
Comparing White-box and Black-box Test Prioritization

Christopher Henard
University of Luxembourg

christopher.henard@uni.lu

Mike Papadakis
University of Luxembourg

michail.papadakis@uni.lu

Mark Harman
University College London

mark.harman@ucl.ac.uk
Yue Jia

University College London
yue.jia@ucl.ac.uk

Yves Le Traon
University of Luxembourg
yves.letraon@uni.lu

ABSTRACT
Although white-box regression test prioritization has been
well-studied, the more recently introduced black-box pri-
oritization approaches have neither been compared against
each other nor against more well-established white-box tech-
niques. We present a comprehensive experimental compari-
son of several test prioritization techniques, including well-
established white-box strategies and more recently intro-
duced black-box approaches. We found that Combinato-
rial Interaction Testing and diversity-based techniques (In-
put Model Diversity and Input Test Set Diameter) perform
best among the black-box approaches. Perhaps surprisingly,
we found little difference between black-box and white-box
performance (at most 4% fault detection rate difference).
We also found the overlap between black- and white-box
faults to be high: the first 10% of the prioritized test suites
already agree on at least 60% of the faults found. These are
positive findings for practicing regression testers who may
not have source code available, thereby making white-box
techniques inapplicable. We also found evidence that both
black-box and white-box prioritization remain robust over
multiple system releases.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Regression Testing, White-box, Black-box

1. INTRODUCTION
Prioritizing regression test suites is important to ensure

that testing is effective at revealing faults early in the test-
ing process [25, 26, 33, 57]. Many different test case pri-
oritization techniques have been proposed in the literature
[30, 65], yet hitherto, there has been no study that compares
white-box and black-box prioritization approaches.

Although white-box techniques have been extensively stud-
ied over two decades of research on regression test opti-
mization [25, 30, 47, 65], black-box approaches have been
less well studied [35, 36, 46]. Recent advances in black-box
techniques have focused on promoting diversity among the
test cases, with results reported for test case generation [9,
16, 18, 50] and for regression test prioritization [14, 35, 56,
69]. However, these approaches have neither been compared
against each other, nor against more traditional white-box
techniques in a thorough experimental study. Therefore, it is
currently unknown how the black-box approaches perform,
compared to each other, and also compared to the more
traditionally-studied white-box techniques.

Black-box testing has the advantage of not requiring source
code, thereby obviating the need for instrumentation and
source code availability. Conversely, one might hypothesize
that accessing source code information would allow white-
box testing to increase source code coverage and, thereby,
to increase early fault revelation. It has also been claimed
that white-box techniques can be expensive [49] and that the
use of coverage information from previous versions might de-
grade prioritization effectiveness over multiple releases [59].
These hypotheses and claims call out for a thorough com-
parative experimental study over the wide range of possible
test prioritization strategies, both white- and black-box.

This paper addresses these questions with an experimen-
tal study, reporting results for 20 regression test prioritiza-
tion techniques, including 10 well-established white-box ap-
proaches, which have been thoroughly studied in the past,
but also 10 black-box regression techniques that have not.
We include, not only methods developed specifically for re-
gression testing, but additionally we ‘port’ techniques, orig-
inally invented for test case generation, to regression test
prioritization where there is an obvious strategy to achieve
such a port. We chose the 10 white-box approaches pri-
marily to provide a baseline for comparison against the rel-
atively newer, and less well-studied, black-box techniques.
We evaluate the test effectiveness and efficiency of these 20
regression test prioritization approaches on six versions of
five different C programs, widely-used in previous work.

Our study reports upon the relative efficiency and effec-
tiveness of black-box and white-box techniques in terms of
execution time and fault detection rate. As well as efficiency
and effectiveness, we investigate the similarity between the
sets of faults found by the white- and black-box approaches.
We also report on the degree to which regression test ef-
fectiveness, based on an initial prioritization, degrades over
multiple releases of software systems.



We believe that this is the most extensive and inclusive
comparative experimental study of test case prioritization
techniques yet reported in the literature. Such a study,
encompassing multiple black- and white-box approaches, is
timely, because recent evidence [35, 46] has suggested that
black-box techniques may be promising (yet this claim re-
mains under evaluated).

There is also recent evidence [33] that current regression
testing practices involve manual optimization, which is slow,
expensive and suboptimal. Furthermore, there is evidence
[23, 44] that time available for regression testing is highly
limited, making it essential to optimize in order to achieve
maximum fault revelation opportunities as early as possible
— the purpose of the test prioritization. We found that, on
average, white-box techniques prioritize test suites slightly
faster than black-box techniques, once the set up costs have
been paid. However, the effect is relatively small, and all
approaches completed prioritization within a few minutes
on standard equipment.

We find that so-called ‘additional’ approaches outperform
‘total’ techniques. This is unsurprising, because it repli-
cates and confirms previous studies [47, 59, 68]. We found
that Combinatorial Interaction Testing (CIT) and diversity-
based techniques (Input Model Diversity and Input Test Set
Diameter) perform best among the black-box approaches.
Perhaps more surprisingly, we find that the difference be-
tween the best performing black- and white-box strategies
is relatively slight, with at most 4% difference in the rate
of fault detection. Furthermore, we found a high degree of
overlap between the faults found by black- and white-box
techniques; after only 10% of the test suite has been exe-
cuted, the techniques already agree on at least 60% of the
faults found (rising to 80% after half the test suite has been
executed).

These findings suggest that access to source code affords
white-box techniques relatively modest advantages and, en-
couragingly, suggest that prioritization can be effective even
in the absence of source code. We also found little evidence
that either black- or white-box approaches suffer from degra-
dation over multiple releases; at most 2% degradation was
observed for the three best performing black- and white-box
techniques, over all 30 program versions studied. This is a
further positive finding for practicing regression testing en-
gineers, because it suggests that an initial prioritization can
remain robust over multiple releases of the system under test
(for both black- and white-box techniques).

The remainder of this paper is organized as follows. Sec-
tion 2 poses the investigated Research Questions (RQs).
Section 3 describes the methodology and the settings used
for the experiments. Section 4 analyzes the results of the
experiments, answers RQs and discusses threats to validity.
Finally, Section 5 examines the related work and Section 6
concludes the paper.

2. RESEARCH QUESTIONS
Arguably the most important issue for any regression test

prioritization technique is the rate of fault-revelation; all
testing is primarily concerned with the revelation of faults.
Therefore, our first three questions concern the fault detec-
tion rates of the white-box and black-box approaches.

RQ1. How well do the 10 white-box prioritization methods
studied perform in terms of fault detection rate?

Answering RQ1 will help developers know which white-
box technique is the most effective. Since this question has
been addressed in several previous studies [47, 59, 68], this
question can be thought of as a replication study, establish-
ing a baseline for comparison in the remaining questions.

Of course white-box test case prioritization techniques
may be inapplicable, for example, where source code is un-
available, or instrumentation is impossible, so a tester may
have no choice but to use black-box strategies. It is there-
fore useful to know how the different black-box techniques
perform against each other, motivating our second RQ:

RQ2. How well do the 10 black-box prioritization methods
studied perform in terms of fault detection rate?

Where a tester is able to choose both black-box and white-
box techniques, he or she will be interested to know which
has the best overall performance among all 20 approaches
previously investigated, motivating our third RQ:

RQ3. How well do the black-box techniques compare with
the white-box ones in terms of fault detection rate?

Knowing the best overall approach is useful, if the tester
seeks to use only one technique. However, should it turn
out that different approaches find different sets of faults,
then it may be useful to use a combination of techniques,
to maximize fault revelation overall. Alternatively, should
white- and black-box strategies find very similar faults, then
a tester can have greater confidence in using one in place of
the other. This motivates our fourth RQ:

RQ4. How different are the faults found by the white-box
approaches from those found by the black-box tech-
niques?

