
MUTATION TESTING STRATEGIES:

A COLLATERAL APPROACH

Mike Papadakis, Nicos Malevris and Marinos Kintis
Department of Informatics Athens University of Economics and Business, Patission Street 76, 10434, Athens, Greece

 {mpapad, ngm, kintism}@aueb.gr

Keywords: Mutation testing, weak mutation, higher order mutation, collateral coverage

Abstract: Mutation Testing is considered to be one of the most powerful techniques for unit testing and at the same

time one of the most expensive. The principal expense of mutation is the vast number of imposed test

requirements, many of which cannot be satisfied. In order to overcome these limitations, researchers have

proposed many cost reduction techniques, such as selective mutation, weak mutation and a novel approach

based on mutant combination, which combines first order mutants to generate second order ones. An

experimental comparison involving weak mutation, strong mutation and various proposed strategies was

conducted. The experiment shows that all proposed approaches are quite effective in general as they result

in high collateral coverage of strong mutation (approximately 95%), while recording remarkable effort

savings. Additionally, the results suggest that some of the proposed approaches are more effective than

others making it possible to reduce the mutation testing application cost with only a limited impact on its

effectiveness.

1 INTRODUCTION

The software testing activity forms one of the

most widely used methods for both revealing

software faults and establishing confidence about the

normal behaviour of the software products. This

activity requires the generation and execution of the

software under test with actual test data. Their

quality is measured by their ability to exercise

certain program features. Based on the necessity and

importance of exercising specific program features

various test adequacy measures have been proposed.

Measures of this kind give rise to the definition of

various testing criteria usually referred to as

coverage criteria. Given one such criterion say

branch coverage the tester is required to produce test

cases until they satisfy-cover all the test elements

defined by the criterion i.e. all program branches.

Mutation testing is a fault based technique used

for producing high quality test cases. It injects

specific faults into the software under test and

requires from the tester to produce test cases able to

reveal them. By requiring the production of mutation

adequate test cases it is believed that a high level of

testing thoroughness can be achieved. This is

supported by the recent experiments of (Andrews et

al., 2006) which provide evidence that the mutation

technique can produce faults similar to real ones and

can thus provide a good estimate of the fault

revealing ability of the candidate test case sets.

Despite its effectiveness, mutation often requires

unacceptable (unlimited) computational resources.

This is a direct consequence of the vast number of

faulty program versions that it introduces. To bypass

these shortcomings researchers have proposed a

number of techniques aiming at reducing the cost

involved (Offutt and Untch, 2001) while keeping its

effectiveness at a high level. Recently, a new

mutation testing alternative approach has been

suggested, based on the notion of higher order

mutants (Polo et al., 2009), which consists of

combining pairs of first-order mutants to obtain a set

of second-order ones.

In this study various second order mutation

testing strategies are proposed and their behaviour in

providing collateral coverage (Malevris and Yates,

2006) with respect to strong mutation is

investigated. Additionally a comparison with

another mutation alternative technique namely weak

mutation was also undertaken. The results indicate

that second order mutation testing strategies form a

viable alternative of mutation as they can achieve

considerable effort savings, without significant loss

of test effectiveness.

2 BACKGROUND

Mutation testing is a well known fault-based
technique which was established and introduced by
(Hamlet, 1977) and (DeMillo et al., 1978). Mutation
induces syntactic faults into the software’s under test
code by creating many versions of the original
program (mutants). Test cases are used to execute
the generated mutants with the goal of distinguishing
(killing) them from the original one, by causing them
to result in incorrect output. A mutant is called
equivalent if the inexistence of such test cases holds.
Measuring the testing quality based on the ratio of
killed mutants results in a mutation based metric.
This metric is usually called mutation score and it is
defined as the ratio of killed mutants over the total
number of non-equivalent mutants.

Various approaches have been proposed in order
to make mutation testing more practical. Weak
mutation (Howden, 1982) reduces the computational
expense of mutation by avoiding the complete
execution of the generated mutants. It suggests
stopping the program execution immediately after
the execution of the mutated statements. Based on
this, execution savings rely on the reduced execution
traces. In the present study it was decided to use
weak mutation for comparison between the methods,
since it has proved to be more cost-effective than
strong mutation e.g. (Offutt and Lee, 1994).

Recently a new mutation testing alternative

approach has been proposed (Polo et al., 2009),

based on the notion of second order mutants.

