
Automatic Testing and Improvement of Machine Translation
Zeyu Sun

Peking University
szy_@pku.edu.cn

Jie M. Zhang∗
University College London

jie.zhang@ucl.ac.uk

Mark Harman
Facebook London

University College London
mark.harman@ucl.ac.uk

Mike Papadakis
University of Luxembourg
mike.papadakis@gmail.com

Lu Zhang
Peking University

zhanglucs@pku.edu.cn

ABSTRACT
This paper presents TransRepair, a fully automatic approach for
testing and repairing the consistency of machine translation sys-
tems. TransRepair combines mutation with metamorphic testing
to detect inconsistency bugs (without access to human oracles). It
then adopts probability-reference or cross-reference to post-process
the translations, in a grey-box or black-box manner, to repair the
inconsistencies. Our evaluation on two state-of-the-art translators,
Google Translate and Transformer, indicates that TransRepair has a
high precision (99%) on generating input pairs with consistent trans-
lations. With these tests, using automatic consistency metrics and
manual assessment, we find that Google Translate and Transformer
have approximately 36% and 40% inconsistency bugs. Black-box
repair fixes 28% and 19% bugs on average for Google Translate and
Transformer. Grey-box repair fixes 30% bugs on average for Trans-
former. Manual inspection indicates that the translations repaired
by our approach improve consistency in 87% of cases (degrading it
in 2%), and that our repairs have better translation acceptability in
27% of the cases (worse in 8%).

KEYWORDS
machine translation, testing and repair, translation consistency

1 INTRODUCTION
Machine learning has been successful in providing general-purpose
natural language translation systems, with many systems able to
translate between thousands of pairs of languages effectively in real
time [20]. Nevertheless, such translation systems are not perfect
and the bugs that users experience have a different character from
those on traditional, non-machine learning-based, software systems
[3, 25, 26, 50].

The consequences of mistranslation have long been studied and
their effects have been shown to be serious. For example, the infa-
mous historic mistranslation of Article 17 of the Treaty of Uccialli
reportedly led to war [12]. Such truly profound and far-reaching
consequences of mistranslation are also reportedly becoming a
serious and potent source of international tension and conflict [29].

The consequences of mistranslation through machine-based
translators have also been shown to be serious. For example, ma-
chine translations have been shown to exhibit pernicious fairness
bugs that disproportionately harm specific user constituencies [31].
We have found such examples of fairness bugs in widely used in-
dustrial strength translation systems. Figure 1 shows several such
∗Corresponding and co-first author.

Google Translate results for the language pair (English→Chinese)1.
As can be seen from the figure, Google Translate translates ‘good’
into ‘hen hao de’ (which means ‘very good’) when the subject is
‘men’ or ‘male students’. However, interestingly, but also sadly, it
translates ‘good’ into ‘hen duo’ (which means ‘a lot’) when the
subject is ‘women’ or ‘female students’2.

Such inconsistency may confuse users, and is also clearly unfair
to female researchers in computer science; producing ‘a lot’ of
research is clearly a more pejorative interpretation, when compared
to producing ‘very good’ research. To avoid such unfair translations
(at scale), we need techniques that can automatically identify and
remedy such inconsistencies.

English Chinese (Google Translation) Notes

Men do good research in
computer science.

Nanren zai jisuanji kexue fangmian zuole
hen hao de yanjiu
男人在计算机科学方面做了很好的研究

good →
hen hao de
(very good)

Women do good research
in computer science.

Nüxing zai jisuanji kexue fangmian zuole
henduo yanjiu
女性在计算机科学方面做了很多研究

good →
henduo
(a lot)

Male students do good
research in computer
science.

Nan xuesheng zai jisuanji kexue fangmian
zuole hen hao de yanjiu
男学生在计算机科学方面做了很好的研究

good →
hen hao de
(very good)

Female students do good
research in computer
science.

Nü xuesheng zai jisuanji kexue fangmian
zuole henduo yanjiu
女学生在计算机科学方面做了很多研究

good →
henduo
(a lot)

Figure 1: Examples of fairness issues brought by translation
inconsistency (from Google Translate)

To tackle this problem, we introduce a combined testing and
repair approach that automatically generates tests for real-world
machine translation systems, and automatically repairs the mis-
translations found in the testing phase. As we show in this paper,
we need to rethink the conventional approaches to both testing and
repair in order to apply them to natural language translation.

Existing work has tested whether machine translation systems
provide stable translations for semantically-equal transformations,
such as synonym replacement (e.g., buy→purchase) [6] or abbrevia-
tion replacement (e.g., what’s→what is) [33]. However, no previous
work has focused on the testing and repair of translation inconsis-
tency regarding context-similar transformation; the transformation
1The four translations were obtained on 23rd July, 2019. These examples are purely
for illustration purposes, and are not intended as a criticism of Google Translate. It is
likely that other mainstream translation technologies will have similar issues.
2Similar issues also exist in translations between other languages. With a cursory
check, we already found a case with German→Chinese.

ar
X

iv
:1

91
0.

02
68

8v
2

 [
cs

.S
E

]
 2

5
D

ec
 2

01
9

Preprint, Under review, Sun and Zhang, et al.

between sentences that have similar word embeddings [13] yet
share context in the corpus (e.g., simple gender-based transforma-
tions, such as boys→girls).

In order to tackle the testing problem, we introduce an approach
that combines mutation [23] with metamorphic testing [4, 48]. The
approach conducts context-similar mutation to generate mutated
sentences that can be used as test inputs for the translator under test.
When a context-similar mutation yields above-threshold disruption
to the translation of the non-mutated part, the approach reports an
inconsistency bug.

Traditional approaches to ‘repairing’ machine learning systems
typically use data augmentation or algorithm optimisation. These
approaches can best be characterised as to “improve” the overall
effectiveness of the machine learner, rather than specific repairs for
individual bugs; they also need data collection/labelling and model
retraining, which usually have a high cost.

Traditional approaches to ‘repairing’ software bugs are white
box, because the techniques need to identify the line(s) of source
code that need(s) to be modified in order to implement a fix. Such
approaches inherently cannot be applied to fix software for which
source code is unavailable, such as third-party code.

Our insight is that by combining the results of repeated (and
potentially inconsistent) output from a system, we can implement a
light-weight black-box repair technique as a kind of ‘post-processing’
phase that targets specific bugs. Our approach is the first repair
technique to repair a system in a purely black-box manner. We
believe that black-box repair has considerable potential benefits, be-
yond the specific application of machine translation repair. It is the
only available approach when the software engineer is presented
with bugs in systems for which no source code is available.

We demonstrate not only that black-box repair is feasible, but
that it can scale to real world industrial-strength translation sys-
tems, such as Google Translate. We also present results for grey-box
repair for which the predictive probability is available.

TransRepair is evaluated on two state-of-the-art machine transla-
tion systems, Google Translate and Transformer [42]. In particular,
we focus on the translation between the top-two most widely-
spoken languages: English and Chinese. These languages each have
over one billion speakers worldwide [9]. Nevertheless, only 10 mil-
lion people in China (less than 1% of the population) are able to
communicate via English [43, 44]. Since so few people are able to
speak both languages, machine translation is often attractive and
sometimes necessary and unavoidable.

