
Sound and Quasi-Complete Detection of
Infeasible Test Requirements?
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Abstract—In software testing, coverage criteria specify the
requirements to be covered by the test cases. However, in practice
such criteria are limited due to the well-known infeasibility
problem, which concerns elements/requirements that cannot be
covered by any test case. To deal with this issue we revisit
and improve state-of-the-art static analysis techniques, such as
Value Analysis and Weakest Precondition calculus. We propose a
lightweight greybox scheme for combining these two techniques
in a complementary way. In particular we focus on detecting
infeasible test requirements in an automatic and sound way
for condition coverage, multiple condition coverage and weak
mutation testing criteria. Experimental results show that our
method is capable of detecting almost all the infeasible test
requirements, 95% on average, in a reasonable amount of time,
i.e., less than 40 seconds, making it practical for unit testing.

Keywords—structural coverage criteria, infeasible test require-
ments, static analysis, weakest precondition, value analysis

I. INTRODUCTION

For most safety critical unit components, the quality of the
test cases is assessed through the use of some criteria known as
coverage (or testing) criteria. Unit testing is mainly concerned
with structural coverage criteria. These coverage criteria are
normative test requirements that the tester must satisfy before
delivering the software component under test.

In practice, the task of the tester is tedious, not only
because he has to generate test data to reach the criterion
expectations but mainly because he must justify why a certain
test requirement cannot be covered. Indeed it is likely that
some requirements cannot be covered due to the semantics
of the program. We refer to these requirements as infeasible,
and as feasible in the opposite case. The work that we present
here, aims at making this justification automatic. We propose a
generic and lightweight tooled technique that extends the LTest
testing toolkit [6] with a component, called LUncov, dedicated
to the detection of infeasible test requirements. The approach
stands for any piece of software code (in particular C) that is
submitted to strict test coverage expectations such as condition
coverage, multiple condition coverage and weak mutation.

Coverage criteria thus define a set of requirements that
should be fulfilled by the employed test cases. If a test case
fulfills one or more of the test criterion requirements, we say
that it covers them. Failing to cover some of the criterion
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requirements indicates a potential weakness of the test cases
and hence, some additional test cases need to be constructed.

Infeasible test requirements have long been recognized as
one of the main cost factors of software testing [40], [37], [42].
Weyuker [37] identified that such cost should be leveraged
and reduced by automated detection techniques. This issue is
due to following three reasons. First, resources are wasted in
attempts to improve test cases with no hope of covering these
requirements. Second, the decision to stop testing is made
impossible if the knowledge of what could be covered remains
uncertain. Third, since identifying them is an undecidable
problem [17], they require time consuming manual analysis.
In short, the effort that should be spent in testing is wasted in
understanding why a given requirement cannot be covered.

By identifying the infeasible test requirements, such as
equivalent mutants, testers can accurately measure the cover-
age of their test suites. Thus, they can decide with confidence
when they should stop the testing process. Additionally, they
can target full coverage. According to Frankl and Iakounenko
[14] this is desirable since the majority of the faults are
triggered when covering higher coverage levels, i.e., from 80%
to 100% of decision coverage.

Despite the recent achievements with respect to the test
generation problem [2], the infeasible requirements problem
remains open. Indeed, very few approaches deal with this
issue. Yet, none suggests any practical solution to it. In this
paper we propose a heuristic method to deal with the infeasible
requirements for several popular structural testing criteria. Our
approach is based on the idea that the problem of detecting
infeasible requirements can be transformed into the assertion
validity problem. By using program verification techniques, it
becomes possible to address and solve this problem.

We use labels [7], [6] to encode several structural testing
criteria and implement a unified solution to this problem based
on existing verification tools. In this study, we focus on sound
approaches, i.e., identifying as infeasible only requirements
that are indeed infeasible. Specifically, we consider two meth-
ods, the (forward) Value Analysis and the (backward) Weak-
est Precondition calculus. Value Analysis computes an over-
approximation of all reachable program states while Weakest
Precondition starts from the assertion to check and computes
in a backward manner a proof obligation equivalent to the
validity of the assertion.

We consider these approaches since they are representative



of current (sound) state-of-the-art verification technologies.
Moreover, due to their nature, they are complementary and
mutually advantageous to one another. We use existing ana-
lyzers, either in a pure blackbox manner or with light (greybox)
combination schemes.

