
On the Impact of Tokenizer and Parameters on

N-Gram Based Code Analysis

Matthieu Jimenez

University of Luxembourg

Luxembourg, Luxembourg

matthieu.jimenez@uni.Lu

Maxime Cordy

University of Namur

Namur, Belgium

maxime.cordy@unamur.be

Yves Le Traon, Mike Papadakis

University of Luxembourg

Luxembourg, Luxembourg

yves.letraon@uni.lu, michail.papadakis@uni.lu

Abstract—Recent research shows that language models, such
as n-gram models, are useful at a wide variety of software
engineering tasks, e.g., code completion, bug identification, code
summarisation, etc. However, such models require the appropri-
ate set of numerous parameters. Moreover, the different ways
one can read code essentially yield different models (based on
the different sequences of tokens). In this paper, we focus on n-
gram models and evaluate how the use of tokenizers, smoothing,
unknown threshold and n values impact the predicting ability of
these models. Thus, we compare the use of multiple tokenizers
and sets of different parameters (smoothing, unknown threshold
and n values) with the aim of identifying the most appropriate
combinations. Our results show that the Modified Kneser-Ney
smoothing technique performs best, while n values are depended
on the choice of the tokenizer, with values 4 or 5 offering a good
trade-off between entropy and computation time. Interestingly,
we find that tokenizers treating the code as simple text are the
most robust ones. Finally, we demonstrate that the differences
between the tokenizers are of practical importance and have the
potential of changing the conclusions of a given experiment.

I. INTRODUCTION

Natural Language Processing (NLP) [1] techniques realise

the assumption that humans exploit partially the complexity

of the language by following particular norms. Thus, natural

language is composed of small snippets that are repetitive

and follow predictable patterns. This phenomenon is called

by researchers as the naturalness of the language. Recently,

the study of Hindle et al. [2] showed that source code follows

the same trend. This means that code (small code snippets) is

also repetitive and predictable.

This observation paves the way for using statistical lan-

guage models for code analysis. Such models can provide

suggestions for completing code [2], complementing static bug

finders [3], [4], detect and correct syntax errors [5], [6], auto-

matically generating code explanations [7], synthesizing code

from natural-language specifications [8] and many others [9].

N-gram models operate by tokenizing documents (i.e. break-

ing these into words) and calculating the number of times

every sequence of n words appear in a given document corpus.

Based on that they estimate the likelihood that a given se-

quence appears. Their application requires setting parameters

such as the length n of the sequences, the unknown threshold

(ignoring tokens that appear fewer times than the threshold)

and the smoothing technique (scoring unknown sequences).

In the case of code, the appropriate way of tokenizing

documents (e.g. source files) is not evident as code can be

processed in many ways. Naturally, one can read code as

any text document, that is, typically from left to right and

top to bottom. However, developers tend to follow the flow

of the program (that is not necessarily sequential) by taking

advantage of the code characteristics [10], e.g., the grammar

(programming language) used, while automated tools like

compilers rely on program abstractions such as flow graphs

and Abstract Syntax Trees (AST).

Overall, the prominent use of n-grams for source code

analysis requires setting a number of parameters. Previous

work set them as in the case of natural language. However,

given the differences between code and natural language, it

is imperative to re-validate and tune the application of the

language models in the context of code. This is because

there is no empirical evidence related to the generalization

of the existing results, from the natural language field to

the source code analysis field. For instance, choosing the

most appropriate smoothing technique (way of treating unseen

sequences), is not evident due to the vocabulary and structural

differences between code and text. Moreover, as there is a

plethora of parameter possibilities, there is a need for checking

the sensitivity of the models w.r.t. these choices and the overall

impact of the untuned parameter selection.

We therefore, investigate the effect of code representation

when used in language models. We use the 8 tokenizers of

Table I. The first two correspond to “an outsider’s point of

view”, i.e., the reader does not have any knowledge about the

code structure. The next two correspond to “a developer’s point

of view”, i.e., the reader knows the grammar of the written

language. Whereas the last four correspond to “the automated

tools point of view”, i.e., the reader is a parser that transforms

code to a representation like AST.

The differences of ‘UTF’ with ‘UTF woc’ and ‘Java Parser’

with ‘Java Parser woc’ are due to the way comments are

handled. This differentiation is useful as comments can gen-

erate noise in our models. The last four tokenizers differ from

the way an AST is processed (typically in depth-first or in

breadth-first order), and whether or not the AST is pruned of

redundant nodes. This is important as language models work

with sequence of tokens, which in this case are the different

orders that one can visit the tree representations.

In this paper, we address the problem of tuning n-gram

models to a given purpose by evaluating 120 different con-

figurations of n-gram models (6 n values, 4 smoothing tech-

niques, and 5 unknown thresholds) combined with the above-

mentioned tokenizers. We implemented these configurations

in a tool that is available online.1 In the first part of the

evaluation, we assess the capability of the configurations to

capture regularities within 20 open-source Java projects.

For each project and configuration, we compute the cross

entropy of the project. The cross entropy is a measure com-

monly used in NLP to assess the efficiency of a language

model. Intuitively, it represents how “surprised” a model

trained on a given set of documents is when it encounters an

unseen one. Therefore, the best configurations should give the

lowest entropy, given that one can find local regularities within

a given project [2], [11]. This allows us to check the sensitivity

of the approach with respect to the studied configurations.

Comparing tokenizers is tricky as each involves its own spe-

cific building blocks. Thus, entropy values cannot be compared

directly. We bypass this problem by comparing the tokenizers

according to the relative entropy differences and the entropy-

based rankings of source code files, i.e., we measure whether

the models judge and select the unlikeliest or likeliest files

similarly.

To further strengthen our study, in the third part of the

evaluation we consider a particular experimental scenario

and demonstrate that the use of different tokenizers leads to

contradictory conclusions. We thus investigate whether buggy

files are more likely to have higher cross-entropy values than

non-buggy ones, and whether fixing bugs results in a reduced

file cross-entropy. These objectives were inspired by the study

of Ray et al. [3] and represent a concrete example of research

that can be influenced by n-gram model tuning.

Overall, our study involves 20 large open source Java

projects and a dataset of 3,800 bugs. Our results show that

the Modified Kneser-Ney smoothing technique performs best.

Choosing an n value equal to 4 or 5 seems to be the most ap-

propriate choice for all tokenizers. Perhaps more importantly,

we find a large disagreement between the tokenizers and show

that not all of them are appropriate for particular problems.

We further demonstrate this by investigating the link between

entropy and bugginess, showing that only 2 out of our 8

tokenizers are capable of exploiting this link. Interestingly, our

results show that the closer, to human perspective (unprocessed

code), the used tokenizer is, the better the model is at detecting

the effects of bug fixes. In this regard, tokenizers treating code

as pure text are thus the winning ones.

In summary our paper makes the following contributions:

1) It identifies and explores the impact of different parame-

ters on the predictability of the n-gram models for code.

2) It demonstrates large disagreements between the predic-

tions of models that use different tokenizers.

3) It provides evidence that untuned n-gram models have the

potential of biassing research conclusions.

