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Abstract—Software bugs constitute a frequent and common
issue of software development. To deal with this problem, modern
software development methodologies introduce dedicated quality
assurance procedures. At the same time researchers aim at
developing techniques capable of supporting the early discovery
and fix of bugs. One important factor that guides such research
attempts is the characteristics of software bugs and bug fixes.

In this paper, we present an industrial study on the character-
istics and differences between pre-release bugs, i.e. bugs detected
during software development, and post-release bugs, i.e. bugs
that escaped to production. Understanding such differences is
of paramount importance as it will improve our understanding
on the testing and debugging support that practitioners require
from the research community, on the validity of the assumptions
of several research techniques, and, most importantly, on the
reasons why bugs escape to production.

To this end, we analyze 37 industrial projects from BGL BNP
Paribas and document the differences between pre-release bugs
and post-release bugs. Our findings suggest that post-release bugs
are more complex to fix, requiring developers to modify several
source code files, written in different programming languages,
and configuration files, as well. We also find that approximately
82% of the post-release bugs involve code additions and can be
characterized as ‘omission’ bugs. Finally, we conclude the paper
with a discussion on the implications of our study and provide
guidance to future research directions.

I. INTRODUCTION

Issues caused by software defects are a common source
of business failures and economic losses. According to the
Software Fail Watch of Tricentis [1] in 2017, software bugs
resulted in $1.7 trillion of industrial revenue losses and, more
importantly, the number of bugs reported in 2017 increased
by 10 percent compared to 2016. These numbers highlight
the importance of a good understanding on the nature of
software bugs and their root causes. To answer these questions,
additional studies are needed to better deal with bugs and
reduce their impact.

Source code analysis techniques are typically developed
and evaluated using some bug instances [2], which should
reflect specific characteristics and assumptions around the
targeted bugs. Thus, bug finding and removal techniques, such
as software testing [3], static analysis [4], fault localization
[5] and program repair [6], are developed according to the
characteristics, nature and fixes of the used bug datasets,
e.g. SIR [7], Defects4j [8] and Bugs.jar [9]. This is a good
first step towards developing feasible and effective techniques.

However, our perception, understanding and assessment of
these techniques is strongly connected to the characteristics
of the bugs involved in these datasets.

Moreover, researchers in the field of code analysis need to
position and evaluate their work with respect to specific tasks,
targeted scenarios and working assumptions. For example,
research on advanced software testing techniques should focus
on post-release bugs (bugs that escaped the basic testing
process), which are hard to reveal, instead of pre-release bugs.
Similarly, fault localization and bug repair techniques should
focus on in-field bugs, where partial information is available.
Another parameter, often ignored, is that fixing post release
bugs is much more harmful to companies, exposing failures
to their customers. Therefore, researchers need detailed infor-
mation on the properties of the selected bugs according the
techniques under consideration.

To understand the bug characteristics and their conse-
quences on software testing and debugging techniques, we
perform an extensive study on pre- and post-release bug
characteristics of our industrial partner, BGL BNP Paribas,
a leading banking company. We focus on ‘critical’ systems,
developed in Java. These systems have been audited and tested
using both unit and system (end-to-end) test practices. Our aim
is to understand the nature of common kinds of real software
issues by performing a fine-grained analysis on the recorded
bugs and their patches.

In contrast to the majority of previous research that is based
on Open Source projects, our study focuses on real industrial
systems. We deemed this endeavor as important since the
software development workflow and nature of the Open Source
projects does not necessarily offer a faithful representation
of the bug occurrences in large companies. Indeed, industrial
code development often differs in architecture (e.g. system
composed of a multitude of services), process (quality as-
surance (QA) teams separated from development teams) and
people involved. Moreover, in most Open Source projects it is
hard to illustrate the concept of pre- and post-release bugs in
a meaningful way.

We extract and study both quantitatively, using source
code metrics, and qualitatively, code context, the properties
of the industrial pre- and post-release bug patches. Our in-
dustrial partner has established quality assurance teams and
procedures, making the distinction between pre- and post-



release bugs meaningful. As such, our analysis can help
interpreting the feasibility of existing methods/studies, judging
the representativeness of dataset used in previous work, help
positioning and choosing appropriate pre- or post-release bug
data and increases the general understanding of the industrial
software issues.

Perhaps the most interesting result from our study is that
we find evidence that most of the bug patches we analyzed,
especially the post-release ones, involve a large number (ap-
proximately 82%) of additions. This finding suggests that the
related bugs fall in the category of the so-called ‘omission’
bugs [10]. This is particularly important for software testing
researchers since omission bugs are a limitation of the widely
used and researched code-based software testing techniques
(e.g., code coverage) [11]. As code-based testing is driven by
the existing code, targeting the coverage of codebases, it is
hard to reveal issues related to code that is not there [11].

Another finding regards the scope of the changes required to
fix post-release bugs. While fixes requiring complex changes
that spread across multiple files exist, the majority of the
bugs are fixed locally (with changes applied to the same unit)
and in conditional statements. This is good news for testing
research and specifically unit testing, as it provides evidence
that unit testing could be adequate for targeting such post-
release bugs (bugs causes spread across different units being
harder to triggered by unit testing).