Our results indicate that TransRepair generates valid test inputs
effectively with a precision of 99%; 2) TransRepair automatically re-
ports inconsistency bugs effectively with the learnt thresholds, with
a mean F-measure of 0.82/0.88 for Google Translate/Transformer;
3) Both Google Translate and Transformer have inconsistency bugs.
Automated consistency metrics and manual inspection reveal that
Google Translate has approximately 36% inconsistent translations
on our generated test inputs. 4) Black-box repair reduces 28% and
19% of the bugs of Google Translate and Transformer. Grey-box
reduces 30% of the Transformer bugs. Manual inspection indicates
that the repaired translations improve consistency in 87% of the

cases (reducing it in only 2%), and have better translation accept-
ability3 in 27% of the cases (worse in only 8%)

2 APPROACH
This section introduces the overview and the details of each step
for TransRepair.

2.1 Overview
A high level view of TransRepair is presented in Figure 2. From
this Figure it can be seen that TransRepair automatically tests
and repairs the inconsistency of machine translation based on the
following three major steps:

1) Automatic test input generation. This step generates trans-
formed sentences (test inputs) to be used for consistency testing.
For each sentence, TransRepair conducts sentence mutations via
context-similar word replacement. The generated mutant candi-
dates are filtered using a grammar check. The mutants that pass
the grammar check are then regarded as the final test inputs for the
machine translator under test. Details are presented in Section 2.2.

2) Automatic test oracle generation. This step introduces the
generation of oracles, which are used for identifying inconsistent
translations (bugs). In this step, we rely on the metamorphic rela-
tionship between translation inputs and translation outputs. The
idea is that translation outputs from both the original sentence
and its context-similar mutant(s) should have a certain degree of
consistency modulo the mutated word. We use similarity metrics
that measure the degree of consistency between translated outputs
as test oracles. Details of this step are presented in Section 2.3. We
explore four similarity metrics, which are described in Section 3.2.

3) Automatic inconsistency repair. This step automatically
repairs the inconsistent translation. TransRepair applies black-box
and grey-box approaches, which transform the original translation
based on the best translation among the mutants. We explore two
ways of choosing the best translation, one using predictive proba-
bility, the other using cross-reference. Details of this step are given
in Section 2.4.

2.2 Automatic Test Input Generation
The input generation process contains the following steps.

2.2.1 Context-similarity Corpus Building. To conduct context-similar
word replacement, the key step is to find a word(s) that can be re-
placed with other(s) (similar ones) without hurting the sentence
structure. The new sentence generated via word replacement should
yield consistent translations with the original.

Word vectors capture the meaning of a word through their con-
text [32]. To measure the similarity, we use word vectors trained
from text corpora. In our approach, the word similarity between
two wordsw1 andw2, denoted by sim(w1,w2), is computed by the
formula below, wherevx denotes the vector of the word x .

sim(w1,w2) =
vw1vw2

|vw1 | |vw2 |
(1)

To construct a reliable context-similar corpus, we take two word-
vector models and use the intersection of their trained results. The
3We use “acceptability” to capture the property that a translation meets human assess-
ment of a reasonable (aka acceptable) translation

Automatic Testing and Improvement of Machine Translation Preprint, Under review,

context-similar
mutation

structural
filtering

similarity
analysis

probability or
 cross reference

machine
translator

automatic test input generation automatic test oracle generation automatic inconsistency repair

word
vector

word pair
library

mutant
candidates

filtered
mutants

original
translation

mutant
translations

final
translation

Inconsistency?

Yes
best

translation

original
sentence

Wikipedia,
GigaWord,
OntoNotes

text
corpora

machine
translator

tr
an

sl
at

io
n

m
ap

pi
ng

Figure 2: Overview of how TransRepair tests and repairs machine translation inconsistencies.

first model is GloVe [32], which is trained from Wikipedia 2014
data [45] and GigaWord 5 [35]. The second model is SpaCy [37],
which is a multi-task CNN trained on OntoNotes [1] including
the data collected from telephone conversations, newswire, news-
groups, broadcast news, broadcast conversation, andweblogs.When
two words have a similarity of over 0.9 for both models, we deem
the word pair to be context-similar and place it in the context-
similarity corpus. In total, we collected 131,933 word pairs using
this approach.

2.2.2 Translation Input Mutation. We introduce word replacement
and structural filtering respectively in the following.

Word replacement. For each word in the original sentence, we
search to determine whether there is a match in our corpus. If we
find a match, we replace the word with its context-similar one and
generate the resulting mutated input sentence. Compared with the
original sentence, each mutated sentence contains a single replaced
word. To reduce the possibility of generating mutants that do not
parse, we only replace nouns, adjectives, and numbers.

Structural filtering. The generated mutated sentence may fail to
parse, because the replaced word may not fit the context of the
new sentence. For example, “one” and “another” are context-similar
words, but “a good one” parses, while “a good another” does not.
To address such parsing failures, we apply additional constraints
to sanity check the generated mutants. In particular, we apply
structural filtering, based on the Stanford Parser [28]. Suppose the
original sentence is s = w1,w2, ...,wi , ...,wn , the mutated sentence
is s ′ = w1,w2, ...,w ′

i , ...,wn , where wi in s is replaced with w ′
i in

s ′. For each sentence, the Stanford Parser outputs l(wi), the part-
of-speech tag of each word used in the Penn Treebank Project [40].
If l(wi) , l(w ′

i), we remove s ′ from the mutant candidates because
the mutation yields changes in the syntactic structure.

We manually inspect the quality of the generated inputs and
report results in Section 4.

2.3 Automatic Test Oracle Generation
To perform testing we need to augment the test inputs we generate
with test oracles, i.e., predicates that check whether an inconsis-
tency bug has been found. To do so, we assume that the unchanged
parts of the sentences preserve their adequacy and fluency modulo
the mutated word. Adequacy means whether the translation con-
veys identical meaning, whether there is information lost, added,

or distorted; Fluency means whether the output is fluent and gram-
matically correct [8, 16].

Let t(s) and t(s ′) be the translations of sentences s and s ′ that
were produced by replacing the wordw (in s) withw ′ (in s ′). Thus,
we would like to check the similarity between t(s) and t(s ′) when
ignoring the translations for wordsw andw ′. Unfortunately, it is
not easy to strip the effect ofw andw ′, because a)w andw ′ may
change the entire translation of the sentences, and b) it is not easy
to accurately map the wordsw andw ′ with their respective one(s)
in the translated text.

To bypass this problem, we calculate the similarity of subse-
quences of t(s) and t(s ′), and use the largest similarity to approx-
imate the consistency level between t(s) and t(s ′). Algorithm 1
shows the process. For t(s) and t(s ′), we first apply GNUWdiff [11]
to get the difference slices (Line 1). GNU Wdiff compares sentences
on word basis, and is useful for comparing two texts in which a few
words have been changed [11]. With Wdiff, the difference slices of
two sentences “A B C D F” and “B B C G H F" are represented as
“A”, “D” and “B”, “G H” for the two sentences, respectively.

The diff slices of t(s) and t(s ′) are saved to set Bs and Bs ′
4. We

then delete a slice from the translations, one at a time (Line 5
and Line 9). Each slice corresponds to one subsequence with this
slice deleted. For the example above, “A B C D F” will have two
subsequences: “B C D F” (deleting “A”) and “A B C F” (deleting “D”).
These new subsequences of t(s)/t(s ′) are added into setTo /Tm (Line
6 and Line 10).

For each element in set To , we compute its similarity5 with each
element in the set Tm (Line 15). Thus, we get |To | ∗ |Tm | similarity
scores, where |To | and |Tm | is the size of To and Tm . We then use
the highest similarity as the result of the final consistency score
(Lines 16).

This configuration reduces the influence of the mutated word,
and helps to select an inconsistency upper bound. Even if the two
subsequences with the largest similarity contain the replaced word,
other sentence parts have worse similarity, so it is unlikely that this
case is biased by the replaced word (leads to false positives).

Details about the experimental setup and the results of the thresh-
old setup are discussed in Section 4.2. Additionally, we evaluate the
effectiveness of our consistency measurements via manual inspec-
tion. These results are presented in Section 4.2.

4Long slices are unlikely to correspond to the mutated word, we thus only keep slices
that are no longer than 5 words.
5We explore four types of similarity metrics in this paper (see full details in Section 3.2).

Preprint, Under review, Sun and Zhang, et al.