As a system undergoes change, the initial test ordering
might degrade; each change makes the prioritized test suite
less suited to the newer system versions. It will be use-
ful for the tester to know the ‘robustness’ (maintenance of
fault revealing potential) of a test suite prioritization tech-
nique over multiple releases of the system. It is believed
that white-box approaches suffer from degradation [59], and
there is no reason to suppose it will be different for black-box
techniques; changes will tend to degrade the performance of
both prioritization approaches. However, the effect size is
unknown, particularly in the case of black-box approaches.
This motivates our fifth RQ:

RQ5. How do the white-box and black-box approaches de-
grade over multiple releases of the system under test?

It has also been recently argued that regression testing
scenarios exist where very little time is available for the
overall regression testing process [22, 33, 44]. In such situ-
ations, the time required for the prioritization process itself
becomes paramount; if prioritization takes too long, then it
eats into the time available to run the prioritized test suite.
In other situations, there is a great deal of time occupied by
regression testing, and so this is less important [29, 33]. In
order to investigate which techniques would be favorable in
situations where limited regression test time is available, we
studied the execution time of each algorithm, reporting the
results in a final RQ:

RQ6. How do black-box and white-box techniques compare
in terms of the required execution time for the priori-
tization process?



Table 1: The subject programs used in the experiments. For each of them, the number of tests cases, the 6
considered versions together with their size in lines of code and number of embedded faults are presented.

Program Test Cases Information V0 V1 V2 V3 V4 V5

Grep
Version 2.0 (1996) 2.2 (1998) 2.3 (1999) 2.4 (1999) 2.5 (2002) 2.7 (2010)

440 Size 8,163 11,988 12,724 12,826 20,838 58,344
Faults - 56 58 54 59 59

Sed
Version 3.01 (1998) 3.02 (1998) 4.0.6 (2003) 4.0.8 (2003) 4.1.1 (2004) 4.2 (2009)

324 Size 7,790 7,793 18,545 18,687 21,743 26,466
Faults - 16 18 18 19 22

Flex
Version 2.4.3 (1993) 2.4.7 (1994) 2.5.1 (1995) 2.5.2 (1996) 2.5.3 (1996) 2.5.4 (1997)

500 Size 8,959 9,470 12,231 12,249 12,379 12,366
Faults - 32 32 20 33 32

Make
Version 3.75 (1996) 3.76.1 (1997) 3.77 (1998) 3.78.1 (1999) 3.79 (2000) 3.80 (2002)

111 Size 17,463 18,568 19,663 20,461 23,125 23,400
Faults - 37 29 28 29 28

Version 1.0.7 (1993) 1.1.2 (1993) 1.2.2 (1993) 1.2.3 (1993) 1.2.4 (1993) 1.3 (1999)
Gzip 156 Size 4,324 4,521 5,048 5,059 5,178 5,682

Faults - 8 8 7 7 7

3. METHODOLOGY

3.1 Subject Programs
We use 5 open-source programs written in C, all of which

are available from the GNU FTP server [1]: Grep, Sed,
Flex, Make and Gzip. Test suites for the five programs are
available from the Software Infrastructure Repository (SIR)
[22]. Grep and Sed are popular command-line tools for
searching and processing text matching regular expressions.
Flex is a lexical analysis generator, while Make controls
the compile and build process and Gzip is a widely-used
compression utility. This set of programs has been widely
used to evaluate test techniques used by researchers in sev-
eral studies [21, 24, 42, 55, 67].

For each one of these programs, a regression test suite
and 6 different versions are used. Table 1 presents, for each
version, its identifier and the year that it was released, the
size in lines of code calculated using the cloc tool [3] and
the number of faults contained in each version. The table
also records the number of test cases for each program.

3.2 Fault Seeding Process
The faults contained in each version of the programs (see

Table 1) were introduced based on mutation analysis [40].
Although faulty versions of the programs are available from
SIR, mutation analysis provides more reliable faults than
hand seeded ones [11]. Indeed, by analyzing the fault ma-
trices of SIR, we found that these faults are killed by 61%
of the test cases in average, making them easy to detect.
Besides, the SIR versions are too old to compile and run
correctly (we need to execute the test cases). We thus took
reliable current versions [1]. These current versions contain
configuration scripts that make the program comply with
the machine’s configuration.

Thus, for each version Vi, 1 ≤ i ≤ 5, of each program, a
set of carefully selected operators was employed1, producing
faulty programs called mutants. We applied Trivial Com-
piler Equivalence (TCE) [54] to eliminate equivalent and
duplicated mutants. TCE has been found to remove about
one third of equivalent mutants, so it is simple and effective.

1We employed the mutant operators set used by Andrews
et al. [11], i.e., relational, logical, arithmetic, bitwise, state-
ment deletion, unary insertion and constant replacement.

Naturally, since equivalence is undecidable, this technique
cannot remove all equivalent mutants. However, by deploy-
ing TCE to remove some equivalent and duplicate mutants,
we seek to reduce this threat to validity. We also removed all
the mutants that are not killed by the regression test suite
(as is common practice [11, 58, 68]).

Although mutation faults have been shown to couple with
real faults [11, 43], using it for studying fault revelation in a
controlled experimental environment requires precautions to
remove potential sources of bias. Several mutation testers,
e.g., Andrews et al. [11], Ammann et al. [10] and Kintis et
al. [45], claimed that when using mutants to support exper-
imentation, there is a need to filter out those mutants that
are easily distinguished from the original program. Such
easy-to-kill mutants introduce ‘noise’ to the mutation score
measurement, potentially inflating the value of this metric
(and perhaps doing so in an uneven manner, thereby intro-
ducing bias). To remove this potential threat to validity,
we identified all the subsuming mutants2 [10, 39, 45] which
formed our fault set.

3.3 The 20 Prioritization Approaches Studied
Table 2 depicts an overview of the 20 approaches investi-

gated. For each technique, its acronym, name, prioritization
objective and relevant references are listed in the table. The
remainder subsection gives details regarding each of these
strategies. Although they may use different criteria for pri-
oritizing the test cases, each technique has the unifying over-
all objective that it aims to order a set S = {tc1, ..., tcn} of
n test cases into an ordered list L = tc1, ..., tcn.

3.3.1 White-box Techniques
The system under test is instrumented to obtain, for each

white-box prioritization technique, the statements, branches
and methods executed. The white-box techniques can be
distinguished by the source code elements they seek to cover:
statements (S), branches (B) or methods (M), and by whether
they are total (T) or additional (A). A ‘total’ technique seeks
to maximize the total number of source code elements cov-
ered, while an ‘additional’ technique seeks to cover the great-
est number of, hitherto uncovered, source code elements.

2Subsuming mutants are also called ‘minimum’ mutants [10]
and ‘disjoint’ mutants [45] in the mutation testing literature.



Table 2: The white-box and black-box prioritization techniques considered in the experiments. For each of
them, their acronym, name, prioritization objective and main relevant references are presented.

No. Acronym Name Prioritization Objective References

W
h
it
e
-b

o
x

1. TS Total Statement Cover the maximum number of statements [28, 29, 58]

2. AS Additional Statement Cover the maximum number of uncovered statements [28, 29, 58]

3. TB Total Branch Cover the maximum number of branches [28, 29, 58]

4. AB Additional Branch Cover the maximum number of uncovered branches [28, 29, 58]

5. TM Total Method Cover the maximum number of methods [28, 29, 58]

6. AM Additional Method Cover the maximum number of uncovered methods [28, 29, 58]

7. ASS Additional Spanning Statements Cover the maximum uncovered dominating statements [48]

8. ASB Additional Spanning Branches Cover the maximum uncovered dominating branches [48]

9. SD Statement Diversity Maximize the Jaccard distance between statements [16, 69]

10. BD Branch Diversity Maximize the Jaccard distance between branches [16, 69]

B
la
c
k
-b

o
x

1. t-W t-wise Cover the maximum interactions between t model inputs [14, 15, 55]

2. IMD Input Model Diversity Maximize the Jaccard distance between model inputs [36, 37]

3. TIMM Total Input Model Mutation Maximize the number of killed model mutants [37, 53]

4. AIMM Additional Input Model Mutation Maximize the number of newly killed model mutants [37, 53]

5. MiOD Min. Output Diversity Minimize the NCD distance between outputs [56]

6. MaOD Max. Output Diversity Maximize the NCD distance between outputs [56]

7. ID-NCD Input Diversity w/ NCD Maximize the NCD distance between inputs [56]

8. ID-Lev Input Diversity w/ Levenshtein Maximize the Levenshtein distance between inputs [35, 46]

9. I-TSD Input Test Set Diameter Maximize the NCD distance between multisets of inputs [32]

10. O-TSD Output Test Set Diameter Maximize the NCD distance between multisets of outputs [32]

These three choices of source code elements (S, B and M)
and two different targeting strategies (T and A) yield six
different alternative white-box test case prioritization tech-
niques (TS, TB, TM, AS, AB and AM).

