64="4J8InQijEYPXYr7FA7eZBBLwRTk=">AAACG3icbZBLSwMxFIUzPmt9VV26uViEuikztaC4qrpxI1SwD+iUkknTaWgmGZOMWkrBn+HGv+LGhSKuBBf+G9PHwteBwMc5NyT3BDFn2rjupzMzOze/sJhaSi+vrK6tZzY2q1omitAKkVyqeoA15UzQimGG03qsKI4CTmtB73SU166p0kyKS9OPaTPCoWAdRrCxVitTOG8V4Qj8E3kLuRh8xcKuwUrJG/ADFhKmCPiChnAFPseiDWqvlcm6eXcs+AveFLJoqnIr8+63JUkiKgzhWOuG58amOcDKMMLpMO0nmsaY9HBIGxYFjqhuDsa7DWHXOm3oSGWPMDB2v98Y4EjrfhTYyQibrv6djcz/skZiOofNARNxYqggk4c6CQcjYVQUtJmixPC+BUwUs38F0sUKE2PrTNsSvN8r/4VqIe/t5wsXxWzp+G5SRwptox2UQx46QCV0hsqoggi6R4/oGb04D86T8+q8TUZnnGmFW+iHnI8v7Qaf6g==</latexit>

F1 : ⇤(p ! q)
<latexit sha1_base64="QAY6u/6vDVNQUunL3Pq9/E3VP7k=">AAACDnicbVBNS8NAEN34WetX1KOXxVKol5JUQfFUFcRjBfsBTQib7aZdusnG3Y1aQsG7F/+KFw+KePXszX/jpu1BWx8MPN6bYWaeHzMqlWV9G3PzC4tLy7mV/Ora+samubXdkDwRmNQxZ1y0fCQJoxGpK6oYacWCoNBnpOn3zzO/eUuEpDy6VoOYuCHqRjSgGCkteWbRCZHqYcTSi6FnwxPonPH7UgwdQbs9hYTgd/Bm3zMLVtkaAc4Se0IKYIKaZ345HY6TkEQKMyRl27Zi5aZIKIoZGeadRJIY4T7qkramEQqJdNPRO0NY1EoHBlzoihQcqb8nUhRKOQh93ZkdL6e9TPzPaycqOHZTGsWJIhEeLwoSBhWHWTawQwXBig00QVhQfSvEPSQQVjrBvA7Bnn55ljQqZfugXLk6LFRPH8Zx5MAu2AMlYIMjUAWXoAbqAINH8AxewZvxZLwY78bHuHXOmES4A/7A+PwB0aqbug==</latexit>

F2 : ⌃(r ^ ¬p)
<latexit sha1_base64="pzFZ01vdxpP/rNIBMcpyiw0PwDA="></latexit>

F1 : ⌃(r ! q)
<latexit sha1_base64="K+N2nNm/SV5XilLA9ImrWwoLhr8=">AAACPHicbZBLaxsxFIU1aV5183DbZTcipuBAMDNjJ467cmkpXTokdgyewdyRZVtYI00lTYoZBvq3usmPyK6rbrJIKd12HfmxSOJcEHyccyXde6KEM21c95ez9mJ9Y3Nr+2Xh1c7u3n7x9ZuOlqkitE0kl6obgaacCdo2zHDaTRSFOOL0Mpp8mvmXV1RpJsWFmSY0jGEk2JARMFbqF8+DGMyYAM++5H0Pf8DBZwaxFANczoL58z01isLMrXhVr1o7PnIrjUbjpF634PrVE7+WKxwoNhobUEp+x9/yw36xZM154VXwllBCy2r1izfBQJI0psIQDlr3PDcxYQbKMMJpXghSTRMgExjRnkUBMdVhNp8ux++tMsBDqewRBs/VhzcyiLWexpHtnK2qn3oz8Tmvl5rhaZgxkaSGCrL4aJhybCSeJYkHTFFi+NQCEMXsrJiMQQExNu+CDcF7uvIqdHyba8U/q5WaH38s4thG79ABKiMP1VETfUUt1EYE/US/0R3641w7t85f59+idc1ZRvgWPSrn/z38oKq8</latexit>