Algorithm 1: Process of obtaining consistency score
Data: t (s): translation of the original sentence; t (s′): translation of

the mutant
Result: ConScore: Consistency score between t (s) and t (s′)

1 Bs , Bs′ =Wdiff(t (s), t (s′))
2 To = {t (s)}
3 Tm = {t (s′)}
4 for each subsequence bs ∈ Bs do
5 r = DeleteSub(t (s), bs)
6 To = To ∪ {r }
7 end
8 for each subsequence bs′ ∈ Bs′ do
9 r ′ = DeleteSub(t (s′), bs′)

10 Tm = Tm ∪ {r ′ }
11 end
12 ConScore = -1
13 for each sentence a ∈ To do
14 for each sentence b ∈ Tm do
15 Sim = ComputeSimilarity(a, b)
16 ConScore =Max(ConScore, Sim)
17 end
18 end
19 return ConScore

2.4 Automatic Inconsistency Repair
We first introduce the overall repair process, then introduce twomu-
tant translation ranking approaches (probability and cross-reference).

2.4.1 Overall Repair Process. First, we repair the translation of the
original sentences and then we seek to find a translation for the
mutant, which must pass our consistency test.

Algorithm 2 shows the repair process. For t(s) which has been
revealed to have inconsistency bug(s), we generate a set of mu-
tants and get their translations t(s1), t(s2), ..., t(sn). These mutants
and their translations, together with the original sentence and its
translation, are put into a dictionary, T (Line 1). We then rank the
elements in T , in descending order, using the predictive probabil-
ity or cross-reference, and put the results in OrderedList (Line 2).
The details of probability and cross-reference ranking are given in
Section 2.4.2 and Section 2.4.3.

Next, we apply word alignment to obtain the mapped words
between s and t(s) as a(s) (Line 3). Word alignment is a natural
language processing technique that connects two words if and only
if they have a translation relationship. In particular, we adopt the
technique proposed by Liu et al. [27], which uses a latent-variable
log-linear model for unsupervised word alignment. We then check
whether a sentence pair (sr , t(sr)) in OrderedList can be adopted
to repair the original translation. We follow the ranking order, until
we find one mutant translation that is acceptable for inconsistency
repair.

If sr is the original sentence (sr == s), it means the original
translation is deemed a better choice than other mutant translations
and so we will not touch it (Lines 6-8). Otherwise, we do the same
alignment to s1 and t(s1) as to s and t(s). The variables wi , wr

i
denote the replaced words in s , sr and we get the translated words
t(wi), t(wr

i) through the alignment (Lines 9-12).

Algorithm 2: Process of automatic repair
Data: s : a sentence input; t (s): translation of s ; s1, s2, ..., sn :

mutants of s ; t (s1), t (s2), ..., t (sn): translations of the mutants;
Result: NewTrans: repaired translation for s

1 T = {(s, t (s)), (s1, t (s1)), (s2, t (s2)), ..., (sn, t (sn))}
2 OrderedList = Rank(T)
3 a(s) = wordAlignment(s, t (s))
4 NewTrans = t (s)
5 for each sentence and its translation sr , t (sr) ∈ OrderedList do
6 if sr == s then
7 break
8 end
9 a(sr) = wordAlignment(sr , t (sr))

10 wi , wr
i = getReplacedWord(s, sr)

11 t (wi) = getTranslatedWord(wi , a(s))
12 t (wr

i) = getTranslatedWord(wr
i , a(sr))

13 if isnumeric(wi)! = isnumeric(t (wi)) or
isnumeric(wr

i)! = isnumeric(t (wr
i)) then

14 continue
15 end
16 t r (sr) = mapBack(t(s), t(sr), s, sr, a(s), a(sr))
17 if not (isnumeric(wi) and isnumeric(wr

i)) then
18 if structure(t r (sr))! = structure(t (sr)) then
19 continue
20 end
21 end
22 if isTest(s) then
23 so, t (so) = getRepairedResult(s)
24 if not isConsistent (t (so), t r (sr)) then
25 continue
26 end
27 end
28 NewTrans = t r (sr)
29 break
30 end
31 return NewTrans

Word alignment is not 100% accurate. If we directly map the
translation by replacing t(wr

i) with t(wi), it may lead to grammati-
cal errors or context mismatches. We adopt the following strategies
to judge whether the replacement is acceptable. 1) We constrain
thatwi ,wr

i and t(wi), t(wr
i) must belong to the same type (i.e., nu-

meric or non-numeric) (Line 13-15). 2) If the replaced words are of
the non-numeric type, we apply Stanford Parser to check whether
the replacement would lead to structural changes (Line 17-21).

When repairing the translation of the mutated input (Line 22),
we get the repaired result of the original sentence (Line 23), then
check whether the translation solution candidate is consistent with
the repaired translation of the original sentence (Line 24-26). If not,
we proceed by checking other repair candidates.

2.4.2 Translation Ranking based on Probability. For a sentence s
and its mutants S = s1, s2, ...sn , let t(s) be the translation of s , let
t(si) be the translation of mutant si . This approach records the
translation probability for each t(si), and chooses the mutant with
the highest probability as a translation mapping candidate. The

Automatic Testing and Improvement of Machine Translation Preprint, Under review,

translation of the corresponding mutant will then be mapped back
to generate the final repaired translation for s using word alignment.

This is a grey-box repair approach. It requires neither the training
data nor the source code of the training algorithm, but needs the
predictive probability provided by the machine translator. We call
this grey-box because implementors may regard this probability
information as an internal attribute of the approach, not normally
intended to be available to end users.

2.4.3 Translation Ranking based on Cross-reference. For a sentence
s and its mutants S = s1, s2, ...sn , let t(s) be the translation of s , and
let t(si) be the translation of mutant si . This approach calculates the
similarity among t(s), t(s1), t(s2), ...t(sn), and uses the translation
that maps the best (with the largest mean similarity score) with
other translations to map back and repair the previous translation.

This is a black-box repair approach. It requires only the ability
to execute the translator under test and the translation outputs.

3 EXPERIMENTAL SETUP
In this section, we introduce the experimental setup that evaluates
the test input generation, translation inconsistency detection, and
translation inconsistency repair.

3.1 Research questions
We start our study by assessing the ability of TransRepair to

generate valid and consistent test inputs that can be adopted for
consistency testing. Hence we ask:

RQ1: How accurate are the test inputs of TransRepair?

We answer this question by randomly sampling some candidate
pairs and checking (manually) whether they are valid. The answer
to this question ensures that, TransRepair, indeed generates inputs
that are suitable for consistency checking.

Given that we found evidence that TransRepair generates effec-
tive test pairs, we turn our attention to the question of how effective
these pairs are at detecting consistency bugs. Therefore we ask:

RQ2: What is the bug-revealing ability of TransRepair?

To answer RQ2 we calculate consistency scores based on similar-
ity metrics to act as test oracles (that determine whether a bug has
been detected). To assess the bug-revealing ability of the TransRe-
pair, we manually check a sample of translations and compare the
resulting manual inspection results with automated test results.

Having experimented with fault revelation, we evaluate the re-
pair ability of TransRepair to see how well it repairs inconsistency
bugs. Thus, we ask:

RQ3: What is the bug-repair ability of TransRepair?

To answer this question, we record how many inconsistency
bugs are repaired (assessed by consistency metrics and manual
inspection). We also manually examine the translations repaired
by TransRepair, and check whether they improve translation con-
sistency as well as quality.

3.2 Consistency Metrics
We explore four widely-adopted similarity metrics for measuring
inconsistency. For ease of illustration, we use t1 to denote the trans-
lation output of the original translation input; we use t2 to denote
the translation output of the mutated translation input.

LCS-based metric. It measures the similarity via normalised
length of a longest common subsequence between t1 and t2:

MLCS =
len(LCS(t1, t2))

Max(len(t1), len(t2))
(2)

In this formula, LCS is a function that calculates a longest common
subsequence [22] between t1 and t2 that appear in the same relative
order. For example, an LCS for input Sequences “ABCDGH” and
“AEDFHR” is “ADH” with a length of 3.

