
Feature Location Benchmark for Software
Families using Eclipse Community Releases

Jabier Martinez12, Tewfik Ziadi2, Mike Papadakis1, Tegawendé F. Bissyandé1,
Jacques Klein1, and Yves le Traon1

1 SnT, University of Luxembourg
Luxembourg, Luxembourg
name.surname@uni.lu

2 LiP6, Sorbonne Universités, UPMC Univ Paris 06
Paris, France

tewfik.ziadi@lip6.fr

Abstract. It is common belief that high impact research in software
reuse requires assessment in realistic, non-trivial, comparable, and re-
producible settings. However, real software artefacts and common rep-
resentations are usually unavailable. Also, establishing a representative
ground truth is a challenging and debatable subject. Feature location in
the context of software families is a research field that is becoming more
mature with a high proliferation of techniques. We present EFLBench, a
benchmark and a framework to provide a common ground for this field.
EFLBench leverages the efforts made by the Eclipse Community which
provides real feature-based family artefacts and their implementations.
Eclipse is an active and non-trivial project and thus, it establishes an
unbiased ground truth. EFLBench is publicly available and supports all
tasks for feature location techniques integration, benchmark construc-
tion and benchmark usage. We demonstrate its usage and its simplicity
and reproducibility by comparing four techniques.

Keywords: Feature location, software product lines, benchmark, static
analysis, information retrieval

1 Introduction

Software reuse is often performed by industrial practitioners mainly to boost
productivity. One such case is the copy-paste-modify which is performed when
creating product variants for supporting different customer needs [9]. This prac-
tice may increase the productivity in a short term period but in the long run
it becomes problematic due to the complex maintenance and further evolution
activities of the variants [4]. To deal with these issues, Software Product Line
(SPL) engineering has developed mature techniques that can support common-
ality and variability management of a whole product family and the derivation
of tailored products by combining reusable assets [4].

Despite the advantages provided by SPLs, their adoption still remains a ma-
jor challenge because of organizational and technical issues. To deal with it,

2 J. Martinez et al.

software reuse community proposed the so-called extractive or bottom-up ap-
proaches. Among the various bottom-up processes, in this paper we focus on
feature location. A feature is defined as a prominent or distinctive user-visible
aspect, quality, or characteristic of a software system or systems [15]. As pointed
out in the surveys of Rubin et al. and Assunção et al. [5, 24], feature location is
an important and challenging problem of these bottom-up processes towards sys-
tematic reuse. Many approaches have been proposed and there is a progression
in the number of research work conducted every year [5]. Thus, it can be stated
that there is an increasing interest on the topic by the research community [19].

Comparing, evaluating and experimenting with feature location techniques
is challenging due to the following reasons:
– Most of the research prototypes are either unavailable or hard to configure.
– Performance comparison requires common settings and environments.
– Most of the tools are strongly dependent on specific artefact types that they

were designed for, e.g., programming language, design models, etc.
– Effectiveness of the techniques can vary according to different implementa-

tion element types, e.g., Abstract Syntax Tree (AST) nodes, software com-
ponents, etc, that are to be located.

Common case study subjects and frameworks are in need to foster the re-
search activity [30]. In this direction, we identified a set of requirements for such
frameworks in feature location:
A standard case study subject. Subjects that are real, non-trivial and easy

to use are mandatory. This includes: 1) A list of existing features; 2) For
each feature, a group of elements that implements it. 3) A set of real product
variants accompanied by the information of which features are included.

A benchmarking framework. In addition to the standard subjects, a full
implementation that allows a common, quick and intensive evaluation is
needed. This includes 1) available implementation with a common abstrac-
tion for the product variants to be considered by the case studies, i.e., as
unified structured elements; 2) easy and extensible mechanisms to integrate
feature location techniques to support the experimentation and 3) sets of
predefined evaluation metrics to draw comparable results.

This paper proposes a framework, called Eclipse Feature Location Bench-
mark (EFLBench), that fulfils the requirements identified above. We propose
a standard and a realistic case study for feature location and an integrated
benchmark using the packages of Eclipse releases, their features and their asso-
ciated plugins. We also propose a full implementation to support benchmarking
within Bottom-Up Technologies for Reuse (BUT4Reuse) [21] that is an open-
source, generic and extensible framework for bottom-up approaches which allows
a quick integration of feature location techniques.

The rest of the paper is structured as follows: Section 2 provides background
information about feature location techniques and the Eclipse project. In Sec-
tion 3 we present Eclipse as a case study subject and then in Section 4 we
present the EFLBench framework. Section 5 presents different feature location
techniques and the results of EFLBench usage. Section 6 presents related work
and Section 7 concludes and presents future work.

Feature Location Benchmark for Software Families: EFLBench 3

2 Background

In order to provide a better understanding for the following sections of this
paper, we provide details about feature location and about the Eclipse project.