One other interesting finding regards the existence of con-
figuration bugs and the relative differences between pre- and
post-release bugs. We find that 45.97% and 66.69% of the pre-
and post-release bugs require changes on configuration files.
We find that post-release bugs require chunks of changes twice
as big as pre-release ones and these changes mainly involve
control flow modifications (while the pre-release ones involve
interface changes). Regarding the locations of fixes, we found
that both pre- and post-release locations are similar indicating
that the difference are mainly on the nature of bugs than in
their location.

Overall, more research is needed in this important area to
fully understand this fundamental aspect of software bugs,
and we certainly do not claim to have completely answered
all questions in this paper. We do, however, believe that
our findings significantly improve the understanding of bugs
nature, the structural differences between pre- and post-release
bugs, and the areas where source code analysis techniques
should focus on.

Our primary contribution is to raise the awareness of the
research community for the need to distinguish and control
between pre- and post-release bugs, and to present the results
of an industrial empirical study demonstrating significant
differences. The most important finding from this control study
is the evidence that almost all post-release bugs are ‘local’ and
the apparent existence of the so-called ‘omission’ bugs. These
findings suggesting that future research should focus on unit-
based (local) analysis techniques targeting this particular class
of bugs, which is, as we discussed, fundamentally different
from the rest bug types.

II. BACKGROUND

Software development usually adopts dedicated procedures,
such as code reviews, testing and verification, to minimize and
prevent software issues. To successfully develop and promote
research on these fields we need to understand the nature of
software bugs. To do so, we focus on code-based software
failures that are the most costly and are responsible for the
majority of the industrial post release problems. But, what
exactly is a software bug?

According to the definition provided by the IEEE Standard
Classification for Software Anomalies [12], a defect is an
imperfection or deficiency in a work product where that work
product does not meet its requirements or specification and
needs to be either repaired or replaced. A failure, hereinafter
referred to as as bug, is defined as an event in which a
system or system component does not perform a required
function within specified limits. Bugs are usually caused
by the incorrect understanding of the software requirements,
by missing requirements, changed requirements, by incorrect
system or environment configuration, by the complexity of the
software forgotten cases etc. In most cases, lack of appropriate
testing procedures, or the semantic size of the bugs makes bugs
appearing in production systems.

To reduce bugs instances, it is important to understand the
categories of defect types, their semantics and the activities
with respect to the different software development stages
[13]. To deal with this issue, Orthogonal Defect Classification
identifies 8 types of bugs [13], i.e., Function, Interface, Check-
ing, Assignment, Timing/Serialization, Build/Package/Merge,
Documentation and Algorithm, determines the defect type
and defect triggering condition distributions with the ultimate
goal of measuring testing and verification processes. Along
these lines, we perform an extended analysis of the properties
involved in industrial pre- and post-release bug patches.

III. RESEARCH QUESTIONS

Our aim is to investigate the properties of pre- and post-
release bugs. To do so, we resort on analyzing the bug fixes
and their context (code surrounding the points modified to fix
bugs). This merely means that we observe what needs to be
changed to fix the encountered issues. This analysis intends
to capture the semantic properties of the bugs and shape their
syntactic profile [13], [14]. Therefore, we start our study by
investigating:

RQ1: How complex are industrial pre-release bugs?
We consider as pre-release bugs those that were detected

during the quality assurance process. We deem this analysis
important, as it reveals the nature of the bugs that are detected
by the current procedures. Having investigated pre-release
bugs we turn on to post-release ones. Thus, we ask:

RQ2: How complex are industrial post-release bugs?
Unlike pre-release bugs, post-release bugs are the ones that

escape the quality assurance process and are released to pro-
duction. They are typically reported by customers observing a
faulty behavior of the system.



We consider post-release bug analysis important as it reveals
the nature of the most important bugs. Thus, understanding the
characteristics of these bugs complement our knowledge and
sheds light on the target of future research. Of course, studying
the relative differences between pre- and post-release bugs, can
make such an analysis insightful and helpful. Hence, we ask:

RQ3: What are the similarities and differences between
pre- and post-release bugs?

Pre- and post-release bugs are two important and interesting
categories; pre-release bugs exhibit the effectiveness of our
testing practices whereas post-release ones their weaknesses.
Where RQ1 and RQ2 focused on separately discussing the
characteristics of these categories, RQ3 puts them in per-
spective and analyzes their similarities and differences. Simi-
larities between them show the common bug characteristics
that software testing techniques can exploit to target both
bug categories, whereas their differences shows how testing
techniques need to adapt to target post-release bugs more
effectively.

The above analysis shapes the syntactic profile of bug fixes.
This analysis can reveal semantic properties of the involved
bugs and can guide the development and improvement of test
techniques [2]. However, it does not evaluate the ability of
existing static analysis tools to detect them. Static analysis
forms the common basis of most of existing code analysis
techniques. Its understanding and its effectiveness in both the
cases of pre- and post-release bugs is particularly important.
Therefore, we investigate:

RQ4: How effective are static analysis tools in detecting
pre- and post-release bugs?

Finally, we conclude our analysis with an investigation of
the effectiveness of static analysis techniques to detect pre-
and post-release bugs. Static analysis could be one of the first
lines of defense against bugs. This research question studies
whether there is a difference between the effectiveness of such
tools based on the category of bugs studied.