A branch or statement, x1, dominates another, x2, if (and
only if) all executions that involve execution of x2 also, sub-
sequently involve execution of x1. The set of non-dominated
statements (or branches) is called a ‘spanning’ set [48], and
leads to two approaches: Additional Spanning Statements
(ASS) and Additional Spanning Branches (ASB).

Finally, we also considered the diversity of source code
elements covered at the statement and branch level. Using
the Global Maximum Distances algorithm [36], we order the
test cases to maximize the Jaccard distance [36, 38] between
the two sets of source code elements covered by consecu-
tive test cases in the sequence. Depending upon whether
we measure Jaccard difference between statements covered
or branches covered, we obtain two additional (diversity-
maximizing) test case prioritization techniques: Statement
Diversity (SD) and Branch Diversity (BD).

3.3.2 Black-box Techniques
The first 4 black-box techniques of Table 2 use a model of

the program inputs. This is the model typically employed
by CIT [51, 55]. The remaining six approaches use either
the program inputs or outputs to prioritize the test suite
according to diversity measures. More specifically, we define
the 10 black-box techniques as follows:

1. t-wise (t-W): The test cases are ordered to maximize the
interactions between any t model inputs using a greedy
algorithm [55].

2. Input Model Diversity (IMD): Like the white-box tech-
nique SD, introduced earlier, but using the set of model
inputs instead of the set of statements to calculate the
distances.

3. Total Input Model Mutation (TIMM): the constraints of
the input model used by CIT are mutated with the op-
erators proposed by Papadakis et al. [53]. The test cases
are then ordered so that each test case kills the maximum
(total) number of model mutants.

4. Additional Input Model Mutation (AIMM): AIMM is the
‘additional’ version of TIMM (which is ‘total’). Each test
case at position i in the sequence kills the maximum num-
ber of mutants left ‘unkilled’ by test cases in locations
preceding i in the sequence.

5. Min. Output Diversity (MiOD): MiOD computes diver-
sity using the same idea used for the white-box techniques
(SD and BD), but using program outputs instead of the
set of statements or branches when calculating distances
and using the Normalized Compression Distance (NCD)
[32, 56] in place of Jaccard distance, with the distances
to be minimized. This approach is included as a sanity
check only: minimising diversity should hurt prioritiza-
tion performance if diversity is, indeed, valuable.

6. Max. Output Diversity (MaOD): Like MiOD, but with
maximizing the NCD distances.

7. Input Diversity w/ NCD (ID-NCD): Like MaOD but con-
sidering the test case inputs instead of outputs. Although
input diversity has not been considered before in the lit-
erature of regression testing, output diversity has, so it
makes sense to also include, for completeness, input di-
versity as a black-box test case prioritization criterion. In
addition, input diversity has been studied and proved to
be effective in model-based testing [35].

8. Input Diversity w/ Levenshtein (ID-Lev): Like ID-NCD,
but with a Levenshtein distance [35, 46] instead of NCD.

9. Input Test Set Diameter (I-TSD): Like MaOD, but con-
sidering inputs instead of outputs and the NCD metric
for multisets [19, 32].

10. Output Test Set Diameter (O-TSD): Like I-TSD, but con-
sidering outputs instead of inputs.



3.4 Experimental Settings
The experimental process is depicted in Figure 1. First,

the test suite is executed on the initial version of the system
under test (V0). This produces the input data for all 20
prioritization techniques presented in the previous section.
Each approach produces an ordering of the regression test
suite, based on the input, output and coverage information
obtained from execution of the test suite on V0. The input
models used by the black-box approaches were taken from
the previous work on CIT by Petke et al. [55].

The resulting prioritized (ordered) test suite is then eval-
uated on the five subsequent versions (V1 to V5), into which
faults have been seeded using mutation testing. None of the
test techniques has any information about the faults seeded,
nor do any of the approaches evaluated obtain any other in-
formation from versions V1 to V5; all information used in
prioritization by all techniques is obtained from the initial
version, V0. To assess each prioritized test suite, we use the
standard measurement for assessing the rate of fault revela-
tion: the Average Percentage of Faults Detected (APFD),
which is calculated according to the following formula [68]:

APFD(π) =

∑n−1
i=1 FTi

nm
+

1

2n
,

where π is an ordering of the regression test suite, n and m
are respectively the number of test cases and the number of
faults in the program’s version and FTi the total number
faults exposed after executing the ith test case of π.

The process of executing an approach on V0, evaluating it
on V1-V5 and calculating the APFD is repeated 100 times
to account for the stochastic nature of the prioritization al-
gorithms considered. Stochastic behavior is observed where
the technique has to break a tie (where test cases in the or-
dering have identical values for the guiding objective used to
prioritize the sequence). To break such ties, a random choice
is made. As a result of this tie breaking schema, different
results can be obtained on each execution. By repeating the
experiments 100 times, we collect a set of different outcomes
for each prioritization approach and each system under test.
This sample of all possible executions allows us to use stan-
dard inferential statistical techniques to investigate both the
significance and the effect size of the differences observed be-
tween the algorithms’ performance (see Section 3.5).

c

B

M

S

Prioritization

Approach

Prioritization

Approach

1.
2.
3.

2.
3.
1.

Regression 

Test Suite
V0

Black-box

White-box

Statements 

Branches 

Methods

V0 Outputs

Test Inputs

Input Model

c c c c c

Faulty V1-5

Average

Percentage 

of Faults

Detected

Average

Percentage 

of Faults

Detected

Prioritized 

Test Suite

Prioritized 

Test Suite

Figure 1: Evaluation of a prioritization approach on
a program. First, the test suite is executed on the
initial version V0 to produce code coverage informa-
tion and outputs. Then, the test suite is prioritized,
executed on V1 to V5, and the mean percentage of
faults detected is calculated.

To evaluate the similarity in the faults found by the white-
and black-box approaches (in answer to RQ4), we calculate
the Jaccard coefficient [36, 38] between the sets of faults
revealed by each approach after executing a given fraction
of the test suite. More formally, let FTW

i and FTB
i re-

spectively be the set of faults exposed by a white- (W ) and
black-box (B) prioritization approach, after executing the
ith test case in the prioritized order. The similarity between
the faults found by the two approaches, W and B, after
executing i test cases is calculated as follows:

J(FTW
i , FTB

i ) =
|FTW

i ∩ FTB
i |

|FTW
i ∪ FTB

i |
.

Note that ∀x, y, J(x, y) ∈ [0, 1] and that J(x, y) = 0 indi-
cates that the two sets x and y are completely different,
while J(x, y) = 1 indicates that the two sets (of faults, in
our case) are identical.

All experiments were executed on a Linux 3.11.0-18-generic
laptop with an Intel i7-2720QM Quad Core 2.40GHz CPU
and 4GBs of RAM. The programs were compiled with gcc [4]
4.8.1 and coverage information (used by the white-box ap-
proaches) was obtained by instrumenting V0 using the gcov

tool [5], which is part of the gcc utilities. The prioritization
techniques were implemented in Java and we used the bzip2

compressor [2] for NCD, as it is a ‘good real-world compres-
sor’ [63]. For RQ6, we recorded the execution times for each
of the 20 algorithms investigated using the time software [7]
and considering the ‘real’ elapsed time between invocation
and termination. Finally, we performed statistical analysis
using R [6], as detailed in the following section.

