
FeatureNET: Diversity-Driven Generation of
Deep Learning Models

Salah Ghamizi, Maxime Cordy, Mike Papadakis, Yves Le Traon
first.last@uni.lu

SnT, University of Luxembourg

ABSTRACT
We present FeatureNET, an open-source Neural Architecture Search
(NAS) tool1 that generates diverse sets of Deep Learning (DL) mod-
els. FeatureNET relies on a meta-model of deep neural networks,
consisting of generic configurable entities. Then, it uses tools de-
veloped in the context of software product lines to generate diverse
(maximize the differences between the generated) DL models. The
models are translated to Keras and can be integrated into typical ma-
chine learning pipelines. FeatureNET allows researchers to generate
seamlessly a large variety of models. Thereby, it helps choosing
appropriate DL models and performing experiments with diverse
models (mitigating potential threats to validity). As a NAS method,
FeatureNET successfully generates models performing equally well
with handcrafted models.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Configuration search, NAS, Neural Architecture Search, AutoML
ACM Reference Format:
Salah Ghamizi, Maxime Cordy, Mike Papadakis, Yves Le Traon. 2020. Fea-
tureNET: Diversity-Driven Generation of Deep Learning Models. In 42nd
International Conference on Software Engineering Companion (ICSE ’20 Com-
panion), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3377812.3382153

1 INTRODUCTION
Deep Learning (DL) systems can solve complex tasks in an in-
creasing variety of domains, including safety-critical areas like self-
driving cars and computer-aided health systems. They rely on a
model – a neural network – which goes through a computationally-
expensive training, based on known data, to learn how to perform
the aimed task.

To facilitate the deployment of DL systems, pre-trained models
have beenmade available in order to be used for solving the different
tasks they were trained for, with a complementary training. This
transferability property, however, does not universally hold, as

1A video of the tool is available at: youtu.be/63nRH9SryDM

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382153

shown by recent empirical studies [9]. Different models are often
needed for different tasks.

Software diversity is a known approach for building robust, se-
cure and reliable software [1]. The key idea is that systems with
diverse functions and elements are robust to many kinds of unantici-
pated events, failures and inputs. In the context of machine learning,
diversity may also help diminishing security and overfitting threats.

Moreover, the proliferation of DL systems make essential the
study of additional requirements, such as correctness, privacy, ro-
bustness and interpretability. As a result, researchers design a grow-
ing number of Quality Assurance (QA) techniques to assess and
improve DL systems wrt such requirements. However, a common
pitfall is that these techniques are often evaluated on a small and
similar set of DL models [11], often retrieved in a pre-trained form.
Therefore, empirical results may not generalise to different models,
especially to those deployed in the field.

To reduce this validity threat, it is essential to provide researchers
with a wide spectrum of models. We fill this gap and present Fea-
tureNET, a tool to generate, train and deploy large and diverse sets
of feed-forward neural networks.

FeatureNET implements a Neural Architecture Search (NAS)
method which involves a much larger space of DL models than
established approaches. It relies on PLEDGE – a search-based al-
gorithm initially developed for software product line testing [4] –
that maximises the diversity of the generated models. Hence, the
generated set contains models with diverse structure, attributes
and performance indicators (e.g. accuracy, robustness, etc). This
is in contrast to state-of-the-art NAS methods that target the best
performing models.

Researchers can use FeatureNET to generate diverse models
seamlessly, without requiring in-depth knowledge and experience
in DL system engineering. Our tool can support multiple use cases,
can be integrated with existing datasets and is open for extension.

Overall, FeatureNET provides the following functionalities:
(1) Model search and generation: FeatureNET implements a

meta-model for feed-forward neural network architectures
based on two levels of configurable entities (named Blocks
and Cells), originally presented in [3]. The tool samples con-
figurations of those entities by maximizing their diversity.

(2) Model compilation and training: FeatureNET parses the
sampled configurations, translates them into Keras models 2
and launches the training on the chosen dataset and for the
specified number of epochs.

(3) Model assessment: FeatureNET evaluates every generated
model based on predefined metrics. It also features an API
through which researchers can plug their experiments and

2https://www.keras.io/

https://doi.org/10.1145/3377812.3382153
https://doi.org/10.1145/3377812.3382153

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Ghamizi, et al.

tailored evaluation metrics, and run these experiments on
each of the trained models.

