
TUNA: TUning Naturalness-based Analysis

Matthieu Jimenez

University of Luxembourg

matthieu.jimenez@uni.lu

Maxime Cordy

University of Namur, Belgium

University of Luxembourg

maxime.cordy@unamur.be

Yves Le Traon

University of Luxembourg

yves.letraon@uni.lu

Mike Papadakis

University of Luxembourg

mike.papadakis@gmail.com

Since the seminal work of Hindle et al. [1] on software nat-

uralness, natural language processing techniques were applied

successfully to facilitate a number of software engineering

tasks, such as code completion [1], bug prediction [2], etc. The

key idea behind these techniques is to capture regularities of

existing code into a language model, with the aim of inferring

characteristics of previously unseen code based on how regular

it looks according to the model. As an example, feeding a

model with buggy code makes it capable of detecting new

bugs, that is, the code containing the bugs will appear natural

to the model. As for code completion, the language model can

suggest the most-likely token to follow a given incomplete

piece of code.

The most common types of language model are the n-gram

models. They consist of a set of conditional probabilities of

the form P (tk|tk−n+1 . . . tk−1), each of which records the

probability that some token tk follows a preceding sequence

tk−n+1 . . . tk−1. In the case of source code analysis, tokens

are fragments of a given representation of the code, such

as a lexical token or a node of the code’s abstract syntax

tree. To build an n-gram model for a given source code, one

must (1) tokenize this code to obtain sequences of tokens; (2)

parameterize the model (e.g. set the size n of the n-grams,

specify the unknown threshold, choose a smoothing method);

(3) train the model, that is, make it compute the conditional

probabilities based on what it observes in the source code.

Then, the model can be used to compute the naturalness of

some new code, typically as a cross-entropy value obtained

from the computed probabilities. A lower cross-entropy means

that the new code is more natural, and thus more similar to

the code used to train the model. By computing naturalness

values, one can then perform valuable source code analyses

(see [3] for an expanded view of what can be achieved).

However, in our related ICSME ’18 paper [4], we have

shown that the conclusions of a study can drastically change

with respect to how the code is tokenized and how the used n-

gram model is parameterized. These choices are thus of utmost

importance, and one must carefully make them. To show

this and allow the community to benefit from our work, we

have developed TUNA (TUning Naturalness-based Analysis),

a Java software artifact to perform naturalness-based analyses

of source code. More precisely, TUNA provides multiple

functionalities through the interaction of dedicated modules.

First, TUNA’s module can retrieve Java source code con-

tained in a public GitHub repository. As such, the module

tuna-gitUtils includes a class GitClonePull, where

one can specify a source repository and a destination folder

before cloning or updating this repository.

Second, TUNA can tokenize Java source code based on mul-

tiple representations (e.g., as UTF8 tokens, as programming

language grammar’s lexical units, as sequences of nodes of the

abstract syntax tree visited in depth-first or breadth-first order).

To achieve this, the module tuna-tokenizer provide

a factory named JavaFileTokenizerFactory, which

provides methods to instantiate any tokenizer mentioned in

our work [4]. For grammar-based or AST-based tokenization,

it relies on JAVAPARSER [5] to parse the source code.

Third, one can parameterize n-gram models, train them

based on tokenized source code, and compute the cross-

entropy of one or more source files. To this end, the module

tuna-modelling provides an interface NgramModel and

an implementation of it, based on Kylm [6] and named

NgramModelKylmImpl. Following the interface segrega-

tion principle, alternative implementations can easily be added

in the future.

Finally, the module experiment contains the code needed

to replicate our experiments reported in [4].

To the best of our knowledge, TUNA is the first open-

source1, end-to-end toolchain to carry out source code analyses

based on naturalness. We continue to make it evolve as we

perform additional studies. As such, other modules exist; we

presented only the ones relevant for the purpose of our related

paper [4].

REFERENCES

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 837–847.

[2] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the ”naturalness” of buggy code,” in Proceedings of ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 428–439.

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of ma-
chine learning for big code and naturalness,” CoRR, vol. abs/1709.06182,
2017.

[4] M. Jimenez, M. Cordy, Y. L. Traon, and M. Papadakis, “On the impact of
tokenizer and parameters on n-gram based code analysis,” in Proceedings

of ICSME 18, 2018.
[5] J. Parser. (2017) Java parser github. [Online]. Available: https:

//github.com/javaparser/javaparser
[6] G. Neubig. (2017) Kyoto language modeling toolkit. [Online]. Available:

https://github.com/neubig/kylm

1One can download it at https://github.com/electricalwind/tuna


