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Abstract—Continuous Integration traditionally relies on testing
every code commit with all impacted tests. This practice requires
considerable computational resources, which at Google scale,
results in delayed test results and high operational costs. To
deal with this issue and provide fast feedback, test selection and
prioritization methods aim to execute the tests which are most
likely to reveal changes in test results as soon as possible. In this
paper we present a simulation framework to support the study
and evaluation, with real data, of such techniques. We propose
a test selection algorithm evaluation method, and detail several
practical requirements which are often ignored by related work,
such as the detection of transitions, the collection and analysis of
data, and the handling of flaky tests. Based on this framework,
we design an experiment evaluating five potential regression test
selection algorithms, based on simple heuristics and inspired by
previous research, though the evaluation technique is applicable
to any number of algorithms for future experiments. Our results
show that algorithms based on the recent (transition) execution
history do not perform as well as expected (given the previously
reported results) and that the test selection problem remains
largely open. We found that the best performing algorithms are
based on the number of times a test has been triggered and
the number of distinct authors committing code that triggers
particular tests. More research is needed in order to close the
gap between the current approaches and the optimal solution.

Index Terms—Continuous Integration, Regression Testing

I. INTRODUCTION

To achieve fast and large scale development, Continuous
Integration (CI) requires the continuous (frequent) integra-
tion of code into a shared repository [1]. Code verification
and validation is enforced through a set of automatic and
manual checks, such as builds, tests and code reviews. This
software development paradigm has been adopted by many
large software vendors, such as Microsoft [2], Facebook [3],
Google [4] and Netflix [5]. CI is also becoming popular in the
Open-Source community [6], [7], and is supported by many
frameworks and tools [8], [9].

The success of the CI process heavily relies on testing, and
at large scale requires substantial computational resources in
order to regression test every code change [1], [3], [4]. At
Google for example, there is on average one code commit
every second, triggering more than 150 million test executions
every day using the current testing infrastructure. The vast
computational demands of the Google CI Environment lead
to high operating costs and long test execution times (ranging
up to 9 hours) to integrate code changes [4].

Naturally, researchers are directing their efforts towards
reducing the cost of CI related activities. For example, tech-
niques aimed at reducing the cost related to project builds [10],
test machines’ configuration [11] and test executions [12], [13]
have been proposed. Generally, there are two main ways of
tackling the regression testing problem, known as regression
test selection (RTS) and regression test case prioritization
(TCP) [14]. RTS methods select relevant/important sets of
test cases to execute, while TCP methods order test cases
with the intention of detecting faults earlier. Most of these
techniques leverage test information from previous releases,
such as coverage [15] or input diversity [15], [16].

Applying regression testing in the Google CI environment
is challenging, mainly due to its scale and code commit pace.
The need for fast responses makes the collection of coverage
information prohibitively expensive. Test infrastructure should
consume the smallest possible amount of resources, while
at the same time informing Google developers if a commit
triggers any transitions as soon as possible. A transition is
a change in state in the sequence of results across commits
for a test, either from Pass to Fail or Fail to Pass. The
requirement of detecting transitions is something ignored by
previous research, which mainly focuses on detecting test
failures. Evaluating RTS performance by test failures alone
ignores the importance of identifying Fail to Pass transitions,
and impacts results - at Google there are over 20 times more
test failures than transitions in a month.

Another important problem in regression testing is the flaky
test problem, i.e., tests with non-deterministic outcomes [17].
At Google 84% of transitions are caused by flaky tests,
and 16% of tests involve some level of test flakiness [18].
This issue has serious implications for regression testing,
particularly for RTS and TCP methods.

Existing lightweight CI RTS techniques select tests which
failed in the recent execution history [12], [13]. Unfortunately,
since flaky tests fail arbitrarily and often, such techniques tend
to prioritize flaky instead of non-flaky tests. This calls into
question whether these methods offer practical benefits.

In this paper we focus on applying different RTS algorithms
in the Google CI environment. We also develop a mechanism
for comparing the success rate of test selection methods with
regards to transition detection at code commits which can be
used to evaluate any RTS algorithm.



This evaluation framework uses the historical sequence
of test results to simulate the performance of test selection
methods on real data. It accounts for test flakiness by filtering
flaky test executions, and evaluates methods by analyzing their
ability to schedule test transitions when skipping execution
for some percentage of tests at each commit. The framework
aims to identify the relative trade-offs between skipping tests
(lower cost) and discovering transitions (higher effectiveness)
achieved by the techniques studied.

Due to the design of the evaluation, it also assesses the
methods’ abilities for use in TCP, and as such they could
be considered as both RTS and TCP techniques. Because
Google’s intended use is for RTS (since tests are run in
parallel, there is reduced need for TCP) we focus on this aspect
of the algorithms and results.