F1 : ⇤(p ! q)
<latexit sha1_base64="vD7wR5gQYvXgSV8BTgtbWNg3xxs="></latexit>

C1 : ⇤(¬p)
<latexit sha1_base64="/P4H5Iiv+RAGYcrzJ4e4PzQcoB4="></latexit>

C2 : ⌃(r ^ (p ! q))
<latexit sha1_base64="O72kZfFzO+6gGjHvmdAa0nTCrSo=">AAACPHicbZBLbxoxFIU96YvSpiHpshurKBJIEZoZENCsqMiiS6qUh8SM0B1jwIrHntqeVGiE1L/VTX9Ed11l00WrKNuu4wEWDfRKlj6dc319faKEM21c96dz8Ojxk6fPCs+LL14evjoqHZ8MtEwVoX0iuVSjCDTlTNC+YYbTUaIoxBGnw+iqm/vDa6o0k+KTWSY0jGEu2IwRMFaalC67Ex+f4+CCQSzFFFcUDjjkkAXr6WM1j8LMrb1rN/1G88ytuW7L870c/Faj3lglOFBsvjCglPyCP6+q1UmpnLflhffB20IZbas3Kf0IppKkMRWGcNB67LmJCTNQhhFOV8Ug1TQBcgVzOrYoIKY6zNbrrfCpVaZ4JpU9wuC1+u+NDGKtl3FkO2MwC73r5eL/vHFqZu0wYyJJDRVk89As5dhInCeJp0xRYvjSAhDF7K6YLEABMTbvog3B2/3yPgz8mlev+R8b5c77r5s4CugNeosqyEMt1EEfUA/1EUHf0A36jf44351fzq1zt2k9cLYRvkYPyvl7D78HqXk=</latexit>

Mutation Operator Crossover Operator

Figure 3: Mutation and Crossover operators.

and can produce any LTL formula in the language, strictly used in
the seeded formula S, i.e., no new atomic proposition is added.

Crossover operator takes two goals F1 and F2 from the same
individual 𝐶 (or from a different individual previously generated),
and swaps two sub-formulas randomly selected from these goals,
yielding two new formulas 𝐶1 and 𝐶2. For example, given F1 :
2(𝑝 → 𝑞) and F2 : 3(𝑟 ∧¬𝑝) as in Figure 3, the crossover operator
might select sub-formula 𝛼 : 𝑝 → 𝑞 from F1 and sub-formula 𝛽 : ¬𝑝
from F2. Then, it proceeds to swap the sub-formulas by replacing
𝛼 by 𝛽 in F1, and vice versa in F2, leading to two new formulas
𝐶1 : 2(¬𝑝) and 𝐶2 : 3(𝑟 ∧ (𝑝 → 𝑞)). This operator guarantees by
construction to produce syntactically valid LTL formulas.

3.4 Multi-objective Fitness

For each candidate variant S′ generated by the application of the
genetic operators, SpecBCFuzz computes the fitness value for the
three objectives that guide the search (Line 13 in Algorithm 1). Since
computing a new set of boundary conditions for each candidate
is practically infeasible (requiring on average 2,183 seconds [28]),
these three objectives aim at driving SpecBCFuzz’s search process
towards formulas S′ for which the boundary conditions Δ capture
divergences in S′ as well. These three objectives are: semantic
similarity between S′ and S, their syntactic similarity, and the
approximated number of boundary conditions that remain relevant
for S′.

The rationale behind semantic similarity is that two semantically
close formulas have a higher likelihood to have boundary condi-
tions in common. Thus, our semantic similarity function, denoted
by 𝑆𝑒𝑚𝑆𝑖𝑚(S,S′), computes the ratio between the number of be-
haviors common to S′ and S over the union of their behaviors.
Since computing the set of lasso traces of an LTL formula is com-
putationally prohibitively expensive, SpecBCFuzz instead relies on
an efficient model counting heuristic [13], which approximates the
number of accepted lasso traces of any formula (cf. Section 2.1).
Hence, given a bound 𝑘 for the lasso traces, the semantic similarity
between S and S′ is computed as:

𝑆𝑒𝑚𝑆𝑖𝑚(S,S′) = #Approx(S ∧ S′, 𝑘)
#Approx(S ∨ S′, 𝑘)

where #Approx(S ∧ S′) is the approximated number of accepted
lasso traces for S ∧ S′ (intersection) and #Approx(S ∨ S′) is
the approximate number for S ∨ S′ (union). Small values for
𝑆𝑒𝑚𝑆𝑖𝑚(S,S′) indicate that the behaviors described by S′ deviate
too much from those described by the seeded formulas S as it has
few behaviors in common. If this value gets closer to 1 it means
that the two formulas share most of their corresponding behaviors.

In the case where S′ is unsat or contradicts S, we set the semantic
similarity to 0 to discard this unsatisfiable formula in subsequent
iterations.