1URL is anonymised for the purpose of double-blind review

TABLE I
STUDIED TOKENIZERS

Tokenizer Representation Delimiter Technology Specificities

UTF Raw Non-Alphanumeric Terrier -
UTF woc (UTFw) Raw Non-Alphanumeric Terrier without comments

Java Parser (JP) Raw Java Grammar Java Parser -
Java Parser woc (JPw) Raw Java Grammar Java Parser without comments

AST Depth First (DF) AST Node Java Parser depth first
AST Breadth First (BF) AST Node Java Parser breadth first
Pruned AST Depth First (PDF) AST Node Java Parser Pruned, depth first
Pruned AST Breadth First (PBF) AST Node Java Parser Pruned, breadth first

II. N-GRAM MODELS

Language models operate on sequences of words and

compute their probability distribution. In code analysis, such

sequences are the code fragments such as source files, Java

classes or specific code lines. Words are the constituent

tokens of the code fragments. Let s = t1, . . . , tm be a finite

sequence of tokens. We denote by P (t1, . . . , tm) the non-zero

probability that can be estimated for s by a given language

model. The model is first trained on a set of sequences,

named the training corpus. The training process determines

the probability distribution of the known sequences, which in

essence compose our model. The distribution typically results

from the computation of the maximum likelihood estimates,

that is, the probability of a (sub-)sequence is given by the

number of times it appears in the training set divided by the

number of (sub-)sequences in the set.

N-gram models are a particular type of language models

that are fast to train and easy to use. Their origin can be

traced back to Shanon’s work [12] that presented the task of

guessing the next letter in a text. Such models statistically

estimate the probability that a token follows a given preceding

sequence. Accordingly, the probability of a sequence is defined

as the product of the probability of each token to follow its

prefix. Thus, P (s) = P (t1)P (t2 | t1)P (t3 | t1t2) . . . P (tm |
t1 . . . tm−1). N-grams also assume a Markov property of order

n − 1. Thus, the probability of occurrence of a token in a

sequence depends on the n − 1 previous tokens, i.e., P (ti |
t1 . . . ti−1) = P (ti | ti−n+1 . . . ti−1). Then, the probability of

a sequence becomes a product of n-sized conditional probabil-

ities. For example, for n = 3 the probability of s is given by

P (s) = P (t1)P (t2 | t1)P (t3 | t1t2) . . . P (tm | tm−2tm−1).
Following the above equation, an estimate of the probability

of s is the product of estimates for its constituent conditional

probabilities (based on the training corpus). A maximum

likelihood estimate for P (ti | ti−n+1 . . . ti−1) is obtained by

dividing the number of occurrences of ti−n+1 . . . ti by the

number of occurrences of the prefix ti−n+1 . . . ti−1.

Interestingly, the training corpus is not the only one that can

impact the utility of an n-gram model. There are multiple pa-

rameters that can influence these results, with the most obvious

one being the size n. To evaluate alternative models, one can

carry out intrinsic evaluations to measure the performance of

the models on some unseen data. In our case, this test corpus

consists of code fragments that were not part of the training

corpus. Then a model m1 has a higher utility than a model

m2 if it can better predict the sequences of the test corpus. In

other words, m1 assigns a higher probability to the test corpus.

In practice, one does not use the raw probability but rather

rely on a derived measure named cross entropy. It is given by

H(s) = −
1

m
logP (s) which, for an n-gram model of size n,

is equivalent to H(s) = −
1

m

P
m

i=1
logP (ti | ti−n+1 . . . ti−1).

A lower cross-entropy thus means a better model. Intuitively,

the cross-entropy indicates how “surprised” the model is when

confronted to s. More formally it describes the average number

of bits required to encode the data from the test set that have a

distribution P using the code that is optimal for a distribution

Q (the model built using the training set).

The choice of the n-gram size n can have a major impact

on the model utility. Indeed, a higher n allows the model to

better discriminate the sequences of tokens. However, it takes

a longer time and more memory to train since more sequences

have to be considered when computing the conditional prob-

abilities.

Another point that can influence the model is the way

it deals with unknown words. It may indeed happen that

the model encounters some tokens (in the test corpus) that

never appeared in the training corpus. The probability of this

token is thus zero according to the model, which leads to an

infinite cross entropy. In source code, this problem typically

arises when new variable names are introduced. Of course,

it is unrealistic to consider all potential variable names. The

vocabulary of our model is thus not closed.

A common way to deal with this issue is to replace all

words with less than k occurrences in the training corpus with

a special token <UNK> (where k > 0). Since <UNK> occurs

in the training corpus, the model estimates and assigns some

probability values for this token. Then, each time an unknown

word appears in the test corpus, the model interprets it as

<UNK> and assigns it a non-zero probability. The aforemen-

tioned parameter k, named the unknown threshold, obviously

affects the quality of the model since it modifies the estimated

probability value of every token.

A similar problem occurs when dealing with data sparsity.

As it is rather unlikely to observe every possible sequence of

tokens in a training corpus, it might happen that sequences

absent from the training corpus appear for the first time in

the test corpus. This is even more common than unknown

words, especially for higher-sized n-grams that work with

long sequences. To prevent the model from assigning zero

probabilities to these sequences, several smoothing techniques

have been proposed. Intuitively, smoothing reserves a part of

the probability mass for the unseen sequences, and estimates

a probability for known sequences based on the rest of the

probability mass. Smoothing has the effect of improving the

accuracy of the models, especially in the case of probability

estimated from few counts.

There are many smoothing techniques but we only focus

on the four most popular ones. For additional details on the

subject please refer to the comprehensive survey of Chen

and Goodman [13]. We study the following four techniques:

Witten Bell [14], [15], Absolute Discounting [16], Kneser

Ney [17] and Modified Kneser Ney [13].

Witten Bell was first introduced for text compression, but

it can be used for smoothing language models as well. It

is an instance of another smoothing technique called Jelinek

Mercer [18] where the n-th order smoothed model is defined

recursively as a linear interpolation of the maximum likelihood

for n-th order and the (n-1)th order smoothed models. This

technique uses as λ the probability of observing an n-gram

for the first time, i.e., the number of n-grams appearing more

than once over this number plus the total count of n-gram.

Absolute Discounting involves an interpolation between

higher order and lower order. Instead of multiplying the higher

order by a computed λ, a fixed discount is subtracted from it.

Kneser Ney is an extension of Absolute Discounting with

a cleverer way of computing the discount, based on the idea

that lower-order models are significant only when the number

of occurrences is small or zero in the higher-order model.

Modified Kneser Ney is a further improvement that uses

three different discounts depending on the number of occur-

rences of the considered n-gram.

Like the unknown threshold, the choice of a specific tech-

nique is important as it impacts the cross entropy returned

by the model. Earlier work on software naturalness [2] argue

that Kneser-Ney is the most appropriate, but have not presented

detailed experiments confirming this claim. As we will see, our

experiments fill this gap and empirically evaluate the different

techniques w.r.t. other parameter values.

III. RELATED WORK

The application of machine learning to software engineering

has received a growing interest in the recent years [9]. In

particular, the study of software naturalness [2] has given birth

to many approaches for generating source code (e.g., code

completion [2], synthesis [19], review [20], obfuscation [21]

and repair [22]) and performing static analyses [23]–[25].