The ultimate goal of our work is to identify signals with
strong results which could lead to future research into test
selection schemes with relatively accurate trade-offs, and to
develop an inexpensive (relative to implementing the algo-
rithms at scale) way to compare algorithm performance before
a full implementation.

We evaluate five algorithms using simple heuristics; two
based on the recent commits impacting a test (number of
affecting commits and number of authors committing affecting
code), two based on previous test results (pre-submit out-
comes - testing prior to commit - and number of historical
transitions), and one based on test characteristics (number of
directories shared with modified files).

Our results demonstrate that flaky tests have a significant
impact on the evaluation of regression testing techniques,
and should be discarded. We show that algorithms based on
the recent affecting code commits of a test performed best,
outperforming a random method for over 30% of transition
commits (commits where a transition occurs) in some cases.
Algorithms based on prior testing results (pre-submit history
and transition count) show worse performance but still a
significant improvement over random selection. Unfortunately,
the algorithm based on directory overlap performs similarly
to random. Interestingly, the gap between the algorithms’
performance and the optimal case is large (up to 90%),
indicating a lot of room for improvement.

Overall, we make the following contributions:

• We demonstrate that flaky test transitions have a signifi-
cant effect on RTS method evaluations in the CI context.

• We identify the requirements for CI-based test evaluations
(non-flaky test transition data).

• We developed a fast, lightweight off-line test scheduling
evaluation framework.

• We perform a preliminary evaluation of RTS algorithms
using the proposed framework.

II. GOOGLE’S CONTINUOUS INTEGRATION ENVIRONMENT

The scheduling and execution of tests in Google’s CI
environment is managed by their Test Automation Platform
(TAP). A detailed explanation of TAP can be found in Memon

et al.’s paper on Google testing (Section II) [4]. We briefly
outline the salient points here.

At every code commit, TAP is responsible for identifying
the set of affected tests - a subset of tests containing all tests
possibly impacted by the commit. TAP produces this subset
by evaluating whether the code commit modified files in the
transitive closure of a test’s dependencies. A test in Google’s
CI context is called a “test target”, which is a code unit that
can contain several test classes and methods.

Due to the rapid rate of code churn and large size of
the test pool, affected targets will not be run at the time of
commit, but rather delayed until the next “milestone” is cut. A
milestone is a point in time at which all targets affected since
the previous milestone will be executed. This allows TAP to
skip multiple executions of frequently affected targets between
milestones. Milestones are cut at Google as often as allowed
by the available resources.

TAP utilizes two stages of testing: pre-submit and post-
submit. Pre-submit testing occurs prior to commit, and is typ-
ically limited to targets in the modified code’s set of projects.
Post-submit testing occurs after commit and considers affected
targets across all projects in the shared code repository.

When a test failure is detected in post-submit, TAP performs
culprit finding in order to identify the exact commit which
caused the failure. As a result, all pass to fail transitions are
accurately recorded by TAP.

To mitigate test flakiness at Google, targets returning a fail
result will be rerun several times TAP. In addition, Google has
developed a flakiness oracle which uses sophisticated analysis
of target results and reruns to further identify flaky targets and
executions.

This paper evaluates the use of RTS algorithms at Google, to
be considered in post-submit testing for commits taking place
between milestones. Running a small set of likely transitioning
targets at commit time, instead of at the next milestone, would
reduce delays in executing tests, and allow Google to further
spread out milestones to save resources while still providing
signals to developers with low latency.

III. INFLUENCE OF FLAKY TESTS ON REGRESSION
TESTING EVALUATIONS

Flaky tests are a significant source of transitions at Google:
in our data over 80% of observed transitions were caused by
confirmed flaky results. These flaky transitions create noise in
our data as they don’t represent a genuine code breakage or
fix. Previous work on Google data [12], [13], did not consider
test flakiness, with the unfortunate effect of including both
genuine and flaky transitions in their evaluations.

To analyze the effects flakiness has on our evaluations, we
ran our experiment using both raw and deflaked Google data
(using the procedure outlined in Section IV). Figure 1 shows
the results of evaluating one of our algorithms (outlined in
Section VI-B), with and without flaky executions in the test
data. This graph records the percentage of commits where the
algorithm skipped targets transitioning at the commit (on the
y-axis) for every percentage of tests skipped (on the x-axis).
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Fig. 1. Performance of the transition count algorithm (Section VI-B), on data
with and without flaky executions.

This means that the higher the values we observe, the worse
our results are as we want to minimize selections which miss
a transition.

From these results we can see that flakiness leads to mis-
leading results, in this case causing the algorithm performance
to be significantly underestimated. We observe significantly
more commits with transitions for the flaky executions line:
the total number (the maximum value in the graph) is 3.8%, in
contrast to 1.4% without flaky executions. We can also observe
that the two lines follow different trends; selecting with flaky
executions has a logarithmic curve, while the non-flaky case is
more linear. Thus, any real RTS algorithm would need to have
some mechanism for filtering flaky executions to be effective
and evaluated successfully.