IV. METHODOLOGY

A. Dataset

In our study, we mine and analyze bug fixes of 37 Java
projects developed by our partner BGL BNP Paribas, from
which we isolated 3623 pre-release bug fixes and 250 post-
release bug fixes. Pre-release bug fixes are defined as bug
fixes addressing a bug found by the quality assurance process
employed at the company during software development while
post-release bug fixes refer to bugs that escaped the quality
control process and were released to production. Those bugs
are typically reported by customers and recorded in a dedi-
cated, issue tracking system where they are assigned a unique
ID, a description and a status.

The projects under study are components of the software
suite, Service Oriented Architecture, developed by our partner
to support their business activities. Indeed, as it is typically
the case in large companies, different teams work on different
software projects/services and each service communicates with

others in an orchestrated environment that allows different
services to be developed using different technologies and
follow a different development pace.

Our partner has several quality assurance procedures in
place to verify the correctness of its software. To this end,
before a new functionality is released to production it has
to meet several quality requirements. In a first phase, quality
gates, defined in SonarQube, ensure that the test coverage of
unit and integration tests is acceptable and that all tests pass.
Furthermore, SonarQube produces a report on the number of
vulnerabilities and potential defects relying on a static analysis
of the source code. Next, the program is deployed in a QA
environment where the business requirements are tested using
manual and automated acceptance (end-to-end) tests. Once all
quality requirements have been met, the system will be release
to production. Such a thorough process explains why post-
release bug fixes are so few, accounting for only 0.06% of our
entire dataset.

The bug fixes presented in this work were mined using the
version control system used at BGL BNP Paribas, namely
Git. We systematically mine each commit and extract the
relevant commits following the method presented in the next
subsection. The outcome of this step consists in two sets of
bug fixes, namely pre-release bug fixes and post-release bug-
fixes. Each data point is composed of the buggy version of the
program, the fixed version of the program and the changeset
(bug fix) between the two versions.

B. Bug fix Identification
a) Post-release bugs: When a post-release bug is re-

ported by a customer, an incident report is opened in a
dedicated issue tracking system and assigned a unique ID. By
policy, every time a post-release bug is fixed, its ID from the
issue tracking system must be incorporated in the commit(s)
message and these commits must contain only changes related
to that particular bug. Leveraging on this practice, to collect the
post-release bug fixes, we collect all the commits containing
an ID from the issue tracker in their commit message and flag
them as post-release bug fix1. We extract from this process
250 post-release bug fixes.

b) Pre-release bugs: As is the case at many companies,
documenting and reporting pre-release bugs is not standardized
at our partner. To circumvent this problem, we used the method
introduced by Mockus and Votta [15] to isolate pre-release
bug fixes. The approach consists in isolating specific keywords
in the commit messages, potentially giving information about
some bug fixing activity. In this work, we search for the
following keywords in the commit messages: “fix(es—ed)”,
“repair(ed)”, “defect(s)” and their French equivalents. From
this set, we exclude all the post-release commits. We end up
with 3623 pre-release bug fixes.

Finally, because our work targets bug fixes, for both sets, we
remove all changes relative to testing. To do so, any changes
in files containing the word Test in their path or their name
are removed from from the dataset.

1The exact period analyzed is not reported for confidentiality reasons.



C. Bug fix analysis

For each bug fix described in the previous section, we
extract the triplet:

• buggy version: Code of the version containing the bug
• fixed version: Code of the version where the bug is fixed
• changeset: The set of differences between the buggy

version and the fixed version

In the remainder of this section, we describe the steps we
followed in order to build a profile for the bug fixes.

1) Files Modified: While most previous open source bug
benchmarks, such as Defects4J [16], focus solely on bug
fixes performed on Java files, bug fixes are not restricted
to such files. Industrial projects can be written in different
programming languages and include various types of files,
e.g. configuration files. Thus, a bug fix can affect many types
of files. In order to understand which files are affected in
our study, we extract the extensions of the files changed in
each changeset. Relying on the file extension, we define the
following categories:

• Java: Files with the extension java. Because the analysis
focuses on Java projects we consider Java files separately
than the other type of source files.

• Sources: Files containing source code written in other
programming languages such as JavaScript (js), Type-
Script (ts) or even files used by templating frame-
work such as FreeMaker Java Template Engine (ftl) or
JavaServer Pages (jsp).

• Configuration: In Java projects, typical configuration
files are the Project Object Model files for Maven projects
(pom.xml) and Gradle files (gradle) in projects built using
Gradle.

• Others: Sometimes, other type of files are modified that
are not directly related to the program such as .ignore
files used by Git or Markdown (md) files used for
documentation. This type of edits usually is not directly
related to the bug fix and can be considered as noise.

In the remaining of our discussion, we restrict our analysis
solely to Java files. While it would be interesting to have a
multi-language analysis, tools and techniques to analyze code
focus typically on a single language. Because the tooling and
theoretical background does not allow us to conduct such
a study, we focus solely on Java code. However, as our
results suggest, this is a valid direction to move forward, since
changes in other languages remain marginal.

2) Patch Size: The size of a patch remains one of the easiest
way to assess its complexity. Using the changeset, we compute
how many lines of code are added, deleted and modified.
Since the changeset obtained directly from diff tools does not
support modifications, we consider a modification as a line
or group of lines added, directly followed by deletion(s), or
vice versa. In this way, we avoid overestimating the number
of edits. For instance consider Listing 1, a naı̈ve way to count
the number of edits is to say that we have 2 lines added and

2 lines removed, which would lead to 4 lines edited. In our
work, we consider this pattern as 2 lines modified2.