According to Allamanis et al.’s survey [9], n-grams are

among the most popular language models. They have been

used mainly for code completion [2], [11], [26]–[28], pro-

gram analysis [23], bug detection [3], code review [20], and

information extraction [29], [30]. Despite being popular we

are unaware of any systematic and empirical evaluations that

analyse the sensitivity of these models w.r.t. their parameters,

although many papers give a few insights.

In their seminal work on code naturalness, Hindle et al. [2]

already inform us that Modified Kneser-Ney smoothing gives

good results for software corpora. However, they state that

“these are very early efforts in this area”, which motivated our

systematic evaluation of other smoothing techniques. Accord-

ing to their experiments, the reduction of cross entropy with

higher-order n-grams saturates around 3- or 4-grams, whereas

our evaluation shows that the reduction from 4-grams to 5-

grams remains statistically significant in many cases. Finally,

they tokenize code just like any English text and do not

consider alternatives like AST-based tokenization.

In [26], Nguyen et al. add semantic information, e.g., the

data type of a variable, to lexical tokenization in order to

improve code suggestion. Their approach inherently considers

n-grams of multiple sizes; thus we do not know how a fixed

n-gram size would affect their results. Also they used only

additive smoothing, which is the simplest but arguably the

less efficient technique [31], [32].

A subsequent work [27] tackle the problem of suggesting

API calls. With this objective in mind, the authors argue that

graph-based representations (e.g., AST and control flow graph)

are more appropriate than n-grams computed from lexical

tokenization. Based on such representations, they implemented

API suggestion algorithms that outperform 8-gram models

equipped with additive smoothing. These results motivate our

interest towards AST tokenization, although we found that

lexikal (UTF) tokenizers are better than AST tokenizers at

detecting bugs. Similarly, Hsiao et al. [23] tokenize a program

using a dependency graph (representing data-flows between

the program statements). Their tokenizer hardly scale from 5-

gram onwards, but even with smaller n-gram sizes it outper-

forms 7-gram models obtained from lexical tokenization. The

authors do not mention the use of any smoothing technique.

Tu et al. [11] propose a cache model that captures local

regularities. Their evaluation shows that the best results (in

terms of cross-entropy reduction) are obtained by combining

the cache with standard n-gram models, as these capture

different regularities. They also show that the size of the cache

has a significant impact on cross entropy, and suggest that

trigrams are sufficient. They do not explicitly mention what

smoothing technique they use. As before, we argue that 4-

grams and even 5-grams can yield significant improvements

in some cases, and that the choice of a smoothing technique

is not without impact. On the other side we did not consider

integrating a cache model, which is an interesting direction

for future work.

Raychev et al. [28] focus on suggesting API calls. The

originality of their approach lies in that it combines n-grams

with recurrent neural networks. Their experiments show a sub-

stantial improvement in effectiveness over standard n-grams,

yielding 90% of relevant suggestions in top 3 candidates. They

rely on trigrams and Witten-Bell smoothing, but did not study

how these choices affect their results.

In a peripheral work, Hellendoorn et al. [20] correlate the

naturalness of pull requests in GitHub (computed by n-gram

models) to their acceptance rate and the degree to which

the requests are debated. They acknowledge the importance

of choosing an appropriate size and smoothing technique,

although they do not report on the sensitivity of their approach

w.r.t. these parameters.

Sharma et al. [29] propose an approach to identify tweets

related to the software industry. More precisely, they use n-

gram models to compute the cross entropy of tweets, and rank

these accordingly. They evaluate the effectiveness of their ap-

proach with different n-gram sizes, and discover that 4-grams

still offer an interesting marginal gain. As for smoothing, they

assess only the Katz backoff model [33] and do not consider

the other alternatives.

Saraiva et al. [34] perform a study on n-gram model speci-

ficities for source code, but focused on different research ques-

tions than the present paper. They first attempt to determine

whether building language models specific to an application

or specific to a developer can lead to better results. Then

they investigate the importance of the temporality of language

models. They found out that developer- and application-

specific models were indeed performing better than general

models, while temporality has little to no effect.

Finally, Yadid and Yahav [30] make use of n-gram models to

correct and complete code fragments that were extracted from

video tutorials. They use unigrams and bigrams conjointly, but

have not investigated other parameter settings. Also, they do

not mention the smoothing technique they use.

The above discussion highlights that n-grams is a frequently

used statistical model. Many of the previous studies recognise

the importance of the chosen parameters, but paradoxically

evaluate only a few configurations. Moreover, none of the

previous approaches considers alternative representations and

their impact on the experimental conclusions one can draw.

Thus, our paper raises the awareness of what can go wrong and

what should be tuned in order to draw reliable experimental

conclusions.

IV. RESEARCH QUESTIONS

Our aim is to investigate how the different parameters

involved when building n-gram models impact the source

code analysis tasks. In particular we seek to investigate the

parameters related to the size n, the smoothing technique and

the way code is tokenized. This is important as the factual

differences between natural language and source code have

not been exploited. For instance, natural language almost

always flows sequentially, while source code includes many

conditional jumps, which may necessitate a different analysis.

Therefore, the use of different tokenizers should play a major

role on the model’s utility. Thus, our first research question is:

RQ1: What is the impact of the different parameters on n-

gram models when used for source code analysis? Is

there an optimal configuration for all tokenizers?

We answer this question by computing, for 8 different

tokenizers, the average cross entropy of 20 Java projects

using 24 sets of parameter configurations, i.e., 6 n values

* 4 smoothing techniques. Then we check whether optimal

parameters stand out across all the tokenisers.

Measuring the cross entropy provides an insight into the

relative performance of studied configurations. However, this

information, i.e., low or high entropy values, says nothing

about the use of different tokenizers for distinguishing source

code files with respect to naturalness of code. Indeed, cross

entropy measures the distance of the test corpus from the gen-

erated model with respect to the involved building blocks of

the model trained on the training corpus. Different tokenizers

rely on different views of the code and hence result in models

trained on different building blocks. Since the building blocks

differ, we cannot directly compare the tokenizers with cross

entropy.

To bypass this problem, we compare the tokenizers with

respect to the relevant information they provide, i.e., their

ability to distinguish and rank source code files (natural and

unnatural ones). Hence our second research question regards

the information that different tokenizers learn:

RQ2: Do models built based on different tokenizers learn

the same information for the same code?

To answer RQ2 we consider specific configurations that

return good results (in terms of lower cross entropy). Then,

we measure the relative agreement between the tokenizers, by

computing the correlation between the cross-entropy values

they provide on the source code files we study. We deem

this comparison as valid as it measures the relative volume

of agreement between the entropy value differences and their

relative rankings with respect to a set of source code files. We

also consider the correlation between these entropy values and

the number of lines of code in order to check the effects of size

on our results. Strong correlations indicate a large agreement

between the tokenizers, while weak correlations indicate a

disagreement.

As we will see later, our results show a large disagreement

between tokenizers. Yet, it is unclear whether these differences

are capable of impacting the findings of research studies. Thus

we ask:

RQ3: Does the use of different tokenizers has the potential

of impacting research results?