3.5 Inferential Statistical Analysis
Following the guidelines on inferential statistical methods

for handling randomized algorithms [12, 34], we assess the
statistical significance of the differences between the APFD
values recorded for each prioritization approach using the
unpaired two-tailed Wilcoxon-Mann-Whitney test. We use
this test since we have no evidence to support the belief
that the results exhibit a Gaussian (normal) distribution,
and therefore, Wilcoxon-Mann-Whitney is more appropri-
ate than a parametric test, since it makes fewer assump-
tions about the distribution. We use an unpaired test be-
cause there is no relationship between each of the 100 runs
(they simply randomly choose between different tie-breaking
choices), and we use a two-tailed test because we make no
assumptions about which technique outperforms the other.

To cater for the fact that we use multiple statistical test-
ing techniques, we report the p-values (uncorrected). This
facilitates correction using either Bonferroni or some other,
less conservative, correction procedure. However, we observe
that since we found extremely small p-values, even the Bon-
ferroni correction, with all its conservatism, would not alter
conclusions about statistical significance (at either the 5% or
the 1% significance levels). In any case, as has been observed
elsewhere [34], comparative executions of two different algo-
rithms are likely to produce arbitrarily small p-values for an
arbitrarily large number of executions; so long as N is suf-
ficiently large, p will be sufficiently small, given that there
are differences between the two algorithms.

Therefore, the more important (and meaningful) statistic
for comparing the two different algorithms lies in the effect
size, which is captured using the non-parametric Vargha and
Delaney effect size measure [62], Â12.



60%

65%

70%

75%

80%

85%

90%

95%

TS AS TB AB TM AM ASS
ASB

SD BD
60%

65%

70%

75%

80%

85%

90%

95%

(a) Grep

60%

65%

70%

75%

80%

85%

90%

95%

100%

TS AS TB AB TM AM ASS
ASB

SD BD
60%

65%

70%

75%

80%

85%

90%

95%

100%

(b) Sed

50%

60%

70%

80%

90%

100%

TS AS TB AB TM AM ASS
ASB

SD BD
50%

60%

70%

80%

90%

100%

(c) Flex

35%

40%

45%

50%

55%

60%

65%

70%

TS AS TB AB TM AM ASS
ASB

SD BD
35%

40%

45%

50%

55%

60%

65%

70%

(d) Make

75%

80%

85%

90%

95%

100%

TS AS TB AB TM AM ASS
ASB

SD BD
75%

80%

85%

90%

95%

100%

(e) Gzip

30%

40%

50%

60%

70%

80%

90%

100%

TS AS TB AB TM AM ASS
ASB

SD BD
30%

40%

50%

60%

70%

80%

90%

100%

(f) All programs

Figure 2: RQ1: Average percentage of faults detected for each white-box approach on V1 to V5.

The Vargha and Delaney measure is recommended by Ar-
curi and Briand and by Wohlin et al. [12, 64]. It is a simple
and intuitive measure of effect size: it denotes the probabil-
ity that one technique will outperform another; the greater
the probability, the greater the effect size. Â12(x, y) = 1.0
means that, in the sample, algorithm x always outperforms
algorithm y (and so the expected probability that x out-

performs y is 1.0). Â12(x, y) = 0.0 means that y outper-
forms x (for every member of the sample and, by inference,
with 1.0 probability in the population from which the sam-
ple was taken). Similarly, values between 0.0 and 1.0 can be
interpreted as probabilities, inferred for the population (of
all possible executions of the two algorithms), based on the
sample (of executions of the two algorithms).

4. RESULTS

4.1 RQ1: White-box Approaches
The APFD values observed for each technique are pre-

sented in Figure 2. For each program (Figure 2(a) to Figure
2(e)), the box plots show the distribution of the 500 APFDs
(100 orderings × 5 versions) obtained by each white-box al-
gorithm, listed horizontally across the figure. Figure 2(f)
summarizes by showing the distribution of the APFDs for
each approach over all the versions of all programs.

Regarding Grep, Figure 2(a), the three best approaches
are AS, AB and ASB with a median APFD approximately
equal to 87%. The approaches featuring a ‘total’ strategy
perform the worst with APFDs lower than 70% while the
two last approaches, those exploiting diversity, are the most
robust (exhibiting variance) with an APFD close to 85%.
Similar observations can be made for Sed, Flex, and Gzip,
but for Make, the best approaches are TS, TM and SD,
contradicting the previous results. Here it should be noted
that usually additional strategies are more effective [68], be-
cause they cover more code at a given time, but total ones
could be better in some cases, because they traverse longer
paths and cover the same statements with different values.

The lower of the two triangular tables in Table 3 presents
the results of inferential statistical analysis. Focusing on the
white cells for AS, i.e., those of coordinate (2, y) or (x, 2),
we can observe that all the p-values are highly significant,
except against the approaches No. 4, 7 and 8, i.e., AB, ASS
and ASB. Similarly, the effect size measure Â12(line, column)
when comparing any white-box approach against AS, i.e.,
coordinates (x, 2), is lower than 0.5 except for AB, and ASB,
meaning that AS perform better in more than 50% of the
cases. Overall, the white-box techniques AB, ASS and ASB
produce the best fault detection rates.

4.2 RQ2: Black-box Approaches
Figure 3 records the distribution of the APFDs obtained

by the black-box approaches for each program (Figure 3(a)
to 3(e)) and for all of them together (Figure 3(f)). For Grep,
I-TSD is the approach yielding the highest APFD, with a
median of 88%. The second best technique is t-W, for which
the 4-W version gives the best result (as expected, higher
strength combinatorial testing outperforms lower strength).
The third best approach on this program is IMD.

All the approaches range from 77% to 92%, except for
the sanity check MiOD which provides poor fault detection
capability (providing further evidence for the importance of
diversity). For Sed, the same three approaches are found
to lead. For Flex, the best technique is ID-NCD, with an
APFD of 91% and low variance. ID-NCD is closely followed
by ID-Lev and I-TSD, indicating that input diversity ap-
pears to play an important role on this program. For Make,
TIMM, MaOD and ID-Lev are the three best-performing
approaches, but t-W, the combinatorial testing approach, is
the worst approach. Finally, for Gzip, all the approaches
except TIMM and MiOD appear to provide similar perfor-
mance.

The gray cells of Table 3 record the p-values/Â12 measures
for all pairwise black-box approach comparisons. Note that
the t-W approach gathers results for t = 2 to 4 merged to-
gether, but the companion website (see Section 4.7) records
the values for each approach separated.



55%

60%

65%

70%

75%

80%

85%

90%

95%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

55%

60%

65%

70%

75%

80%

85%

90%

95%

(a) Grep

65%

70%

75%

80%

85%

90%

95%

100%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

65%

70%

75%

80%

85%

90%

95%

100%

(b) Sed

50%

60%

70%

80%

90%

100%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

50%

60%

70%

80%

90%

100%

(c) Flex

10%

20%

30%

40%

50%

60%

70%

80%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

10%

20%

30%

40%

50%

60%

70%

80%

(d) Make

65%

70%

75%

80%

85%

90%

95%

100%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

65%

70%

75%

80%

85%

90%

95%

100%

(e) Gzip

30%

40%

50%

60%

70%

80%

90%

100%

2-W 3-W 4-W IM
D
TIM

M
AIM

M
M
iOD
M
aOD
ID-NCD

ID-Lev

I-TSD
O-TSD

30%

40%

50%

60%

70%

80%

90%

100%

(f) All programs

Figure 3: RQ2: Average percentage of faults detected for each black-box approach on V1 to V5.