Listing 1. Patch fixing bug ClOSURE-19 from Defects4J

1 Node parent = n. getParent () ;
2 -if (parent.isVar()) {
3 - if (n.hasChildren() && n.getFirstChild().isQualifiedName()) {
4+if (parent.isVar() &&
5+ n.hasChildren() && n.getFirstChild().isQualifiedName()) {
6 String name = n. getString () ;

3) Patch dispersion: Wang et al. [17] observe that more
than half of real world bugs are fixed when multiple program
locations are edited together. In this work, we define as an
entity a level of localization that can be observed in the code.
It can be either a class, a method or a chunk. We define a
chunk as a continuous sequence of changes, consisting of the
combination of addition, modification and deletion of lines.
The number of chunks is computed by counting the number
of continuous blocks of changes in the changeset, i.e. edits
affecting consecutive lines in a file.

To compute the number of classes and methods changes, we
rely on Change Distiller [18]. Change Distiller first extracts
the abstract syntax tree (AST) of both versions (buggy version
and fixed version) of the code and using a tree differencing
algorithm described by Chawathe et al. [19], the tool computes
the tree edit operations, which are the operations required to
go from the AST of the buggy version to the one of the fixed
version. The tree edit operations coupled with the information
contained in both ASTs are used to classify the source code
changes. Leveraging on the data structure generated by the
tool, we extract for each bug fix the unique methods and
classes changed by the patch.

4) Change Pattern: While the preceding points focused on
coarse-grained analysis, this section provides a fine-grained
analysis of the changes observed between the buggy and the
fixed version at the level of the statement and declaration
change. To this end, once again we use Change Distiller to
extract 48 change patterns from the Java code edits. For both
the buggy and the fixed version, Change Distiller generates
an AST that are fed to their change distilling algorithm. The
algorithm performs a fine-grained changes extraction which
relies on the tree edits presented in the previous section and
the information contained in the ASTs.

The output of the change distilling algorithm is all the
changes between two versions distributed among 48 cate-
gories. In order to provide a higher level vision of the changes,
we group them in 6 categories similar to what Gall et al. [20]
present in their work. We describe those categories in Table I.

5) Static Analysis: While the other metrics in this work
focus on the structure of the bugs, static analysis offers a
“behavioral” analysis on the bugs. Typically, static analysis
can detect defects that can be classified as functional and
maintainability issues, each of them being subdivided into

2For confidentiality reasons all code samples are taken from Defects4J and
not from our dataset.



TABLE I
CHANGE TYPES

Change Type Explanation

Conditions Changes impacting the execution flow of the program.

Statements Changes impacting direct calls and the ordering of
statements.

Comments Edits of the comments or the JavaDoc.

Interfaces Edits of the interface of a class or the signature of a
method.

Parameters Modifications of the parameters and attributes of a
method.

Return types Addition, deletion or modification of the type in a return
statement.

Algorithm 1 Collecting violations
Input: Vbv ∈ violations buggy version
Input: Vfv ∈ violations fixed version
Output: violations addressed by bug fix: Vfinal

1: Vfinal ← ∅
2: for each vbv ∈ Vbv do
3: if vbv /∈ Vfv then
4: Vfinal ← vbv
5: end if
6: end for each

categories to produce specific warnings [21]. In this work, we
use the term violation to denote the potential defects spotted
by static analysis.

To perform our analysis, we use SpotBugs, which is the suc-
cessor of FindBugs [22], a state-of-the-art Java static analysis
tool often adopted by Java projects. On the official website
of the project [23], we can see the following categories of
violations supported by the tool:

• Bad Practice: Violation of good practices, also known as
code smells. While these categories usually do not detect
faults, they point to code improvements that can lead to
the avoidance of bugs.

• Correctness: Apparent coding mistake which leads to
unexpected behavior of the program, e.g. the presence
of an infinite loop.

• Internationalization Flaws present typically in string
encoding, resulting in improper string conversions.

• Malicious code vulnerability Code vulnerable to attacks
from untrusted third parties.

• Multithread correctness Flaws leading to improper be-
havior during the synchronization of threads, locks and
volatiles.

• Performance Practices leading to inefficient code execu-
tion.

• Security Flaws in the consumption of input generated
from outside parties that can potentially create remotely
exploitable security vulnerabilities.

To collect violations addressed by bug fixes, we run Spot-
Bugs on the buggy version and the fixed version of each bug
fix. Having both sets, violations from the buggy version, Vbv ,
and from the fixed version, Vfv , we exploit the difference to
determine which ones were addressed by the bug fix. To do
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Fig. 1. Extensions of files edited in pre- and post-release patches.

so, for each violation collected from the buggy version, vbv ,
we check if it is still in the fixed version. In the case it is not,
we tag the violation as addressed by the bug fix and include it
in our result set, Vfinal, as shown in Algorithm 1. Given the
resource-intensive nature of the process, we focus our analysis
on 5 projects randomly selected from the 37 projects used for
the study.

V. EMPIRICAL RESULTS

The following sections answer the four research questions
formulated in Section III. Sections V-A, V-B, V-C and V-D
build a profile of the patches in order to assess their complex-
ity. The profile of the patches allows to address RQ1, RQ2
and RQ3. Section V-E provides answers to RQ4.