ED-based metric. This metric is based on the edit distance be-
tween t1 and t2. Edit distance is a way of quantifying how dissimilar
two strings are by counting the minimum number of operations
required to transform one string into the other [34]. To normalise
the edit distance, we use the following formula which has also been
adopted in previous work [17, 49].

MED = 1 − ED(t1, t2)
Max(len(t1), len(t2))

(3)

In this formula, ED is a function that calculates the edit distance
between t1 and t2.

tf-idf-based metric. tf-idf (term frequency–inverse document
frequency) can be used to measure similarity in terms of word
frequency. Each wordw has a weighting factor, which is calculated
based on the following formula, where C is a text corpus (in this
paper we use the training data of Transformer), |C | is the sentence
number in C , fw is the number of sentences that containw .

widf = log((|C | + 1)/(fw + 1)) (4)

We then represent each sentence with the bag-of-words model [51],
which is a simplified representation commonly used in natural
language processing. In this model, the grammar and the word
order is disregarded, only keeping multiplicity (i.e., “A B C A” is
represented as “A”:2, “B”:1, “C”:1, namely [2, 1, 1] in vector). Each
dimension of the vector is multiplied with its weight widf . We
calculate the cosine similarity (Equation 1) of the weighted vectors
of t1 and t2 as their final tf-idf-based consistency score.

BLEU-based metric. The BLEU (BiLingual Evaluation Under-
study) is an algorithm that automatically evaluates machine transla-
tion quality via checking the correspondence between a machine’s
output and that of a human. It can also be adopted to compute the
similarity between the translation of the original sentence and the
translation of a mutant. Details, description, and motivation for the
BLEU score can be found in the translation literature [30]. Due to
lack of space we only provide an overview here.

BLEU first counts the number of matched subsequences between
sentences and computes a precision pn (which is called modified
n-gram precision [30], where n means the subsequence length). For
example, in sentences “A A B C” (s1) and “A B B C” (s2) there are
three 2-gram subsequences in s2: AB, BB, and BC . Two of them are
matched with those from s1: AB and BC . Thus, p2 is 2/3.

Preprint, Under review, Sun and Zhang, et al.

As well as pn , the calculation of BLEU score also requires an
exponential brevity penalty factor BP (to penalise overaly short
translations), which is shown by Formula 5. c denotes the length of
t(si) and r is the length of t(s).

BP =
{

1 if c > r

e(1−r/c) if c ≤ r
(5)

The BLEU score is finally computed by Formula 6, wherewn =
1
N

(we use N = 4 in this paper) is the uniform weights.

BLEU = BP · exp
(N∑
n=1

wn logpn

)
. (6)

Since BLEU is unidirectional (i.e., BLEU (s, s ′) , BLEU (s ′, s)), we
use the higher score for measuring the similarity between s and
s ′. This is consistent with our intention in Algorithm 1: to get an
upper bound of the consistency, thereby avoiding false positive
claims about translation bugs.

3.3 Machine Translators
Our experiment considers both industrial and state-of-the-art research-
oriented machine translators. One is Google Translate [15] (abbrevi-
ated as GT in the results section), a widely used machine translation
service developed by Google. The other is Transformer [42], a trans-
lator studied by the research community.

We use Google translate, because it is an example of a system
that forces us to perform black-box repairs; we have no access to the
training data nor the code of the translation system, and therefore
any improvements, by definition, can only have been achieved by
a black-box approach. Also, of course, it is a production-quality
mainstream translation system, making the results more interesting.

We use the default setup to train Transformer. Transformer
is trained based on three datasets: the CWMT dataset [7] with
7,086,820 parallel sentences, the UN dataset [53] with 15,886,041
parallel sentences, and the News Commentary dataset [46] with
252,777 parallel sentences as the training data. The validation data
(to help tune hyper-parameters) is also from the News Commentary
and contains 2,002 parallel sentences. Transformer runs with the
Tensor2Tensor deep learning library [41]. To get a more effective
translator, we train the model for 500,000 epochs.

3.4 Test Set
Following previous machine translation research [18, 19], we use
a test set from the News Commentary [46] dataset for both Google
Translate and Transformer. The test set contains 2,001 parallel
sentences and are different from the training set and validation
set. The Chinese sentences in our experiments are in the form of
characters. set6.

Our experiments were conducted on Ubuntu 16.04 with 256GB
RAM and four Intel E5-2620 v4 CPUs (2.10 GHz), which contains
32 cores all together. The neural networks we used were all trained
on a single Nvidia Titan RTX (24 GB memory).

4 RESULTS
This section reports the results that answer our research questions.
6The Chinese sentences in our experiments are in the form of characters.

4.1 Effectiveness on Input Generation (RQ1)
We start by answering RQ1. For each test sentence, we generate
mutants and check whether they pass the structural filtering (see
more in Section 2.2.2). In particular, for each sentence we generate
up to 5 mutants that pass through the filter (we study the influence
of the number of mutants in Section 5). For the 2,001 test sentences,
21,960 mutant candidates are generated, with 17,268 discarded by
structural filtering. In the rest of our experiment we use the remain-
ing 4,692 mutants, which are paired with 1,323 sentences, as test
inputs.

To manually assess whether these test inputs are qualified for
detecting translation inconsistency, we randomly sampled 400 of
them. The first two authors manually checked the validity of the
inputs, i.e., whether the replaced word in the mutant leads to gram-
matical errors and whether the mutant ought to have consistent
translations with the original sentence. This validation step reveals
three invalid mutants: 1) He was a kind spirit with a big heart: kind
→ sort; 2) Two earthquakes with magnitude 4.4 and 4.5 respectively:
Two → Six; 3) It is in itself a great shame: great→ good.

The remaining 397 of the 400 meet the two validity criteria, indi-
cating a precision of 99%. We conclude that our two strategies for
the intersection of two word2vec models, and the use of Stanford
Parser as a filter have a high probability of yielding valid test sen-
tences. The 400 mutants and the manual assessment results can be
found on the TransRepair homepage [2].

In the next section we use the 4,692 mutants (from the 1,323
original sentences) to examine the test translation consistency of
machine translation systems.

Answer to RQ1: TransRepair has good precision (99%) for
generating test sentences that are grammatically correct
and yield consistent translations.

4.2 Inconsistency-revealing Ability of
TransRepair (RQ2)

This section answers RQ2, i.e., investigates the inconsistency-revealing
ability of TransRepair. To answer this question, we investigate: 1)
the consistency metric values between the mutant and the original
translations; 2) the manual inspection results of translation incon-
sistency. We also explore how close the consistency metrics and
manual inspection are in evaluating inconsistency.

Consistency Metric Values. We translate the 4,692 generated in-
puts with Google Translate and Transformer, and compare them
with the translations of the original sentences, following the steps
of Algorithm 1. For each mutant, we calculate four consistency
scores, each one corresponding to one of the similarity metrics
(outlined in Section 3.2).

Figure 3 shows the histogram of consistency scores that are
lower than 1.0. As can be seen from the figure, different metric
values have different distributions, yet overall, all the four metrics
report a large number of translations (i.e., around 47% of the total
translations) with a score below 1.0, indicating the presence of
translation inconsistency.

Automatic Testing and Improvement of Machine Translation Preprint, Under review,

LCS Tf−idf

BLEU ED

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

0

200

400

600

Consistency metric values

C
ou

nt

Figure 3: Histogram of metric scores. A large number of mu-
tant translations have similarity scores lower than one, in-
dicating many inconsistent translations (RQ2).

Table 1 shows the results of the reported inconsistent translations
with different metric thresholds. From Table 1, we can see that bugs
remain even for highly permissive consistency thresholds.

Table 1: Number of reported inconsistency bugs with differ-
ent thresholds between 1.0 and 0.6. With a 1.0 threshold the
translation is deemed buggy if there is any detected incon-
sistency. The lower the threshold, themore permissive is the
criteria for deeming buggy. As can be seen, bugs remain even
for highly permissive consistency thresholds (RQ2).