In summary our main contributions are:

• We revisit static analysis approaches with the aim of
identifying infeasible test requirements. We classify
these techniques as State Approximation Computation,
such as Value Analysis, and Goal-Oriented Checking,
such as Weakest Precondition.

• We propose a new method that combines two such
analyzers in a greybox manner. The technique is
based on easy-to-implement API functionalities on the
State Approximation Computation and Goal-Oriented
Checking tools. More importantly, it significantly out-
performs each one of the combined approaches alone.

• We demonstrate that static analysis can detect almost
all the infeasible requirements of the condition cover-
age, multiple condition coverage and weak mutation
testing criteria. In particular, the combined approach
identifies on average more than 95% of the infeasible
requirements, while Value Analysis detects on average
63% and Weakest Precondition detects on average
82%. Computation time is very low when detection
is performed after test generation (in order to evaluate
coverage precisely), and we show how to keep it very
reasonable (less than 40 seconds) if performed before-
hand (in order to help the test generation process).

• We show that by identifying infeasible requirements
before the test generation process we can speed-up
the automated test generation tools. Results from an
automated test generation technique, DSE? [7], show
that it can be more than ∼55× faster in the best case
and approximately ∼3.8× faster on the average case
(including infeasibility detection time).

The rest of the paper is organized as follows: Sections
II and III respectively present some background material and
how static analysis techniques can be used to detect infeasible
requirements. Section IV details our combined approach and
its implementation. While section V describes the empirical
study, Section VII discusses its implications. Finally, related
work and conclusions are given in Sections VI and VIII.

II. BACKGROUND

This section presents some definitions, the notation related
to test requirements and the employed tools.

A. Test Requirements as Labels

Given a program P over a vector V of m input variables
taking values in a domain D , D1 × · · · ×Dm, a test datum
t for P is a valuation of V , i.e., t ∈ D. The execution of P
over t, denoted P (t), is a run σ , 〈(loc1, s1), . . . , (loc1, s1)〉
where the loci denote control-locations (or simply locations)
of P and the si denote the successive internal states of P (≈
valuation of all global and local variables as well as memory-
allocated structures) before the execution of the corresponding
loci. A test datum t reaches a location loc with internal state

s, if P (t) is of the form σ · 〈loc, s〉 · ρ. A test suite TS ⊆ D
is a finite set of test data.

Recent work [7] proposed the notion of labels as an ex-
pressive and convenient formalism to specify test requirements.
Given a program P , a label l is a pair 〈loc, ϕ〉 where loc is
a location in P and ϕ is a predicate over the internal state at
loc. We say that a test datum t covers a label l = 〈loc, ϕ〉 if
there is a state s such that t reaches 〈loc, s〉 and s satisfies ϕ.
An annotated program is a pair 〈P,L〉 where P is a program
and L is a set of labels in P .

It has been shown that labels can encode test requirements
for most standard coverage criteria [7], such as decision
coverage (DC), condition coverage (CC), multiple condition
coverage (MCC), and function coverage as well as side-effect-
free weak mutations (WM) and GACC [29] (a weakened form
of MCDC). Moreover, these encoding can be fully automated,
as the corresponding labels can be inserted automatically into
the program under test. Some more complex criteria such as
MCDC or strong mutations cannot be encoded by labels.
Fig. 1 illustrates possible encodings for selected criteria.

statement_1;
if (x==y && a<b)

{...};
statement_3;

→

statement_1;
//! l1: x==y
//! l2: x!=y
//! l3: a<b
//! l4: a>=b
if (x==y && a<b)

{...};
statement_3;

statement_1;
//! l1: x==y && a<b
//! l2: x!=y && a<b
//! l3: x==y && a>=b
//! l4: x!=y && a>=b
if (x==y && a<b)

{...};
statement_3;

Condition
Coverage (CC)

Multiple Conditon
Coverage (MCC)

Fig. 1. A label encoding of test requirements for standard coverage criteria

The main benefit of labels is to unify the treatment of test
requirements belonging to different classes of coverage criteria
in a transparent way, thanks to the automatic insertion of labels
in the program under test. While the question of automatic test
generation was explored in the original paper on labels [7], we
focus in this paper on the problem of infeasibility detection.