A. File edit

Even though all the projects analyzed in this work are Java
projects, other types of files might be modified while fixing
bugs. In this subsection, we present results on which types
of files are affected by the bug fixes, using the categories
described in Section IV-C1: Java, Sources, Configuration and
Others.

Figure 1 shows the proportion of files edited across all
the pre- or post-release bug fixes. Not surprisingly Java files
represent the large majority of file edits consisting of 66.84%
and 69.09% of the total amount of edited files for the pre-
and post-release bug fixes respectively. In the second place
we find configuration files with 26.15% and 26.20% for pre-
and post-release bug fixes respectively.

In terms of type of files edited, we see that both pre- and
post-release bug fixes present the same trends. The majority
of edits are performed to Java files followed by project
configuration files.

Finally, we identified two other categories: Sources, which
includes all the sources files which are not written in Java
and Others which are file types that are neither code nor
configuration. 6.04% for pre-release and 4.19% for post-
release of the files edited are Sources files, code not written
in Java. This is explained by the presence of web services
serving JavaScript, CSS and HTML code to the client. The
others category includes documentation files, CSV files or files
used by Git. Not surprisingly, this category represents less that
1% of files edits both cases (0.95% in pre-release and 0.53%
in post-release).
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Fig. 2. Type of files edited per pre- and post-release patch.

While Figure 1 shows the proportion of file edits over
all the patches, Figure 2 presents the file edits distribution
per bug fix. We can see that in the case of post-release
patches the proportion of edits occurring both in the source
files and configuration files (66.69%) is significantly larger
than in the case of pre-release patches (45.97%). Both values
remains nonetheless quite high and are in both cases the most
represented category. This result highlights the importance of
considering modifications to configuration files as a potential
fix edit when analyzing patches, creating bug datasets and
in debugging research. These findings corroborate the results
of Yin et al. [24] who show that misconfiguration issues are
prevalent in both open-source and commercial projects.

Interestingly, patches containing only Java files represent
only of 37.83% in the case of pre-release patches and 24.80%
for post-release. This suggests that the state-of-the-art tools
focusing solely on Java source files would have only been
successful, in the best case, in about a quarter to a third of the
bug fixes observed at BGL BNP Paribas.

Developers at our partner did not modify any source files in
10.51% of the pre-release bug fixes and in 5.43% for the post-
release patches. These results are in accordance to previous
results and corroborate previous findings. For instance, Zhong
et al. [25] reports similar results, showing that 10% of the
reported bugs were fixed without modifying any sources files.

In the rest of our discussion, we focus solely on Java files
(66.84% and 69.09% of the total amount of edited files for
the pre- and post-release bug fixes respectively) allowing to
us to put our findings in perspective with existing work from
the literature.

Bug fixes are most of the time composed of a com-
bination of sources files and configuration files. Only
37.83% of the patches purely composed of Java files
edits in pre-release. This value drops to 24.80% for
post-release patches.

B. Patch Size

Figure 3 shows the number of added, modified and removed
lines in Java files for each bug fix. Contrary to popular believe,
the prevalent edit action in bug fixing is not modifying, but
adding lines. Indeed, we can observe that the main edit action
in both pre- and post-release patches is line additions with
median values of 2 and 9 lines respectively, followed by
modifications, with a median value of 2 and 4 and finally
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Fig. 3. Number of lines edited per pre- and post-release patches.

TABLE II
COMPARISON OF NUMBER OF LINES EDITED FOR PRE- AND

POST-RELEASE DISTRIBUTIONS

Added Modified Removed Total

p-value Mann-Whitney U 0.000 0.001 0.261 0.000
Â12 0.62 0.56 0.51 0.60

deletions of lines with a median value of 0 in both cases.
Lastly, we observe that the median values for the total number
of line changes is 8.5 in the case of pre-release patches and
16.5 in the case of post-release ones.

To further validate our findings, we perform inferential sta-
tistical analysis on our results. Table III presents the p-values
for the Mann–Whitney U test and the effect size measures Â12.
We see that for the number of added lines and total number
of lines edited, H0 is rejected, therefore the population are
different with a medium size effect (Â12 > 0.56).

Figure 4 displays the proportion of patches containing at
least one added, removed or modified line or a combination
of them. We can observe that in the case of pre-release
patches, the number of patches containing only modified
lines (24.41%) is significantly larger than for the post-release
patches (13.94%). Furthermore we can observe that 64.77%
of the pre-release patches and 81.73% of the post-release
patches contain at least one line addition. This shows that the
majority of the patches involve adding missing behaviors to
the program.

These findings lead to two important observations. First, the
prevalence of additions suggest that there were several lines
of code missing in the buggy code, i.e. omission bugs were
present. Omission bugs are an important category of bugs,
which automated coverage-based test generation techniques
cannot target – we cannot cover what is not there. Our results
bring to light the prevalence of such bugs and suggest that
research solutions should focus on this category. Secondly,
our findings indicate that post-release patches are significantly
larger than pre-release patches, requiring considerably more
additions and modifications of lines. Thus, debugging tech-
niques targeting limited-size patches or program locations
could be ineffective in targeting post-release bugs.
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TABLE III
COMPARISON OF DISPERSION FOR PRE- AND POST-RELEASE

DISTRIBUTIONS

Chunks Methods Classes Files

p-value Mann-Whitney U 0.000 0.066 0.008 0.203
Â12 0.58 0.53 0.55 0.52

Post-release patches are larger with a median of 16.5
lines edited than pre-release patches with a median of
only 8.5 lines edited. In both cases, the prevalent type
of edits is line addition with 81.73% for post-release
patches and 64.77% for pre-release patches.