Syntactic similarity, denoted by 𝑆𝑦𝑛𝑆𝑖𝑚(S,S′), is another ob-
jective we use to further support semantic similarity. To measure it,
SpecBCFuzz uses Levenshtein distance [52] to compute the distance
between the text representations of the formulas. The Levenshtein
distance between two words is the minimum number of single-
character edits (insertions, deletions, or substitutions) required to
change one word into the other. Hence, 𝑆𝑦𝑛𝑆𝑖𝑚(S,S′) is computed
as the ratio between the number of tokens changed from S to ob-
tain S′ among the maximum number of tokens corresponding
to the largest formula (𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ =𝑚𝑎𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ(𝑆), 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑅))).
Specifically:

𝑆𝑦𝑛𝑆𝑖𝑚(S,S′) = 𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(S,S′)
𝑚𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ

Since SpecBCFuzz aims at generating formulas for which bound-
ary conditions in Δ remain relevant, it uses a simple heuristic to
count for the number of boundary conditions 𝛿 ∈ Δ that remain
unsatisfiable with respect to S′:

#BCs(S′,Δ) =
𝑘 −∑𝑘

𝑗=1 𝑖𝑠𝑈𝑁𝑆𝐴𝑇 (S′, 𝛿 𝑗 )
𝑘

where 𝑖𝑠𝑈𝑁𝑆𝐴𝑇 (S′, 𝛿 𝑗 ) will check if the majority of the solvers’
outputs 𝑜1, . . . , 𝑜𝑁 indicate that formulaS′∧𝛿 𝑗 is unsat. Taking the
majority as the correct answer, will help SpecBCFuzz to be robust
in the cases where formula S′ ∧ 𝛿 𝑗 triggers a bug in a solver.

Overall, the three objectives will guide SpecBCFuzz to search in
the vicinity of S, with high chances to be divergent with respect to
the boundary conditions in Δ, making them good candidates for
triggering bugs in LTL solvers.

3.5 Differential Testing

SpecBCFuzz, inspired by differential testing, defines simple oracles
to detect four kinds of bugs. Given the input formula 𝑖 = S′ ∧ 𝛿 𝑗
and solvers’ outputs 𝑜1, . . . , 𝑜𝑁 , SpecBCFuzz first computes the
number of #𝑠𝑎𝑡 (#{𝑜 ∈ 𝑜1, . . . , 𝑜𝑁 | 𝑜 = 𝑆𝐴𝑇 }) and #𝑢𝑛𝑠𝑎𝑡 (#{𝑜 ∈
𝑜1, . . . , 𝑜𝑁 | 𝑜 = 𝑈𝑁𝑆𝐴𝑇 }) responses. Then, the expected outcome
is defined as follows:

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (S′ ∧ 𝛿 𝑗 ) =


sat #𝑠𝑎𝑡 > #𝑢𝑛𝑠𝑎𝑡
unsat #𝑢𝑛𝑠𝑎𝑡 > #𝑠𝑎𝑡
unknown otherwise

For example, let us assume that 𝑜1 ≠ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (S′ ∧ 𝛿 𝑗 ), i.e.,
𝑆𝑜𝑙𝑣𝑒𝑟1 produces an output different from the expected one. SpecBC-
Fuzzwill first re-run 𝑆𝑜𝑙𝑣𝑒𝑟1 (S′∧𝛿 𝑗 ) 100 times, in order to confirm
that the solver is consistently producing the same output for the
given input. If the solver is always producing the same unexpected
output, then the bug is confirmed and information regarding the
solver and the bug-triggering formula are added to the correspond-
ing set. Precisely, if 𝑜1 is sat/unsat, i.e., the solver produces an
incorrect output, this is a soundness bug and the bug-info is added
to the set B𝑠 ; otherwise, if 𝑜1 is unknown because the solver always
crashes with the same input, the bug-info is added to B𝑐 .

In the case that, after re-running multiple times the same solver
with the same input, it produces a different output compared to
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the firstly observed 𝑜1, e.g., 𝑜1 was sat, but when re-run it often
produced unsat, then we consider this behavior as flaky and we
add the bug info to the set B𝑓 .

Finally, for each input formula, we compute the average execu-
tion time𝑇 of the solvers for producing a valid (sat/unsat) outcome.
Then, when performing the re-runs, if a solver takes more than 300
times the average execution time in producing the output (i.e., the
execution time is greater than 300 ×𝑇 ), or it reaches a predefined
timeout of 24 hours (just for the re-runs), then SpecBCFuzz will
consider this as a potential performance bug and warn the tester by
adding the corresponding bug-info to the set B𝑝 . After finalizing
the fuzzing campaign, SpecBCFuzz returns the sets of the identified
bug-triggering inputs.

4 EXPERIMENTAL SETUP

4.1 Research Questions

We investigate the following research questions:

• RQ1: How effective is SpecBCFuzz in revealing bugs in LTL
solvers? How robust are the solvers?
• RQ2: How does each objective of the fitness function contribute
to SpecBCFuzz’ effectiveness?
• RQ3: Do boundary conditions and vicinity exploration provide
effective guidance to reveal LTL solver bugs?