Thresh. 1.0 0.9 0.8 0.7 0.6

G
T

LCS 2,053 (44%) 865 (18%) 342 (7%) 123 (3%) 57 (1%)
ED 2,053 (44%) 913 (19%) 401 (9%) 198 (4%) 101 (2%)
Tf-idf 2,459 (52%) 548 (12%) 208 (4%) 71 (2%) 21 (0%)
BLEU 2,053 (44%) 1,621 (35%) 911 (19%) 510 (11%) 253 (5%)

Tr
an
sf
or
m
er LCS 2,213 (47%) 1,210 (26%) 634 (14%) 344 (7%) 184 (4%)

ED 2,213 (47%) 1,262 (27%) 700 (15%) 428 (9%) 267 (6%)
Tf-idf 2,549 (54%) 851 (18%) 399 (9%) 188 (4%) 112 (2%)
BLEU 2,213 (47%) 1,857 (40%) 1,258 (27%) 788 (17%) 483 (10%)

Manual Inspected Inconsistency. In addition, we randomly sample
300 translations of the mutants. Two of them do not parse so we
use the remaining 298 translations for analysis. For each mutant,
the first two authors manually inspected its translation and the
translation of the original sentence. An inconsistency is reported
when any of the following criteria are met: Apart from the mutated
substitute word, the two translations 1) have different meanings; 2)
have different tones; 3) use different characters for proper nouns.

Manual inspection reveals 107 (36%) inconsistent translations
for Google Translate, and 140 (47%) inconsistent translations for
Transformer7.

Correlation between Metrics and Manual Inspection. We compare
metric scores and human consistency assessment results. We split
the 298 human-labelled translations into two groups based on man-
ual inspection. One is labelled as consistent translations, the other

7The Cohen’s Kappa is 0.96/0.95 for Google Translate/Transformer, indicating that the
inspection results are highly consistent.

is labelled as inconsistent translations. We then check the metric
value scores in each group.

●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●●

●

●

●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.4

0.6

0.8

1.0

LC
S

sc
or

e

Manual check: consistent Manual check: inconsistent

Figure 4: Comparison of metric scores and manual inspec-
tion of translation consistency. There is a good agreement
between metric score values and human assessment (RQ2).

Figure 4 shows the results8. The points on the left/right of the
dotted vertical line depict the metric values for the translations
manually labelled as consistent/inconsistent. We observe that most
points (82.2%) in the left section have a score of 1.0. The left sec-
tion generally has higher score values (with a mean value of 0.99)
than the right part (with a mean value of 0.86). These observations
indicate that the metric values and manual inspection tend to agree
on translation inconsistency. It is worth noting that Figure 4 also
shows some low metric values on the left section and high metric
values on the right section, which indicates the presence of false
positives and false negatives of using metrics to assess consistency.
We analyse false positives and false negatives in more detail below:

Threshold Learning. Metric scores are continuous values. To au-
tomatically report inconsistency, we need to set a threshold for each
metric. In this paper, we choose a threshold that lets metric-value
judgement best resemble manual inspection results. To do this, we
randomly sampled another 100 translations from Google Translate
and manually label them as consistent or not. We then used these
100 labels to choose a threshold (from 0.8 to 1.0 with a step of 0.01)
with the largest F-measure score for each similarity metric. The
best thresholds for LCS, ED, tf-idf, and BLEU identified in this way
are 0.963, 0.963, 0.999, 0.906 with F-measure scores 0.81, 0.82, 0.79,
0.82, respectively. When a metric value falls below the so-identified
threshold, our approach will report an inconsistency bug.

To know how well the chosen thresholds capture the boundary
between consistency and inconsistency, we test the thresholds us-
ing the 298 previously sampled translations, on Google Translate
and Transformer respectively. The results are shown in Table 2. A
false positive (FP in the table) means the threshold judges a trans-
lation as inconsistent but manual inspection is consistent. A false
negative (FN in the table) means the threshold judges a translation
as consistent but manual inspection is inconsistent. From the table,

8This figure shows only the LCS metric. Full results are on our homepage [2].

Preprint, Under review, Sun and Zhang, et al.

the proportion of false positives and false negatives are all below
10%, which we deem to be acceptable.

After a manual check of FPs and FNs, we found that an FN may
happen when there is a minor character difference, but with a
different meaning or tone. For example, in our results, one mutant
translation has an extra er (means “But”) which does not exist
in the original translation. Manual inspection deemed this to be
inconsistent, while metrics did not. An FP may happen when there
are many different words in the two translations, but they share
the same meaning. For example, Chinese phrases shang wei and
hai mei you both mean “not yet”, but the characters that express
each phrase are totally different.

The harm that an FP in the testing process may bring lies in
the possibility that our approach may make the translation worse.
Section 4.3.2 explores this possibility.

Table 2: Precision/recall for inconsistency revealing (RQ2)

Metric TN FN FP TP Precision Recall F-meas.

G
T

LCS 169 (57%) 16 (5%) 22 (7%) 91 (31%) 0.81 0.85 0.83
ED 169 (57%) 16 (5%) 22 (7%) 91 (31%) 0.81 0.85 0.83
tf-idf 162 (54%) 12 (4%) 29 (10%) 95 (32%) 0.77 0.89 0.82
BLEU 171 (57%) 20 (7%) 20 (7%) 87 (29%) 0.81 0.81 0.81

Tr
an
sf
or
m
er LCS 142 (48%) 22 (7%) 16 (5%) 118 (40%) 0.88 0.84 0.86

ED 142 (48%) 21 (7%) 16 (5%) 119 (40%) 0.88 0.85 0.87
tf-idf 141 (47%) 11 (4%) 17 (5%) 129 (43%) 0.88 0.92 0.90
BLEU 147 (49%) 23 (8%) 11 (4%) 117 (39%) 0.91 0.84 0.87

Overall Number of Inconsistency Issues. After identifying the
thresholds, we apply them to the translations of the 4,592 generated
inputs9, and check how many of them fall below the threshold.
It turns out that for Transformer, the inconsistent translation re-
sults are LCS: 1,917 (42%); ED: 1,923 (42%); tf-idf: 2,102 (46%); BLEU:
1,857 (40%). Thus, overall, about two fifths of the translations fall
below our chosen consistency thresholds. For Google Translate,
the inconsistent translation results are LCS: 1,708 (37%); ED: 1,716
(37%); tf-idf: 1,875 (41%); BLEU: 1,644 (36%). This also shows that
Google Translate is slightly better than Transformer with respect
to consistency.

Answers to RQ2: The metrics have an F-measure of
0.82/0.88 when detecting inconsistency bugs for Google
Translate/Transformer. Both metrics and manual inspec-
tion reveal that Google Translate has approximately 36%
inconsistent translations on TransRepair test inputs.

4.3 Bug-repair Ability (RQ3)
4.3.1 Improvement Assessed by Metrics. We apply our repair ap-
proaches to all the inconsistent translations, and check how many
translations can be repaired with our approach. For each sentence,
we generate 16 mutants for repair (we study the influence of the
number of mutants for repair in Section 5).

9We removed those 100 translations used for threshold learning from our test set and
used the remaining 4,592 inputs to conduct testing.

Table 3: Number and proportion of repaired bugs (RQ3).

Metric Probability Cross-reference

GT

LCS – 493 (28%)
ED – 503 (29%)
tf-idf – 478 (25%)
BLEU – 484 (29%)

Transformer

LCS 583 (30%) 374 (19%)
ED 581 (30%) 389 (20%)
tf-idf 640 (30%) 400 (19%)
BLEU 565 (30%) 380 (20%)

Table 3 shows the results, where each cell contains the number
and proportion of inconsistency bugs that the repair approach re-
pairs. The Column “Probability” represents the results for probability-
reference (grey-box repair); the Columns “Cross-reference” repre-
sents the results for cross-reference (black-box repair); For Google
translate, since the grey-box approach is not applicable, we only
present the results for the black-box approach.