C. Patch dispersion

As shown in Figure 5, the bug fixes are usually localized
to a single method for a single class in a single file. However,
the median values for the number of edited chunks is higher
in the case of post-release, with a median value of 4 chunks
than in pre-release patches with a median value of 2 chunks.
In the case of pre-release patches, methods and classes have
a lower quartile equal to zero which means that at least 25%
of the issues didn’t involve the modification of a class or a
method.

Using the results presented in Table III, we observe that only
the number of chunks has a medium effect size and rejects H0

for the Mann–Whitney U test, suggesting that the distribution
are different. The other results show a small effect size and
weaker results for the Mann–Whitney U test.

The results suggest that in general, bug fixes are rather
localized for both pre- and post-release but the post-release
patches are more dispersed than the pre-release ones in terms
of number of chunk changes.

67.54% of the pre-release bug fixes and 62.98% in post-
release contain changes affecting at most one method in one
class. Such focused changes might imply that the bug they fix
could have been caught at the unit test level.

Putting those results in perspective with the ones presented
by Sobreira et al. [14] on Defects4J, we observe a greater
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Fig. 5. Dispersion of pre- and post-release patches.

dispersion. Indeed, Defects4J changes are more localized,
especially in term of chunks. However, in both pre- and post-
release bug fixes as well as in Defects4J, we observe medians
values for number files, classes and methods of 1. Finally,
looking at the variance of the results, we see that pre-release
bug fixes follow the same trend as in Defects4J, while post-
release bug fixes have a great variance.

While fixes requiring changes that spread across multiple
files, classes and methods exists, the majority of the bugs
are fixed locally, typically, in the same method. Unit testing
usually target the method level as a unit, unit tests could be
adequate to target bugs both in pre- and post-release, being
able to trigger them.

While post-release patches are more dispersed than
pre-release patches, they both are generally localized
to a single method.

D. Edit pattern

Using the tool Change Distiller, we extracted the edit
actions from the bug fixes. Figure 6 shows the results of the
frequency of each category defined in Table I. We can observe
that the dominating category is “Statements” for both pre- and
post-release patches with 64.10% and 53.25% respectively.

In the case of pre-release bug fixes, the second most
important category represent the structural changes, referred
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Fig. 6. Frequency of edit action in pre- and post-release patches.

to as “Interface” appearing 15.62% of the time. The fact that
this number is about twice as large as for the post-release bug
fixes, 7.21%, can be explain by the fact that in post-release
contracts are supposed to be fixed and developers are shier to
changes in interfaces.

Furthermore, we see that modifications of the control flow
by changes represented by the “Conditions” category are much
more frequent in post-release patches, accounting for 32.20%
of the total, than in pre-release fixes with only 10.72%. One
explanation for this result might come from the fact that in
post-release, we observe wrong behaviors due to complex data
flow, which are managed by the control logic of the program.

Sobreira et al. [14] conducted a similar analysis on the
Defects4J dataset collecting the patterns manually. Similar to
our results they observe a prevalence of changes in method
calls and assignment, what we call in our work “Statements
Changes”. They also show that changes appear to a large
extent in conditional statement, similar to what we observe
in post-release but not in pre-release. Zhong et al. [25] extract
change patterns using the same tools as in this study, Change
Distiller. Their results show that the changes in statements
(i.e. ExpressionStatement, VariableDeclaraionStatement, Sin-
gleVariableDeclaration) is the predominant type of changes,
similar to our results. However, their findings differ from ours
mainly in two categories: changes made to comments and
changes made on return statements. While in our case both
these categories are anecdotal (less than 5% for comments and
less than 1% for return statements), in their work, they account
for a large proportion of the changes. The difference in term of
comment can be explained by the nature of the projects, open
source vs industrial, where in corporation settings, documen-
tation is often externalize to separate documentation. Zhao et
al. [26] conducted a similar analysis on C projects. While
their results are not directly comparable, some interesting
observations can be made for general trends. Indeed, we
can see that in their study, the two most prevalent change
patterns are Changes on function call (CFC) and Changes on
assignment statements (CAS), which would correspond in our
study to the category “Statements”. The category Change on
branch statements (CBS) is the third most common change

TABLE IV
PERCENTAGE OF PATCHES ADDRESSING SPOTBUGS VIOLATIONS

Violation Pre-release Post-release

Bad Practices 3.68% 0.00%
Correctness 2.63% 0.00%
Malicious code
vulnerability 1.05% 0.00%

Multithreaded
correctness 0.52% 0.00%

Performance 2.37% 0.00%
Security 0.00% 0.00%
Style 3.42% 0.00%
No violation 94.21% 100.00%

pattern and would contribute to in our case to the “Conditions”
category. Those results are similar to the findings made by
Sobreira et al. on the Defects4J dataset.

In conclusion, we observe that statement changes, such
as addition, modification and removal of function calls and
assignment operations is the most common type of changes
across all studies, while other types of changes differs from
one dataset to the next. However, changes in conditional/logic
blocks remains well represented in many studies, in contradic-
tion to what our results might suggest for pre-release patches.