RQ1 evaluates the effectiveness of our approach in revealing bugs
in the studied LTL solvers. Thus, we execute SpecBCFuzz against
21 configurations of four solvers (see Section 4.3). First, we report
the number of soundness, crashes, flakiness, and performance is-
sues that were triggered by the formulas produced by our fuzzing
campaigns. We then perform an analysis on the bug-triggering
inputs to categorize the inconsistent executions into more general
buggy patterns, i.e., symptoms we observe on one or more specific
versions of a solver. Intuitively, two formulas 𝑓1 and 𝑓2 are in the
same cluster, if they trigger the same buggy symptom, e.g., a crash
with the same error message, in the same version of the same solver.
Thus, a buggy pattern corresponds to one or more concrete bugs to
fix in the concerned solver versions.

To answer RQ2, we conduct an ablation study to quantify the
contribution of each objective of SpecBCFuzz’s fitness function to
its effectiveness. Thus, we disable each objective (separately) and
compare the number of bug-triggering formulas (for each previ-
ously identified buggy pattern) that SpecBCFuzz reports.

RQ3 aims to validate the two main hypotheses that SpecBCFuzz
relies on, i.e., 1) specifications with boundary conditions are good
seeds for revealing bugs, and 2) exploring the local vicinity of
the original formula is effective in triggering faults. A superior
effectiveness of SpecBCFuzzwould validate our hypotheses and the
principles our approach relies on. Hence, in addition to SpecBCFuzz
(which uses the set {S ∧𝛿𝑖 }𝑖 ∪ {S′𝑗 ∧𝛿𝑖 }𝑖, 𝑗 as seeds), we repeat our
experiments on multiple baselines:

• SpecBCFuzz using {S ∧𝛿𝑖 }𝑖 as seeds (boundary conditions with-
out vicinity exploration);
• SpecBCFuzz using {S} ∪ {S′

𝑗
} 𝑗 as seeds (vicinity exploration

without boundary conditions);

• a probabilistic grammar-based fuzzing approach we fine-tuned
to generate random LTL formulas, i.e., broad exploration without
boundary conditions;
• a large benchmark1 of 3,723 LTL formulas, of different complexi-
ties, used for studying the performance of LTL solvers [68].

4.2 Seeds

Our evaluation considers a total of 25 LTL formulas collected from
the literature and different benchmarks. These formulas were pre-
viously used by several approaches for the identification and reso-
lution of divergences [1, 17, 27–29, 54, 74]. Table 1 summarizes the
number of LTL formulas of each seeded specification (#S) and the
number of boundary conditions (#Δ) computed with the approach
by Degiovanni et al. [28].

Table 1: Seeded LTL formulas and divergences.

Specification #S #Δ

minepump 3 14
simple arbiter-v1 4 28
simple arbiter-v2 4 20
prioritized arbiter 7 11
arbiter 3 20
detector 2 15
ltl2dba27 1 11
round robin 9 12
tcp 2 11
atm 3 24
telephone 5 4
elevator 2 3

Specification #S #Δ

rrcs 4 14
achieve-avoid pattern 3 16
retraction pattern-1 2 2
retraction pattern-2 2 10
RG2 2 9
lily01 3 5
lily02 3 11
lily11 3 5
lily15 3 19
lily16 6 38
ltl2dba theta-2 1 3
ltl2dba R-2 1 5
simple arbiter icse2018 11 20

4.3 Considered Solvers

We aim at assessing the effectiveness of SpecBCFuzz in finding
bugs in LTL solvers that implement a diverse set of algorithms and
heuristics, where the state representation is symbolic or concrete,
and the search is automata-based, tableaux, or propositional solving
guided. Because of that, in addition to the latest version of each
solver, we also consider some past versions that can potentially
reveal different kinds of buggy behaviors.

In total we use 21 solvers’ configurations in the evaluation, sum-
marized in Table 2.

Particularly, NuSMV is one of the most adopted solvers for ana-
lyzing LTL requirements [19]. In total, we consider 6 configurations
for NuSMV, including two SAT algorithms (BMC and BDD) for the
latest (2.6.0) and past versions (2.5.4, 2.4.3).

Black [36, 37] is a recent solver that implements a one-pass
tree-shaped tableau, recently proposed by Reynolds [66]. For pro-
ducing satisfying instances, or proof of unsatisfiability, Black relies
on propositional or SMT solvers such as MathSAT [22], Z3 [25],
cvc5 [4], CryptoMiniSAT [70] and MiniSAT [30]. In total, we con-
sider 10 configurations for Black, including the latest (0.9.2) and two
recent (0.7.4, 0.5.2) versions, and their integration with MathSAT,
Z3, cvc5 (supported only in v0.9.2) and CryptoMiniSAT. We had
1http://www.schuppan.de/viktor/atva11/
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issues when Black uses MiniSAT as the back-end solver and thus,
it was discarded.

Aalta is a concrete-state representation satisfiability algorithm
that builds the automata capturing LTL formulas on-the-fly. We
consider Aalta version 2 [51] and version 1 [50], that implement
different search algorithms for building the automata.