IV. DATA COLLECTION

Our experiment uses TAP’s pre and post-submit testing
records, spanning one month. This dataset included more than
500K commits across over 5.5 million distinct targets, result-
ing in more than 4 billion target executions. As mentioned,
TAP performs culprit finding on Pass to Fail transitions, which
is reflected in our dataset - there are more accurate records for
this type of transition.

To clean our data of flaky results we used several techniques.
We first removed from our data any flaky executions identified
by TAP (using reruns). We then removed results identified as
flaky by Google’s flakiness oracle. Both passes discarded less
than 0.01% of the total pool of results.

To further clean the data, we additionally removed obvi-
ously flaky behavior from our sample by discarding targets
displaying rapid and frequent transitions, which were highly
unlikely to be related to real break / fix cycles. After analyzing
target transition histories against Google flakiness records, we
removed targets showing over 14 transitions in the data. This
pass removed 51% of our remaining transitions (96% of which
were caused by targets with known previous flaky executions),
0.1% of all targets, and 0.08% of results.

Genuine transitions
9.8%
> 14 transition targets
10.3%

Flakiness oracle
22.4%

TAP flaky executions
57.4%

Fig. 2. The sources of transitions in raw test data.

Figure 2 shows the breakdown of transition sources based
on these passes. Notably, only 9.8% of our transitions were
genuine and remained after we performed the filtering.

V. EXPERIMENTAL SETUP

A. Simulation Framework

Our system uses historical data to simulate the behavior
of RTS methods on post-submit testing in Google’s CI en-
vironment. The system simulates the behavior of the studied
methods based on the set of affected targets (as identified by
TAP) for each commit. At every commit, the implemented
methods return an ordering of the affected target set, which
is then used to determine which targets would be skipped
when choosing to skip varying percentages of targets (the “skip
rate”). The skipped tests (or “skip selection”) are then analyzed
to find whether transitions were missed at the commit.

In this way we evaluate the methods for use as both RTS
and TCP techniques; knowing the performance at a skip rate
tells us both how well it would perform when skipping that
amount of tests for RTS, as well as the performance of
detecting transitions earlier in the remaining un-skipped (i.e.
prioritized to run) tests for TCP. The skip rate also allows for
a fair comparison between algorithms, as they select the same
number of targets at every commit for a given rate.

B. Metrics and measurements

To measure how well the studied methods detect transitions,
we define the safety of a target, which is whether skipping the
target at an affecting commit would have missed a transition.
If skipping the target would not miss a transition we say that
skipping the target is safe (for this commit). If skipping the
target at the commit would definitely miss a transition it is
unsafe to skip. To determine the safety of skipping targets our
framework analyzes the chronological sequence of results for
every target at each commit.

Due to Google’s milestone mechanism, not all targets have
a result at each commit. We assume that there is no transition
for a target (so safe to skip) at a commit with unknown results
if there is no transition between the preceding and subsequent
known results. If the commits with known results immediately
before and after indicate a transition, we cannot say at what
point the transition took place, as it could have been caused
by any of the intervening commits. In this case we set the
target at all of these commits to a third state: maybe unsafe.
Maybe unsafe means that skipping the target at the commit
could potentially miss a transition.



Fig. 3. Sequence of target results and safety across commits

To illustrate these safety states, consider the example se-
quence of target results in Figure 3. In this example, we have a
test target across 7 affecting commits, ordered chronologically.
At commit 1, we cannot determine safety without knowing the
prior result, so the target at this commit would be removed
from our evaluation results. At commit 2, we observe the
same result as the previous commit, so consider the target
safe to skip. At commit 3, the result differs from the previous
commit, so we consider the target unsafe to skip. At commit 4
the target is affected but not run, so we look to the next result
at commit 5 and the prior result at commit 3. As they have
the same result (Fail) we say that the target is safe to skip at
both commit 4 and commit 5. At commit 6, we again have an
affected but not run result, but the next commit with a result,
7, has a different result than the previous result at commit 5.
Since the transition could have occurred at commit 6 or 7, we
say that the target is maybe unsafe to skip for both.

Following on from this, the metric we use to evaluate a
skip selection is the safety of the skipped targets. We have
two methods for determining the safety of a skip selection,
based on the different use cases for RTS algorithms.

If we are interested in identifying all transitioning targets,
a commit is safe if it only skips safe to skip targets (and no
unsafe or maybe unsafe targets), and thus schedules all tran-
sitions. Accordingly, a selection is maybe unsafe if it skipped
any maybe unsafe but no unsafe targets, and unsafe if any
unsafe targets were skipped. We call this the All formulation
of safety - where safe means we found all transitioning targets.