2.1 Feature Location

Bottom-up approaches for SPL adoption are mainly composed of the following
processes: Feature identification, feature location and re-engineering [21]. While
feature identification is the process that takes as input a set of product variants
and analyses them to discover and identify features, the feature location is the
process of mapping features to their concrete implementation in the product
variants. Therefore, compared to the feature identification process, the assump-
tion in feature location is that the features are known upfront. Feature location
processes in software families also use to assume that feature presence or absence
in the product variants is known upfront. However, what is unknown is where
exactly they are implemented inside the variants. Finally, feature re-engineering
is the process that includes a transformation phase where the artefact variants
are refactored to conform to an SPL approach. This includes extracting, for each
feature, reusable assets from the artefact variants.

As already mentioned, the objective of feature location approaches is to map
features to their concrete implementation parts inside the product variants. How-
ever, depending on the nature of the variants, this can concern code fragments
in the case of source code [2,11,23,34], model fragments in the context of mod-
els [12, 20] or software components in software architectures [1, 14]. Therefore,
existing techniques are composed of the following two phases: 1) Abstraction,
where the different product variants are abstracted and represented as imple-
mentation elements; 2) Location, where algorithms analyse and compare the
different product variants to create groups of implementation elements. These
groups are to be associated with the sought features. Despite these two phases,
feature location techniques differ in the following three aspects:

– The way the product variants are abstracted and represented. In-
deed, each approach uses a specific formalism to represent product variants.
For example AST nodes for source code [11], Atomic-Model-Element to rep-
resent model variants [20] or plugins in software architectures [1]. In addition,
the granularity of the sought implementation elements may vary from coarse
to fine [16]. Some use fine granularity using AST nodes that cover all source
code statements while others use purposely a little bit bigger granularity us-
ing object-oriented building elements [2] like Salman et al. that only consider
classes [25].

– The proposed algorithms. Each approach proposes its own algorithm to
analyse product variants and identify the groups of elements that are related
to features. For instance, Fischer et al. [11] used a static analysis algorithm.
Other approaches use techniques from the field of Information Retrieval (IR).
Xue et al. [33] and Salman et al. [26] proposed the use of Formal Concept
Analysis (FCA) to group implementation elements and then, in a second
step, the IR technique Latent Semantic Indexing (LSI) to map between

4 J. Martinez et al.

these groups and the features. Salman et al. used Hierarchical Clustering
to perform this second step [25].

– The used case studies to evaluate and experiment the proposed
technique. The evaluation of each technique is often performed using its
own case study and with its own evaluation measures.

2.2 The Eclipse Project

The Eclipse community, with the support of the Eclipse Foundation, provides in-
tegrated development environments (IDE) targeting different developer profiles.
The project IDEs cover the development needs of Java, C/C++, JavaEE, Scout,
Domain Specific Languages, Modeling, Rich Client Platforms, Remote Applica-
tions Platforms, Testing, Reporting, Parallel Applications or for Mobile Appli-
cations. Following Eclipse terminology, each of the customized Eclipse IDEs is
called an Eclipse package.

As the project evolves over time, new packages appear and some other ones
disappear depending on the interest and needs of the community. For instance,
in 2011 there were 12 packages while the next year 13 packages were available
with the addition of one targeted to Automotive Software developers.

Continuing with Eclipse terminology, a simultaneous release (release here-
after) is a set of packages which are public under the supervision of the Eclipse
Foundation. Every year, there is one main release, in June, which is followed
by two service releases for maintenance purposes: SR1 and SR2 usually around
September and February. For each release, the platform version changes and tra-
ditionally celestial bodies are used to name the releases, for example Luna for
version 4.4 and Mars for version 4.5.

The packages present variation depending on the included and not-included
features. For example, Eclipse package for Testers is the only one that includes
the Jubula Functional Testing features. On the contrary, other features like the
Java Development tools are shared by most of the packages. There are also
common features for all the packages, like the Equinox features that implement
the core functionality of the Eclipse architecture. The online documentation of
each release provides a high-level information of the features that each package
provides 1.

It is important to mention that in this work we are not interested in the
variation among the releases (version 4.4, 4.5 and so on), known as variation in
time, because this is related to software maintenance and evolution. We focus on
the variation of the different packages of a given release, known as variation in
space, which is expressed in terms of included and not-included features. Each
package is different in order to support the needs of the targeted developer profile
by including only the appropriate features.

Eclipse is feature oriented and based on plugins. Each feature consists of a
set of plugins that are the actual implementation of the feature. Table 1 shows an
example of feature with four plugins as implementation elements that, if included

1 https://eclipse.org/downloads/compare.php?release=kepler

https://eclipse.org/downloads/compare.php?release=kepler

Feature Location Benchmark for Software Families: EFLBench 5

in an Eclipse package, adds support for a versioning system based on CVS. At
technical level, the actual features of a package can be found within a folder
called features. This folder contains meta-information regarding the installed
features including the list of plugins associated to each of the features. Each
feature has an id, a name and a description as written by the feature providers
of the Eclipse community. A plugin has an id and a name written by the plugin
providers but it does not have a description.