Table 3: RQ1 and RQ2: This table comprises two entirely separate triangular tables of results. The lower
triangle presents results comparing white-box techniques, while the upper triangle shows results comparing
black-box approaches. Shading is used to help indicate the difference between the two triangles. In each
triangular table, each cell contains a p-value and a Â12(Line,Column) effect size measurement. The key at the
bottom of the table translates numeric cell positions into algorithm names. For example, Line 2, Column 1 is
in the lower triangle (which concerns the white-box techniques). It records the p-value/Â12 (of 0∗/0.75) for AS
vs TS. This indicates that white-box technique Additional Statement (AS) has an inferred 0.75 probability
of outperforming white-box technique Total Statement (TS). By contrast, Line 5 Column 9 is in the upper
triangle, and therefore reports the results for black-box techniques (in this case MiOD vs I-TSD). Further
results can be found on the companion website at: http://henard.net/research/regression/ICSE_2016/.

Approach No.

A
p
p
r
o
a
c
h

N
o
.

1 2 3 4 5 6 7 8 9 10

1 - 0.07/0.51 0.0*/0.59 0.0*/0.61 0.0*/0.84 0.0*/0.60 0.0*/0.53 8.1E-15/0.56 0.0*/0.47 0.0*/0.64 1

2 0.0*/0.75 - 0.0*/0.57 0.0*/0.61 0.0*/0.85 0.0*/0.58 0.10/0.51 5.7E-08/0.54 6.3E-12/0.44 0.0*/0.64 2

3 0.0*/0.40 0.0*/0.18 - 0.69/0.50 0.0*/0.87 0.04/0.48 1.6E-12/0.44 4.9E-05/0.47 0.0*/0.39 2.5E-08/0.55 3

4 0.0*/0.75 0.25/0.51 0.0*/0.82 - 0.0*/0.83 0.11/0.49 0.0*/0.43 4.2E-11/0.45 0.0*/0.36 2.8E-16/0.57 4

5 0.50/0.51 0.0*/0.29 0.0*/0.64 0.0*/0.29 - 0.0*/0.10 0.0*/0.10 0.0*/0.09 0.0*/0.14 0.0*/0.17 5

6 0.0*/0.73 0.0*/0.40 0.0*/0.79 0.0*/0.38 0.0*/0.69 - 5.0E-08/0.46 1.1E-07/0.46 0.0*/0.37 0.0*/0.60 6

7 0.0*/0.75 0.10/0.49 0.0*/0.81 0.0*/0.48 0.0*/0.71 0.0*/0.59 - 0.44/0.51 1.8E-06/0.46 0.0*/0.63 7

8 0.0*/0.75 0.39/0.51 0.0*/0.82 0.78/0.50 0.0*/0.72 0.0*/0.62 0.01/0.52 - 0.0*/0.41 0.0*/0.63 8

9 0.0*/0.76 0.0*/0.38 0.0*/0.83 0.0*/0.36 0.0*/0.74 0.07/0.49 0.0*/0.39 0.0*/0.37 - 0.0*/0.66 9

10 0.0*/0.77 7.8E-14/0.44 0.0*/0.83 0.0*/0.43 0.0*/0.72 0.03/0.52 4.5E-09/0.45 0.0*/0.43 0.0*/0.58 - 10

*p-value lower than 2.2E-16.
White-box: 1. TS 2. AS 3.TB 4. AB 5. TM 6. AM 7. ASS 8. ASB 9. SD 10. BD
Black-box: 1. t-W 2. IMD 3. TIMM 4. AIMM 5. MiOD 6. MaOD 7. ID-NCD 8. ID-Lev 9. I-TSD 10. O-TSD

Overall, statistical analysis confirms the box plots obser-
vations: by comparison with the white-box techniques, there
is a greater degree of variation in the performance of the
different approaches over different programs. Nevertheless,
based on the subjects we have studied, our results suggest
that I-TSD, t-W (for t = 4) and IMD offer the highest fault
detection rates among the black-box techniques.

4.3 RQ3: White-box vs Black-box
In this section, the three best white-box and black-box

approaches, i.e., AB, ASS, ASB, 4-W, IMD and I-TSD are
compared against each other.

In this respect, Figure 4 shows the distribution of the
APFDs for these techniques on all the programs. The line
with squared points shows the mean APFDs. In terms of
median values, the highest difference occurs between ASD
and IMD and represents approximately 4%.

In terms of mean values, this maximum difference between
the techniques is only 2%. I-TSD is the black-box approach
that best competes with the white-box techniques. We ob-
serve less than 1% difference between I-TSD and ASS, both
in terms of median and mean values, while a difference of
less than 2% is observed when comparing I-TSD with ASD.
Black box techniques are, thus, surprisingly effective.

http://henard.net/research/regression/ICSE_2016/


Table 4: RQ3: white-box vs black-box. Statistical
comparison (p-values/Â12({4, 7, 8}, {1, 2, 9})) between
the 3 best black-box and white-box approaches.

Black-box

1. 4-W 2. IMD 9. I-TSD

White-

box

4. AB 0.0*/0.58 0.50/0.60 0.0*/0.57

7. ASS 0.25/0.56 0.0*/0.58 0.0*/0.55

8. ASB 0.0*/0.58 0.0*/0.60 0.0*/0.57

*p-value lower than 2.2E-16.

The statistical results for the comparison between these 6
approaches are presented in Table 4. Regarding the p-values,
all the comparisons white-box vs black-box are highly sig-
nificant, i.e., lower than 1%, except when comparing AB
against IMD and ASS against 4-W. It means that the re-
sulting APFDs are quite different when comparing any of
these two but (AB, IMD) and (ASS, 4-W). The effect size
measure evaluates white-box against black-box techniques,
i.e., Â12(x, y) with x ∈ {4, 7, 8} and y ∈ {1, 2, 9}. With
respect to these values, the white-box techniques perform
better against the 3 black-box techniques from only 56% to
60% of the time.

To conclude, the differences between the APFDs of the
white- and black-box techniques range from 2% to 4% and
white-box approaches perform better than black-box ones in
56 to 60% of the cases. If the tester has to choose a single
technique out of the 20 studied, then the results indicate
that this should be ASB, but the differences are small, com-
pared to the variance over the programs studied. Therefore,
overall, we find that the black-box approaches are surpris-
ingly competitive with the white-box ones, given that they
have less information available, i.e., no structural informa-
tion upon which to prioritize test suites.

4.4 RQ4: Similarity in the Faults Found
Figure 5 shows the Jaccard coefficients for all the versions

of all the programs after executing 0, 10, ... 100% of the test
suite. Each box plot represents, for a given percentage of the
test suite executed, the distribution of the 22,500 similarity
coefficients (5 programs × 5 versions × 9 comparisons (white
vs black) × 100 runs). The line with squared points shows
the mean Jaccard coefficient. Figure 5 reveals that both
mean and median similarity have already risen above 0.6
after executing only 10% of the test suite.

40%

50%

60%

70%

80%

90%

100%

AB ASS ASB 4-W IMD I-TSD

40%

50%

60%

70%

80%

90%

100%

Figure 4: RQ3: Average percentage of faults de-
tected for the three best white- and black-box tech-
niques on all the programs. The line connecting all
box plots depicts the mean value of APFD (for com-
parison with the median value shown in the box).

That is, after executing the first 10% of the test cases,
there is already 60% agreement on the faults found by black-
box versus white-box testing. This rises to 80% after exe-
cuting half the test suite.

Table 5 records the mean Jaccard similarity coefficient,
over the 100 runs, for each program, version and considered
approach at an execution fraction of 10% of the test suite.
For Grep, Sed and Make the similarity between black-box
and white-box techniques follows the overall trend, while for
Gzip the similarity results are considerably ‘above trend’,
ranging from 86% to 99% similarity. With respect to Sed,
the results are considerably below trend, ranging from 0.10
to 0.31. Overall we find evidence to suggest that both black-
box and white-box techniques find similar sets of faults, over
most of the program studied.

