
Predicting the Fault Revelation Utility of Mutants
Thierry Titcheu Chekam, Mike Papadakis, Tegawendé Bissyandé and Yves Le Traon

SnT Centre, University of Luxembourg
{thierry.titcheu-chekam,michail.papadakis,tegawende.bissyande,yves.letraon}@uni.lu

ABSTRACT
Mutation testing is one of the strongest code-based test criteria.
However, it is expensive as it involves a large number of mutants.
To deal with this issue we propose a machine learning approach
that learns to select fault revealing mutants. Fault revealing mutants
are valuable to testers as their killing results in (collateral) fault
revelation. We thus, formulate mutant reduction as the problem of
selecting the mutants that are most likely to lead to test cases that
uncover unknown program faults. We tackle this problem using a
set of static program features and machine learning. Experimental
results involving 1,629 real faults show that our approach reveals
14% to 18% more faults than a random mutant selection baseline.

KEYWORDS
Mutation testing, Fault Revelation, Machine Learning

1 INTRODUCTION
Mutation testing is considered as one of themost eective, at nding
faults, testing technique [2]. However, it is expensive. This is mainly
due to the large number of mutants that testers need to manually
analyse. To deal with this issue, mutant selection methods have
been devoted [4]. However, these techniques focus at selecting,
among a large set of mutants, those mutants that are of the same
power, i.e., every test suite that kills the mutants of the smaller set
also kills the mutants of the large set. However, we argue that the
actual objective should be to select only those mutants that are of
practical value, such as those that lead to fault revelation.

Our goal is to form a mutant selection technique that precisely
identies the valuable mutants, prior to any mutant generation or
execution. Depending on the use we intend to do, we can consider
dierent mutants as valuable. Thus, one might consider that the
valuable mutants are those that help developers rethink their imple-
mentation, someone else might consider those that are killable or
subsuming. Nevertheless, we focus on the fault revealing mutants.
However, our approach is general and could be tuned to identify
additional types of valuable mutants.

We advance in this research direction by proposing a machine
learning approach that learns the static properties of the valuable
mutants, such as mutant type, location, code complexity, control
and data dependencies. We thus leverage the knowledge we gain
from historical data, (train on a set of known faults prior to any
testing or test case design) and classify the mutants of the program
under test as fault revealing. This way testers can focus on the most
promising mutants and apply mutation on a best-eort basis.

ICSE 2018, May 27 - 3 June 2018, Gothenburg, Sweden
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1: Description of the static code features
Complexity Complexity of statement SM approximated by the total

number of mutants on SM
CfgDepth depth of BM according to CFG
CfgPredNum number of predecessors basic blocks, according to CFG, of

BM
CfgSuccNum number of successors basic blocks, according to CFG, ofBM
AstNumParents number of AST parents of SM
NumOutDataDeps number of mutants on statements data-dependents on SM
NumInDataDeps number of mutants on statements on which SM is data-

dependent
NumOutCtrlDeps number of mutants on statements control-dependents on

SM
NumInCtrlDeps number of mutants on statements on which SM is control-

dependent
NumTieDeps number of mutants on SM
AstParentsNumOutDataDeps number of mutants on statements data-dependent onSM ’s

AST parent statement
AstParentsNumInDataDeps number of mutants on statements on which SM ’s AST par-

ent statement is data-dependent
AstParentsNumOutCtrlDeps number of mutants on statements control-dependent on

SM ’s AST parent statement
AstParentsNumInCtrlDeps number of mutants on statements on which SM ’s AST par-

ent statement is controle-dependent
AstParentsNumTieDeps number of mutants on SM ’s AST parent statement
TypeAstParent statement type of AST parent statement of SM
TypeMutant mutant type of M as matched code pattern and replacement.

Ex: a + b → a − b
TypeStmtBB CFG basic block type of BM . Ex: i f − then, i f − else
AstParentMutantType mutant type of M’s AST parent
OutDataDepMutantType mutant types of mutants on statements data-dependents on

SM
InDataDepMutantType mutant types of mutants on statements on which SM is

data-dependent
OutCtrlDepMutantType mutant types of mutants on statements control-dependents

on SM
InCtrlDepMutantType mutant types of mutants on statements on which SM is

control-dependent
AstChildHasIdentier AST child of statement SM has an identier
AstChildHasLiteral AST child of statement SM has a literal
AstChildHasOperator AST child of statement SM has an operator
DataTypesOfOperands Data types of operands of SM
DataTypeOfValue Data type of the returned value of SM

Experimental results using 10-fold cross validation on 1,629
faults, from the CodeFlaws benchmark [5], show a high perfor-
mance of our approach. In particular our mutant selection method
achieves signicantly better results than random mutant selection
by revealing 12% to 20% more faults. We also show that static pro-
gram features related to control and data program dependencies
are the most eective ones at determining the mutants’ utility.