The approach underlying FeatureNET was originally presented
in [3]. We also reported evaluation results based on an early proto-
type of the tool. Since then, we have enhanced the functionalities
of FeatureNET and developed user interfaces to allow its broad use
by the research community. FeatureNET is open source (under MIT
license) and available on Github3. The repository lists the system
requirements (Python, JDK for Pledge, NodeJs for the web interface,
etc.) and provides installation instructions.

2 FEATURENET PIPELINE
Figure 1 shows the pipeline implemented in FeatureNET. It covers
the full process of generating, training and evaluating DL models
according to the user’s metrics and experiments. Users can inter-
act with FeatureNET through a web application with a Graphical
User Interface (GUI), a Command-Line Interface (CLI), or an Ap-
plication Programming Interface (API). The API includes the core
functionalities that are also used by both the GUI and the CLI.

2.1 Parameterize the Generation
The first functionality is the parameterization of the generation
process. Figure 2 shows our GUI. Mandatory parameters include the
maximumnumber of blocks and cells that amodel configuration can
have, the number of configurations to sample, the dataset to train
and test on, and the number of training epochs. During this step,
the meta-model can also be specialized to restrict the generation
to a subset of the architectures (e.g., LeNet architectures). This is
achieved through the GUI or by tuning a dedicated XML file.

The FeatureNET meta-model abstracts DL model architectures
as a sequence of blocks and cells (see Fig 3 for an illustration). Each
block and cell has multiple attributes, which roughly correspond
to the types of layer one can find in feed-forward neural networks,
their parameters and internal computations.

2.2 Launch Model Generation and Training
After the parameterisation step, the user can launch a new model
generation and training process. FeatureNET first parses the pa-
rameters and derives constraints under which the models will be
generated. These constrained are fed into PLEDGE[4, 5], which then
generates a diverse set of architecture configurations satisfying the
input constraints.

Next, FeatureNET translates all configurations produced by PLEDGE
into a Keras models and trains them on a specified dataset for a
specified number of epochs. By default, the Cifar-10 [6] and MNIST
[7] image classification datasets are considered. Though, users can
choose other datasets through the CLI and API. Once a model is
trained, the model is evaluated wrt chosen metrics. Users can either
rely on predefined metrics like accuracy and empirical robustness
[8], or plug-in tailored evaluation procedures via the API.

3https://github.com/yamizi/FeatureNet

Table 1: Test accuracy, size, and efficiency of LeNet5 and the
best model produced by FeatureNET (out of 1,000) with a 12-
epoch training, on MNIST dataset.

Architecture Accuracy Size Efficiency
LeNet5 97.14% 545546 1.78

FeatureNET (best model) 97.74% 365194 2.68

2.3 Retrieve Generated Models and Evaluation
Results

Once a configuration is assessed, the trained model is exported
in Keras HDF5 format. A graphical representation of the model is
exported for visualisation purpose. Finally a log file in JSON format
reports the quality metrics computed on each model.

The GUI also provides visual feedback on the progress of the
different steps of the pipeline. It also gives access to a visual report
of all generated models and the metrics that have been assessed.

3 EVALUATION
We conduct preliminary experiments to evaluate FeatureNET. Here
we report the main results, while the extended study is available in
the paper presenting the FeatureNET approach [3].

Our first objective is to achieve diversity in the generated set of
models. Thus, we ask:

RQ1: Does FeatureNET generates a diverse set of models?

To answer this, we use FeatureNET to generate 1,000 DL models
and train them on the MNIST dataset for 12 epochs. Then, we
measure the size of the models and assess their accuracy on the
test set of MNIST.

Results are shown in Figure 4. By sampling a diverse set of
architectures, our technique generates a wide range of sizes, from
a few thousands to millions of weights. Moreover, we observe that
high accuracy models are not necessarily the largest ones and that
models performing poorly are of all sizes.

Since FeatureNET is a NAS method, we also measure its capabil-
ity to produce high-performing models. Hence, we investigate:
RQ2: Can FeatureNET generate models with high accuracy and high

efficiency (i.e. accuracy over size)?

Table 1 shows the performance achieved onMNIST after 12 train-
ing epochs by (a) a standard LeNet5 architecture and (b) the best of
the 1,000 DL models generated by FeatureNET in the previous ex-
periments. We observe that the best generated model outperforms
LeNet5 both in accuracy and efficiency, which tends to confirm the
viability of our NAS approach.

We also perform additional experiments to compare FeatureNET
with NAS tools from literature. Interestingly, FeatureNET has com-
petitive performance with open-source solutions like AutoKeras
but falls behind commercial tools such as Google AutoML. One rea-
son is that such tools rely on architecture and training enhancing
methods (e.g. data augmentation), while FeatureNET works only
on the architecture of the models.