To answer this question, we set a simple experiment to

investigate whether buggy files are more likely to have higher

entropy values than non-buggy ones and whether fixing bugs

results in a reduced file entropy. These objectives were inspired

by the study of Ray et al. [3], which investigates the link

between buggy lines of code and naturalness (and the impact

of bug fixes on it).

Finally, we investigate the use of a ‘special’ parameter of

the n-gram models. This is the unknown threshold k, which

determines the confidence on the estimations made by the

models. This is a special parameter as it involves a trade-

off between the accuracy of the model and the information it

captures. Thus, by setting the threshold at higher values we get

more accurate but also more coarse-grained models. Therefore

we investigate:

RQ4: What is the impact of setting the unknown threshold

at different levels?

We examine this issue by using 5 unknown thresholds k and

measuring their impact on both entropy and results of RQ3.

V. METHODOLOGY

A. Test Subjects

To answer our research questions, we rely on data gathered

from 20 open source software from the Apache Commons

project [35]. Apache Commons comprises reusable open

source Java software projects which are intensively developed

and maintained. At the time of writing this paper, a query

about “org.apache.commons” on Github returned close to

7,000,000 different Java files. This indicates that the selected

projects are popular.

Building our experiments around Apache Commons projects

has many benefits. First, the projects follow strict development

TABLE II
DATASET STATISTICS

Project Latest Files kLoC Versions Bugs

BCEL 6.1 488 75 5 93
BeansUtils 1.9.3 257 72 18 155
CLI 1.4 50 12 6 91
Collections 4.1 525 118 12 186
Compress 1.15 329 70 18 309
Configuration 2.2 457 125 15 325
CSV 1.4 28 8.4 5 67
DBUtils 1.7 92 15 8 23
EMail 1.4 47 12 8 51
FileUpload 1.3.3 54 10 10 67
IO 2.5 227 55 14 213
JCS 2.2.1 562 102 6 102
Jexl 3.1 108 23 8 126
Lang 3.6 318 141 20 567
Math 3.6.1 970 218 16 830
Net 3.6 270 59 20 246
Pool 2.4.2 79 24 22 154
Rng 1.0 124 14 1 3
Text 1.1 104 25 2 38
VFS 2.2 382 52 4 214

Total - 5,471 1,230 218 3860

guidelines. This fact has a potential effect of improving

the performance of language models (as repetitiveness is

encouraged). We deemed this as an advantage as it reflects

industrial settings where code conventions and implicit cod-

ing rules are followed throughout whole companies. Second,

each one of the selected projects has its own usage context

and implements different functionalities. This fact challenges

our models, whose performance should generalize over all

projects. This counterbalances the facility offered by coding

conventions while further increasing the transferability of the

results to real-world or industrial projects (indeed, a company

typically develops software for slightly different application

domains). Third, every Apache Commons project reports its

bugs on the same platform with similar reporting guidelines.

This facilitates the creation of a bug dataset, which is required

to address RQ3.

Apache Commons involve 41 projects. We selected 20 of

them based on the following three criteria:

• Date of the last update. A recent update indicates that

the project is still active and of interest. It also means

that developers continue to fix bugs.

• Size of the project. A larger project increases the size

of the training corpus, and thereby reduces the risk of

overfitting for our models.

• Length of project history. A long history usually implies

a higher number of bugs to study and the possibility to

observe whether results generalize over releases.

From the data of the 20 projects we select (recorded in

Table II), we analyse their Java files. Everything else was not

considered as it contains irrelevant information for our study.

In our first two and our last research questions we analyse

the source code of the latest project release. For the third

research question, which involves the analysis of bugs, we

had to go back in the project history in order to identify

and collect a large set of bugs. As a consequence, we had

to gather multiple releases of the projects and identify the

versions containing the studied bugs. We also had to identify

the versions where these bugs were removed (fixed). To collect

our data we implement the following procedure, which was

added as part of our toolchain:

1) We crawl the full commit history of the projects and

identify all the commits that mention an issue ID.

2) For each issue ID we check whether the issue is men-

tioned on the issue tracker. We then check whether it

refers to a bug and if so, we retrieve the affected version.

3) For each issue ID referring to a bug, we go back to the

corresponding commits and get the list of files modified

by these commits. Then we store those files and flag them

as fixing the previous buggy version.

Table II presents the characteristics of our dataset. Latest

is the latest version of the project at the time of writing, which

is also the version we consider for RQs 1, 2 and 4. Files

is the number of Java files in this version. kLoC is equal

to the number of lines of code of the version (in thousands).

Versions refer to the total number of versions of the project

we studied in RQ3. Finally, Bugs refers to the number of

unique bug-related issues retrieved by the above procedure.

B. N-Gram Model Configurations

1) Tokenizers: We build n-gram models from source code

using 8 tokenizers. Details about the tokenizers we use are

presented in Table I. These can be categorized in three

main groups. The distinction between the groups regards the

representation of the source code. Thus, the first group (first

two rows in Table I) comprises tokenizers that treat code as

text and directly use it as input. In these cases a sequence

of words is separated by delimiters. The second group (rows

three and four in Table I) comprises tokenizers that delimit

code based on the language grammar. Tokenizers of the third

group, (the last four rows in Table I), are defined based on

the AST representation of the code. Thus, these tokenizers

perform the tokenization based on a serialized representation

of the AST.

The tokenizers of the first group are standard UTF tok-

enizers. These are similar to the one used by the open-source

search engine Terrier [36]. They split the text into groups of

alphanumeric tokens while still keeping the delimiters in the

sequence. The only difference between the two is that in the

first considers the complete file, whereas the second ignores

comments. This should give us insights about the sensitivity

of the models wrt. code comments. Note that previous works

tend to completely ignore code comments, e.g., [2].

UTF tokenizers take all non-alphanumeric characters as

delimiters. This fact may yield inappropriate tokenizations for

specific cases. For example, variable names using an under-

score are separated in three. A similar case is the float numbers

(also separated in two words). This motivated the need for

the second group of tokenizers. Thus, the Java Parser

and Java Parser woc tokenize code according to the

language (Java) grammar. This implies a correct identification

of the Java tokens. Another effect of using the grammar is

that the Java Parser considers a block of comments as a

single token. Thus, ignoring comments should have a minor

impact on our models. In our implementation we perform

the parsing based on the Java Parser tool [37]. The reason

behind this choice is that this tool facilitates the treatment of

ASTs by providing specific data structures (i.e., following the

visitor design pattern), which was useful for implementing the

remaining tokenizers.

The four tokenizers of the third group differ in the way

they process the program’s AST. The first two of them,

serialize the complete AST (they print the type of every

node as well as package, method, and variable names) in a

specific order that depends on the visit strategy, i.e. breadth

first or depth first. The last two tokenizers of this group

implement a pruned version of the serialization process (only

the text of non-redundant nodes is considered). We consider a

node as redundant when it does not directly correspond to a

string in the source code. In other words, this node serves

a structural purpose, e.g., every variable name is preceded

by a node of type NameExpr. Studying all these alternative

tokenizers helps us understand whether the visit strategy and

the redundancies in the ASTs have a significant impact on our

results.