Adding, modifying and removing a statement, typ-
ically a function call or an assignment operation,
is the most common pattern among pre- and post-
release bug fixes, performed 64.10% and 53.25% of
the time, respectively. Pre-release bug fixes tend to
involve more design-related changes, e.g., changing in-
terfaces, method signatures, etc., whereas post-release
patches involve more control flow modifications, e.g,
modification of conditional statement or addition of a
conditional block.

E. Static analysis

To answer our fourth research question, we run the static
analysis tool SpotBugs and report how many violations are
fixed between the buggy version and the fixed version, hence
showing how many patches addressed a violation. Because
of time and computation budget constraints, we restrict our
analysis to 5 randomly selected projects from our pool of 37
projects. The results are reported in Table IV.

Pre-release patches almost never address SpotBugs viola-
tions, with only 5.79% of them fixing a violation. The patches
that fixed violation mainly addressed bad practices (3.68%)
and bad style (3.42%) which can suggest that some refactoring
happened as well during the bug fix. Correctness violations are
only addressed in 2.63% of the bug fixes, 1.63% for the code
vulnerabilities and drop to 0% for the security issues. Such
low number can in part be explained by the integration of
static analysis tooling directly integrated in modern integrated
development environment (IDE), such as Eclipse and IntelliJ,
used by the developers at the company. These IDEs provide
direct feedback before changes are committed to the version
control system, thus making them invisible to our study.



More surprisingly, no violations were fixed by post-release
patches. This can be explained by the fact that once the pro-
gram has been cleared by the quality process for production,
such violations are typically reported, in particular with the
use of continuous monitoring tools such as SonarQube, and
have already been addressed.

Listing 2. Patch fixing bug CHART-6 from Defects4J

1 int index = this . plot .getIndexOf( this ) ;
2 CategoryDataset dataset =
3 this . plot . getDataset (index) ;
4 -if(dataset != null){
5+if(dataset == null){
6 return result ;
7}
8 int seriesCount = dataset .getRowCount();

Listing-2 shows an example of a patch in the Chart project
from the Defects4J dataset where SpotBugs successfully ex-
posed a violation leading to a null pointer exception. In the
buggy version, if line 2 returns a null value, the program will
raise a null pointer exception when it will reach line 8. The
fix consists in changing the condition (lines 4-5) and return if
dataset is null.

Listing 3. Patch fixing bug CHART-10 from Defects4J

1 public boolean equals (Object obj){
2 /*...*/
3 - return super.equals(obj);
4+ SuperList that = (ShapeList)obj;
5+ int listSize = size();
6+ for(int i = 0; i ¡ listSize; i++){
7+ if(!ShapeUtilities.equals(Shape)get(i),
8+ (Shape)that.get(i)){
9+ return false;

10+ }
11+ }
12+ return true;
13}

However, in listing-3 we show another bug fix from the
Chart program where static analysis was enable to spot any
violation. In this example, the overloaded equals function of an
object was not comparing properly, requiring additional point
of comparison that the base class provided. SpotBugs fails to
capture the bug because the fault is affecting a functionality
specific to the program. Detecting functional faults might be
quite a challenge, if not impossible, for static analysis tools.

Static analysis tools are typically used in fault localiza-
tion and automatic program repair to spot potential defects.
However, we see that in our experiments, only 2.63% of the
fixes addressed a correctness issue flagged by static analysis.
This results confirms the disbelief of one of the practitioners
interviewed by Kochlar et al. [27] who answered on the
question about the importance of fault localization: “I’m well
aware of what static analysis can do and very few hard bugs
would be solved with it.”.

Correctness violations were only addressed in 2.63%
of the pre-release bug fixes and in 1.63% for the code
vulnerabilities. 94.21% didn’t address any violation in
pre-release while none of the post-release bug fixes
addressed a violation.

VI. THREATS TO VALIDITY

In this section, we discuss the internal and external threats
to the validity of our results. Internal validity is the extent to
which conclusions can be drawn from the causal effect of our
data and analysis. External validity is the extent to which the
conclusion can be generalized to other settings.

The main threat to the construct validity in empirical anal-
ysis of bug fixes is the quality of patches selected. Indeed, as
stated by Kim et al. [28], identifying fixes is hard because they
are often “polluted” by other activities such as refactoring. Our
strategy to extract pre-release bugs is sensitive to this problem
but this is not the case for post-release ones. Given that the
patch size of post-release bug fixes was greater, we expect this
threat not to negatively affect our results.

Our result confirm this hypothesis where we see that docu-
mentation files are edited. Furthermore, the high percentage of
architecture bug fixes can suggest the presence of refactoring
activities in those patches. However, comparing our results to
a clean bugs dataset, Defects4J, we observe similar trends and
our conclusions still hold.

In terms of external validity, the threat includes the gen-
erality of our findings. In this study, we analyzed 37 projects
originating from the same company, BGL BNP Paribas, there-
fore, from a single domain. Although, the company is a large
player and representative of their field, there is no guarantee
that our results would generalize to other companies, evolving
in other domains. To address this problem, we put parts of
our findings in perspective with previous studies conducted on
open source projects, and our results confirm previous work.