4 EXAMPLE OF USE CASES
We illustrate the use of FeatureNET through 3 use cases. These are
experiments we recently conducted as part of our research in DL.

FeatureNET: Diversity-Driven Generation of Deep Learning Models ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

Display previous tasks & reports

New task

Customize
Meta-Model

Local Database

Parse
Meta-Model

Build valid
diverse

configurations

main_1_block.xml my_products.pdt

For each:
Compile into Keras

Model

Train & test on
dataset

Assess Metrics &
Run custom
experiments

Artifacts (graph,
model, log)

Command Line
Interface

Update current
task’s progress

Generate the task’s
report

1

2

3

API

Web
Application

Web
Server

Figure 1: The FeatureNET pipline. The 3 main user interactions are denoted by red chips.

Figure 2: FeatureNET GUI: To schedule a new task, we set
some parameters like the maximum number of blocks and
cells per model, the number of models to train, and for how
many epochs.

Figure 3: The DL architecture meta-model implemented by
FeatureNET. A block is made of multiple cells and every
component of a cell is a layer with different roles. For in-
stance, Input components handle logical operations, while
Operation components handle matrix transformation and
regularization.

4.1 Study the Accuracy and Robustness of DL
models

Our first use case concerns the link between model accuracy and
robustness to adversarial attacks. The original study of Tsipras et al.

Figure 4: Distribution of the size (log scale) and the accuracy
(on MNIST) of 1,000 generated models. The size is given in
terms of number of trainable weights of the models.

Figure 5: FeatureNET GUI results dashboard: Once the task
is over, the dashboard provides an overview of the metrics
that have been recorded. In the top center graph, the accu-
racy and empirical robustness of 100 models are plotted.

[10] tends to indicate the existence of a trade-off between these two
metrics. To complement their findings, we use FeatureNET to gen-
erate 100 diverse models and compute their accuracy and empirical
robustness (two metrics implemented by default in FeatureNET)
on the MNIST dataset.

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Ghamizi, et al.

1 from run import build_meta_model, build_models

2 from tensorflow_generator import TensorflowGenerator as TG

3

4 dataset, training_epochs = 'cifar10', 50

5 nb_base_products=(5,5,1000)

6 meta_model = build_meta_model(nb_base_products)

7

8 def my_experiment(keras_model):

9 layers = keras_model.layers

10 first_layer_weights = layers[0].get_weights()[0]

11 return np.corrcoef(first_layer_weights)

12 TG.add_metric('corr_weight',my_experiment)

13

14 build_models(metamodel=meta_model, dataset=dataset,

nb_base_products=nb_base_products[2],

training_epochs=training_epochs)

↩→
↩→

15

16 for product in TG.products:

17 layer_w_metric = product.metrics.get('corr_weight')

18 print('Layer1 mean weights correlation:{}'.format(layer_w_metric))

Figure 6: Use of FeatureNET’s API for custom experiments.

Once the models have been generated, trained and evaluated,
we can observe the results in FeatureNET’s GUI. Figure 5 shows
the "Details" view of a task and the dashboard where we get plots
of the metrics recorded for each model.

We see in the top center figure that accuracy and robustness
improve together until the accuracy reaches a plateau. Robust mod-
els are also the most accurate. These preliminary results somehow
contradict Tsipras et al.’s and pave the way for extended studies.

4.2 Steganography based on Diverse DL Models
In a recent work, we proposed a new steganographymethod (named
adversarial embedding) to hide messages within images by applying
adversarial attack algorithms on a DL model [2]. In this method, the
model acts as a private key and decodes the message by classifying
the received adversarial images. To preserve the confidentiality of
the embedded information at large scale, it is essential to use a
diverse set of models. The model generation method of FeatureNET
inherently satisfies this requirement.

Moreover, a potential threat lies in the use of other models to
recover the information. That is, if a model classifies the adversarial
images in the same classes than the model used to produce them
(the private key), a malicious third party can decode the message.

To evaluate this threat, we produced the adversarial images
by applying the PGD adversarial attack algorithm on a ResNet
model and the Cifar-10 dataset. Then, we designed an experimental
pipeline integrating FeatureNET (via its CLI) to generate 100models.
We used those models to attempt decoding the hidden message. It
turned out that none of the models succeeded, which indicates that
our method is secure.