2) Language Modeling: To compute the cross entropy,

we need to use some code parts as a training corpus and

some others as a test corpus. We thus, define an n-gram

model as a stateful service interface with two methods: (1)

train, which takes as input a corpus and trains the model

accordingly; (2) entropy, which returns the cross entropy of

an input sequence of tokens based on the trained model. Our

implementation uses the Kyoto Language Modeling Toolkit

(Kylm) [38]. Kylm is an established tool developed in Java

that provides all the functionalities needed for our experiments.

Indeed, it allows one to specify the size n of an n-gram model,

its unknown threshold, and the associated smoothing tech-

nique. Following the principle of interface segregation [39],

one can easily switch to another language-modelling tool

by developing an alternative implementation of the n-gram

interface defined above.

C. Research Protocol

1) RQ1: To address RQ1, we consider 24 configurations,

which are the combinations of n values 2 to 7 with 4 smooth-

ing techniques (absolute discounting, Kneser-Ney, modified

Kneser-Ney, and Witten-Bell). For each tokenizer t, project p

and configuration c, we build an n-gram model parameterized

by c, and compute the average cross-entropy over 10-fold cross

validation of p’s source code tokenized by t, where only one

of 10 successive files (according to the file system ordering)

belongs to the test set at each iteration. This leads to a total

of 3,840 cross validations.

Every iteration of a given 10-fold cross validation involves

90% of the source files for training the models, whereas the

remaining ones compose the test corpus. We operate on a file-

level granularity as it is common in defect prediction, and for

simplicity when using the AST tokenizers. Indeed, in Java,

ASTs are built class by class, and a (public) class is commonly

contained within one file. It is noted that for now, we set the

unknown threshold k to 1, as the influence of the unknown

threshold k is studied in RQ4.

2) RQ2: To address RQ2, we build an n-gram model m

based on the configuration that is the most representative

(identified in RQ1) and, for every tokenizer t, we make m

compute the cross entropy of all source files tokenized by t.

Then, we check whether there is a correlation between the

cross-entropy values across each pair of tokenizers. This al-

lows us to check whether tokenizers agree between them when

comparing the source code files. We also verify the existence

of a correlation between the number of Lines of Code (LoC)

and the entropy values associated to each tokenizer to check

whether our observations are influenced by the code size.

To perform the comparisons, we carry out two correlation

tests. First, we compute the Pearson correlation coefficients to

formally assess whether there is a strong linear relationship

between the tokenizers (i.e., the entropy values change sim-

ilarly among the files when using different tokenizers). We

also check this relation with the LoC. Second, we measure

the ordinal association between the same variables using the

Kendall’s tau coefficients. Ordinal relations differ from the lin-

ear relations as they do not consider the size of the differences

between the values. This allows determining whether the code

files are ranked differently according to their entropy and LoC.

3) RQ3: To address RQ3 we investigate the influence of

tokenizers on the findings of a research experiment we design.

Thus, we investigate whether (1) buggy files tend to be more

unnatural than non-buggy ones and (2) fixing a bug makes a

file more natural.

For (1), we compute the entropy of each file successively

in the release using all other files for training. This process

ensures a common training and evaluation ground that is

deterministic and reproducible. This way we avoid using large

training corpus and focus on the relative differences between

the files under analysis and the rest of the project. The idea is

that the more improbable a file, w.r.t. the others of the same

project, the more likely it is to be problematic. Future work

includes the use of cross-project training or past-release project

training.

Based on the entropy values, we can observe whether files

flagged as buggy have indeed a higher cross entropy. Then

for (2), we compute, for each buggy file, its cross entropy

in the release just before the patch and after the patch. We

use a model built on the last affected release – excluding

the assessed file – and analyse the percentage of difference

between the two cross-entropy values.

To see the actual impact of the tokenizers, we compare

the conclusions that one can draw for the above experiments

when using one tokenizer instead of another. In case of

contradictions, we can conclude that the tokenizer choice

is important (as a different choice may imply a different

conclusion for a given task).

4) RQ4: To study, the impact of the unknown threshold,

we repeat the analysis followed in RQ1, but for different

thresholds. Thus, the following values of k are studied, 1, 2,

4, 8 and 16. This adds up 15,360 new 10-fold cross validation

to the one done for RQ1. Then we study the impact of this

parameter on the findings of RQ3. To do so, we measure the

differences between buggy and non-buggy code and the impact

on entropy when fixing a file (using a k equal to 8). Finally,

we compare these results with those obtained in RQ3.

5) Statistical Comparison: To judge the significance of the

observed differences we use standard statistical tests. We used

the Wilcoxon signed-rank test to measure the arbitrariness

of our results. We choose the Wilcoxon hypothesis test as

it is non-parametric and thus, it does not make any nor-

mality assumptions. As it is typically performed, we adopt

a significance level of 0.05, below of which we consider

the differences statistically significant. To measure the size

of differences we used the Vargha Delaney effect size Â12,

which quantifies the size of the differences (statistical effect

size). The Â12 evaluates the number of times that the data

of one method are higher than those of the other. Â12 = 0.5
suggests that the two value sets are more or less the same,

while, Â > 0.5 suggest that the first set has higher values

than the second one. Values of Â12 < 0.5 suggest that the

second set has higher values.

VI. RESULTS

A. RQ1: Optimal Configuration

We start our analysis by identifying the impact of the

smoothing techniques on the entropy of the source code

files. Our analysis is based on the principle that a smoothing

technique giving lower entropy values than another one for the

same files, tokenizers and n-values is preferable. We therefore

computed all the combinations of n-values, smoothing tech-

niques and tokenizers with the aim of identifying the most

appropriate configurations.

Our results are consistent across all tokenizers and n-values:

they show that the Modified Kneser Ney smoothing is the most

appropriate which is in line with what was found by the NLP

community [13]. Although the difference with Kneser Ney

is thin, it is statistically significant (using Wilcoxon signed-

rank test) and has Â12 values in the range from 0.50 to 0.53.

Figure 1 presents an example of our data for the case of the

AST breadth-first tokenizer and n equal to 4.

Having shown that the Modified Kneser Ney smoothing

technique is the best one, we turn to see the impact of choosing

an appropriate n-value. Again, we have similar trends for the

n-values across the different tokenizers. However, we observe

that some tokenizers do converge faster than others. For

instance, when increasing n from 5 to 6, we observe that the

reduction of entropy is way smaller for the UTF tokenizer than

for the depth-first tokenizer; the former thus converges faster

than the latter. Figures 2(a) and 2(b) demonstrate these results.