Table 2 presents data regarding the evolution of the Eclipse releases over
the years. In particular, it presents the total number of packages, features and
plugins per release. To illustrate the distribution of packages and features in the
project, Figure 1 depicts a matrix of the different Eclipse Kepler SR2 packages.
In this figure, a black box denotes the presence of a feature (horizontal axis)
in a package (vertical axis). We observe that some features are present in all
the packages while others are specific to only few, one or two, packages. The

Table 1. Eclipse feature example

Feature

id: org.eclipse.cvs

name: Eclipse CVS Client

description: Eclipse CVS Client (binary runtime and user documentation).

Plugin id Plugin name

org.eclipse.cvs Eclipse CVS Client

org.eclipse.team.cvs.core CVS Team Provider Core

org.eclipse.team.cvs.ssh2 CVS SSH2

org.eclipse.team.cvs.ui CVS Team Provider UI

Table 2. Eclipse releases and their number of packages, features and plugins

Year Release Packages Features Plugins

2008 Europa Winter 4 91 484
2009 Ganymede SR2 7 291 1,290
2010 Galileo SR2 10 341 1,658
2011 Helios SR2 12 320 1,508
2012 Indigo SR2 12 347 1,725
2013 Juno SR2 13 406 2,008
2014 Kepler SR2 12 437 2,043
2015 Luna SR2 13 533 2,377

Fig. 1. Eclipse Kepler SR2 packages and a mapping to their 437 features

6 J. Martinez et al.

437 features are alphabetically ordered by their id and, for instance, the feature
Eclipse CVS Client, tagged in Figure 1, is present in all of the packages except
in the Automotive Software package.

Features, as in most of the feature oriented systems, have dependencies
among them. Includes is the Eclipse terminology to define subfeatures and Re-
quires means that there is a functional dependency between the features. Fig-
ure 2 shows the dependencies between all the features of Eclipse Kepler SR2.
We tagged in Figure 2 some features and subfeatures of the Eclipse Modeling
Framework. Functional dependencies are mainly motivated by the existence of
dependencies between the plugins of one feature with the plugins of other fea-
tures.

Fig. 2. Features of Eclipse Kepler SR2 and their dependencies

Both Feature and Plugin dependencies are explicitly declared in their meta-
data. Figure 3 shows a very small excerpt of the dependency connections of the
2043 plugins of Eclipse Kepler SR2. Concretely, this excerpt shows the depen-
dencies of the four CVS plugins presented in Table 1.

Fig. 3. Excerpt of plugin dependencies focusing on the dependencies of CVS plugins

Feature Location Benchmark for Software Families: EFLBench 7

3 Eclipse as a standard case study subject

Eclipse packages are an interesting candidate as a standard case study for a
feature location benchmark. First, as mentioned in Section 1, it fulfils the re-
quirement of providing the needed data to be used as ground truth. This ground
truth can be extracted from features meta-information. Apart from this, Eclipse
packages present other characteristics that make this case study interesting and
challenging. This section aims to discuss these characteristics.

The relation between the number of available packages in the different Eclipse
releases and the number of different features is not balanced. In fact, the number
of available product variants has been shown to be an important factor for
feature location techniques [11]. The limited number of packages and the big
amount of features make the Eclipse case study challenging. The granularity
of the implementation elements (plugins) is very coarse if we compare it with
source code AST nodes, however, the number of plugins is still reasonably high.
In Eclipse Kepler SR2, the total of plugins with different ids is 2043 with an
average of 609 plugins per Eclipse package and a standard deviation of 192.

Eclipse feature and plugin providers have created their own natural language
corpora. The feature and plugin names (and the description in the case of the
features) can be categorized as meaningful names [24] enabling the use of sev-
eral IR techniques. Also, the dependencies between features and dependencies
between implementation elements have been used in feature location techniques.
For example, in source code, program dependence analysis has been used by
exploiting program dependence graphs [7]. Acher et al. [1] also leveraged archi-
tecture and plugin dependencies. As presented in previous section, Eclipse also
has dependencies between features and dependencies between plugins enabling
their exploitation during feature location.

There are properties that can be considered as “noise” that are common in
real scenarios. Some of them can be considered as non-conformities in feature
specification [31]. A case study without “noise” should be considered as a very
optimistic case study. In Eclipse Kepler SR2, 8 plugins do not have a name and
different plugins from the same feature have also exactly the same names. There
are also 177 plugins which are associated to more than one feature. Thereby
the features’ plugin sets are not completely disjoint. These plugins are mostly
related to libraries for common functionalities that they were not included as
required plugins but as a part of the feature itself. In addition, 40 plugins present
in some of the variants are not declared in any feature. Also, in few cases, feature
versions are different among packages of the same release.