This analysis is not necessarily suitable for all practical
purposes, as in some cases developers are only concerned with
the detection of a transition commit, which can then be rolled
back, and are not interested in finding all transitioning targets.
To deal with this issue, we propose an alternate formulation
of safety where a selection is considered safe so long as it
doesn’t skip all unsafe (or maybe unsafe) targets, and would
thus identify a transition at the commit. We call this the
Any formulation of safety - where safe means we found any
transitioning target.

C. Dependent and Independent variables

The common independent variable across all results of
the studied algorithms is the skip rates considered (from 0-
100%). The dependent variable is the performance of the
algorithms, measured by the percentage of commits for which
the algorithm made a selection of some safety value.

To explore the impact of other parameters, we examine
additional independent variables in each set of results. We
consider in our first results the safety value being aggregated:
safe, unsafe or maybe unsafe. Next, we examine different

techniques for determining the safety of a selection - the
Any and All formulations. Finally, we consider the algorithm
window size, i.e. the length of time before the commit under
evaluation the algorithm will consider when looking through
the test execution history. All algorithms which use window
sizes were run with windows of length {1, 2, 4, 8, 12, 24, 48,
96} hours.

D. Technical Implementation

The simulation framework uses a highly parallelized
pipeline, implemented using Google’s FlumeJava library [19],
which is separated into 2 sub-pipelines.

The first pipeline generates safety data by reading Google
historical testing data. The first stage groups testing results
by test target, resulting in a mapping from target name to
all results for the target. In the second stage, each entry in
this table is operated on to determine the safety of skipping
each target result, using the technique outlined in Section V-B.
Finally, the resulting table is then regrouped by commit and
written. The result of this first pipeline is thus a table of
commit to each affected target, with the safety of the target
at the commit. We run this pipeline separately to allow the
second pipeline to operate on this data, rather than needing to
re-determine target safety values each time it is run.

The second pipeline simulates an RTS algorithm on this
safety table. For each entry in the table, it passes the commit
and set of affected targets to an algorithm, which returns
the targets sorted according to skip ordering based on its
implementation. We then operate on this output at every
integer skip rate from 0-100%, taking a sublist of the ordered
targets to determine which targets the algorithm “skipped” at
each percentage. This sublist is analyzed to determine safety
against the safety table, and the skipped target selection safety
at that commit and skip rate is written. This output thus has
the safety of using the RTS algorithm to skip targets for all
commits in our records at all skip rates, which can then be
aggregated and analyzed.

VI. RTS ALGORITHMS

The goal of our study is to compare several RTS algorithms,
based on their ability to schedule the execution of transitioning
targets at the code commit causing the transition. We want
simple algorithms that are cheap to evaluate at scale and
require no expensive code analysis. Our main goal is to
develop and utilize a comparison framework and methodology
that can ultimately be used to support the development of more
complex RTS techniques at Google.

The studied methods implement a function to score a target
at a commit, which is then used to sort the affected target list
(targets with the same score will be ordered randomly). This
list represents the order in which targets will be skipped (low
to high scoring targets). The simulator then uses this ordering
to determine what is skipped at every skip rate.

For example, at a 50% skip rate it sets the first half of the
sorted affected target list as skipped. When we say a target is
skipped “after” another target, it means it follows the target



in this skip ordering, and thus would not be skipped at lower
skip rates that might skip the earlier target.

A. Baseline algorithms

The simplest way to select targets to skip is at random.
Although trivial, a random approach gives the average results,
giving a natural baseline for experiments.

To identify the boundaries of the examined techniques we
consider the optimal and pessimal behavior. The optimal be-
havior models the best case results (achieved with knowledge
of target safety) by skipping all safe to skip targets first, then
all maybe unsafe targets and finally all unsafe targets. The
pessimal behavior models the worst case performance using
the reverse of the optimal order.

B. Transition count

The transition count algorithm is based on the idea that
recently transitioning tests are more likely to transition again
in the near future. Thus, this approach scores highly targets
that transitioned most in their recent execution history. This
approach is based on the algorithm introduced by Elbaum et
al. [12], which schedules targets which either fail or have
no results in prior time windows. We consider this algorithm
as it forms the current state-of-the-art, and we believe that
previous results from the algorithm were influenced by test
flakiness. Intuitively, scheduling frequently failing targets pro-
motes running flaky targets over non-flaky ones, which could
significantly skew any algorithm results on raw data. Our
analysis leverages the idea of Elbaum et al. and adjusts it
to our framework.