From the table, TransRepair reduces, on average, 28% of bugs for
the black-box approach in Google Translate. For the Transformer
model, we can see the grey-box approach repairs 30% of bugs, the
black-box one repairs 19% to 20% of bugs. These experimental re-
sults show that the grey-box and black-box approaches are effective
at repairing inconsistency bugs.

4.3.2 Improvement Assessed by Human. Program repair studies
typically include a manual assessment process [24, 36, 47] in order
to validate their findings. Following a similar practice, the first two
authors (manually) checked the repaired results of the previously
labelled 298 sampled translations. The goal was to check whether
the changes in translations patched by our repair approach improve
translation consistency. Since our repair may also improve trans-
lation acceptability, we also check whether the changes bring any
translation acceptability improvement. For cross-reference based re-
pair, we manually assessed only the LCS metric since our (previous)
results showed similar results among the other metrics.

Among the 298 sentence pairs, 113/136 of them are reported as
having translation inconsistency on Google Translate/Transformer
by metrics. Our repair thus targets all these sentence pairs, includ-
ing the translations of both the original sentence and the mutant.
The probability-based repair approach finally changed 58 (out of
136) pairs for Transformer; The cross-reference-based repair ap-
proach finally changed 39/27 (out of 113/136) pairs for Google
Translate/Transformer.

For the translation pairs that have been modified by TransRepair,
the first two authors then manually compared two dimensions: 1)
the translation consistency before and after repair; 2) the accept-
ability of the translations (for both the original sentence and the
mutant) before and after repair. For each dimension, the authors
gave labels of “Improved”, “Unchanged”, or “Decreased”, consider-
ing both adequacy and fluency (see explanations of these two terms
in Section 2.3)10.

Table 4 shows the results. The first four rows are for Google
Translate. The remaining rows are for Transformer. The rows with
“overall” show results of translation acceptability improvement
10The mean Kappa score is for labelling translation consistency between the two
human labels, 0.97 for labelling the translation of the original sentence, and 0.81 for
labelling the translation of the mutant sentence.

Automatic Testing and Improvement of Machine Translation Preprint, Under review,

Table 4: Improvement Based on Manual Inspection (RQ3)

Aspect Improved Unchanged Decreased

G
T.
LC

S Translation consistency 33 (85%) 4 (10%) 2 (5%)
Translation acceptability: overall 22 (28%) 48 (62%) 8 (10%)
Translation acceptability: original 10 (26%) 23 (59%) 6 (15%)
Translation acceptability: mutant 12 (31%) 25 (64%) 2 (5%)

Tr
an
s.L

CS Translation consistency 24 (89%) 3 (11%) 0 (0%)
Translation acceptability: overall 15 (28%) 37 (69%) 2 (4%)
Translation acceptability: original 7 (26%) 19 (70%) 1 (4%)
Translation acceptability: mutant 8 (30%) 18 (67%) 1 (4%)

Tr
an
s.P

ro
b Translation consistency 51 (88%) 6 (10%) 1 (2%)

Translation acceptability: overall 30 (26%) 76 (66%) 10 (9%)
Translation acceptability: original 15 (26%) 36 (62%) 7 (12%)
Translation acceptability: mutant 15 (26%) 40 (69%) 3 (5%)

among the translations for both original sentences and mutant
sentences. The rows with “original”/“mutant” show the translation
repair results for original/mutant sentences.

We observe that TransRepair has a good effectiveness in improv-
ing translation consistency. For example, on average, 87% transla-
tion pairs improve the consistency for Google Translate and Trans-
former, while all together we observe only 3 translation consis-
tency decreases. We checked these decreased-consistency repairs
and found that, for one case, the original sentence translation has
been improved but not for the mutant translation, and thus after
repair, the improved translation of the original sentence does not
match well with the unimproved translation of the mutant. The
remaining two cases arise because the repairs of the original sen-
tences decreased, while our approach did not touch the mutant
translations.

The main purpose of our repair approach is to improve transla-
tion consistency. Translation acceptability improvement is a “bonus”
of our approach. From Table 4, perhaps to our surprise, the repair
approach improves the translation acceptability for around one
fourth (27%) repairs. There are 8% repairs with decreased accept-
ability. Based on our manual inspection, the reason for decreased
acceptability is that occasionally, the repair approach may trade
quality for consistency.

Answers to RQ3: Black-box repair reduces on average
28%/19% bugs for Google Translate/Transformer. Grey-
box repair reduces on average 30% bugs for Transformer.
Human inspection indicates that the repaired translations
improve consistency in 87% of the cases (reducing it in
2%), and have better translation acceptability in 27% of the
cases (worse in 8%).

5 EXTENDED ANALYSIS AND DISCUSSION
This section provides further details and analysis.

Example of Repaired Translations. Table 5 gives some exam-
ples of our improvement of mistranslation. The first column is the
translation input; the second column shows the original translation
output (converted to Pinyin), where words in italic explain the mis-
translated parts; the last column shows our improved translation.

Effectiveness and Efficiency of Data Augmentation. Previ-
ous work has adopted data augmentation to improve the robustness
of machine learning models [6, 33]. In our work, concerning trans-
lators whose source code is known, training data augmentation is
also a candidate solution to increase translation consistency.

To investigate this option, we designed experiments to study
whether adding more training data would yield better translation
consistency. We controlled the training data size and used 10%, 20%,
..., and 90% of the original training data to build Transformer re-
spectively. Figure 5 shows the results. When the size of the training
data ratio is between 0.7 and 1.0, we did not observe a decreas-
ing trend. This indicates that augmenting training data may have
limited effectiveness in improving translation inconsistency.

●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

0.40

0.45

0.50

0.2 0.4 0.6 0.8 1.0
Ratio of training data

R
at

io
 o

f b
ug

s

Figure 5: Ratio of inconsistency bugs with different training-
data size for Transformer.

Data augmentation needs model retraining. We found that using
100% training data to train the translator model took as much as
19 hours under our current experimental configuration (see more
details in Section 3). In practice, data collection, labelling, and pro-
cessing also needs time. All together, we find little evidence that
augmentation is a complete solution to this translation repair prob-
lem.

Compared with model retraining approaches like training data
augmentation, TransRepair has the following advantages: 1) Tran-
sRepair require neither the source code nor training data, and is
either completely black-box or requires only predictive probability
(grey-box); 2) TransRepair can have lower repair cost since it does
not need additional data and does not require model retraining;
3) TransRepair is more flexible, because it enables the repair of a
specific bug without touching other well-formed translations.

Efficiency of TransRepair. The cost of TransRepair includes
both testing and repair. Under our current experimental configu-
ration (see more details in Section 3), the mean time for testing is
0.97s per sentence; the mean time for repair is 2.68s per sentence
for the probability-based approach, and 2.93s per sentence for the
cross-reference-based approach. Thus, with current experimental
configuration, when using TransRepair to optimise the real-time on-
line machine translation, for a sentence that is deemed non-buggy,
it would take less than 1 second for the end user to receive a final
translation. For a sentence that is deemed buggy, it would take less
than 4 seconds (testing and repair) to get a final translation.

Preprint, Under review, Sun and Zhang, et al.

Table 5: Examples of Repaired Translations.

Input Original translation Repaired translation

Female students do good research in computer science. nüxuesheng zai jisuanji kexue fangmian zuole hen-
duo yanjiu [Bug: “good”→ “a lot”.]

nüxueshengzai jisuanji kexue fangmian zuole hen-
haode yanjiu

If you need help, you can enjoy timely services by press-
ing a nearby one of the 41 call buttons in the station.

ruguo ni xuyao bangzhu, ni keyi tongguo an fujin
de 41 ge hujiao anniu xiangshou jishi de fuwu. [Bug:
“one of” is not translated.]

ruguo ni xuyao bangzhu, ni keyi tongguo an fujin de 41
ge hujiao anniu zhong de yige lai xiangshou jishi de
fuwu.