PLTL is a traditional solver [68] that implements three differ-
ent algorithms in each version. The latest version is a symbolic
approach based on BDDs [34, 58], while the two previous ver-
sions are based on two different algorithms for computing the
Tableau [69, 78].

Table 2: Solvers and versions used.

Solver Releases Algorithms Configs.

NuSMV 2.6.0, 2.5.4, 2.4.3 BMC, BDD 6
Black 0.9.2, 0.7.4, 0.5.2 Tableau 10
Aalta v2, v1 Automata, Tableau 2
PLTL - BDD, Tableau (2 variants) 3

4.4 Setting and Evaluation

SpecBCFuzz is implemented in Java using the JMetal framework [62],
that instantiates the NSGA-III algorithm and integrates all the
solvers we test. It also uses the OwL library [46] to parse and
manipulate the LTL formulas. We make our tool, seeded formulas
and divergences, as well as the bug-triggering formulas, publicly
available at: https://github.com/SpecBCFuzz/repo. We config-
ure several parameters of the NSGA-III algorithm based on the
findings of other studies and exploratory analyses. Particularly, at
every generation we preserve a population of 100 individuals, the
mutation operator is always applied to selected individuals, while
the crossover is applied with a probability of 0.1. Moreover, for
computing the semantic similarity objective, we set a timeout of 30
seconds for the model counting approach.

We run the fuzzing campaigns for 48 hours or until 1, 000 in-
dividuals (S′) were generated, whichever happened first, with no
re-starts. Notice that, assuming we have, for instance, 10 boundary
conditions in Δ, the fuzzing campaign will produce 1, 000×10 input
formulas to test the 21 solvers’ versions, i.e., a total of 210, 000 sat
invocations. We set a timeout of 300 seconds for the solver.

To answer RQ2, we run SpecBCFuzz by disabling some of the ob-
jectives and to answer RQ3, we fine-tune a (probabilistic) grammar-
based fuzzer [79]. The grammar-based fuzzer produces random LTL
formulas by randomly visiting non-terminal and terminal nodes.
We varied several parameters to produce more diverse LTL formu-
las: the maximum of literals (ranging from 1 to 9), the maximum
number of non-terminals reached (ranging from 2 to 10), termi-
nal choice probability (from 0.20 to 0.44), and boolean constant
probability (ranging from 0.05 to 0.29). Moreover, the maximum
number of formulas generated is 20,000 (20 times more than with
SpecBCFuzz).

We ran SpecBCFuzz and the grammar fuzzer on an HPC cluster.
Each node has a Xeon E5 2.4GHz, with 16 CPUs-nodes available
and 4GB of memory per CPU. The operating system is Centos

Linux, version 7. Since both tools are stochastic, we repeat the
experimental process 10 times, to avoid random bias.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Robustness and Failures Patterns

5.1.1 SpecBCFuzz Effectiveness. Table 3 summarizes the number
of formulas generated by SpecBCFuzz that trigger a bug in each
solver configuration, summarizing to a total of 368,716 unique
bug-triggering formulas (since a same formula can reveal different
symptoms in other solvers and versions). Noticeably, SpecBCFuzz
revealed diverse kinds of faults in 18 out of the 21 studied solver
configurations. The only exceptions were all versions of NuSMV
BDD, suggesting that this is the most robust solver (according to
our experiments).

Overall, crashes and flakiness bugs are the predominant observed
symptoms. It is worth to remark that flakiness is essentially a sound-
ness issue too, since it implies the generation of incorrect results,
affecting the robustness and correctness of solvers. Regarding per-
formance, we observed very clear issues in cases in which solvers
do not produce an output within 24 hours of execution, while other
solvers do it very efficiently. This possibly points to hang loops in
the implemented algorithms.

Table 3: Number of soundness, crashes, flaky and perfor-

mance (B𝑠 ,B𝑐 ,B𝑓 ,B𝑝 ) bug-triggering formulas generated by

SpecBCFuzz.

version #B𝑠 #B𝑐 #B𝑓 #B𝑝
NuSMV

2.6.0 + BMC 0 44,394 351 0
2.5.4 + BMC 0 49,689 351 0
2.4.3 + BMC 0 49,828 490 0

Black

0.9.2 + Tableau 0 86 0 72
0.7.4 + Tableau 0 86 0 72
0.5.2 + Tableau 0 303,924 0 72

Aalta

v2 + Tableau 78 3,570 4,698 3,560
v1 + Automata 78 3,570 4,606 3,560

PLTL

BDD 75 0 0 0
Tableau graph-based 0 0 0 3

Tableau multipass-based 0 0 0 3

Total: 368,716 153 357,673 10,135 3,635

5.1.2 Failures Patterns. Same bug-triggering formula can induce
the same or different failure in the solvers. Then, we aim at per-
forming a more in depth analysis by clustering the failures accord-
ing to the input/outputs relations, i.e., between the bug-triggering
formulas and the symptoms shown by the solvers’ executions. Ta-
ble 4 summarizes 16 particular clusters capturing different buggy

https://github.com/SpecBCFuzz/repo
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symptoms we identified for each solver, and later on we discuss
symptoms potentially revealing further performance bugs.