Elbaum et al. recorded the results of the targets scheduled
by their algorithm at each commit, and used these results when
looking for failures or executions at previous commits (in a
set failure and execution window). Due to the parallel nature
of the framework, we cannot determine algorithm behavior at
previous commits. To solve this issue, we model our algo-
rithm’s transition detection behavior on Google’s milestone
mechanism. Before using the algorithm, we simulate our
own “milestones” from test result data, set at time intervals
separated by a “milestone window” of our choosing. At each
milestone, we use the historical record to find the most recent
result for all targets prior to the milestone time, and set this
as each target’s result. If we observe different results to those
at the previous milestone for a target, we identify a transition
as having occurred at milestone time. The milestone window
thus approximates the behavior of an execution window: it
allows us to control the sparsity of our transition data as well
as setting a guaranteed maximum time between each execution
of a target. Since, in our model, milestones would still be part
of the new system, we no longer need to force infrequently
executed targets to run (the main purpose of an execution
window).

Another significant difference from the Elbaum et al. eval-
uation is that we consider transitions, where Elbaum et al.
considered failures. This is because Google developers want to
be informed of transitions (i.e. when a target has been broken

or fixed by a particular code commit). Therefore we order
test targets according to the number of transitions observed
at milestones in a set “transition window” before the current
affecting commit under consideration. Targets with a higher
number of transitions will be skipped after targets with lower.

Algorithm 1 Target scoring: count algorithms
1: Parameters: Affected targets T , Window W , Events E
2: ScoreTarget(Ti)
3: count = 0
4: for (Ei ∈ E(Ti)) do
5: if (TimeSince(Ei) < W ) then
6: count++
7: end if
8: end for
9: return count

10: }

C. Affected count

The affected count algorithm uses the count of times a target
has been affected in a prior “affected window” to score targets.
At a commit, affected targets with a low count of recent times
affected will be skipped before targets with higher counts.

The idea behind this algorithm is that recent frequently
affected targets test code that is under active, vigorous devel-
opment. These tests should be more likely to transition than
those which are affected infrequently.

In a previous survey of Google testing, Memon et al.
[4] found that files which are modified frequently are more
likely to cause test transitions at their commits. In order to
keep our algorithm lightweight and free of analysis of code
changes we do not consider how frequently the code files
are modified. However, at Google changing the same file at
different commits will trigger the same tests. As a result,
targets which test frequently modified code are frequently
affected.

Frequently affected targets are tests that exercise a much
larger portion of code than non-frequently affected ones. This
is because these tests have a higher chance of being triggered
by arbitrary changes than tests exercising lower portions of
code. Selecting relevant tests exercising much larger portions
of code are of value, as shown by previous research [15], [20].

D. Author count

The author count algorithm is a refinement on the affected
count algorithm, which considers the count of distinct authors
which have committed a change affecting the target recently.

Memon et al. [4] found that modifying files which have
been changed by a larger number of distinct developers are
more likely to cause breakages. Similarly to the affected count
algorithm, looking at the authors causing a target to become
affected should approximate the same behavior.



E. Pre-submit history

Logically, any non-flaky target that was run in pre-submit
immediately prior to submission should have the same result
in post-submit, as the same code instance is tested in both
cases. This means we should be able to skip the execution of
targets which were already run in pre-submit.

Using this idea, we use the pre-submit testing results to
score affected targets in post-submit. When ordering the set
of post-submit affected targets, we choose to first skip any
targets which were skipped in pre-submit, as they presumably
are still safe to skip in post-submit. Tests in TAP pre-submit
may be skipped for a number of reasons and will usually be
skipped in post-submit for the same reason.

The next set of targets to be skipped are those run in pre-
submit, which had no transition when compared to the last
known post-submit result for the target. Third, any targets
which were not set as affected in pre-submit due to being
outside the commit’s projects will be skipped. Finally, those
targets run in pre-submit which showed a transition when
compared to the previous post-submit result are skipped.

Not all commits in post-submit have test results in pre-
submit for a number of reasons. In this case, since we have
no signals with which to score the targets, the ordering will
be random. This occurred for 39% of our commits.

Algorithm 2 Target scoring: pre-submit history algorithm
1: Parameters: Affected targets T , Pre-submit results P
2: ScoreTarget(Ti)
3: if (P (Ti) == SKIPPED) then
4: return 1
5: end if
6: if (P (Ti) == NO TRANSITION) then
7: return 2
8: end if
9: if (P (Ti) == NOT AFFECTED) then

10: return 3
11: end if
12: if (P (Ti) == TRANSITION) then
13: return 4
14: end if
15: }

F. Shared directories

To score targets, the shared directory algorithm uses the
number of directories in the prefix common to both the
affected target’s name and the modified file paths from the
commit. The precise score we used was the number of shared
directories over the total number of directories in the target +
modified file path. For this metric, the lowest score is 0, where
there are no common directories, and the highest is 0.5, when
all directories are common. For a target, we took the highest
score when compared with all modified file paths, i.e. the score
using the modified file the target should be closest to in the
directory structure. Targets with a low shared directory count
will be skipped before those with a higher score.