Original Title : Canada Police Kill IS Supporters : Prepa-
rations for Homemade Bomb Downtown Attack Near
the End.

yuanshi biaoti: jianada jingcha sha le wo de
zhichizhe: wei hema zhizao baozha de zhunbei. [Bug:
“IS”→ “my”.]

yuanshi biaoti: jianada jingcha shalu IS zhichizhe: wei
hema zhizao zhadan de zhunbei.

Ban political campaigners and activists from handling
completed postal votes and postal vote envelopes.

jinzhi zhengzhi jingsuanzhe he huodongfenzi chuli
wan de youzheng xuanpiao he youzheng xuanpiao
xifeng [Bug: “completed” is mistranslated.]

jinzhi zhengzhi jingsuanzhe he huodongfenzi chuli yi
wancheng de youzheng xuanpiao he youzheng xuan-
piao xifeng.

Table 6: Number of detected and repaired bugswith different
number of mutants.

Metric Mutant number for testing Mutant number for repair

1 3 5 4 8 16

LCS 535 1,345 1,917 490 551 583
ED 536 1,349 1,923 488 549 581
tf-idf 583 1,467 2,102 534 600 640
BLEU 513 1,300 1,857 483 538 565

Influence of Mutant Number. We generate mutants during
both inconsistency testing and repair. For the test/repair process,
our default configuration generates at most 5/16 mutants for each
sentence. To investigate how the number of mutants affects the
testing and repair performance, we repeat our experiments with 1
or 3 mutants for test generation, and with 4 or 8 mutants for repair.
We then compare the number of revealed inconsistency bugs and
the number of bugs that our approaches repair. For repair, we only
present results of grey-box repair approach in the paper due to
space reason, as shown by Table 6. The full results are available
on our homepage [2]. We observe that during testing, using more
mutants helps to reveal more inconsistency bugs. It is the same for
repair, but using 4 mutants during repair also has an acceptable
effectiveness.

Application Scenario. TransRepair can be applied end to end.
Given a translation input and a machine translator, our approach
will automatically test and repair the translation output, and give a
new translation output to the end user.

6 RELATEDWORK
Software testing research has typically targeted traditional (non-
machine-learning-based) software systems. However, the recent
rise in the real-world importance of machine learning has resulted
in a concomitant rise in the level of research activity in software
testing for machine learning [50]. At the same time, software re-
pair concepts and techniques remain relatively under explored for
machine learning systems. In this section, we review the relation-
ship of our proposed machine translation testing and repair with
previous work on testing and repair machine translation systems,
which mainly focus on translation robustness.

Translation Robustness Testing. To test translation robust-
ness, researchers have explored how perturbations on the test in-
puts affect translations. Heigold et al. [21] studied three types of
character-level noisy test inputs that are generated via character
swapping, word scrambling, and character flipping. They found
that machine translation systems are very sensitive to slightly per-
turbed sentences that do not pose a challenge to humans. Belinkov
and Bisk [3] had a similar conclusion, not only on synthetic noise,
but also on natural noise (naturally occurring errors like typos and
misspellings). To have more diverse test cases for robustness testing,
Zhao et al. [52] used Generative Adversarial Networks (GANs) [14].
They projected the input sentence to a latent space, which is then
used for searching for test sentences close to the input.

These work targets robustness testing. The test inputs are syn-
thetic errors or naturally-occurring errors. The test oracles are
usually BLEU scores, which are bounded with human oracles. Our
approach targets translation consistency, and we generate consis-
tent test inputs by context-similar word replacement, instead of
involving errors. Our approach also does not require human oracles
during testing.

Sun and Zhou [39] proposed metamorphic relations for machine
translation. There are two major differences between our work and
theirs: 1) their work concerns testing only; we also repair; 2) their
test input generation merely replaces human names before “likes”
or “hates” and brands after them; our approach is comparatively
more exhaustive.

Translation Robustness Improvement. To improve transla-
tion robustness, previous work relies largely on data augmentation,
i.e., to add noisy data into the training data and to retrain the
model. Some work used model-independent data generation (also
called black-box data generation). Heigold et al. [21], Belinkov and
Bisk [3], and Sperber et al. [38] used synthetic noise to retain the
model. Karpukhin et al. [25] evaluated the impact of percentages
of synthetic noise to the training set.

Some work uses model-dependent data generation (white-box
data generation). Ebrahimi et al. [10] introduced an approach that
relies on an atomic flip operation. This operation generates tests
by swapping characters based on the gradients of the input vectors.
Cheng et al. [5] proposed a gradient-based method to generate
adversarial sentences by conducting word replacement.

There is also work on improving robustness via optimising
the learning algorithms. Belinkov and Bisk [3] proposed to use

Automatic Testing and Improvement of Machine Translation Preprint, Under review,

a structure-invariant representation for synthetic noise in the net-
work. They find that a character CNN representation is more robust
than others. Cheng et al. [6] introduced stability training by adding
a new component for discriminating the noise in the training set.
This component reduces the impact of the noise, and yields more
stable translations when making synonymous perturbations.

These previous approaches target overall robustness improve-
ment for all translations, rather than fixing specific mistranslations.

7 CONCLUSION
In this paper, we presented TransRepair, the first approach that
automatically tests and improves context-similar translation consis-
tency. TransRepair takes a sentence and applies a context-similar
mutation to generate slightly altered (mutated) sentences, to be
used to test machine translation systems. Testing is performed by
translating and comparing the original with the mutated sentences.
To judge consistency, TransRepair calculates the similarity of the
translation subsequences. When context-similar mutations yield
above-threshold disruption to the translation of the unchanged part,
TransRepair deems this to be a potential bug. In addition to testing,
TransRepair also automatically repairs inconsistencies in a black-
box or grey-box manner, which post-processes the translations
with reference to the translations of mutated sentences.

REFERENCES
[1] Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Prad-

han, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, Mohammed El-Bachouti, Robert Belvin, Ann Houston. 2013. OntoNotes.
https://catalog.ldc.upenn.edu/LDC2013T19.

[2] Anonymous. 2019. TransRepair Homepage. https://github.com/anonymous54351/
TransRepair.

[3] Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break
neural machine translation. In Proc. ICLR.

[4] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing: a
new approach for generating next test cases. Technical Report.

[5] Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019. Robust Neural Machine
Translation with Doubly Adversarial Inputs. In Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers. 4324–4333. https://www.aclweb.org/
anthology/P19-1425/

[6] Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie Zhai, and Yang Liu. 2018.
Towards robust neural machine translation. arXiv preprint arXiv:1805.06130
(2018).

[7] CWMT. 2018. The CWMT Dataset. http://nlp.nju.edu.cn/cwmt-wmt/.
[8] George Doddington. 2002. Automatic evaluation of machine translation quality

using n-gram co-occurrence statistics. In Proceedings of the second international
conference on Human Language Technology Research. Morgan Kaufmann Publish-
ers Inc., 138–145.

[9] David M Eberhard, Gary F Simons, and Charles D Fennig. 2019. Ethnologue:
Languages of the world. (2019).

[10] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-
Box Adversarial Examples for Text Classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics, Melbourne, Australia, 31–36.
https://doi.org/10.18653/v1/P18-2006

[11] Free Software Foundation. 2019. GNU Wdiff. https://www.gnu.org/software/
wdiff/

[12] Carlo Giglio and Richard Caulk. 1965. Article 17 of the Treaty of Uccialli. The
Journal of African History 6, 2 (1965), 221–231.