Although we also observe that benefits of using n values higher

than 4 is small, all the n-values result in statistically significant

differences. In particular, all the tokenizes have Â12 values in

the range from 0.54 to 0.65 when comparing n = 4 with

n = 5. These drop to the range 0.53 to 0.57 when comparing

Absolute Smooth Kneser−Ney Modified Kneser−Ney Witten−Bell

2
.5

3
.0

3
.5

4
.0

4
.5

Smoothing Techniques

C
ro

s
s
 E

n
tr

o
p
y

Fig. 1. Cross entropy of source code files when using different smoothing
techniques for AST breadth-first tokenizer and n = 4.

n=2 n=3 n=4 n=5 n=6 n=7

3
4

5
6

n−values

C
r
o
s
s
 E

n
tr

o
p
y

(a) UTF tokenizer

n=2 n=3 n=4 n=5 n=6 n=7

2
.
0

2
.
5

3
.
0

3
.
5

n−values

(b) AST depth-first tokenizer

Fig. 2. Cross entropy of source code files when using different tokenizers
with Modified Kneser Ney smoothing for n-values in the range n=2..7.

the n = 5 with n = 6. Therefore, the general most appropriate

choices are the n = 4 or n = 5. It is noted that the AST depth

first and the “Java Parser” tokenizers are the only ones that

continue to improve (slightly) beyond n = 6.

B. RQ2: Tokenizer Correlations

Our second research question examines the correlation

between the cross-entropy values returned by the 8 tokenizers

for n size equal to 5. We also consider the correlation between

these values and the number of lines of code (LoC). We

computed the correlation coefficients for all files by consider-

ing every pair of tokenisers (and LoC). Table III summarizes

the results. It gives the median of the coefficients over all

projects for each pair. The upper triangle of the table records

TABLE III
CORRELATIONS BETWEEN TOKENIZERS AND NUMBER OF LINES OF CODE.
UPPER (RESP. LOWER) DIAGONAL GIVES, FOR EACH PAIR, THE MEDIAN OF

THE PEARSON CORRELATION COEFFICIENTS (RESP. KENDALL’S TAU

COEFFICIENTS) OVER ALL PROJECTS.

LoC UTF UTFw JP JPw DF BF PDF PBF

LoC 0.52 0.32 0.31 0.29 0.25 0.15 0.24 0.17

UTF 0.52 0.83 0.78 0.77 0.71 0.60 0.74 0.64

UTFw 0.32 0.66 0.90 0.90 0.88 0.79 0.91 0.81

JP 0.29 0.60 0.77 0.99 0.89 0.81 0.90 0.79

JPw 0.29 0.60 0.77 0.93 0.91 0.82 0.92 0.79

DF 0.30 0.57 0.73 0.76 0.79 0.85 0.96 0.78

BF 0.14 0.47 0.62 0.65 0.66 0.70 0.85 0.94

PDF 0.28 0.58 0.76 0.77 0.78 0.84 0.69 0.85

PBF 0.15 0.48 0.62 0.64 0.64 0.64 0.80 0.70

the Pearson coefficients, whereas the lower one is about the

Kendall’s tau coefficients. A higher coefficient means stronger

correlation. All coefficients are statistically significant with a

p-value lower than 0.05 in every case.

A first observation is that Pearson coefficients are higher

than Kendall’s coefficients for each pair of tokenizers. This

indicates that large differences in cross-entropy are more likely

to lead to an agreement between the tokenizers than smaller

differences. The strongest correlations are in the case of JP

with the JPw. If we exclude this case, the Pearson correlations

are in the range of 0.60 to 0.96, while the Kendall ones are

in the range of 0.47 and 0.84.

Another general observation is that the correlation between

LoC and the cross-entropy values is generally weak (< 0.33).

The only exception is the UTF tokenizer, which has a cor-

relation with LoC of 0.52. This is due to comments. Indeed,

UTF is the only tokenizer that tokenizes comments as any

English text. The JP tokenizer includes comments as well, but

considers a block of comments (e.g., the Javadoc of a method)

as a single token. The impact of comments for this tokenizer is

thus limited, as witnessed by the strong correlation between JP

and JPw (Pearson 0.99; Kendall 0.93). Given the difference in

the way code and natural language are written, it is expected

that comments significantly increase cross entropy. Moreover,

the number of comments is likely to increase with the number

of lines of code. We also see that AST tokenization further

reduces the correlation with LoC (≤ 0.25). Indeed, the number

of tokens depends on the number of AST nodes, which is not

necessarily proportional to LoC.

Interestingly, we observe that the differences between the

ways the AST is visited, in a breadth-first or depth-first

manner, plays an important role, as it gives the lowest cor-

relation values. Generally, the breath-first tokenizers give in

all cases, lower correlations than their depth-first counterparts.

This indicates that breadth-first AST tokenizers capture the

most different information than any other tokenizer. In other

words, the disagreement with the other tokenizers is higher.

This can be explained by the fact that the other tokenizers have

inherently different views of the code, i.e., structure-oriented

versus sequence-oriented.

We also observe that there are no significant differences

between AST tokenizers (regardless of the visit strategy) and

their respective pruned variants. Redundant nodes thus have a

limited impact on the captured information. More generally, it

might imply that how the AST is constructed is unimportant,

although this must be confirmed by additional experiments

with alternative parsing tools.

Taken together, our results suggest that tokenizers indeed

judge code files differently. They tend to agree on the majority

of the cases but still they tend to disagree on a significant

number of cases.

C. RQ3: Impact on results: Bug Analysis

Having confirmed that tokenizers from different groups

learn (largely) different things, our third research question

0

3

6

UTF UTFw JP JPw DF BF PDF PBF

Tokenizer

E
nt
ro
py

Fig. 3. Entropy over all projects of buggy (red) and non-buggy files (green).

−2

−1

0

1

UTF UTFw JP JPw DF BF PDF PBF

Tokenizer

di
ff

Fig. 4. % of difference in cross entropy between the buggy version of a file
and its fixed one per tokenizer.

regards their possible impact on the findings of an exper-

imental study. To answer this question, we investigate the

hypothesis that bugs are linked with naturalness. We do so by

checking whether unnatural files are more likely to be buggy

than the natural ones. In case we find significant differences,

we can conclude that a link between bugs and naturalness

exists. However, this link might simply be the result of other

(unknown) factors (such as the size of files, the defects’

location or others). In other words, we need to show that

entropy is linked with both presence and absence of bugs.

To control for arbitrary factors, we check whether fixing a

file reduces its entropy. In case we observe a reduction in

most of the case, then we have strong evidence supporting

our hypothesis, while in the opposite case we do not.

Figure 3 reports the results for all considered project re-

leases and tokenizers. From these we can make two main

observations. First, buggy files have a higher entropy than their

non-buggy counterparts regardless of the tokenizers used. This

provides a first indication that our hypothesis might hold (this

result is inline with the results of Ray et al. [3]). Second,

UTF and pruned AST-based models (PDF and PBF) present

the largest variance in entropy which could make them targets

of interest when using them as prediction models.

Figure 4 presents the results obtained when studying the en-

tropy differences between the buggy and the fixed versions of

our files, following the procedure described in Section V-C3.

We observe that in many cases, the cross entropy is indeed

slightly reduced (values are below 0) after the fix process.

However this does not for a clear majority (approximately 50%

of the files have values higher or equal to zero, median values

are 0). This means that fixing a file might reduce the entropy or

might not, which in turn indicates that bugs appear in files that

100 72.82

100

63.34

79.75

100

63.47

81.58

94.57

100

58.91

77.15

78.43

81.21

100

58.82

73.87

72.91

74.33

81.3

100

59.78

77.2

79.25

81.76

87.28

79.3

100

56.18

73.28

72.05

73.46

79.25

85.23

80.94

100

UTF

UTFw

JP

JPw

DF

BF

PDF

PBF

UT
F

UT
Fw JP JP

w DF BF PD
F

PB
F

50 60 70 80 90 100

value

Fig. 5. Percentage of agreement between tokenizers. The values represents
the ratios of files judged similarly by the tokenizers (increase or decrease)

are unnatural but naturalness is not necessarily linked with the

presence of bugs. Considering the starting point of naturalness

(i.e., developers tend to write code that is repetitive, hence

more natural), this means that bugs are located in files further

from developers’ usual comfort zone.