2 MUTANT SELECTION PROBLEM
We dene the mutant selection problem as the problem of statically
(prior to any test execution) selecting a subset of mutants, given a
large set ofmutants, thatmaximize a dynamic property (only known
after the test execution) of interest. Here, we focus on selecting
the mutants that are most likely to lead to test cases that uncover
unknown defects, given a set of static, computationally inexpensive,
features.

We tackle the mutant selection problem by using 28 static fea-
tures that are listed in Table 1. In this table, BM is the basic block, of
the program Control Flow Graph (CFG), associated with a mutated
statement SM .

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2018, May 27 - 3 June 2018, Gothenburg, SwedenThierry Titcheu Chekam, Mike Papadakis, Tegawendé Bissyandé and Yves Le Traon

Figure 1: Information Gain distributions of ML features

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ML5%

Rand 5%

ML 10%

Rand 10%

ML 20%

Rand 20%

Figure 2: Fault revelation of the mutant selection strategies

3 RESULTS
To evaluate our approach we used CodeFlaws [5]. The benchmark
has 3,902 faulty program versions of 40 defect classes. The programs
are accompanied by validation test suites, which we augment with
KLEE [1]. We thus formed large pools of test cases from which
we sample multiple times and construct mutation adequate test
suites (for the mutant selection strategies we study). To evaluate
our approach, we used the faults that are revealed by less than 25%
of the tests in our test pools. These were 1,629 faults.

We applied mutation testing on the faulty program versions,
so that we are faithful to real settings and avoid making the CPA
hypothesis [2]. We used 18 mutation operators1, applied at the
LLVM bitcode. To reduce the inuence of redundant and equivalent
mutants, we applied TCE [3] using the LLVM-di utility.

During the training phase, for each mutant we extract its feature
values and we feed them along with the fault revealing information
to a machine learning classication algorithm (stochastic gradient
boosting decision trees). The outcome, is a prediction model that
predicts the mutants’ fault revealing potential (given the feature
values). In other words, given the feature values of the candidate
mutants the classier predicts their potential. During testing time,
the classier ranks the mutants according to their (predicted) fault
revealing potential, which is then used by the tester.
1Statement Deletion, Trap statements, Operand Swapping, Left/Right operand, Logi-
cal connector Replacement, Absolute Value Insertion, Non-Pointer Unary Operator
Insertion, Non-Pointer Unary Operator Stripping, Constant Value Replacement, Non-
Pointer Binary Operator Replacement, Function Call arguments shuing, Switch
Cases shuing, Pointer Binary Operation Replacement, Pointer Unary Operation
Replacement, Pointer Dereference, Binary Operation to Unary operator

Here, we performed a 10-fold cross-validation (train on 90% of
the faults and evaluate on the 10% for 10 times) and evaluate the
actual fault revealing ability of the top 5%, 10% and 20% of the
ranked mutants.

Figure 1 depicts the distribution of information Gain values
for the features we use. These data enable the assessment of the
potential contribution of every feature to the prediction model we
built. Interestingly, together with complexity, the features related
to control and data dependencies are the most important ones.

Figure 2 shows the distribution of the fault revelation of the
mutant selection strategies when selecting the top 5%, 10% and 20%
of the ranked mutants. As can be seen from the plot our approach
outperforms the random selection. At the 5%, 10% and 20% thresh-
olds the dierence of the median values is 14%, 18% and 18%. These
dierences are also statistically signicant2.

4 CONCLUSION
The large number of mutants involved in mutation testing has
long been identied as a barrier to the practical application of the
method. To deal with this issue, we introduce a new perspective to
the problem, the fault revelation mutant selection. We demonstrate
that fault revealing mutants can be identied through simple static
program features and standard machine learning techniques. We
provide results showing that machine learning helps and leads to
signicantly higher fault revelation than random mutant selection.
We also show that mutants’ utility can be captured through control
and data dependence related features.

REFERENCES
[1] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI. 209–224.

[2] Thierry Titcheu Chekam,Mike Papadakis, Yves Le Traon, andMarkHarman. 2017.
An empirical study on mutation, statement and branch coverage fault revelation
that avoids the unreliable clean program assumption. In ICSE. 597–608.

[3] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Com-
piler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Eective
Equivalent Mutant Detection Technique. In ICSE. 936–946.

[4] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2018. Mutation Testing Advances: An Analysis and Survey. Advances
in Computers (2018).

[5] Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury.
2017. Codeaws: a programming competition benchmark for evaluating auto-
mated program repair tools. In ICSE. 180–182.

2we performed a Wilcoxon rank-sum test, with signicance level a < 0.001

	Abstract
	1 Introduction
	2 Mutant Selection Problem
	3 Results
	4 Conclusion
	References