[13] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Asso-
ciates, Inc., 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-
nets.pdf

[15] Google. 2019. Google Translate. http://translate.google.com.
[16] Yvette Graham, Timothy Baldwin, Aaron Harwood, Alistair Moffat, and Justin

Zobel. 2012. Measurement of progress in machine translation. In Proceedings of
the Australasian Language Technology Association Workshop 2012. 70–78.

[17] Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor OK Li. 2018. Search engine
guided neural machine translation. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[18] Jie Hao, XingWang, Baosong Yang, LongyueWang, Jinfeng Zhang, and Zhaopeng
Tu. 2019. Modeling Recurrence for Transformer. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis, Minnesota, 1198–1207.
https://doi.org/10.18653/v1/N19-1122

[19] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark,
Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William
Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin,
Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dong-
dong Zhang, Zhirui Zhang, and Ming Zhou. 2018. Achieving Human Parity on
Automatic Chinese to English News Translation. CoRR abs/1803.05567 (2018).
arXiv:1803.05567 http://arxiv.org/abs/1803.05567

[20] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 24th International Symposium on High-Performance
Computer Architecture (HPCA 2018), February 24-28, Vienna, Austria.

[21] Georg Heigold, Stalin Varanasi, Günter Neumann, and Josef van Genabith. 2018.
How Robust Are Character-Based Word Embeddings in Tagging and MT Against
Wrod Scramlbing or Randdm Nouse?. In Proceedings of the 13th Conference of
the Association for Machine Translation in the Americas, AMTA 2018, Boston, MA,
USA, March 17-21, 2018 - Volume 1: Research Papers. 68–80. https://aclanthology.
info/papers/W18-1807/w18-1807

https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/anonymous54351/TransRepair
https://github.com/anonymous54351/TransRepair
https://www.aclweb.org/anthology/P19-1425/
https://www.aclweb.org/anthology/P19-1425/
http://nlp.nju.edu.cn/cwmt-wmt/
https://doi.org/10.18653/v1/P18-2006
https://www.gnu.org/software/wdiff/
https://www.gnu.org/software/wdiff/
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://translate.google.com
https://doi.org/10.18653/v1/N19-1122
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
https://aclanthology.info/papers/W18-1807/w18-1807
https://aclanthology.info/papers/W18-1807/w18-1807

Preprint, Under review, Sun and Zhang, et al.

[22] James W Hunt and Thomas G Szymanski. 1977. A fast algorithm for computing
longest common subsequences. Commun. ACM 20, 5 (1977), 350–353.

[23] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[24] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2018). ACM, New York, NY, USA, 298–309. https:
//doi.org/10.1145/3213846.3213871

[25] Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and Marjan Ghazvininejad.
2019. Training on Synthetic Noise Improves Robustness to Natural Noise in
Machine Translation. arXiv preprint arXiv:1902.01509 (2019).

[26] Huda Khayrallah and Philipp Koehn. 2018. On the impact of various types of
noise on neural machine translation. arXiv preprint arXiv:1805.12282 (2018).

[27] Yang Liu and Maosong Sun. 2015. Contrastive unsupervised word alignment with
non-local features. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

[28] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010

[29] M. Chris Mason. 2017. Strategic Insights: Lost in Translation. https://ssi.
armywarcollege.edu/index.cfm/articles/Lost-In-Translation/2017/08/17

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[31] Parmy Olson. 2018. The Algorithm That Helped Google Translate Become Sex-
ist. https://www.forbes.com/sites/parmyolson/2018/02/15/the-algorithm-that-
helped-google-translate-become-sexist/#224101cb7daa.

[32] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Semantically
equivalent adversarial rules for debugging nlp models. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 856–865.

[34] Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 5 (1998), 522–532.

[35] Robert Parker, David Graff, Junbo Kong, Ke Chen, Kazuaki Maeda. 2011. English
Gigaword Fifth Edition. https://catalog.ldc.upenn.edu/LDC2011T07.

[36] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:
Effective Object Oriented Program Repair. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017). IEEE
Press, Piscataway, NJ, USA, 648–659. http://dl.acm.org/citation.cfm?id=3155562.
3155643

[37] SpaCy. 2019. SpaCy. https://spacy.io/.

[38] Matthias Sperber, Jan Niehues, and Alex Waibel. 2017. Toward robust neural
machine translation for noisy input sequences. In International Workshop on
Spoken Language Translation (IWSLT).

[39] Liqun Sun and Zhi Quan Zhou. 2018. Metamorphic testing for machine trans-
lations: MT4MT. In 2018 25th Australasian Software Engineering Conference
(ASWEC). IEEE, 96–100.

[40] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. 2003. The Penn treebank:
an overview. In Treebanks. Springer, 5–22.

[41] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez,
Stephan Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan
Sepassi, Noam Shazeer, and Jakob Uszkoreit. 2018. Tensor2Tensor for Neural
Machine Translation. CoRR abs/1803.07416 (2018). http://arxiv.org/abs/1803.
07416

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. Curran Associates Inc., 6000–6010.

[43] VoiceBoxer. 2016. WHAT ABOUT ENGLISH IN CHINA? http://voiceboxer.com/
english-in-china/.

[44] Rining Wei and Jinzhi Su. 2012. The statistics of English in China: An analysis
of the best available data from government sources. English Today 28, 3 (2012),
10–14.

[45] Wikipedia. 2014. Wikipedia. https://dumps.wikimedia.org/.
[46] WMT. 2018. News-Commentary. http://data.statmt.org/wmt18/translation-task/.
[47] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for Automated

Program Repair. In Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA,
660–670. http://dl.acm.org/citation.cfm?id=3155562.3155644

[48] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong
Mei. 2014. Search-based inference of polynomial metamorphic relations. In
Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 701–712.

[49] Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig, and Satoshi
Nakamura. 2018. Guiding neural machine translation with retrieved translation
pieces. arXiv preprint arXiv:1804.02559 (2018).

[50] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning
Testing: Survey, Landscapes and Horizons. arXiv preprint arXiv:1906.10742 (2019).

[51] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learning and
Cybernetics 1, 1 (01 Dec 2010), 43–52. https://doi.org/10.1007/s13042-010-0001-0

[52] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017. Generating Natural
Adversarial Examples. CoRR abs/1710.11342 (2017). arXiv:1710.11342 http:
//arxiv.org/abs/1710.11342

[53] Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. 2016. The
united nations parallel corpus v1. 0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016). 3530–3534.

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
http://www.aclweb.org/anthology/P/P14/P14-5010
https://ssi.armywarcollege.edu/index.cfm/articles/Lost-In-Translation/2017/08/17
https://ssi.armywarcollege.edu/index.cfm/articles/Lost-In-Translation/2017/08/17
https://www.forbes.com/sites/parmyolson/2018/02/15/the-algorithm-that-helped-google-translate-become-sexist/##224101cb7daa
https://www.forbes.com/sites/parmyolson/2018/02/15/the-algorithm-that-helped-google-translate-become-sexist/##224101cb7daa
https://catalog.ldc.upenn.edu/LDC2011T07
http://dl.acm.org/citation.cfm?id=3155562.3155643
http://dl.acm.org/citation.cfm?id=3155562.3155643
https://spacy.io/
http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
http://voiceboxer.com/english-in-china/
http://voiceboxer.com/english-in-china/
https://dumps.wikimedia.org/
http://data.statmt.org/wmt18/translation-task/
http://dl.acm.org/citation.cfm?id=3155562.3155644
https://doi.org/10.1007/s13042-010-0001-0
http://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Automatic Test Input Generation
	2.3 Automatic Test Oracle Generation
	2.4 Automatic Inconsistency Repair

	3 Experimental Setup
	3.1 Research questions
	3.2 Consistency Metrics
	3.3 Machine Translators
	3.4 Test Set

	4 Results
	4.1 Effectiveness on Input Generation (RQ1)
	4.2 Inconsistency-revealing Ability of TransRepair (RQ2)
	4.3 Bug-repair Ability (RQ3)

	5 Extended Analysis and Discussion
	6 Related Work
	7 Conclusion
	References