Perhaps the most interesting observation is that the differ-

ences are more accentuated in the case of UTF tokenizers.

These are the only models having median values below 0. As

all other tokenizers have their median almost at 0, we can

conclude that one can get evidence supporting our hypothe-

sis, only by using the UTF tokenizers. We also statistically

examine the differences and find that they are statistically

significant with an effect size, close to 42% (when comparing

the UTF tokenizers and the others). Interestingly, these cases

are the only ones with both statistical significance and effect

size differences. The difference between JP, BF and DF are

not statistically significant whereas the difference between BF,

DF, PBF and PDF are significant (though with negligible effect

size). To make these results clear, Figure 5 shows the level of

agreement (on the impact of fix) between the tokenizers, i.e.,

how frequently every pair of tokenizers agree that fixing a file

results in reduced or increased entropy. From these results we

see that tokenizers largely disagree on their judgements.

The above results imply that the closer, to human perspec-

tive (unprocessed code), the used tokenizer is, the more robust

the n-gram model is in detecting the effects of a fix. Thus,

only UTF tokenizers are robust in this regard. This is also

interesting as the UTF tokenizers are not the ones with the

lowest entropy.

To summarise, we found that tokenizers have the potential of

changing the conclusions of a research study. We demonstrated

that only 2 out of the 8 tokenizers are robust at detecting (as

they should) the differences between buggy and fixed files.

Therefore, researchers need to be cautious that their conclu-

sions may change if they use different tokenizers. Moreover,

our data suggest that the most prominent choice of tokenizer

for bug identification is the UTF.

D. RQ4: Setting the ‘unknown threshold’

In n-gram model related literature, a specific parameter

called unknown threshold is often evoked, but has never been

examined. Increasing this parameter may make the entropy

lower but at the price of a less general model.

1 2 4 8 16

2
3

4
5

6

Unknown Threshold

C
ro

ss
 E

nt
ro

py

Fig. 6. Effect of threshold k on the cross-entropy

0.0

2.5

5.0

7.5

UTF UTF8 DF DF8

Tokenizer

E
n
tr
o
p
y

(a) Difference in entropy between
buggy file(red) and non-buggy(green)

−2

−1

0

1

UTF UTF8 DF DF8

Tokenizer

d
if
f

(b) % of difference in cross entropy
between the buggy version of a file
and its fixed one per tokenizer

Fig. 7. Effect of the unknown threshold for the UTF and DF tokenizers when
k are equal to 1 and 8

Figure 6 presents the results we obtain in the experiment of

RQ1 while observing five different values of k. We observe a

huge decrease in entropy as k increases. This means that the

model copes better with low-count tokens. For source code,

this could be explained by the fact that the model is removing

variable or function names that are barely used. While this

could be interesting in some situations (e.g., when one is

interested in general patterns or trends), it can have a negative

impact on naturalness-based studies. In Figure 7, we present

a comparison of the values obtained with two different k, i.e.,

k = 1 and k = 8 for two of our tokenizers.

In Figure 7(a) we observe the reduction in entropy between

the two values of k, yet the difference between buggy files

and non-buggy ones is still clear. However, Figure 7(b) reveals

that the reduction of entropy after a fix is compromised when

increasing k. This is more interesting in the case of AST depth-

first tokenizer, where for k = 8 the entropy increases in more

cases than for k = 1. This can be explained by the fact that a

high entropy is caused by unlikely tokens which are removed

when using a higher k, gathering them under a common, more

likely one. This, in turn, reduces the opportunity to observe the

effect of a fix: If the new token introduced by the fix replace

an unknown one but has a lower probability than the unknown

the entropy could increase in some case.

VII. THREATS TO VALIDITY

The generalization of our result is a usual threat to validity

of experimental studies. We used Java projects from Apache

Commons, which may not be representative. Similarly, our

results might not hold on other programming languages. We

choose the Apache Commons to gather a large variety of

projects with different functionalities. Moreover, Apache is a

large organization and follows a similar development process

with many other organizations.

Similarly, we showed that tokenizer impact the n-gram

models in Java. We expect a similar result on other languages

as the basic differences between the sequences of tokens and

ASTs appear in all languages. However, we still do not know

whether n-gram models are similarly sensitive when using

other languages.

Another threat to validity regards our toolchain. We inte-

grate different external tools to perform this experiment, hence

an error in one of those tools or in our integration would

influence the result. To mitigate this, we only rely on tools

that are known to be reliable. Terrier, from which we use

their UTF tokenizer, is a well-known information retrieval

framework. We also carefully tested our tokenizers to ensure

of their behaviour. Java Parser is also used by more than 50

libraries and 100 projects on Github, and many companies use

it and update it regularly. Nevertheless, as all tokenizers were

carefully integrated (using their documentation) and tested, we

do not consider this threat as important.

KYLM is widely used for comparing many recent n-gram

approaches, e.g., the work of Pickhardt et al. [40]. Since this

tool considered as relevant by the NLP community, we believe

it is trustworthy. Of course we carefully analysed and tested

it before using it. To further reduce these threats we make our

toolchain and data available [41].

A threat related to construct validity regards the way we

built our bug dataset (used in answering RQ3). The dataset

used for this research question is automatically generated using

git commit messages and the JIRA Apache bug tracker. Thus,

imprecise information or wrongly categorized issues in the

tracker or misleading commit messages could generate noise

in our data. However, given the strict guidelines used for

the development and reporting of bugs in Apache Commons

project, we believe that this could only be the case for a small

percentage of the files. Therefore, the influence on our results

would be relatively small.

CONCLUSION

Research on naturalness of code is focussing on assisting

software engineering tasks using n-gram models. However, the

use of such models require setting a number of parameters.

We perform a study and show that the choice of smoothing,

tokenizer, unknown threshold and n values can impact the

predicting ability of the models. We demonstrate that the

Modified Kneser-Ney smoothing technique performs best,

while n-values equal to 4 or 5 are generally appropriate. We

also show that the closer, to human perspective (unprocessed

code), the underlying representation is, the more robust the n-

gram model is. This suggests that the most prominent choice

of tokenizer (wrt to bug identification) is the UTF one. Finally,

we demonstrated with an experiment that researcher can come

to wrong conclusions if they do not properly tune their models.

REFERENCES

[1] K. S. Jones, Natural Language Processing: A Historical Review. Dor-
drecht: Springer Netherlands, 1994, pp. 3–16.

[2] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International

Conference on Software Engineering, ser. ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 837–847.

[3] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the ”naturalness” of buggy code,” in Proceedings of the 38th

International Conference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 428–439.