Apart from the official releases, software engineering practitioners have cre-
ated their own Eclipse packages. Therefore, also researchers can use their own
packages or create variants with specific characteristics. Interest of analysing
plugin-based or component-based software system families to exploit their fea-
ture variability has been shown in previous works [1,14,29]. For instance, expe-
riences in an industrial case study were reported by Grünbacher et al. [14] where
they performed manual feature location in Eclipse packages to extract an SPL
that involved more than 20 package customizations per year.

8 J. Martinez et al.

4 Eclipse Feature Location Benchmarking Framework

EFLBench is aimed to be used with any set of Eclipse packages. The benchmark
can be created from any set of Eclipse packages that can have additional features
which are not part of any official release. However, to set a common scenario for
research we recommend and propose the use of Eclipse Community releases.

Figure 4, in the top part, illustrates the mechanism for constructing the
benchmark taking as input the Eclipse packages and automatically producing
two outputs, a) a Feature list with information about each feature name, de-
scription and the list of packages where it was present, and b) a ground truth
with the mapping between the features and the implementation elements which
are the plugins.

Once the benchmark is constructed, the bottom part of Figure 4 illustrates
how it can be used through BUT4Reuse [21] where feature location techniques
can be integrated. The Eclipse adapter, which is responsible for the variants
abstraction phase, will be followed by the launch of the targeted feature loca-
tion techniques. This process takes as input the Eclipse packages (excluding the
features folder) and the feature list. The feature location technique produces a
mapping between features and plugins that can be evaluated against the ground
truth obtained in the benchmark construction phase.

The following subsections provide more details on the two phases.

4.1 Benchmark construction

We implemented an automatic extractor of features information. The implemen-
tation elements of a feature are those plugins that are directly associated to this
feature. From the 437 features of the Eclipse Kepler SR2, each one has an av-
erage of 5.23 plugins associated with. The standard deviation is 9.67. There is
one outlier with 119 plugins which is the feature BIRT Framework present in
the Reporting package. From the 437 features, there are 19 features that do not
contain any plugins, so they are considered abstract features which are created
just for grouping other features. For example, the feature UML2 Extender SDK

Fig. 4. EFLBench: Eclipse package variants as benchmark for feature location

Feature Location Benchmark for Software Families: EFLBench 9

(Software Development Kit) groups UML2 End-User Features, Source for UML2
End-User Features, UML2 Documentation and UML2 Examples.

Reproducibility is becoming quite easy by using benchmarks and common
frameworks that launch and compare different techniques [30]. This practice,
allows a valid performance comparison with all the implemented and future
techniques. BUT4Reuse public repository includes EFLBench and its automatic
extractor.

4.2 Benchmark usage

During the product abstraction phase, the implemented Eclipse adapter decom-
poses any Eclipse installation in a set of plugins by visiting and analysing the
Eclipse installation file structure. The plugin elements contain information about
their id, name as well as their dependency to other plugin elements.

At technical level, BUT4Reuse provides an extension point and interface to
easily include feature location techniques 2. After feature location, it calculates
the precision and recall for each feature location technique which are classical
evaluation metrics in IR studies (e.g., [25]). We explain precision and recall, two
metrics that complements each other, in the context of EFLBench. A feature
location technique assigns a set of plugins to each feature. In this set, there can
be some plugins that are actually correct according to the ground-truth, those
are true positives (TP). TPs are also referred to as hit. On the set of plugins
retrieved by the feature location technique for each feature, there can be other
plugins that do not belong to the feature, those are false positives (FP) which are
also referred to as false alarms. Precision is the percentage of correctly retrieved
plugins from the total of retrieved plugins by the feature location technique.
A precision of 100% means that the ground truth of the plugins assigned to a
feature and the retrieved set from the feature location technique are the same
and no “extra” plugins were included. The formula of precision is as follows:

precision =
TP

TP + FP
=

plugins hit

plugins hit + plugins false alarm

According to the ground truth there can be some plugins that are not in-
cluded in the retrieved set, meaning that they are miss. Those plugins are false
negatives (FN). Recall is the percentage of correctly retrieved plugins from the
set of the ground-truth. A recall of 100% means that all the plugins of the
ground-truth were assigned to the feature. The formula of recall is as follows:

recall =
TP

TP + FN
=

plugins hit

plugins hit + pluginsmiss

Precision and recall are calculated for each feature. In order to have a global
result of the precision and recall we use the mean of all the features. Finally,
BUT4Reuse reports the time spent for the feature location technique. With this
information, the time performance of different techniques can be compared.

2 Instructions to integrate feature location techniques in BUT4Reuse:
https://github.com/but4reuse/but4reuse/wiki/ExtensionsManual

https://github.com/but4reuse/but4reuse/wiki/ExtensionsManual

10 J. Martinez et al.

5 Example of EFLBench usage

This section aims at presenting the possibilities of EFLBench by benchmarking
four feature location techniques. The four techniques are using Formal Concept
Analysis (FCA) and three of them are using natural language processing (NLP).
Before enumerating the four techniques, we briefly present FCA and the used
NLP algorithms.