B. FRAMA-C Framework and LTEST Toolset for Labels

This work relies on FRAMA-C [22] for our experimental
studies. This is an open-source framework for analysis of
C code. FRAMA-C provides an extensible plugin-oriented
architecture for analysis collaboration, and comes with various
analyzers that can share analysis results and communicate
through a common abstract syntax tree (AST) and a common
specification language ACSL [22] to express annotations. In
our context, FRAMA-C offers the following advantages: it
implements two different (sound) verification techniques in
the same environment (Abstract Interpretation and Weakest
Precondition, cf. Section III-C), it is open-source1, robust and
already used in several industrial contexts [22, Sec. 11].

We also rely on and further extend LTEST [6], an all-in-
one testing platform for C programs annotated with labels,
developed as a FRAMA-C plugin2. LTEST provides the follow-
ing services: (1) annotation of a given C program with labels
according to chosen coverage criteria; (2) replay of a given test
suite and coverage reporting; (3) detection of infeasible labels

1Available at http://frama-c.com/.
2Available at http://micdel.fr/ltest.html.



if (x) {
//! l1: !x && !y

if (!x || y)
{...};

}

→

if (x) {
//@ assert !(!x && !y);

if (!x || y)
{...};

}

Fig. 2. Transforming an (infeasible) test requirement into a (valid) assertion

based on sound analysis of the source program (Forward Value
Analysis); and finally (4) automatic test generation through
the DSE? procedure [7], an extension of Dynamic Symbolic
Execution [16], [35], [38] which handles labels in a native and
very optimized way. Interestingly, all services can cooperate
together by sharing a database of label statuses. For example,
test generation takes advantage of the results of infeasibility
detection in order to prune its own search space [6]. The
infeasibility detection service (LUNCOV) is extended by the
present work.

III. PROOF OF ASSERTION VALIDITY

In the sequel, we assume that test requirements are ex-
pressed in terms of labels. They can be either automatically
inserted for common classes of structural test requirements
(cf. Sec. II-B, tool LTEST), or manually added for some very
specific test purposes. This section gives a characterization
of infeasible test requirements in terms of valid assertions,
provides a brief presentation and classification of existing
static analysis techniques for their detection, and describes the
specific techniques and tools we use throughout the paper.

A. Infeasible Test Requirements as Valid Assertions

Let 〈P,L〉 be an annotated program. A label l ∈ L (and the
corresponding test requirement) is called feasible if there exists
a test datum covering l. Otherwise l is called infeasible. To
avoid any confusion between the original label and its proven
counterpart, along with labels we will use the dual notion of
assertions. Syntactically, an assertion a is also a pair of the
form 〈loc, ψ〉. The assertion a is valid3 if it cannot be false,
i.e. if there does not exist any test datum t such that t covers
〈loc,¬ψ〉. Given a label l = 〈loc, ϕ〉 ∈ L, let al denote the
assertion 〈loc,¬ϕ〉, that is, the negation of the predicate ϕ of
l asserted at the same location loc. For a set of labels L over
P , we define the set of assertions AL = { al | l ∈ L }. The
following lemma easily follows from the definitions.

Lemma 1. A label l is infeasible if and only if the assertion
al is valid. The problem of detecting infeasible labels in L is
equivalent to the problem of detecting valid assertions in AL.

Fig. 2 illustrates the transformation of a test requirement,
expressed as a label in a C code, into an assertion expressed
in the ACSL specification language. In this example, the label
is infeasible and the assertion is valid.

B. Classification of Sound Static Analyses

The assertion validity problem can often be solved by static
analysis techniques. To do so, given a program P with a set
of assertions A, such a technique needs to offer a validity
checking procedure

VP : A→ {1,0, ?}
3A different definition is sometimes used in the literature, where validity

also includes reachability.

mapping an assertion to one of three possible verdicts: valid
(1), invalid (0) or unknown (?). We consider here only sound
analysis techniques. In this context, VP is sound if whenever
the procedure outputs a verdict VP (a) = 1 (resp., VP (a) = 0),
the assertion a is indeed valid (resp., invalid). Since the
assertion validity problem is undecidable (cf. Sec. I), such
procedures are in general incomplete and may return the
unknown verdict.

We review and classify such techniques into two categories:
State Approximation Computation and Goal-Oriented Check-
ing. These two categories are built on orthogonal approaches
(eager exploration vs property-driven analysis).