NuSMV. Cluster number 1 includes a set of LTL formulas that
trigger a crash (“segmentation fault”) in all the versions of NuSMV
BMC. The second cluster characterizes a set of LTL formulas that
reveals a flaky behavior in BMC versions 2.6.0 and 2.5.4, since from
time to time these solver configurations crash when run on a same
input formula. We reported these two bugs to the corresponding
development team, and they replied that they are currently inves-
tigating the issues. Clusters number 3 and 4 characterize crashes
and flaky executions (often crashes without error messages) in past
BMC versions of the solver (2.5.4 and 2.4.3). Notice that bugs trig-
gered by clusters 3 and 4 have been fixed by developers in the latest
version of the solver.

Black. LTL formulas in Cluster 7 are of the form “((𝑓1W 𝑓2))”,
e.g., ((𝑎W𝑏))). These formulas trigger a parser failure in Black
version 0.5.2, which has been fixed in recent versions. Cluster 5
contains formulas that trigger a crash (with a “killed” message) in
all versions of Black. We reported this bug to the developers, and
it was confirmed, although it has not yet been fixed. For formulas
in Cluster 6, all the versions of Black cannot produce an outcome
within 24 hours of execution. SpecBCFuzz oracles classified this
symptom as a performance bug, but it can also pinpoint to bugs
that lead to a hang loop. We reported this bug and the developers
answered that are investigating the issue.

Aalta. SpecBCFuzz generated LTL formulas that trigger all kinds
of failures in Aalta (both versions). Cluster 8 includes formulas that
induce Aalta to return an incorrect satisfiability answer, i.e., sound-
ness issues. Cluster 9 contains formulas triggering different kinds
of crashes. Clusters 10 and 11 capture different sets of formulas
that induce flaky behavior in the two versions of Aalta, by produc-
ing different satisfiability results from time to time. Clusters 12, 13
and 14 capture different sets of LTL formulas that reveal different
symptoms in Aalta v1 and v2, leading to crashes, flakiness, and
performance bugs (as cataloged according to SpecBCFuzz’s ora-
cles). Again, formulas for which Aalta does not produce an output
within 24 hours can potentially pinpoint hang loops in the code. We
reported the 6 bugs from clusters 8-9 and 11-14, affecting the latest
version (v2) of the solver, to the developers (issues corresponding
to cluster 10, affecting v1, were solved in v2). We received the con-
firmation of 2 out of these 6 bugs (clusters 8 and 11), and developers
are investigating the remaining four issues.

PLTL. Cluster 15 contains LTL formulas of the form “2¬(f)”, for
which PLTL BDD always produces an incorrect satisfiability answer.
We reported this bug to the developers, but we received no response
yet. Finally, Cluster 16 contains LTL formulas for which the past
version of the solver implementing different Tableau algorithms,
cannot produce an outcome within 24 hours of execution, while
other solvers answer in seconds. These performance issues were
not observed in the latest version of the solver, based on BDD.

Overall, 3 out of the 16 bugs found have been confirmed by
the developers, 7 are currently under analysis by the developers,
and 5 were fixed in followup versions of the solvers. We have not
yet received a response by the corresponding development team
for 1 of the reported bugs.

Additionally, we collected 315 clusters of LTL formulas that lead
different combinations of solvers to reach the analysis timeout (set
in 300 seconds by SpecBCFuzz). Although these clusters may not
represent performance bugs, since the solvers can indeed output
a satisfiability result in less than 24 hours, they constitute an in-
teresting test-bed, which we classified by version and algorithm
implemented, that can challenge the performance of the solvers,
and can be used for regression testing purposes. We make these
data available in our accompanying website.

5.2 RQ2: Importance of Fitness Objectives

We perform an ablation study to assess SpecBCFuzz’ effectiveness
with deactivated fitness objectives. In configuration (Sem+#BCs) we
deactivate the syntactic similarity objective, making SpecBCFuzz
guided by the semantic similarity and the number of boundary con-
ditions that remain unsatisfiable (objective #BCs). In configuration
(Syn+#BCs) we deactivate the semantic similarity objective, while in
configuration (Syn+Sem) #BCs is deactivated, making SpecBCFuzz
guided only by the similarity metrics.

Figure 4 summarizes the impact of deactivating, one by one, the
fitness objectives, on our results. We see that by deactivating the
syntactic or semantic similarities, the number of bugs detected is
drastically reduced. Configurations (Syn+#BCs) and (Sem+#BCs)
can only detect the Cluster 1 failures (crashes in NuSMV BMC - all
versions) and Cluster 7 (syntax parsing failures in Black 0.5.2).