[4] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram:
Bug detection with n-gram language models,” in Proceedings of

the 31st IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016,
pp. 708–719. [Online]. Available: http://doi.acm.org/10.1145/2970276.
2970341

[5] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just
aren’t natural: improving error reporting with language models,” in
11th Working Conference on Mining Software Repositories, MSR 2014,

Proceedings, May 31 - June 1, 2014, Hyderabad, India, 2014, pp. 252–
261. [Online]. Available: http://doi.acm.org/10.1145/2597073.2597102

[6] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N.
Amaral, “Syntax and sensibility: Using language models to detect and
correct syntax errors,” in 25th International Conference on Software

Analysis, Evolution and Reengineering, SANER 2018, Campobasso,

Italy, March 20-23, 2018, 2018, pp. 311–322. [Online]. Available:
https://doi.org/10.1109/SANER.2018.8330219

[7] X. Hu, Y. Wei, G. Li, and Z. Jin, “Codesum: Translate program
language to natural language,” CoRR, vol. abs/1708.01837, 2017.
[Online]. Available: http://arxiv.org/abs/1708.01837

[8] W. Ling, P. Blunsom, E. Grefenstette, K. Moritz Hermann, T. Koisk,
F. Wang, and A. Senior, “Latent predictor networks for code generation,”
in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, 03 2016, pp. 599–609.
[9] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of ma-

chine learning for big code and naturalness,” CoRR, vol. abs/1709.06182,
2017.

[10] S. Simone, L.-V. Mario, O. Rocco, and P. Denys, “A comprehensive
model for code readability,” Journal of Software: Evolution and

Process, vol. 30, no. 6, p. e1958. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/smr.1958

[11] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 269–280. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635875

[12] C. E. Shannon, “Prediction and entropy of printed english,” Bell System

Technical Journal, vol. 30, pp. 50–64, Jan. 1951. [Online]. Available:
http://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf

[13] S. F. Chen and J. Goodman, “An empirical study of smoothing
techniques for language modeling,” Comput. Speech Lang., vol. 13,
no. 4, pp. 359–394, Oct. 1999. [Online]. Available: http://dx.doi.org/
10.1006/csla.1999.0128

[14] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[15] I. H. Witten and T. C. Bell, “The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression,” IEEE

Trans. Inf. Theor., vol. 37, no. 4, pp. 1085–1094, Sep. 2006. [Online].
Available: http://dx.doi.org/10.1109/18.87000

[16] H. Ney, U. Essen, and R. Kneser, “On structuring probabilistic de-
pendences in stochastic language modelling,” Computer Speech &

Language, vol. 8, pp. 1–38, 1994.
[17] R. Kneser and H. Ney, “Improved backing-off for m-gram language

modeling,” in In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, vol. I, Detroit, Michigan, May
1995, pp. 181–184.

[18] F. Jelinek and R. L. Mercer, “Interpolated estimation of markov source
parameters from sparse data,” in In Proceedings of the Workshop on

Pattern Recognition in Practice, Amsterdam, The Netherlands: North-
Holland, May 1980, pp. 381–397.

[19] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks for
code generation and semantic parsing,” in ACL, 2017.

[20] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this?:
Evaluating code contributions with language models,” in Proceedings of

the 12th Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 157–167.

[21] H. Liu, “Towards better program obfuscation: Optimization via
language models,” in Proceedings of the 38th International Conference

on Software Engineering Companion, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 680–682. [Online]. Available: http:
//doi.acm.org/10.1145/2889160.2891040

[22] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk p: a neural
program corrector for moocs,” pp. 39–40, 07 2016.

[23] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy, “Using web corpus
statistics for program analysis,” in Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems

Languages & Applications, ser. OOPSLA ’14. New York, NY, USA:
ACM, 2014, pp. 49–65.

[24] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a
classifier for false positive error reports emitted by static code analysis
tools,” in Proceedings of the 1st ACM SIGPLAN International Workshop

on Machine Learning and Programming Languages, ser. MAPL 2017.
New York, NY, USA: ACM, 2017, pp. 35–42.

[25] H. Oh, H. Yang, and K. Yi, “Learning a strategy for adapting a
program analysis via bayesian optimisation,” in Proceedings of the

2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: ACM, 2015, pp. 572–588. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814309

[26] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 532–542.

[27] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Proceedings of the 37th International Conference

on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 858–868. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818858

[28] V. Raychev, M. Vechev, and E. Yahav, “Code completion with
statistical language models,” in Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation,
ser. PLDI ’14. New York, NY, USA: ACM, 2014, pp. 419–428.
[Online]. Available: http://doi.acm.org/10.1145/2594291.2594321

[29] A. Sharma, Y. Tian, and D. Lo, “NIRMAL: automatic identification
of software relevant tweets leveraging language model,” in 22nd IEEE

International Conference on Software Analysis, Evolution, and Reengi-

neering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, 2015,
pp. 449–458.

[30] S. Yadid and E. Yahav, “Extracting code from programming
tutorial videos,” in Proceedings of the 2016 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software, ser. Onward! 2016. New York,
NY, USA: ACM, 2016, pp. 98–111. [Online]. Available: http:
//doi.acm.org/10.1145/2986012.2986021

[31] W. A. Gale and K. W. Church, “Poor estimates of context are worse than
none,” in Proceedings of the Workshop on Speech and Natural Language,
ser. HLT ’90. Stroudsburg, PA, USA: Association for Computational
Linguistics, 1990, pp. 283–287.

[32] ——, “What’s wrong with adding one,” in Corpus-Based Research into

Language. Rodolpi, 1994.
[33] S. M. Katz, “Estimation of probabilities from sparse data for the lan-

guage model component of a speech recognizer.” IEEE Trans. Acoustics,

Speech, and Signal Processing, vol. 35, no. 3, pp. 400–401, 1987.
[34] J. Saraiva, C. Bird, and T. Zimmermann, “Products, developers, and

milestones: How should i build my n-gram language model,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015,
pp. 998–1001. [Online]. Available: http://doi.acm.org/10.1145/2786805.
2804431

[35] A. Foundation. (2017) Apache commons. [Online]. Available: http:
//commons.apache.org

[36] Terrier. (2017) Terrier open source search engine. [Online]. Available:
http://terrier.org

[37] J. Parser. (2017) Java parser github. [Online]. Available: https:
//github.com/javaparser/javaparser

[38] G. Neubig. (2017) Kyoto language modeling toolkit. [Online].
Available: https://github.com/neubig/kylm

[39] R. Martin, Agile Software Development: Principles, Patterns, and

Practices, ser. Alan Apt series. Pearson Education, 2003. [Online].
Available: https://books.google.be/books?id=0HYhAQAAIAAJ

[40] R. Pickhardt, T. Gottron, S. Staab, P. G. Wagner, T. Speicher, and T. Gbr,
“A generalized language model as the combination of skipped n-grams
and modified kneser-ney smoothing,” in In Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics, 2014.
[41] M. Jimenez, M. Cordy, Y. L. Traon, and M. Papadakis, “Tuna: Tuning

naturalness-based analysis,” in 34th International Conference on Confer-

ence on Software Maintenance and Evolution, ICSME 2018, September

23 - 29, 2018, Madrid, Spain, 2018.