4.5 RQ5 : Degradation over Versions
Figure 6 shows, for each of the top 3 white-box and black-

box approaches, the degradation (over the 5 versions) of
the programs. Thus each box plot for a particular version
records 1,500 APFDs (5 programs × 3 approaches × 100
runs). From this figure, we can see that the APFD is sur-
prisingly robust over the 5 versions. In the worst case it
increases only slightly (by approximately 2% from V1 to
V5) for I-TSD (see Figure 6(f)). This surprising robustness
holds for both the white-box and black-box techniques.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

 0

 0.2

 0.4

 0.6

 0.8

 1

Ja
cc

ar
d 

co
ef

fi
ci

en
t

Percentage of the test suite executed

Figure 5: RQ4: Similarities in the faults found by
the white- and black-box approaches on all the pro-
grams and for all the versions. The line is the mean.

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(a) 4. AB

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(b) 7. ASS

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(c) 8. ASB

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(d) 1. 4-W

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(e) 2. IMD

50%

60%

70%

80%

90%

100%

V1 V2 V3 V4 V5

(f) 9. I-TSD

Figure 6: RQ5: Degradation of the average percent-
age of faults detected over versions for each top 3
white-/black-box approaches on all the programs.



Table 5: RQ4: Mean Jaccard coefficients comparing the similarities between the faults found by the white-
and black-box approaches when executing 10% of the test suite over the 100 runs.

1. 4-W 2. IMD 9. I-TSD
Grep Sed Make Flex Gzip Grep Sed Make Flex Gzip Grep Sed Make Flex Gzip

4
.
A
B

V1 0.69 0.75 0.66 0.20 0.87 0.67 0.68 0.58 0.21 0.87 0.67 0.72 0.72 0.19 0.92

V2 0.67 0.69 0.69 0.11 0.86 0.65 0.64 0.62 0.13 0.87 0.65 0.66 0.76 0.12 0.91

V3 0.70 0.69 0.72 0.31 0.99 0.69 0.64 0.62 0.31 0.99 0.68 0.66 0.78 0.29 0.98

V4 0.65 0.61 0.68 0.22 0.99 0.65 0.58 0.60 0.24 0.99 0.65 0.60 0.74 0.21 0.98

V5 0.62 0.69 0.67 0.23 0.99 0.63 0.66 0.59 0.25 0.99 0.63 0.68 0.73 0.22 0.98

7
.
A
S
S

V1 0.68 0.73 0.65 0.18 0.88 0.67 0.69 0.57 0.17 0.87 0.67 0.71 0.70 0.18 0.90

V2 0.66 0.64 0.68 0.11 0.87 0.65 0.64 0.60 0.12 0.87 0.65 0.63 0.73 0.13 0.89

V3 0.70 0.64 0.70 0.25 0.99 0.69 0.64 0.60 0.24 0.99 0.68 0.63 0.76 0.25 0.98

V4 0.64 0.60 0.66 0.21 0.99 0.64 0.61 0.58 0.20 0.99 0.64 0.60 0.71 0.20 0.98

V5 0.61 0.67 0.65 0.21 0.99 0.61 0.67 0.57 0.20 0.99 0.62 0.68 0.70 0.20 0.98

8
.
A
S
B

V1 0.67 0.74 0.65 0.20 0.88 0.67 0.69 0.57 0.20 0.87 0.66 0.71 0.72 0.18 0.90

V2 0.66 0.69 0.69 0.10 0.88 0.64 0.66 0.61 0.11 0.87 0.64 0.66 0.75 0.12 0.89

V3 0.69 0.69 0.72 0.27 0.99 0.68 0.66 0.62 0.26 0.99 0.67 0.66 0.77 0.26 0.98

V4 0.66 0.59 0.67 0.23 0.99 0.64 0.58 0.59 0.22 0.99 0.65 0.59 0.73 0.21 0.98

V5 0.62 0.68 0.66 0.22 0.99 0.62 0.66 0.58 0.22 0.99 0.63 0.67 0.73 0.21 0.98

White-box: 4. AB 7. ASS 8. ASB Black-box: 1. 4-W 2. IMD 9. I-TSD

Table 6: RQ6: Execution time in seconds for the three best white-box and black-box prioritization approaches
on the 5 programs. The gcc, gcov and Span. S/B columns respectively denote the compilation time, instru-
mentation time and spanning statements/branches calculation time. The prioritization times (P.) are the
mean µ/standard deviation σ over the 100 runs. MDL is the time required to make the input model and
Dist. is the time required to calculate the Jaccard distances used by IMD. Finally, Tot. represents the total
execution time per approach (its calculation per approach is detailed in the key below the table).

White-box Black-box

Setup 4. AB 7. ASS 8. ASB Setup 1. 4-W 2. IMD 9. I-TSD

gcc gcov Span. S/B P. µ/σ Tot.1 P. µ/σ Tot.2 P. µ/σ Tot.3 MDL Dist. P. µ/σ Tot.4 P. µ/σ Tot.5 P. µ/σ Tot.6

Grep 3.1 32.8 181.6/65.7 20.8/1.0 56.7 0.1/0.3 217.6 0.1/0.3 101.7 t1 2.0 364.8/2.8 t1+364.8 1.5/0.2 t1+3.5 486.1/27.5 486.1

Sed 1.1 12.6 30.9/5.2 3.8/0.4 17.5 0.1/0.3 44.7 0.1/0.3 19.0 t2 1.3 314.9/21.7 t2+314.9 0.7/0.1 t2+2.0 290.2/9.7 290.2

Flex 0.5 38.4 680.2/143.7 35.6/0.8 74.5 0.2/0.4 419.3 0.1/0.3 172.7 t3 3.4 83.6/2.1 t3+83.6 1.9/0.3 t3+5.3 450.2/45.2 450.2

Make 3.6 17.8 418.5/177.7 2.5/0.5 23.9 0.1/0.1 440.0 0.1/0.1 199.2 t4 0.4 6.1/0.5 t4+6.1 5.3/0.5 t4+5.7 42.7/41.9 42.7

Gzip 0.3 7.6 36.8/13.5 1.0/0.1 8.91 0.1/0.1 44.81 0.1/0.1 21.51 t5 0.2 113.4/14.0 t5+113.4 0.3/0.5 t5+0.5 35.0/8.6 35.0

Σ 8.6 109.2 1,348 63.7/- 181.51 0.6/- 1,166.4 0.5/- 514.1 Σtk 7.3 882.8/- Σtk+882.80 8.7/- Σtk+17.00 1,304.2/- 1,304.2

1gcc + gcov + P. µ 3gcc + gcov + Span B + P. µ 5MDL + Dist. + P. µ
2gcc + gcov + Span. S + P. µ 4MDL + P. µ 6P. µ

4.6 RQ6 : Performance
Table 6 records the execution time in seconds for the top

3 white- and black-box methods on V0 of the programs. It
presents the mean execution time (P. µ) and the standard
deviation (P. σ) over the 100 independent runs performed
per approach. As well as the prioritization time itself, there
is also the time to calculate the input for some of these ap-
proaches, denoted as setup time. Indeed, for the white-box,
V0 is instrumented to collect the coverage information per
test case. For ASS and ASB, the statements and branches
need to be processed to keep only the spanning ones.

Regarding the black-box approaches, IMD takes as input
a distance matrix between any two model inputs. Thus, Ta-
ble 6 also records the setup time. Regarding the white-box
ones, gcc, gcov and Span. S/B columns respectively denote
the compilation time, instrumentation time and spanning
statements/branches calculation time. For the black-box ap-
proaches, MDL is the time required to make the input model
and Dist. is the time to calculate the Jaccard distances used
by IMD. Note that preparing the input of the prioritization
approaches is done only once. Finally, the columns Tot. of
the table represent the total execution time per approach.

The mean white-box prioritization times (P. µ) range from
less than 1 second to 36. AB requires more time than ASS
and ASB since it has to consider more branches, i.e., code
coverage information as input. The setup time is negligible
with respect to compilation and instrumentation, from less
than a second to 40, but is slightly more important when
spanning information has to be calculated, with about 11
minutes for calculating the spanning statements of Flex.