5.1 Background algorithms

For the four techniques we used FCA [13] for the identification of an initial set
of groups of implementation elements. We will refer to the identification of this
initial set as block identification [21]. FCA groups elements that share common
attributes. A detailed explanation about FCA formalism in the same context
of block identification can be found in Al-Msie’deen et al. [2] and Shatnawi et
al. [29]. FCA uses a formal context as input. In our case, the entities of the formal
context are the Eclipse packages and the attributes (binary) are the presence or
not of each of the plugins. With this input, FCA discovers a set of concepts.
The concepts which contain at least one plugin (non empty concept intent in
FCA terminology) is considered as a block. For example, in Eclipse Kepler SR2,
FCA-based block identification identifies 60 blocks with an average of 34 plugins
per block and a standard deviation of 54 plugins. In Eclipse Europa Winter,
with only 4 packages, only 6 blocks are identified with an average of 80 plugins
each and a standard deviation of 81. Given the low number of Eclipse packages,
FCA identifies a low number of blocks. The number of blocks is specially low
if we compare it with the actual number of features that we aim to locate.
For example 60 blocks in Kepler SR2 against its 437 features. The higher the
number of Eclipse packages, the most likely FCA will be able to distinguish
different blocks. At technical level, we implemented FCA for block identification
using ERCA [10].

In the approaches where we use IR techniques, we did not make use of the
feature or plugin ids. In order to extract the meaningful words from both fea-
tures (name and description) and elements (plugin names), we used two well
established techniques in the IR field:

– Parts-of-speech tags remover: These techniques analyse and tag words de-
pending on their role in the text. The objective is to filter and keep only the
potentially relevant words. For example, conjunctions (f.e. “and”), articles
(f.e. “the”) or prepositions (f.e. “in”) are frequent and may not add rele-
vant information. As example, we consider the following feature name and
description: “Eclipse Scout Project. Eclipse Scout is a business application
framework that supports desktop, web and mobile frontends. This feature con-
tains the Scout core runtime components.”. We apply Part-of-Speech Tagger
techniques using OpenNLP [3].

– Stemming: This technique reduces the words to their root. The objective is
to unify words for not to consider them as unrelated. For example “play-
ing” will be stemmed to “play” or “tools” to “tool”. Instead of keeping the

Feature Location Benchmark for Software Families: EFLBench 11

root, we keep the word with greater number of occurrences to replace the
involved words. As example, in the Graphiti feature name and description
we find “[...]Graphiti supports the fast and easy creation of unified graphi-
cal tools, which can graphically display[...]” so graphical and graphically
is considered the same word as their shared stem is graphic. Regarding the
implementation, we used the Snowball steamer [22].

5.2 Feature location techniques

We explain the four examples of feature location techniques. Next Section 5.3
will be dedicated to present the results of using EFLBench.

FCA and Strict Feature-Specific (SFS) location: FCA is used for block
identification. Then, for feature location we use Strict Feature-Specific location
that consider the following assumptions: A feature is located in a block when
1) the block always appears in the artefacts that implements this feature and
2) the block never appears in any artefact that does not implement this feature.
Using this technique, the implementation of a feature is located in the plugin
elements of the whole block. The principles of this feature location technique
is similar to locating distinguishing features using diff sets [23]. In the Eclipse
packages case, notice that, given the low number of variants and identified blocks,
a lot of features will be located for the same block. In Eclipse Kepler SR2, an
average of 7.25 features are located for each of the 60 blocks with a standard
deviation of 13.71 features.

FCA and SFS and Shared term: The intuition behind this technique is
first to group features and blocks with FCA and SFS and then apply a “search”
of the feature words inside the elements of the block to discard elements that
may be completely unrelated. For each association between feature to a block,
we keep, for this feature, only the elements of the block which have at least one
meaningful name shared with the feature. In other words, we keep the elements
which term frequency (tf) between feature and element (featureElementTF) is
greater than 0. For clarification, featureElementTF is defined as follows being f
the feature, e the element and tf a method that just counts the number of times
that a given term appears in a given list of terms:

featureElementTF (f, e) =
∑

termi∈e.terms
tf(termi, f.terms)

FCA and SFS and Term frequency: FCA is used for block identification
and then SFS as in the previous approaches. Then, the intuition of this technique
is that all the features assigned to a block competes for the block elements. The
feature (or features in case of drawback) with higher featureElementTF will keep
the elements while the other features will not consider this element as part of it.