In another evaluation, we assessed different qualities of our
steganography method (e.g., resilience to image tampering). Fea-
tureNET allowed us to experiment onmany differentmodels, thereby
increasing the validity of our conclusions. We also generated bet-
ter models (w.r.t. these tailored quality metrics) than handcrafted
models available in the literature.

4.3 Tailored Analysis of DL Models
Our last use case illustrates the use of FeatutreNET’s python API
to perform tailored analyses of generated models. For instance, we
consider an artificial experiment where we compute the correlation
between the weights of the first layer of trained DL models.

We provide a python code snippet in Fig. 6. At Lines 4-5, we
specify that we want to generate 1,000 models with maximum 5
blocks and 5 cells each, trained on the Cifar-10 dataset for 50 epochs.
Lines 8-12 set up the experiment to compute the correlation between
the weights of the first layer of each model. Finally, We build the
models in line 14 and print the experiments results in lines 16-18.

5 CONCLUSION
FeatureNET is a NAS tool that generates diverse DL models. We
designed the tool so that it is extensible and easy to integrate with
external experimental pipelines. We make FeatureNET available
with the hope that it will support experimental studies at using
large and diverse sets of models, thereby increasing the confidence
in the validity of experimental studies.

In future we plan to extend FeatureNET with additional search
methods, use enhanced DL methods, like data augmentation, and
extend the expressiveness of the meta-model to support a broader
range of models (e.g. recurrent and bayesian neural networks).

6 ACKNOWLEDGMENT
Mike Papadakis is supported by the Luxembourg National Research
Funds (FNR) C17/IS/11686509/CODEMATES.

REFERENCES
[1] Benoit Baudry and Martin Monperrus. 2015. The Multiple Facets of Software

Diversity: Recent Developments in Year 2000 and Beyond. ACM Comput. Surv.
48, 1 (2015), 16:1–16:26. https://doi.org/10.1145/2807593

[2] Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2019. Ad-
versarial Embedding: A robust and elusive Steganography and Watermarking
technique. (2019). arXiv:1912.01487 [cs.CR]

[3] Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2019. Auto-
mated Search for Configurations of Convolutional Neural Network Architectures.
In Proceedings of the 23rd International Systems and Software Product Line Confer-
ence - Volume A (Paris, France) (SPLC ’19). Association for Computing Machinery,
New York, NY, USA, 119–130. https://doi.org/10.1145/3336294.3336306

[4] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. 2014. Bypassing the Combinatorial Explo-
sion: Using Similarity to Generate and Prioritize T-Wise Test Configurations
for Software Product Lines. IEEE Trans. Software Eng. 40, 7 (2014), 650–670.
https://doi.org/10.1109/TSE.2014.2327020

[5] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. 2013. PLEDGE: A Product Line Editor and Test Generation Tool. In
Proceedings of the 17th International Software Product Line Conference Co-located
Workshops (Tokyo, Japan) (SPLC ’13 Workshops). ACM, New York, NY, USA,
126–129. https://doi.org/10.1145/2499777.2499778

[6] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

[7] Yann LeCun and Corinna Cortes. 2005. The mnist database of handwritten digits.
(2005).

[8] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2015.
DeepFool: a simple and accurate method to fool deep neural networks. (2015).
arXiv:1511.04599 [cs.LG]

[9] Thilo Stadelmann, Vasily Tolkachev, Beate Sick, Jan Stampfli, and Oliver Dürr.
2019. Beyond ImageNet: Deep Learning in Industrial Practice. In Applied Data
Science.

[10] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. 2018. Robustness May Be at Odds with Accuracy. (2018).
arXiv:1805.12152 [stat.ML]

[11] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning
Testing: Survey, Landscapes and Horizons. arXiv:1906.10742 [cs.LG]

https://doi.org/10.1145/2807593
https://arxiv.org/abs/1912.01487
https://doi.org/10.1145/3336294.3336306
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1145/2499777.2499778
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1805.12152
https://arxiv.org/abs/1906.10742

	Abstract
	1 Introduction
	2 FeatureNET Pipeline
	2.1 Parameterize the Generation
	2.2 Launch Model Generation and Training
	2.3 Retrieve Generated Models and Evaluation Results

	3 Evaluation
	4 Example of Use Cases
	4.1 Study the Accuracy and Robustness of DL models
	4.2 Steganography based on Diverse DL Models
	4.3 Tailored Analysis of DL Models

	5 Conclusion
	6 Acknowledgment
	References

