
Automatic Mutation based Test Data Generation 
 

Mike Papadakis 
Department of Informatics 

Athens University of Economics 
and Business 

mpapad@aueb.gr 

 
Nicos Malevris 

Department of Informatics 
Athens University of Economics 

and Business 

ngm@aueb.gr 
 

ABSTRACT 
This paper proposes a search based test data generation approach 
for mutation testing. The proposed approach uses a novel 
dynamic execution scheme in order to both introduce mutants and 
to effectively guide the search process towards generating test 
cases able to kill those mutants. A novel fitness function and its 
integration with a dynamically adjusted mechanism are also 
proposed. Preliminary experimentation with a hill climbing search 
based approach reveals its power when compared against a 
previously proposed one and random testing.  

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]: Testing tools 

General Terms 
Algorithms, Experimentation 

Keywords 
Test input data generation, Search based testing, Mutation testing  

1. INTRODUCTION 
Mutation testing or mutation analysis is a well known fault-based 
criterion. Mutation analysis introduces purposely built errors into 
programs under test by making alterations (mutants) to the tested 
code based on a set of simple syntactic rules called mutant 
operators. The purpose of injecting faults into programs is to both 
guide the generation of test cases to reveal them on the one hand 
and to assess the test data quality on the other. To this extent, 
testing seeks to reveal the mutants, which when detected are 
termed “killed” and “live” in the opposite case. Testing adequacy 
is measured using the mutation score, defined as the ratio of the 
number of the killed mutants to the entire number of candidate 
mutants reduced by the number of equivalent ones. Equivalent 
mutants are those mutants that can not be killed by any test case. 

The practical use of an adequacy criterion requires the automated 
generation of test cases according to its requirements. Recently, 
search based optimization techniques and tools have succeeded in 
automating the test case generation activity quite effectively. This 
paper introduces an automated framework that produces test cases 
based on mutation testing. In the proposed framework, the 
mutants are automatically generated based on a novel version of 
the mutant schemata technique similar to [7] and [8] for 
performing both mutation and search based testing. The use of 
mutant schemata for mutation test data generation purposes has 
also been investigated in the past, in the context of weak mutation  

[8], utilizing existing structural testing tools, and in the context of 
strong mutation using dynamic symbolic execution [7]. Here the 
proposed approach incorporates a hill climbing algorithm known 
as the alternating variable method (AVM) proposed by Korel [5] 
for searching and producing the sought test data.  

The origins of the present approach are due to the utilized 
dynamic fitness scheme and evaluation. Thus, it becomes possible 
to effectively direct the search process towards killing the 
targeted mutants. A performed case study suggests that it can be 
more effective than random testing and a previously proposed 
approach [1]. This comparison also reveals the inefficiency of the 
previously proposed approach [1] to practically guide the search 
towards killing mutants when equivalent ones are also included. 

2. FITNESS FUNCTION 
The present framework utilizes a fitness function composed of 
four parts. The first two are known as the “approach level” and 
the “branch distance” introduced by Wegener et al. [9] in the 
context of structural testing, the third one is named “mutation 
distance” and the fourth one is named “impact distance”.  

Mutation distance as introduced in this paper reflects the branch 
distance measure on mutants. This approach is in line with the 
suggestions made by Bottaci [2] for the mutation testing fitness 
calculations. It should be noted that these three measures guide 
the search towards fulfilling the reachability and mutant necessity 
constraints proposed by Demillo and Offutt [3]. Mutation distance 
fitness calculations should quantify the distance of changing the 
mutant and original program predicates outcome (at the mutated 
statement) in order to be effective [3]. To achieve this, the 
following expression, where O and M denotes the original and the 
mutant predicates fitness calculations is used.  

pmd = min[Tfit(O) + Ffit (M), Tfit (M) + Ffit (O)] 

Impact distance tries to approximate the mutant sufficiency 
condition [3]. To achieve this, it is suggested to record the impact 
(differences on the execution paths between the original and 
mutant program versions) [4] of each mutant during the test 
generation process. For each program node that has been 
impacted the ratio of the killed over the total number of mutants is 
recorded. Informally, as tests are produced and executed with 
mutants the nodes are ranked according to their ability to expose 
mutants, when they are impacted. Impact distance reflects the 
approach level and the branch distance on the mutant program 
towards covering a selected top ranked node. 

Table 1. Proposed fitness 

 fitness = reach dis + mutation dis + impact dis  
reach dis = 2 * approach level + normalized(branch distance)  

Copyright is held by the author/owner(s). 
GECCO’11, July 12–16, 2011, Dublin, Ireland. 
ACM 978-1-4503-0690-4/11/07. 

mutation dis = normalized(mutation distance) + normalized(pmd) 
impact dis = approach level + normalized(branch distance) 



Table 2. Mutants killed by the utilized fitness functions per test subject 
Test Subjects Mutants num Random Reach Infect Impact DReach DInfect DImpact 

Triangle 166 102.2 94 103 103.4 96.4 103 103.2 
Trityp 349 125.6 173.8 178.4 184.8 205.4 210.4 223 

Triangle 421 102 131 144.4 146.2 143.8 148.6 185 
Remainder 324 205.8 201.4 206 206 201.4 206 206 
Callendar 327 189 165 195.2 193.2 168.6 198.8 200 

Cancel 866 712.6 686.2 732.2 732.6 709.26 732 733.2 
FourBalls 225 187.2 183.2 185 186.8 181 185.8 188 
Quadratic 81 59.07 58 61.22 61.8 58 60.6 63 

 

Conclusively, the proposed fitness function guides the search 
towards reaching (approach level + branch distance) a mutant, 
causing a discrepancy at the mutation point (mutation distance), 
propagates it to the outcome of the mutant statement (predicate 
mutation distance) and impacts specific likely to expose mutants, 
program nodes (here referred to as impact nodes). Computation of 
the overall fitness of the test cases is performed based on the 
equation presented in Table 1.  