FCA and SFS and tf-idf: FCA and SFS are used as in the previous ap-
proaches. The features also compete in this case for the elements of the block
but a different weight is used for each word of the feature. This weight (or score)
is calculated through the term frequency - inverse document frequency (tf-idf)
value of the set of features that are competing. tf-idf is a well known technique

12 J. Martinez et al.

in IR [27]. In our context, the intuition is that words that appear more frequent
through the features may not be as important as less frequent words. For ex-
ample “Core”, “Client” or “Documentation” are maybe more frequent across
features but “CVS” or “BIRT”, being less frequent, are more relevant, infor-
mative or discriminating. As in the previous approach, the feature (or features)
with higher featureElementScore will keep the elements while the other features
will not consider them. The featureElementScore formula is defined as follows,
being F the set of features that are competing for the block element.

featureElementScore(f, e, F) =
∑

termi∈e.terms
tfidf(termi, f, F)

tfidf(termi, f, F) = tf(termi, f.terms)× idf(termi, F)

idf(termi, F) = log

(
|F |

|{f ∈ F : termi ∈ f}|

)

5.3 Results

We used the benchmark created with each of the Eclipse releases presented in
Table 2. The experiments were launched using BUT4Reuse at commit ce3a002
(19 December 2015) which contains the presented feature location techniques.
Detailed instructions for reproducibility are available 3. We used a laptop Dell
Latitude E6330 with a processor Intel(R) Core(TM) i7-3540M CPU@3.00GHz
with 8GB RAM and Windows 7 64-bit.

After using the benchmark, we obtain the results shown in Table 3. Precision
and Recall are the mean of all the features as discussed at the end of Section
4.2. The results in terms of precision are not satisfactory in the presented fea-
ture location techniques. This suggests that the case study is challenging. Also
we noticed that there are no very relevant differences in the results of these
techniques among the different Eclipse releases. As discussed before, given the
few amount of Eclipse packages under consideration, FCA is able to distinguish

3 https://github.com/but4reuse/but4reuse/wiki/Benchmarks

Table 3. Precision and recall of the different feature location techniques

SFS SFS+ST SFS+TF SFS+TFIDF

Release Precision Recall Precision Recall Precision Recall Precision Recall

Europa Winter 6.51 99.33 11.11 85.71 12.43 58.69 13.07 53.72
Ganymede SR2 5.13 97.33 10.36 87.72 11.65 64.31 12.80 52.70

Galileo SR2 7.13 93.39 10.92 82.01 11.82 60.50 12.45 53.51
Helios SR2 9.70 91.63 16.04 80.98 25.97 63.70 29.46 58.39
Indigo SR2 9.58 92.80 15.72 82.63 19.79 59.72 22.86 57.57

Juno SR2 10.83 91.41 19.08 81.75 25.97 61.92 24.89 60.82
Kepler SR2 9.53 91.14 16.51 83.82 26.38 62.66 26.86 57.15

Luna SR2 7.72 89.82 13.87 82.72 22.72 56.67 23.73 51.31

Mean 8.26 93.35 14.20 83.41 19.59 61.02 20.76 55.64

https://github.com/but4reuse/but4reuse/wiki/Benchmarks

Feature Location Benchmark for Software Families: EFLBench 13

blocks which may actually correspond to a high number of features. For exam-
ple, all the plugins that correspond specifically to the Eclipse Modeling package,
will be grouped in one block while many features are involved.

The first location technique (FCA + SFS) does not assume meaningful names
given that no IR technique is used. The features are located in the elements of a
whole block obtaining a high recall. Eclipse feature names and descriptions are
probably written by the same community of developers that create the plugins
and decide their names. In the approaches using IR techniques, the authors
expected a higher increment of precision without a loss of recall but the results
suggest that certain divergence exists between the vocabulary used at feature
level and at implementation level.

Regarding the time performance, Table 4 shows, in milliseconds, the time
spent for the different releases. Adapt time corresponds to the time to abstract
the Eclipse packages into a set of plugin elements and get their information. The
FCA time corresponds to the time for block identification. Then, the following
columns show the time of the different feature location techniques. We can ob-
serve that the time performance is not a limitation of these techniques as they
take around half a minute maximum.

It is out of the scope of the paper to propose innovative feature location
techniques. The objective is to present the benchmark usage, show that quick
feedback from feature location techniques can be obtained in the Eclipse releases
case studies. In addition, we provide empirical results of four feature location
techniques that can be used as baseline. Other block identification approaches
can be used to further split the groups obtained by FCA as for example the
clustering proposed by Salman et al. [25]. Other feature location techniques
can make use of the available plugin and feature dependencies information as
presented in Figure 2 and 3. Other works can evaluate the filtering of non-relevant
domain specific words for the IR techniques (f.e. “Eclipse” or “feature”) or even
make use of an Eclipse domain ontology to refine feature location. Finally, meta-
techniques for feature location can be proposed inspired by ensemble learning
from the data mining research field. These meta-techniques can use multiple
feature location techniques, providing better results than using each of them
alone.