The intuition for this algorithm is that targets closer in the
repository should be more relevant to the modified code, and
thus would be more likely to be testing code changes and more
likely to transition.

It is also more likely that tests closer in the directory
structure will be closer to modified files in the dependency
graph. Dependency distance has already been shown to be an
indicator of test failure at Google [4]. However, calculating
dependency distance is too computationally expensive for
consideration in this experiment.

Algorithm 3 Target scoring: shared directories algorithm
1: Parameters: Affected targets T , Modified files M
2: ScoreTarget(Ti)
3: bestScore = 0
4: for (Mi ∈ M ) do
5: score = CommonFilePrefixDirLength(Mi, Ti)

/(NumDirs(Ti) +NumDirs(Mi))
6: if (score > bestScore) then
7: bestScore = score
8: end if
9: end for

10: return bestScore
11: }

VII. RESEARCH QUESTIONS

Our first aim is to investigate the relative performance of
RTS algorithms in the Google CI environment. Therefore, a
natural question to ask is:

RQ1: What is the relative performance of the examined
algorithms when evaluated for safety (safe, maybe
unsafe, unsafe)?

In this RQ we evaluate the extent to which the algo-
rithms schedule all non-flaky test transitions. This formulation
demonstrates the conservative ability of the methods with
regards to all triggered targets.

However, in practice it is possible that commits cause
multiple targets to transition. In many cases engineers only
need the information that their commit caused a transition and
not the information about all transitions caused.

We can thus alternatively consider a selection as safe if
we schedule any of the transitioning targets for a particular
commit (thus identifying the commit as a transition commit).
This leads us to our second RQ:

RQ2: What is the performance in relation to safety metric
formulation (any vs all)?

Having evaluated the relative performance of the approaches
we turn to investigating their sensitivity with respect to the
amount of data (i.e. length of time windows) we use as input.
Therefore we ask:

RQ3: What is the performance of the approaches in rela-
tion to window size?



VIII. RESULTS

A. RQ1 relative performance with respect to safety

1) Safe results: Figure 4 depicts the results when aggre-
gating the transition commits (commits which could find a
transition by executing affected targets, i.e., with unsafe or
maybe unsafe affected targets) with safe skip selections. The
skip rate on the x-axis represents the percentage of tests
skipped at every commit, which impacts the percentage of
transition commits where a safe skip selection occurred on the
y-axis. A higher value indicates a better result (more commits
with a safe skip selection). All algorithm parameters (window
sizes) have been set to produce the optimal observed algorithm
performance.

Transition commits make up only 8.3% of all commits in
the data, but since safety can be varied only at these commits
we solely focus on them. Accordingly, the remaining 91.7%
of our commits have all safe targets which don’t transition
at the commit - implying that we could skip testing at these
commits completely and never miss a transition.

From these results we can observe that the random algo-
rithm has nonlinear behavior. This can be explained by the
probability distribution of making safe selections. Consider,
for example, selecting k targets at a commit with N affected
targets, among which n are safe to skip. The number of ways
to make a safe selection is the number of ways to select k
targets out of the n safe targets - n choose k. Similarly, the
number of possible ways to make any selection of size k is N
choose k. Thus, the probability P of making a safe selection
can be calculated as following:

P (select k safely) =

(
n
k

)(
N
k

)
This binomial probability distribution results in random

performing in the non-linear curve shown in the results.
The shared directory algorithm shows poor performance,

indistinguishable from random. This is likely due to the fact
that it selects tests used during pre-submit testing (which are
less likely to transition in post-submit). As tests run in pre-
submit are in the same projects as the modified code files,
they are likely to be close in the directory structure, and thus
selected by the shared directory algorithm. This result is in
accordance with the observations made by Memon et al. [4]
who found that dependency distances of 5-10 are most likely
to transition, indicating that the closest tests are in fact not
likely to transition.

pre-submit history and transition count show a small im-
provement over random, but with similar overall shapes. The
pre-submit history is better than transition count at lower rates,
while transition count performs better at skip rates above 82%.
This indicates that pre-submit is better at skipping safe targets
first, while transition count is better at skipping unsafe targets
last. One explanation for the disappointing result for the pre-
submit history and transition count algorithms is that they have
very sparse input data to use when scoring targets. Only 61%
of commits had pre-submit results, and only 12.6% of commits
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Fig. 4. Algorithm performance in making safe skip selections at commits
with transitions.

had any targets with non-zero transition counts (with a 48 hour
transition window). The commits with inputs had, on average
only 63% of targets with pre-submit results, and 5.6% with
non-zero transition count targets. As a result, there is a lot of
randomness in the selection order for these algorithms, caused
by the high number of target score collisions at commits
with small or no input. Additionally, the median number of
transitions for a transitioning target is 2, so a majority of these
targets only transition once or twice. The transition count
algorithm would not be very effective at scheduling these
low transition count targets. Nevertheless, both pre-submit
and transition count provide clear signals that they improve
performance over random when scheduling tests.