On the other hand, deactivating the #BCs objective in config-
uration (Syn+Sem) produces a minor, still important, impact in
SpecBCFuzz’s effectiveness, compared to deactivating the similar-
ity metrics. (Syn+Sem) can trigger faults captured by Clusters 1, 3
and 4 (i.e., crashes and flaky behaviors in NuSMV BMC), 9, 10 and
11 (i.e., crashes and flaky behaviors in Aalta v1 and v2), and 15 (i.e.,
soundness issues in PLTL BDD with formulas of the form 2¬f).

Overall, the combination of the three fitness objectives con-
tributes significantly to SpecBCFuzz’s effectiveness in revealing
more diverse buggy symptoms in LTL solvers.

5.3 RQ3: Validation of SpecBCFuzz’s Principles

Figure 5 shows that both principles of our approach are relevant
to revealing faults in LTL solvers. We observe that, if no boundary
condition is used when feeding the solvers, but we still search
in the vicinity ({S} ∪ {S′

𝑗
} 𝑗 ), we are only able to produce LTL

formulas that trigger 2 kinds of failures, captured by Clusters 1
and 7. When instead boundary conditions are directly used, but no
search is performed ({S ∧ 𝛿𝑖 }𝑖 ), we only find faults corresponding
to Clusters 1 and 7.

It is worth to highlight that the large set of LTL benchmark

formulas did not reveal any fault. We then developed a proba-
bilistic grammar-based fuzzer, by carefully setting probabilities and
parameters to the grammar’s production rules. Since this approach
explores a broad spectrum of the search (20,000 formulas – 20 times
more than SpecBCFuzz), it can produce LTL formulas that trigger
faults similar to 11 Clusters from Table 4. However, we observe that
for four clusters, the grammar-based fuzzer only manages to trigger
such faults very rarely (3, 4, 5 and 7 times, respectively, out of the
10 runs we performed). Moreover, we also observe that for most
of the clusters, this approach produces very few bug-triggering
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Table 4: Cluster of the observed symptoms.

#Cluster Oracle Type Symptoms Observed Versions

NuSMV

1 Crash Crash and Exception thrown with message: Segmentation fault (core dumped) BMC - all versions
2 Flaky and Crash From time to time it crashes and throws the message: Segmentation fault (core dumped) BMC - 2.6.0, 2.5.4
3 Crash Crash and Exception thrown with message: Segmentation fault (core dumped) BMC - 2.5.4, 2.4.3
4 Flaky and Crash From time to time it crashes without error message. BMC - 2.4.3

Black

5 Crash Crash and Exception thrown with message: Killed all versions
6 Performance Black does not respond in 24 hours (possible hang loop) all versions
7 Crash Syntax parser failure with formulas of the form “((𝑓1W 𝑓2))”. 0.5.2

Aalta

8 Soundness Aalta returns an incorrect satisfiability answer all versions
9 Crash Crash and Exception thrown with message: Assertion failed. v1

Crash Crash without error message. v2
10 Flaky Altaa produces different output from time to time. v1
11 Flaky Altaa produces different output from time to time. v2
12 Crash Version 1 crashes with the message: assertion failed: qi check v1

Performance Version 2 does not respond in 24 hours (possible hang loop) v2
13 Crash Version 1 crashes with the message: Assertion failed v1

and Flaky Version 2 crashes from time to time without message v2
14 Crash Version 1 crashes with the message: assertion failed: clsnum check v1

Performance Version 2 does not respond in 24 hours (possible hang loop) v2

PLTL

15 Soundness Formulas of the form “2¬(formula)” always return an incorrect satisfiability answer. BDD
16 Performance Both Tableau versions do not answer in 24 hours (possible hang loop) Tableau
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Figure 4: Ablation Study.

formulas in relation to the numbers produced by SpecBCFuzz (10X
to 100X fewer), except for the bugs in PLTL and the syntax parser

crash in Black, for which it produces a similar amount of triggering
formulas. Surprisingly, our fine-tuned grammar-based fuzzer can
trigger a crash in PLTL BDD, with the error message "Segmentation
fault (core dumped)", not triggered by SpecBCFuzz (i.e., the symp-
toms observed are not covered by the patterns in Table 4). Overall,
while it shows a better performance than SpecBCFuzz for testing
the PLTL solver, it achieves a limited performance when testing all
the other solvers.

To conclude, our results suggest that the combination of LTL

specifications with boundary conditions and vicinity search is an

effective heuristic for producing bug-triggering LTL formulas.