Table 4. Time performance in milliseconds for feature location

Release Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

Europa Winter 2,397 75 6 2,581 2,587 4,363
Ganymede SR2 7,568 741 56 11,861 11,657 23,253

Galileo SR2 10,832 1,328 107 17,990 17,726 35,236
Helios SR2 11,844 1,258 86 5,654 5,673 12,742
Indigo SR2 12,942 1,684 100 8,782 8,397 16,753

Juno SR2 16,775 2,757 197 7,365 7,496 14,002
Kepler SR2 16,786 2,793 173 8,586 8,776 16,073

Luna SR2 17,841 3,908 233 15,238 15,363 33,518

Mean 12,123 1,818 120 9,757 9,709 19,493

14 J. Martinez et al.

6 Related work

In SPL engineering several benchmarks and common test subjects have been
proposed. Herrejon et al. proposed evaluating SPL technologies on a common
artefact, a Graph Product Line [17], which variability features are familiar to
any computer engineer. The same authors proposed a benchmark for combina-
torial interaction testing techniques for SPLs [18]. Betty [28] is a benchmark for
evaluating automated feature model analysis techniques, which has long history
in software engineering research [6]. Feature location on software families is also
becoming more mature with a relevant proliferation of techniques. Therefore,
benchmarking frameworks to support the evolution of this field are in need.

Many different case studies have been used for evaluating feature location
in software families [5]. For instance, ArgoUML variants [8] have been exten-
sively used. However, none of the presented case studies have been proposed as
a benchmark except the variants of the Linux kernel by Xing et al. [32]. This
benchmark considers 12 variants of the Linux kernel from which a ground truth
is extracted with the traceability of 2400 features to code parts. However, even
if the Linux kernel can be considered as an existing benchmark, EFLBench is
complementary to foster feature location research because a) it maps to a project
that is plugin-based, while Linux considers C code, and b) the characteristics of
the Eclipse natural language corpora is different from the Linux kernel corpora.
This last point is important because it has a major influence on the IR-based fea-
ture location techniques. Finally, using the Linux kernel benchmark, the ground
truth may be also constructed but there is no framework to support the ex-
periment. EFLBench is associated with BUT4Reuse which integrates feature
location techniques making easier to control and reproduce the settings of the
studied techniques.

7 Conclusion

We have presented EFLBench, a framework and a benchmark for supporting
research on feature location. The benchmark is based on the Eclipse releases
and is designed to support research on software reuse in the context of software
product lines. Existing and future techniques dealing with this problem can find a
challenging playground that is: a) real, b) contains a valid ground-truth and c) is
directly reproducible. We also demonstrated example results of four approaches
using the EFLBench.

As further work we aim to create a parametrizable generator for Eclipse pack-
ages. This generator will combine different features in order to use the benchmark
in special and predefined characteristics. We also aim to generalize the usage of
feature location benchmarks inside BUT4Reuse providing extensibility points for
other case studies. Finally, we plan to use the benchmark in order to test and
report existing and innovative feature location techniques while also encouraging
the research community on using it as part of their evaluation.

Acknowledgments. Supported by the National Research Fund Luxembourg
(FNR), under the AFR grant 7898764.

Feature Location Benchmark for Software Families: EFLBench 15

References

1. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Extraction and
evolution of architectural variability models in plugin-based systems. Software and
System Modeling 13(4), 1367–1394 (2014)

2. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Feature location in a collection of software product variants using formal concept
analysis. In: Proc. of Intern. Conf. on Soft. Reuse, ICSR 2013. pp. 302–307 (2013)

3. Apache: Opennlp (2010), http://opennlp.apache.org
4. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product

Lines - Concepts and Implementation. Springer (2013)
5. Assunção, W.K.G., Vergilio, S.R.: Feature location for software product line mi-

gration: a mapping study. In: Intern. Soft. Prod. Lines Conf., Companion Volume
for Workshop, Tools and Demo papers, SPLC. pp. 52–59 (2014)

6. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20
years later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Chen, K., Rajlich, V.: Case study of feature location using dependence graph, after
10 years. In: The 18th IEEE International Conference on Program Comprehension,
ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010. pp. 1–3 (2010)

8. Couto, M.V., Valente, M.T., Figueiredo, E.: Extracting software product lines: A
case study using conditional compilation. In: Europ.Conf. on Software Maint. and
Reeng., CSMR 2011,. pp. 191–200 (2011)

9. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. In: 17th European
Conference on Software Maintenance and Reengineering, CSMR 2013, Genova,
Italy, March 5-8, 2013. pp. 25–34. IEEE Computer Society (2013)

10. Falleri, J.R., Dolques, X.: Erca - eclipse’s relational concept analysis (2010), https:
//code.google.com/p/erca/

11. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-
own with systematic reuse for developing software variants. In: Proc. of Intern.
Conf. on Sof. Maint. and Evol (ICSME), 2014. pp. 391–400 (2014)

12. Font, J., Ballaŕın, M., Haugen, O., Cetina, C.: Automating the variability formal-
ization of a model family by means of common variability language. In: SPLC. pp.
411–418 (2015)