Author count is the most effective algorithm, with a slight
improvement over affected count. Both do significantly better
than random, with a much more linear curve. This is con-
sistent with the previously mentioned findings motivating the
algorithms. Additionally, tests are affected very frequently at
Google, so for these algorithms there are non-zero inputs for
all targets, and scores are more or less evenly distributed over
the range of values, resulting in a small degree of randomness
in selections.

2) Unsafe Results: Figure 5 depicts the results when ag-
gregating the unsafe commits (commits with unsafe targets)
which have unsafe skip selections at different skip rates. Here a
lower value indicates a better result (less commits with unsafe
selections). Interestingly, we observe different behavior than in
the safe results. This can be partially explained by the small
amount of data that belongs to this category, as commits with
unsafe affected targets only make up 1.4% of all commits.

Transition count is the clear winner here indicating that tar-
gets which have transitioned in the recent past are more likely
to have future unsafe transitions than the other algorithms. It
is unclear why the transition count algorithm works so much
better for unsafe results, and requires further investigation.
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Fig. 5. Algorithm performance in making unsafe skip selections at commits
with unsafe targets.

Our other algorithms are much closer in performance here
than in the safe results , but show a similar ordering of
performances.

3) Maybe Unsafe Results: Figure 6 depicts the results when
aggregating the maybe unsafe commits (commits with maybe
unsafe but no unsafe targets) which have maybe unsafe skip
selections at different skip rates. These maybe unsafe commits
make up 6.9% of all commits, substantially more commits than
the unsafe commits (1.4%) previously discussed.

Unfortunately, these results are an overestimation, as only
one in each group of maybe unsafe commits at a transition
is unsafe. In our data, the median number of maybe unsafe
commits at a transition was 11, and the mean value 34.55.

Nevertheless, what we observe is that author and affected
count algorithms are the most effective. The intuitive explana-
tion is that because these algorithms prioritize running targets
with many recently affected commits, they are likely to have
some number or affected but not run commits between any
transitions in the targets they run. Being frequently affected
also means that for any maybe unsafe transitions they run,
there will be a large number of maybe unsafe commits for the
targets in between the commits with results that will be run.

The pre-submit history and shared directory performance
is consistent with their ordering in safe and unsafe results,
however transition count performs significantly worse than in
the unsafe results.

4) General Outcomes: The results for the shared directory
algorithm are uniformly indistinguishable to random, and give
no benefit. All other algorithms outperform random but with
varying performances. The pre-submit history algorithm is
clearly an indicator of transitions, but is either similar to or
worse than both the affected count and author count algorithms
in all safety cases. Our author count algorithm, followed
closely by affected count, performed by far the best in safe
and maybe unsafe cases.
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Fig. 6. Algorithm performance in making maybe unsafe skip selections at
commits with maybe unsafe targets.

Interestingly, the transition count algorithm performs the
same as random for maybe unsafe, but much better than
other algorithms when considering unsafe commits. Why this
inconsistency in results occurs is unclear, but it does indicate
which algorithms would perform better in each type of CI envi-
ronment. For an environment where we know exact transitions
and have results at every commit, we would expect results
similar to the unsafe case which only considers commits
where we know the exact transition triggering commit. For this
environment we would expect the transition count algorithm
to perform best. For an environment like Google, where we
do not schedule all targets and there is thus some ambiguity in
which commit precisely caused a transition, we would value
running the target at any of the intervening commits and thus
expect performance similar to a combination of maybe unsafe
and unsafe, for which we would expect the author and affected
counts to win (as there are substantially more maybe unsafe
than unsafe commits).

B. RQ2 relative performance with any transition

Our analysis up to this point has considered safety with
respect to all transitions caused by a commit - the All formula-
tion of safety, where safe means scheduling all unsafe targets.
As discussed, this analysis is not appropriate for purposes
where we want to find transitioning commits rather than
targets, resulting in the development of the any formulation
of safety, where safe means scheduling any unsafe target.

Figure 7 presents the safe Any formulation results. The
results are consistent with those we obtained for the all
formulation case, i.e., 4, with the author and affected count
algorithms the most effective, and the shared directory the least
effective. There is a shift of the curves towards the optimal
behavior (as expected), which makes the differences between
the methods smaller, but this does not seem to change any of
the already observed trends.
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Fig. 7. Algorithm performance in making safe skip selections at transition
commits, when using the “Any” formulation to evaluate safety.

C. RQ3 sensitivity to time window

To investigate the sensitivity of the algorithms to the time
windows we used, we experimented with different window
sizes. Figure 8 shows our results with respect to safe skip
selections at a fixed 50% skip rate.