According to this, based on a set of candidate

mutants, a reduced set of second order mutants is

formed by combining them into pairs. Various

strategies of how and which mutant statements

should be combined can be conducted. In the study

of (Polo et al., 2009) three strategies were proposed

and their experimental results showed high reduction

on the number of generated and equivalent mutants.

Additionally, evidence about the cost-effectiveness

of the use of second order strategies was provided by

(Papadakis and Malevris, 2010). It is this conclusion

that is investigated in the present study by using

partly some of the originally proposed and partly

some newly proposed strategies. This is done in

order to determine the impact on the testing quality

of the second order mutation strategies in

comparison to that of strong and weak mutation.

3 SECOND ORDER MUTATION

Besides the investigation of the cost and benefits

of using second order mutation an additional goal

was to propose new strategies able to provide better

results than the initially ones. To achieve this, a set

of six new strategies was developed. Due to lack of

space only a brief description of these strategies is

given. Their full details can be found in (Kintis, 2010).

The proposed strategies fall into three general

categories: a) The Dominator category denoted as

Dom, b) the Relaxed Dominator denoted as RDom

and c) the Strict Dominator denoted as SDom. These

three categories are based on the dominator analysis

(Agrawal, 1994) of the programs under test. The

idea behind their use was to increase the coupling

chances between the introduced mutants. To achieve

this, the mutant pairs were forced to be selected

from node pairs that were found to have a

domination relation.
The Dominator strategy category starts by

constructing the sets of pre and post dominating
nodes say pre-n and post-n for each node, say n, of
the program’s control flow graph. Then it selects
mutants from node n and combines them with those
from pre-n and post-n nodes by selecting at least one
mutant from either of the two. It must be noted that
this category guarantees the equal contribution of the
pre and post dominating nodes at the second order
mutant generation process. Figure 1 illustrates the
sequence of node pairs, generated for node 4, from
which the second order mutants will be created. The
sequence shown will be repeated until all mutants of
node 4 are combined.

Figure 1: The sequence of node pairs, for node 4, from

which the first order mutants will be combined.

The way of combining the pre-n and post-n
mutants defines the two strategies under this
category. The DomF strategy combines the first
mutant of node n with the first unselected mutant of
the first post-n node, the second with the first
unselected of the first of the pre-n node etc. The
process continues until all mutants of node n have
been used at least once and one mutant from every
pre-n and post-n nodes has also been selected. The
strategy DomDiff selects the mutants in a similar

fashion with an additional restriction of selecting
mutants produced by different mutation operators only.

The Relaxed Dominator category selects mutant
pairs with the same scheme with the Dominator
strategy but in a relaxed way. That is, without
requiring the selection of at least one mutant from
every pre-n and post-n nodes. Thus, the strategies of
this category select one mutant pair for each mutant
belonging to node n and use each mutant as few
times as possible. This means that node pairs shown
in Figure 1, will be generated only if both their
nodes have unused mutants. In a different case the
next available pair that meets the above requirement
will be used.

The strategies RDomF and RDomDiff are the
relaxed versions of the DomF and DomDiff
strategies respectively.

The Strict Dominator category restricts the

selection of mutants among dominated node pairs.

That way it is expected that both or none of the

mutants will be executed by the test cases. The

developed strategies SDomF, SDomDiff use the

same selection approach applied only on the

dominated node sets as described above. It has been

found that by using such a technique many mutants

remain unused as they refer to nodes not being

dominated. For these mutants the appropriate

relaxed dominator strategy has also been used, i.e. if

the SDomF strategy is applied then the unused

mutants will be combined with the RDomF strategy.

4 EXPERIMENT

In the present study we investigated the
effectiveness of various second order strategies and
weak mutation as opposed to strong mutation.
Furthermore the ability of fulfilling strong mutation
while aiming at second order on the one hand and
also similarly when aiming at weak mutation on the
other is analysed.

For the purposes of the experiment a set of 15

Java program test units was used, which were

chosen from those used in (Papadakis et al., 2010)

and (Polo et al., 2009) and an automated framework

was implemented for producing second order and

weak mutation mutants for java. The framework

uses the mujava mutation testing tool (Ma et al.,

2005) for the generation of first order mutants. The

experiment was initiated by independently applying

each one of the second order and weak mutation

testing strategies on all test subjects. Then a

comparison was made based on strong mutation,

which was done by recording the collateral strong

mutation score achieved by the constructed test sets

per each strategy. To eliminate any bias introduced

by a particular test case set, we generated 10

separate test sets for each unit and for each variant.