13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edn. (1997)

14. Grünbacher, P., Rabiser, R., Dhungana, D., Lehofer, M.: Model-based customiza-
tion and deployment of eclipse-based tools: Industrial experiences. In: Intern. Conf.
on Aut. Sof. Eng. (ASE). pp. 247–256 (2009)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon University
Software Engineering Institute (1990)

16. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
Proc. of the 30th Inter. Conf. on Soft. Eng. (ICSE). pp. 311–320 (2008)

17. Lopez-Herrejon, R.E., Batory, D.S.: A standard problem for evaluating product-
line methodologies. In: Generative and Component-Based Software Engineering,
Third International Conference, GCSE 2001, Erfurt, Germany, September 9-13,
2001, Proceedings. pp. 10–24 (2001)

18. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Haslinger, E.N., Egyed, A., Alba, E.:
Towards a benchmark and a comparison framework for combinatorial interaction
testing of software product lines. CoRR abs/1401.5367 (2014)

http://opennlp.apache.org
https://code.google.com/p/erca/
https://code.google.com/p/erca/

16 J. Martinez et al.

19. Lopez-Herrejon, R.E., Ziadi, T., Martinez, J., Thurimella, A.K., Acher, M.: Third
international workshop on reverse variability engineering (REVE 2015). In: Pro-
ceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, July 20-24, 2015. p. 394 (2015)

20. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Automating the
extraction of model-based software product lines from model variants. In: ASE
2015, Lincoln, Nebraska, USA (2015)

21. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adoption
of software product lines: a generic and extensible approach. In: Proc. of Intern.
Conf. on Software Product Line, SPLC 2015. pp. 101–110 (2015)

22. Porter, M.F.: Snowball: A language for stemming algorithms. Published online
(October 2001), http://snowball.tartarus.org/, accessed 19.11.2015

23. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In:
IEEE/ACM International Conference on Automated Software Engineering,
ASE’12, Essen, Germany, September 3-7, 2012. pp. 242–245 (2012)

24. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Domain Engi-
neering, Product Lines, Languages, and Conceptual Models, pp. 29–58 (2013)

25. Salman, H.E., Seriai, A., Dony, C.: Feature location in a collection of product
variants: Combining information retrieval and hierarchical clustering. In: Intern.
Conf. on Sof. Eng. and Know. Eng. SEKE. pp. 426–430 (2014)

26. Salman, H.E., Seriai, A., Dony, C.: Feature-to-code traceability in a collection of
software variants: Combining formal concept analysis and information retrieval.
In: Intern. Conf. on Inform. Reuse and Integr.IRI. pp. 209–216 (2013)

27. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

28. Segura, S., Galindo, J.A., Benavides, D., Parejo, J.A., Cortés, A.R.: Betty: bench-
marking and testing on the automated analysis of feature models. In: Sixth Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems, Leipzig,
Germany, January 25-27, 2012. Proceedings. pp. 63–71 (2012)

29. Shatnawi, A., Seriai, A., Sahraoui, H.A.: Recovering architectural variability of a
family of product variants. In: Software Reuse for Dynamic Systems in the Cloud
and Beyond - 14th International Conference on Software Reuse, ICSR 2015, Miami,
FL, USA, January 4-6, 2015. Proceedings. pp. 17–33 (2015)

30. Sim, S.E., Easterbrook, S.M., Holt, R.C.: Using benchmarking to advance research:
A challenge to software engineering. In: Proceedings of the 25th International Con-
ference on Software Engineering, May 3-10, 2003, Portland, Oregon, USA. pp.
74–83 (2003)

31. Souza, I.S., Fiaccone, R., de Oliveira, R.P., Almeida, E.S.D.: On the relationship
between features granularity and non-conformities in software product lines: An
exploratory study. In: 27th Brazilian Symposium on Software Engineering, SBES
2013, Brasilia, Brazil, October 1-4, 2013. pp. 147–156 (2013)

32. Xing, Z., Xue, Y., Jarzabek, S.: A large scale linux-kernel based benchmark for
feature location research. In: Proced. of Intern. Conf. on Soft. Eng., ICSE. pp.
1311–1314 (2013)

33. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: Proc. of Working Conf. on Rev. Eng., WCRE 2012. pp. 145–154 (2012)

34. Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Traon, Y.L.: Towards a language-
independent approach for reverse-engineering of software product lines. In: Sym-
posium on Applied Computing, SAC 2014, 2014. pp. 1064–1071 (2014)

http://snowball.tartarus.org/

	Feature Location Benchmark for Software Families using Eclipse Community Releases
	Introduction
	Background
	Feature Location
	The Eclipse Project

	Eclipse as a standard case study subject
	Eclipse Feature Location Benchmarking Framework
	Benchmark construction
	Benchmark usage

	Example of EFLBench usage
	Background algorithms
	Feature location techniques
	Results

	Related work
	Conclusion