The black-box approaches, overall, take more time than
the white-box ones to prioritize the test suite. The mean
prioritization times (P. µ) range from less than 1 second for
IMD to 486.10 seconds, which represents about 8 minutes for
I-TSD on Grep. 4-W and I-ITSD require more time than
IMD to prioritize the test suite, since they (respectively)
have to calculate the combinations between any 4 model in-
puts and the multiset NCD metric on the inputs. Regarding
the setup, the time to make the model is undetermined, and
the calculation of the distances is almost null.

We also calculated the mean prioritization time to the test
suite execution time. For AB, ASS, ASB, 4-W, IMD and I-
TSD, these are 83.5%, 0.9%, 0.8%, 1,484.8%, 12.6% and
1,686.6%. More details are given on the companion website.



4.7 Threats to Validity
In order to minimize the threat from randomized com-

putation, we ran all algorithms 100 times, using inferential
statistics to compare results. In order to facilitate investiga-
tion of these potential threats due to implementation details,
and to support replication, we make all of our code and data
sets from this paper together with some additional results
available on the companion website:

http://henard.net/research/regression/ICSE_2016/.

We use mutation testing in to assess the rate at which
faults are detected by each prioritization technique. As
noted in Section 3.2, mutation faults have been shown to
be coupled with real faults, making this a reasonable ap-
proach to controlled experiment. We used Trivial Compiler
Equivalence (TCE) [54] to reduce the impact of both equiv-
alent and duplicate mutants, and also removed all subsumed
mutants, to cater for the potential bias due to trivial mu-
tants. We also believe that the 30 versions studied here (six
versions of each of the five programs) are a sufficient basis
to draw comparative conclusions. Nevertheless, further ex-
perimentation with other programs and sets of faults would
help to increase the generalizability of the conclusions.

5. RELATED WORK
There is a large body of research on regression-testing

techniques [30, 65], covering test suite selection [13, 31, 52],
augmentation and regeneration [8, 60, 66], minimization [33,
65] and prioritization [28, 68]. In this related work section,
we focus on test case prioritization, which can be divided
into two categories: white-box and black-box approaches.
White-box prioritization: The most widely studied tech-
niques are those using dynamic coverage information [49].
Rothermel et al. [58] and Elbaum et al. [28] introduced the
two main white-box strategies: the ‘Total’ and ‘Additional’
approaches we studied in this paper. Elbaum et al. [27]
leverage information regarding the cost of test cases and the
severity of faults into a prioritization approach. Jiang et al.
[41] investigated the use of adaptive random prioritization,
showing that additional approaches outperform total ones,
while, more recently, Zhang et al. [68] proposed probabilis-
tic models that combine varying degrees of the total and
additional strategies. Li et al. [47] investigated the use of
greedy, hill climbing and genetic algorithms, finding greedy
techniques to be more effective.

Marre and Bertolino [48] used dominance relations be-
tween coverage elements in order to construct spanning sets
and used them for prioritization. Zhou et al. [69] and Cao
et al. [16] used the similarity of execution traces to priori-
tize test suites. Despite being promising, these more recent
approaches have not previously been evaluated or compared
with the rest of white-box and black-box ones; one of the
motivations for the present paper.

Since dynamic coverage information might be unavailable
or prohibitively expensive to collect [49], researchers have
used static analysis to guide the test prioritization. Mei et
al. [49] proposed to use call graphs of test cases of object-
oriented programs in order to simulate test coverage.

Recently, Ripon et al. [59] proposed a more advanced
technique, named REPiR, based on information retrieval.
REPiR aims at test-class prioritization and can simulate
coverage accurately. However, their results show that this
approach is not better than the additional one.

The above two approaches are not comparable with ours
since they target units, i.e., classes, of object oriented pro-
grams while our approach targets system level tests.
Black-box prioritization: Black-box prioritization was
initially proposed in the CIT context. Bryce and Colbourn
[14] proposed prioritizing test cases for CIT using a greedy
heuristic. Bryce and Memon [15] used t-wise interaction
coverage to prioritize GUI test suites. Cohen et al. [20] also
used CIT coverage and proposed prioritizing test suites in
the context of highly configurable systems. Henard et al.
[36, 37] used similarity in order to bypass the combinato-
rial explosion of CIT. Recently, Petke et al. [55] compared
higher CIT strengths with lower ones and found that in prac-
tice higher strengths can be achieved. However, all these
previous studies consider CIT alone, and neither compare
with white-box techniques nor other black-box approaches;
another motivation for the present study.

Black-box test selection has been studied for model-based
testing using similarity functions: Cartaxo et al. [17] and
Hemmati et al. [35] demonstrated that similarity functions
can effectively measure diversity and thereby prioritize model-
based test suites. Lendru et al. [46] used string distance to
measure test case diversity, while Rogstad et al. [56] ap-
plied similarity to database applications. None of these ap-
proaches have previously been compared with one another.

Schroeder [61] suggested using automated input-output
analysis to perform test suite reduction, by determining the
inputs that can affect the program outputs. This approach
forms the basis of our output-driven prioritization strate-
gies. Recently, Alshahwan et al. [9] used output diversity
(which they call ‘output uniqueness’) to improve application
testing. Testing with the use of input model mutants was
proposed by Papadakis et al. [53]. These approaches have
been previously proposed (and proven to be promising) for
test case generation (rather than test suite prioritization).
Nevertheless, as we have shown in the present paper, these
approaches to test case generation can be reused as criteria
to guide test suite prioritization and so we included them in
the experimental study reported upon in the present paper.

More recently Feldt et al. [32] proposed the ‘Test Set
Diameter’ (TSD) concept, which generalizes the use of NCD
to multisets. Instead of approximating pairwise diversity,
TSD measures the diversity of the entire test suite as a whole
[19]. However, like other diversity measures, TSD has not
previously been compared with other black-box or white-box
approaches, motivating its inclusion in our work.

6. CONCLUSION
Our study has revealed a high degree of overlap between

both the faults found by black- and white-box regression test
prioritization techniques and also the performance of these
approaches. Additionally, we have found that initial prior-
itization remains robust over multiple releases. Although
further research would naturally be advisable to replicate
these findings, we believe that they may provide welcome
positive news to regression testers, particularly to those who
do not have the luxury of source code access.

Acknowledgments: Mike Papadakis is supported by the
National Research Fund, Luxembourg, INTER/MOBILITY/
14/7562175. Mark Harman and Yue Jia are supported by
EPSRC grant Dynamic Adaptive Automated Software En-
gineering (DAASE: EP/J017515).

http://henard.net/research/regression/ICSE_2016/


7. REFERENCES
[1] GNU FTP Server. http://ftp.gnu.org/.

[2] bzip2: A freely available, patent free, high-quality
data compressor. http://www.bzip.org/.

[3] cloc: Count Lines of Code.
http://cloc.sourceforge.net/.

[4] gcc: The GNU Compiler Collection.
https://gcc.gnu.org/.

[5] gcov - A Test coverage program.
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[6] R: The R project for statistical computing.
https://www.r-project.org/.

[7] time: Run programs and summarize system resource
usage. http://linux.die.net/man/1/time.

[8] N. Alshahwan and M. Harman. State aware test case
regeneration for improving web application test suite
coverage and fault detection. In ISSTA, pages 45–55,
2012.

[9] N. Alshahwan and M. Harman. Coverage and fault
detection of the output-uniqueness test selection
criteria. In ISSTA, pages 181–192, 2014.

[10] P. Ammann, M. E. Delamaro, and J. Offutt.
Establishing theoretical minimal sets of mutants. In
ICST, pages 21–30, 2014.

[11] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Trans.
Softw. Eng., 32(8):608–624, 2006.

[12] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In ICSE, pages 1–10, 2011.

[13] T. Ball. On the limit of control flow analysis for
regression test selection. In ISSTA, pages 134–142,
1998.

[14] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Info. & Softw. Tech., 48(10):960–970,
2006.

[15] R. C. Bryce and A. M. Memon. Test suite
prioritization by interaction coverage. In DOSTA,
pages 1–7, 2007.