5 RESULTS

The conducted study tries to unveil details about

the benefits of either using second order mutation

testing strategies or weak mutation instead of strong

mutation.

Table 1 summarizes the achieved equivalent

mutant reduction for all considered strategies (table

columns) and selected units with respect to strong

mutation. The most interesting aspect of this table is

that both second order and weak mutation testing

strategies produce by far less equivalent mutants

than what strong mutation does. The strong mutation

collateral scores for the produced tests of the

considered strategies are shown in Figure 2. It is

obvious that strict category strategies are more

effective than the Dom and RDom strategies.

Additionally, it can be observed that strategies based

on different operators are less effective but as they

produce less equivalent mutants (Table 1) they may

be a good choice.

Conclusively, the experiment suggests that

considerable savings can be achieved by both second

order and weak mutation strategies as opposed to

strong mutation. Weak mutation achieves on average

a score of 97.05% thus, recording approximately an

effectiveness loss of 3% with an achieved reduction

of 27.03% of equivalent mutants (reducing their

number by 73%). This being a very important

observation as it indicates that a 73% less manual

effort (equivalent mutant identification) can be

gained. According to the SDomF strategy a similar

conclusion can be argued as 3.5% of effectiveness

loss, the gain of less equivalent mutants rises to

87%. These results suggest that it is possible to

perform mutation with reasonable resources.

Table 1: Achieved equivalent mutant reduction per strategy with respect to strong mutation.

Unit Weak First2Last DiffOp DomF DomDiff RDomF RDomDiff SDomF SDomDiff

Total 72,97% 91,22% 92,91% 83,78% 92,23% 85,47% 91,89% 86,82% 94,93%

Figure 2: Achieved collateral strong mutation scores of the considered strategies.

6 CONCLUSION

This paper presents an experiment on mutation

testing strategies. The conducted experiment tried to

empirically examine the advantages and

disadvantages of using second order and weak

mutation testing strategies. The results indicate that

second order mutation testing strategies form a

viable alternative to strong mutation as they can

achieve considerable effort savings, without a

significant loss on their collateral coverage.

REFERENCES

AGRAWAL, H. 1994. Dominators, super blocks, and

program coverage. Proceedings of the 21st

ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. Portland,

Oregon, United States: ACM.

ANDREWS, J. H., BRIAND, L. C., LABICHE, Y. &

NAMIN, A. S. 2006. Using Mutation Analysis for

Assessing and Comparing Testing Coverage

Criteria. IEEE Trans. Softw. Eng., 32, 608-624.

DEMILLO, R. A., LIPTON, R. J. & SAYWARD, F. G.

1978. Hints on Test Data Selection: Help for the

Practicing Programmer. Computer, 11, 34-41.

HAMLET, R. G. 1977. Testing Programs with the Aid of a

Compiler. IEEE Trans. Softw. Eng., 3, 279-290.

HOWDEN, W. E. 1982. Weak Mutation Testing and

Completeness of Test Sets. IEEE Trans. Softw.

Eng., 8, 371-379.

KINTIS, M. 2010. Mutation testing and its

approximations. Master Thesis (in Greek),

Athens University of Economics and Business.

MA, Y.-S., OFFUTT, J. & KWON, Y. R. 2005. MuJava: an

automated class mutation system: Research

Articles. Softw. Test. Verif. Reliab., 15, 97-133.

MALEVRIS, N. & YATES, D. F. 2006. The collateral

coverage of data flow criteria when branch

testing. Information and Software Technology,

48, 676-686.

OFFUTT, A. J. & LEE, S. D. 1994. An Empirical

Evaluation of Weak Mutation. IEEE Trans.

Softw. Eng., 20, 337-344.

OFFUTT, A. J. & UNTCH, R. H. 2001. Mutation 2000:

uniting the orthogonal. Mutation testing for the

new century. Kluwer Academic Publishers.

PAPADAKIS, M. & MALEVRIS, N. 2010. An Empirical

Evaluation of the First and Second Order

Mutation Testing Strategies. Proceedings of the

5th International Workshop on Mutation

Analysis (MUTATION'10). Paris, France.

PAPADAKIS, M., MALEVRIS, N. & KALLIA, M. 2010.

Towards Automating the Generation of

Mutation Tests. AST 2010. Cape Town.

POLO, M., PIATTINI, M. & GARCÍA-RODRÍGUEZ, I.

2009. Decreasing the cost of mutation testing

with second-order mutants. Software Testing,

Verification and Reliability, 19, 111-131.