6 THREATS TO VALIDITY

Threats to external validity concern the solvers and seeded formulas
we used in our evaluation. We searched for LTL solvers supporting
different heuristics, and we gathered formulas with divergences
from the literature that are typically used for the evaluation of
requirements analysis tools. Results may not generalize to other
solvers, logical languages and domains (for instance, when a lan-
guage other than LTL is employed). To mitigate this threat, we also
studied the application of SpecBCFuzz to other kinds of solvers that
take LTL formulas as input, such as model checkers. We included
Spin [41] (version 6.5.1) as one of the subjects under analysis, and
SpecBCFuzz did not detect any fault.
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Threats to internal validity relate to the implementation details.
To mitigate this risk, we rely on reliable third-party frameworks
and libraries such as the NSGA-III implementation of the JMetal
framework [62]. Since SpecBCFuzz and the baselines are stochastic,
we repeat our experiments 10 times, following research guidelines
for how such algorithms should be evaluated [3].

Our assessment metrics, namely the number of generated for-
mulas that trigger a fault in a solver, is intuitive and reflect the
effectiveness of SpecBCFuzz. Since our analysis is black-box, iden-
tified bug-triggering formulas may relate to different bugs in the
solver to fix. We then performed a follow-up analysis to cluster and
classify the sets of formulas showing different faulty symptoms.
Related to our differential oracles, in addition to the re-runs, we per-
formed extensive manual analyses to double-check the outcomes
and confirm the identified faults. For correctness bugs, we applied
a delta-debugging like approach to obtain simpler sat-preserving
formulas, that confirm the original wrong satisfiability outcomes.
Crashes were confirmed by a simple reproduction, while flakiness
bugs were confirmed by an extensive re-run of the likely flaky
solvers (in our evaluation, all flaky behaviors were reproduced and
confirmed). Performance bugs were detected by adopting a very
conservative threshold (24 hours, or 300 times slower behavior
compared with other solvers).

7 RELATEDWORK

Fuzzing has been used for testing solvers. Brummayer et al. [14]
presented a black-box grammar-based fuzzing for propositional
(SAT) and quatifier-free (QBF) solvers. Among the various fuzzers
to test solvers, CNFuzz generates random CNF formulas based on a
given CNF grammar and set of parameters, e.g., maximum layers,
width, and variables. FuzzSAT generates random formulas in the
form of random boolean circuit (RBC), a kind of directed acyclic

graphs. QBFuzz works similarly, but for producing QBF formulas.
The empirical evaluation shows their corresponding capabilities
for finding bugs in SAT and QBF solvers.

SMT solvers have been the target of several testing approaches.
StringFuzz implements string generators and transformers to in-
crease the complexity of string constraints [11], by replacing lit-
erals and operators and swapping non-leaf nodes with leaf nodes.
StringFuzz also can include a seed-based strategy, fed with realistic
regular expression, to improve the fuzzing testing. Bugariu and
Muller aimed at generating more complex string operations [15],
that are sat/unsat by construction, which are used as test oracles.
Other approaches, like STORM, also adopt seed-based and muta-
tion fuzzing techniques [57]. SpecBCFuzz also implements string
transformations, i.e., mutation and crossover operators, to evolve
LTL formulas. It uses requirements specifications with divergences
as seeds to improve fault detection of LTL solvers. Other works
have used evolutionary algorithms to produce LTL formulas with
different goals, e.g., for specification repair [13, 17], and relevant to
this paper, to identify boundary conditions [28].

The recently developed HistFuzz [72] proposes to use seed-based
buggy skeletons, crafted from historical bug reports. Furthermore,
DIVER [44] takes an original satisfiable formula, for which a model
is built, applies unrestricted mutations during the search, and uses
the model as an oracle (if the mutated formula is consistent with
the model, then it should be satisfiable). These approaches were
found effective for finding bugs in popular SMT solvers as Z3 [25],
CVC5 [4], and dReal [35]. SpecBCFuzz is also based on semantic
properties and assumes that LTL specifications with divergences,
i.e., conflicting specifications in the context of goal-oriented re-
quirements, are likely to trigger faults in LTL solvers.

Schuppan and Darmawan [68] conducted an empirical study to
assess the performance of LTL solvers, based on a large benchmark
of 3,723 LTL formulas of different complexities (that we used in
RQ3) to challenge the solvers. To conclude, our work is the first
approach that fuzzes LTL solvers and reveals crashes, correctness
bugs, flakiness issues, and performance bugs. SpecBCFuzz was
shown to be effective in triggering different kinds of bugs in the
latest and past versions of very efficient LTL solvers.

8 CONCLUSION

We presented SpecBCFuzz, a fuzzing method that combines bound-
ary conditions and vicinity exploration for testing LTL solvers.
We showed that SpecBCFuzz is effective in producing formulas
(368,716) that trigger different kinds of bugs (soundness issues,
crashes, flakiness and performance issues) in 18 out of the 21 stud-
ied solvers’ configurations. In our evaluation, SpecBCFuzz did not
trigger any bug in the 3 versions of NuSMV BDD, suggesting that
this is currently the most robust LTL solver.
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