We observe that the affected and author count algorithms
perform best with a 4 hour window, indicating after this period
the frequently affected targets begin to change and the old data
becomes stale, worsening performance.

For the transition count algorithm, performance peaks at
a 48 hour transition window. The milestone window leads
to worse performance with each increase from 1 hour. This
behavior is to be expected, as at higher transition windows we
have more transition data, and with more frequent milestones
we find more transitions. However smaller milestone windows
require more test executions and have a higher compute cost.

Of course different windows involve different amounts of
data to be stored. Nevertheless, at the optimal identified cases
the amount of data to be stored should not cause any problems.

IX. THREATS TO VALIDITY

One issue with our data is that, due to milestone scheduling,
TAP doesn’t run tests at every affecting commit. As a result,
a large number of our commits have targets with an unknown
status - in only 23% of cases affected targets had a definitive
(Pass / Fail) result. Thus, we make simplifying assumptions
to evaluate the target’s safety at commits with no result, as
outlined in section V-B.

There is a possibility that the data is impacted by target
flakiness despite our filtering techniques. There is also a risk
that we have removed genuine transitions by removing targets
with more than 14 transitions. We developed these flakiness
filtering techniques to minimize the risk of removing genuine
transitions while allowing us to remove highly flaky targets.
We only remove a very small fraction of targets during this
process (0.1%).
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Fig. 8. Algorithm performance in making safe skip selections at a 50% skip
rate, varying the size of the algorithm windows.

It possible that these results will not be generalizable
to other testing pools and CI environments. Google’s TAP
has several distinctive features such as milestone scheduling
and using pre-submit and post-submit testing, and Google’s
repository has a uniquely huge test pool and extremely rapid
rate of code change. This could lead to changes in the results
when compared to more traditional, simple CI environments
and test automation methods.

Finally, there is a potential threat that undetected errors in
data collection, evaluation system, or algorithm implementa-
tions we developed could influence the results.

X. RELATED WORK

There is a large body of research investigating all aspects
of regression testing [14]. Most work in this area explicitly
targets the regression test selection [21], [22] and prioritization
[15], [20] problems for traditional release-based software
development. Here we briefly discuss work related to CI-based
regression testing.

Elbaum et al. [12] introduced a CI-based prioritization
method at Google, using test results in recent execution history
as a signal. As previously discussed, Elbaum et al. prioritizes
targets that either failed or have no execution in a dynamic
execution window. We examined this method, adapted to suit
our framework (the transition count algorithm).

Liang et al. [13], [23] showed that prioritizing commits
instead of individual targets provides opportunities for sig-
nificant execution improvements. Unfortunately, performing
such an analysis in Google is complicated and difficult, as it
requires redesigning the CI environment and dealing with code
dependencies. Nevertheless, such a scheme provides promising
avenues for future research.

Busjaeger and Xie [24] and Marijan et al. [25], respectively,
suggested prioritizing tests based on several characteristics
of the affected tests (coverage, execution similarity, content
similarity, failure history, test age) and based on test fail-
ures encountered in the recent execution history. Again, our



transition count algorithm examines the same principles as
failure history. Unfortunately more complex metrics, such as
test coverage, execution similarity, etc. were too expensive and
time-intensive to collect for the scope of our experiment.

Memon et al. [4], studied test characteristics linked to
test failure at Google. Their ultimate goal was to improve
understanding of test selection and test failures. We have
designed our algorithms to leverage the findings of this work.
We go a step further by defining and evaluating selection
schemes.

Zhu et al. [26], proposed re-prioritizing tests after each
test run using a conditional failure probability among tests
(probability of a test failure given the test execution result
of another). Their results showed an improvement over the
approach of Elbaum et al. [12]. Unfortunately, their evaluation
was based on test failures and old Google data, making it
incompatible with our analysis and results. However, as this
approach provides an alternative way of treating historical
data, we will consider it in our future schemes.

XI. CONCLUSION

In this paper we identified the practical requirements - data
collection and analytical techniques, methods for handling
flaky tests and a transition-based evaluation method - needed
for analysis when designing and evaluating regression testing
techniques. Based on these, we simulate five RTS algorithms,
using real operational data from Google. We found that three
algorithms - the number of times a test has been triggered, the
number of authors committing code that triggers a test, and the
recent execution history - provide the strongest signals towards
test selection, although the problem remains open for future
research.

In order for practitioners to benefit from analyzing RTS
techniques it is vital that they record test results and have
robust mechanisms for excluding flakiness. Identifying tran-
sitions as soon as possible after commit is the main goal of
CI related activities; CI should inform developers as soon as
possible when committed changes break and fix builds.

Our simulation framework forms the first step towards large-
scale regression test selection evaluation in CI. We anticipate
that future research will lead to new RTS techniques, and will
dig deeper into the causal relationship between algorithms and
results.
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