[16] Y. Cao, Z. Zhou, and T. Y. Chen. On the correlation
between the effectiveness of metamorphic relations
and dissimilarities of test case executions. In QSIC,
pages 153–162, 2013.

[17] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto.
On the use of a similarity function for test case
selection in the context of model-based testing. Softw.
Test., Verif. Reliab., 21(2):75–100, 2011.

[18] T. Y. Chen, F. Kuo, R. G. Merkel, and T. H. Tse.
Adaptive random testing: The ART of test case
diversity. Jrnl. Syst. Softw., 83(1):60–66, 2010.

[19] A. R. Cohen and P. M. B. Vitányi. Normalized
compression distance of multisets with applications.
IEEE Trans. Pattern Anal. Mach. Intell.,
37(8):1602–1614, 2015.

[20] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Trans. Softw. Eng., 34(5):633–650, 2008.

[21] D. Cotroneo, R. Pietrantuono, and S. Russo. A

learning-based method for combining testing
techniques. In ICSE, pages 142–151, 2013.

[22] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empir.
Softw. Eng., 10(4):405–435, Oct. 2005.

[23] H. Do and G. Rothermel. An empirical study of
regression testing techniques incorporating context
and lifetime factors and improved cost-benefit models.
In FSE, pages 141–151, 2006.

[24] S. Elbaum, P. Kallakuri, A. Malishevsky,
G. Rothermel, and S. Kanduri. Understanding the
effects of changes on the cost-effectiveness of
regression testing techniques. Softw. Test., Verif.
Reliab., 13(2):65–83, 2003.

[25] S. Elbaum, G. Rothermel, and J. Penix. Techniques
for improving regression testing in continuous
integration development environments. In FSE, pages
235–245, 2014.

[26] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In ISSTA,
pages 102–112, 2000.

[27] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In ICSE, pages 329–338,
2001.

[28] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Test case prioritization: A family of empirical studies.
IEEE Trans. Softw. Eng., 28(2):159–182, 2002.

[29] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G.
Malishevsky. Selecting a cost-effective test case
prioritization technique. Softw. Qual. Jrnl.,
12(3):185–210, 2004.

[30] E. Engström, P. Runeson, and M. Skoglund. A
systematic review on regression test selection
techniques. Info. & Softw. Tech., 52(1):14–30, 2010.

[31] E. Engström, M. Skoglund, and P. Runeson. Empirical
evaluations of regression test selection techniques: a
systematic review. In ESEM, pages 22–31, 2008.

[32] R. Feldt, S. M. Poulding, D. Clark, and S. Yoo. Test
set diameter: Quantifying the diversity of sets of test
cases. CoRR, abs/1506.03482, 2015.

[33] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov.
An empirical evaluation and comparison of manual
and automated test selection. In ASE, pages 361–372,
2014.

[34] M. Harman, P. McMinn, J. Souza, and S. Yoo. Search
based software engineering: Techniques, taxonomy,
tutorial. In Empirical Software Engineering and
Verification, pages 1–59. 2012.

[35] H. Hemmati, A. Arcuri, and L. C. Briand. Achieving
scalable model-based testing through test case
diversity. ACM Trans. Softw. Eng. Methodol., 22(1):6,
2013.

[36] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. Le Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test configurations for software
product lines. IEEE Trans. Softw. Eng.,
40(7):650–670, July 2014.

[37] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Assessing software product line testing

http://ftp.gnu.org/
http://www.bzip.org/
http://cloc.sourceforge.net/
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.r-project.org/
http://linux.die.net/man/1/time


via model-based mutation: An application to
similarity testing. In A-MOST, pages 188–197, 2013.

[38] P. Jaccard. Étude comparative de la distribution
florale dans une portion des alpes et des jura. Bulletin
de la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[39] Y. Jia and M. Harman. Higher order mutation testing.
Info. & Softw. Tech., 51(10):1379–1393, 2009.

[40] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans. Softw.
Eng., 37(5):649 – 678, 2011.

[41] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse.
Adaptive random test case prioritization. In ASE,
pages 233–244, 2009.

[42] W. Jin and A. Orso. Bugredux: Reproducing field
failures for in-house debugging. In ICSE, pages
474–484, 2012.

[43] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In FSE,
pages 654–665, 2014.

[44] J. Kim and A. A. Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In ICSE, pages
119–129, 2002.

[45] M. Kintis, M. Papadakis, and N. Malevris. Evaluating
mutation testing alternatives: A collateral experiment.
In APSEC, pages 300–309, 2010.

[46] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran.
Prioritizing test cases with string distances. Autom.
Softw. Eng., 19(1):65–95, 2012.

[47] Z. Li, M. Harman, and R. M. Hierons. Search
algorithms for regression test case prioritization. IEEE
Trans. Softw. Eng., 33(4):225–237, 2007.

[48] M. Marré and A. Bertolino. Using spanning sets for
coverage testing. IEEE Trans. Softw. Eng.,
29(11):974–984, Nov. 2003.

[49] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and
G. Rothermel. A static approach to prioritizing junit
test cases. IEEE Trans. Softw. Eng., 38(6):1258–1275,
2012.

[50] C. D. Nguyen, A. Marchetto, and P. Tonella.
Combining model-based and combinatorial testing for
effective test case generation. In ISSTA, pages
100–110, 2012.

[51] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv., 43(2):11, 2011.

[52] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In FSE, pages
241–251, 2004.

[53] M. Papadakis, C. Henard, and Y. L. Traon. Sampling
program inputs with mutation analysis: Going beyond
combinatorial interaction testing. In ICST, pages
1–10, 2014.

[54] M. Papadakis, Y. Jia, M. Harman, and Y. LeTraon.

Trivial compiler equivalence: A large scale empirical
study of a simple fast and effective equivalent mutant
detection technique. In ICSE, pages 936–946, 2015.

[55] J. Petke, S. Yoo, M. B. Cohen, and M. Harman.
Efficiency and early fault detection with lower and
higher strength combinatorial interaction testing. In
FSE, pages 26–36, 2013.

[56] E. Rogstad, L. C. Briand, and R. Torkar. Test case
selection for black-box regression testing of database
applications. Info. & Softw. Tech., 55(10):1781–1795,
2013.

[57] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Test case prioritization: An empirical study.
In ICSM, pages 179–188, 1999.

[58] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
IEEE Trans. Softw. Eng., 27(10):929–948, 2001.

[59] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry.
An information retrieval approach for regression test
prioritization based on program changes. In ICSE,
pages 268–279, 2015.

[60] R. A. Santelices, P. K. Chittimalli,
T. Apiwattanapong, A. Orso, and M. J. Harrold.
Test-suite augmentation for evolving software. In
ASE, pages 218–227, 2008.

[61] P. J. Schroeder and B. Korel. Black-box test reduction
using input-output analysis. In ISSTA, pages 173–177,
2000.

[62] A. Vargha and H. D. Delaney. A Critique and
Improvement of the CL Common Language Effect Size
Statistics of McGraw and Wong. Jrnl. Educ. Behav.
Stat., 25(2):101–132, 2000.

[63] P. Vitányi, F. Balbach, R. Cilibrasi, and M. Li.
Normalized information distance. In Information
Theory and Statistical Learning, pages 45–82. 2009.

[64] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. 2000.

[65] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: A survey.
Softw. Test. Verif. Reliab., 22(2):67–120, Mar. 2012.

[66] S. Yoo and M. Harman. Test data regeneration:
Generating new test data from existing test data.
Softw. Test., Verif. Reliab., 22(3):171–201, May 2012.

[67] C. Zhang, A. Groce, and M. A. Alipour. Using test
case reduction and prioritization to improve symbolic
execution. In ISSTA, pages 160–170, 2014.

[68] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and
H. Mei. Bridging the gap between the total and
additional test-case prioritization strategies. In ICSE,
pages 192–201, 2013.

[69] Z. Q. Zhou, A. Sinaga, and W. Susilo. On the
fault-detection capabilities of adaptive random test
case prioritization: Case studies with large test suites.
In HICSS, pages 5584–5593, 2012.