VII. RELATED WORK

Mining bug fixes by extracting them from software revision
histories in order to extract insights is a common practice that
is often found in the literature [17], [25], [26], [29]–[31]. How-
ever, these studies differ from ours in the subjects they analyze,
large monolithic projects, mostly from the open source world.
In this work, we present results from components of a software
oriented architecture used by a large corporation to support
their business activities.

In their work, Zhao et al. [26] perform a detailed analysis
of bug-fixing changes occurring in 17 version of 11 well-
known open-source systems divided across three domains.
They describe 5 types of changes further divided into 9
subtypes. They conclude that interface changes are the most
frequent changes and that the frequency of change types is
similar across the system they studied. Similarly, Pan et al.
[29] introduced 27 bug fix patterns over 9 categories. They
use their bug extractor tool to analyzing seven Java projects.



Their results show that about half of the bug fixes fall into
well known categories.

Wang et al. [17] conduct an empirical study on four open
source projects. In their work, they present a detailed analysis
of multi-entity bug fixes, i.e. classes, methods, fields, and
present their frequency, composition and semantic meaning.
They conclude that the majority of bug fixes involve multi-
entity changes. Furthermore, they show that some recurring
change patterns exist in all the projects under study.

Liu et al. [32] conduct a fine-grained study of 16,450 bug
fix commits from seven open source Java projects, focusing
at the expression level. They show results offering new ways
to further improve APR tools focusing on fault localization.
Similarly, Zhong et al. [25] perform an empirical study on
more than 9000 real world bug fixes from six popular Java
projects. Using their tool BugStat, they compare characteristic
of manual fixes with automatic program repair and come up
with 15 findings contributing at improving the state-of-the-art
of automatic program repair.

Sobreira et al. [14] perform a similar type of analysis, but
focus their work on a curated benchmark for Java bug fixes,
Defects4J [16]. While the set of bug fixes is substantially
smaller than in other studies, with only 395 bugs, it present the
advantage of being carefully cleaned and curated. The study
shows that the median size of Defects4J patches is 4 lines.
Our results show much larger values (8.5 for pre-release bug
fixes and 16.5 for post-release ones) that could be explained by
the noise introduced by other activities such as refactoring or
documentation activities (JavaDoc, code comments). However,
we observe in both studies the same trends: the most common
type of change is line addition, followed by line modification
and line removal in both studies has a median value of 0.

On another hand, far fewer studies [33]–[35] tackled the
question of comparing post-release and pre-release bug fixes.
One of the reason lies in the lack of a clear definition as what
would be a pre-release vs a post-release bug fix in open source
projects, while access to industrial data is much scarcer for the
research community.

Li et al. [34] preform an analysis of the reports submitted
to the Windows Error Reporting (WER) for the Windows 7
operating system. They discriminate the incidents between
ones submitted for beta version (pre-release) and the ones
submitted for release versions (post-release). Using the in-
cident reports, the authors build usage characteristic profiles
and compare their distribution in pre-release incident and post-
release incident. Their result show that usage environments and
usage scenarios can differ between pre-release and post-release
machines, leading to misleading field defect predictions.

Dey et al. [36] conduct study where they focus on the
post-release faults in order to model the relationship between
software usage and software crashes. Using that model the
build a quality measure for software releases. They looked at
software usage, release specific information and the number
of application crash of 169 Android applications. Their results
suggest that the number of new user and release start date to
be the determining factor to predict the number of exception

reported.
Finally Abou Zeinab et al. [35] propose an analysis of

the BugZilla reports over 15 years for the Eclipse projects
comparing the activity before and after release. They observe
that more effort is spent for handling bugs before an upcoming
release, but over time, especially with the adoption of shorter
release cycles, the workload before and after releases tend to
be increasingly balanced.

VIII. CONCLUSION

Software bugs, albeit dangerous and costly for practitioners
play an important role in the research community as they
drive the creation and evaluation of Software Engineering
advances. Thus, researchers have focused on understanding
such characteristics and their implications on software testing
and debugging research. Unfortunately, industrial studies on
such characteristics are scarce.

To bridge this gap, this paper presents an extensive industrial
study on the characteristics of pre-release and post-release
bugs, i.e., bugs found during software development and after
their release to production, respectively. More precise, we
analyze 37 Java projects with 250 post-release bug fixes
and 3,623 pre-release ones and study their similarities and
differences.

Our study shows that pre-release bugs are usually composed
of edits in both configuration and source code files. These edits
are mainly additions, with typically 9 lines added per bug
fix. The changes are usually ‘local’ and can be localized to 2
chunks in one method. Post-release bugs are mostly composed
of line additions in both code and configuration files. In source
code files, we typically observe that about 16 lines of code are
edited, which happens on 3 to 4 chunks in a single method.

We also show, that both pre- and post-release bugs appear in
similar types of files and locations (mostly localized in a single
method). However, post-release bugs are typically larger, in
term of number of lines edited, than pre-release ones and
more disperse across the code base. In both cases the most
common change pattern is a statement change where the post-
release bugs mainly involve control flow modifications while
pre-release ones involve design changes such interface and
modifications on parent classes.

Finally, our experiment shows that approximately 5% of
the pre-release bugs addressed a violation exhibited by static
analysis, where none were addressed by post-release bug fixes.
This results suggest that changes in both pre- and post-release
bug fixes are more behavioral than structural or too complex
for static analysis tools to catch.
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