3. DYNAMIC APPROACH LEVEL 
Mutation testing introduces a vast number of mutants which are 
spanned across the whole program structure. It was observed that 
trying to kill them, results into covering - reaching many other 
mutants (possible hard to reach) collaterally i.e. without aiming at 
them. It is noted that many mutants are equivalent and thus by 
their definition aiming at them will result in a waste of effort. In 
practice, these two characteristics of mutation can provide useful 
information to assist the killing of some other mutants. Such an 
approach is the dynamic approach level as proposed in this paper. 

The rationale behind the use of the standard approach level [9] is 
to include only the structural elements (control dependencies) that 
must be traversed by any of the possible sought test cases. The 
dynamic approach level extends this rationale by trying to 
consider both the necessary control and data dependencies at the 
same time. Consider a case where in order to traverse a targeted 
branch requires the program execution to execute a specific 
program statement (data dependency) that is not part of the 
control dependencies of the targeted branch. Then, all the possible 
test cases that traverse this branch also traverse the specific 
program statement. The dynamic approach level identifies all the 
common structural elements that traverse the produced test cases 
and thus, necessary data dependencies too. This way the feasible 
path information gained during the whole search process can be 
reused for infecting and eventually killing the introduced mutants.  

The dynamic approach level is defined as the intersection of all 
the nodes that are contained in all the encountered execution paths 
that reach a targeted node. Thus, for example if a target node is x 
and during the search process y different execution paths have 
been encountered that lead to node x, then the dynamic approach 
level is formed as the common nodes of these y paths. If there is 
not any path leading to node x then the standard approach level is 
used. This approach relies on the excessive search performed. 

4. EXPERIMENTS 
The conducted experiment includes the production of test cases 
based on random testing and three fitness functions with the use 
of the AVM method. The first fitness function named “Reach” 
uses only the reach distance of the proposed fitness (Table 1). The 
second one named “Infect” uses the reach and mutation distances 
and the third one named “Impact” utilizes the whole fitness. The 

same (3 variants) fitness functions where used utilizing the 
dynamic approach level and named as “DReach”, “DInfect” and 
“DImpact” respectively. This utilization was performed by 
iteratively performing attempts to kill mutants, once based on the 
standard approach level and once based on the dynamic approach 
level. For each program the test generation process considered up 
to 50,000 fitness evaluations per introduced mutant or random test 
generations (for random testing). This is a considerably high 
number of evaluations but it is forced due to the existence of 
equivalent mutants. The results reported in Table 2 are based on 
the mutant operator set propose in [6] and record the average 
obtained values by 10 independent application times. 

5. CONCLUSION AND FUTURE WORK 
This paper proposes a practical approach to produce mutation 
based test data. Preliminary results suggest that the proposed 
fitness functions can outperform a previously proposed one and 
random testing as well. Also the use of the dynamic approach 
level can increase the effectiveness of the approach. In future, the 
inclusion of other search based approaches such as evolutionary 
testing are planned. Further investigation is needed in order to 
determine the benefits of the dynamically adopted approach level 
and its optimal use in search based testing.  

6. REFERENCES 
[1] Ayari, K., Bouktif, S. and Antoniol, G. Automatic mutation test 

input data generation via ant colony. In Proc. of the 9th annual 
conference on Genetic and evolutionary computation, pages 
1074-1081, 2007. 

[2] Bottaci, L. A genetic algorithm fitness function for mutation 
testing. In SEMINAL: Software Engineering using 
Metaheuristic INovative Algorithms, Workshop 8, ICSE 2001, 
pages 3-7,  2001. 

[3] DeMillo, R. A. and Offutt, A. J. Constraint-Based Automatic 
Test Data Generation. IEEE Trans. Softw. Eng., 17, 9 (1991), 
900-910. 

[4] Fraser, G. and Zeller, A. Mutation-driven generation of unit tests 
and oracles. In Proc. of the 19th international symposium on 
Software testing and analysis, pages 147-158, 2010. 

[5] Korel, B. Automated Software Test Data Generation. IEEE 
Trans. Softw. Eng., 16, 8 (1990), 870-879. 

[6] Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H. and Zapf, C. 
An experimental determination of sufficient mutant operators. 
ACM Trans. Softw. Eng. Methodol., 5, 2 (1996), 99-118. 

[7] Papadakis, M. and Malevris, N. Automatic Mutation Test Case 
Generation Via Dynamic Symbolic Execution. In ISSRE, 2010. 

[8] Papadakis, M., Malevris, N. and Kallia, M. Towards automating 
the generation of mutation tests. In Proc. of the 5th Workshop on 
Automation of Software Test, pages 111-118, 2010. 

[9] Wegener, J., Baresel, A. and Sthamer, H. Evolutionary test 
environment for automatic structural testing. Information and 
Software Technology, 43, 14 (2001), 841-854. 
 


	INTRODUCTION
	FITNESS FUNCTION
	DYNAMIC APPROACH LEVEL
	EXPERIMENTS
	CONCLUSION AND FUTURE WORK
	REFERENCES