State Approximation Computation. The objective of a State
Approximation Computation (SAC) technique is to compute
an over-approximation of the set of reachable states of the
given program at each program location. Let S denote the set
of over-approximations S that can be computed by a particular
SAC technique. In order to be applicable for assertion validity
checking, SAC should provide the following procedures:

Analysis ASAC : P→ S
Implication check ISAC : S×A→ {1,0, ?}

The analysis procedure ASAC computes a state over-
approximation ASAC(P ) for a given program P . The implica-
tion (or state inclusion) checking procedure ISAC determines
if a given assertion a is implied by a given reachable state
approximation S. It returns a verdict ISAC(S, a) stating if the
procedure was able to deduce from the state approximation S
that the assertion a is valid (1), invalid (0) or if the result was
inconclusive (?). The implication check depends on the specific
form of the state approximation S. Based on these procedures,
the assertion validity check is easily defined as follows:

SAC validity check VSACP : A→ {1,0, ?}
a 7→ ISAC(ASAC(P ), a)

An important characteristic of this class of techniques is
that the analysis step needs to be executed only once for a
given program P even if there are several assertions in A.
Indeed, only the implication check ISAC(ASAC(P ), a) should
be executed separately for each assertion a ∈ A, based on
the same state approximation ASAC(P ). Typical State Ap-
proximation Computation implementations include (forward)
abstract interpretation based tools, such as implemented in
ASTRÉE [11] and Clousot [13], and software model checking
tools, such as BLAST [9] and SLAM [4].

Goal-Oriented Checking. The second category includes Goal-
Oriented Checking (GOC) techniques that perform a specific
analysis for each assertion to be proved valid. Unlike for State
Approximation Computation, such an analysis can be simpler
since it is driven by the assertion to check, yet it should be
repeated for each assertion. We can thus represent a GOC
technique directly by the procedure

GOC validity check VGOCP : A→ {1,0, ?}
that returns the validity status VGOCP (a) for an assertion
a ∈ A. Typical Goal-Oriented Checking tools include weakest
precondition checkers, backward abstract state exploration,
backward bounded model checking, and also CEGAR software
model checkers (which belong to both GOC and SAC).



C. Choice for SAC and GOC Tools

Choice for State Approximation Computation. We select
the value analysis plugin VALUE of FRAMA-C [22]. VALUE
is a forward data-flow analysis based on the principles of
abstract interpretation [10], which performs a whole-program
analysis based on non-relational numerical domains (such as
intervals and congruence information) together with a byte-
level region-based memory model. VALUE computes a sound
approximation S of values of all program variables at each
program location, that can be used to deduce the validity of
an assertion a = 〈loc, ψ〉.

Choice for Goal-Oriented Checking. We select WP [22],
a FRAMA-C plugin for weakest precondition calculus. It
takes as input a C program annotated in ACSL. From each
ACSL annotation, WP generates a formula (also called proof
obligation) that, if proven, guarantees that the annotation is
valid. It may then be proved automatically via an SMT solver
(Alt-Ergo, Z3, CVC4). WP can take advantage of handwritten
ACSL assertions, yet since we are interested in fully automated
approaches, we do not add anything manually. Notice that WP
considers each function independently, and, therefore, is more
scalable than non modular analysis like VALUE.

IV. GREYBOX COMBINATION OF STATE APPROXIMATION
COMPUTATION AND GOAL-ORIENTED CHECKING

This section presents a greybox combination of State Ap-
proximation Computation and Goal-Oriented Checking tech-
niques that we propose for detecting valid assertions. We first
present our combination in a generic way, for any SAC and
GOC procedures (SAC ⊕ GOC). Ultimately, we use it to
combine Value Analysis and Weakest Precondition (VA⊕WP),
and more especially the FRAMA-C plugins VALUE and WP.

A. The Combined Method

Intuition. The main idea of this new combination is to
strengthen Goal-Oriented Checking with additional properties
computed by State Approximation Computation, but taking
only properties relevant to the assertion whose validity is to
be checked. These properties must be put into a form that
GOC can use. We will call them hypotheses, or assumes.
Syntactically, hypotheses are pairs 〈loc, ψ〉 like assertions.

Yet, a State Approximation Computation produces lots of
information about variable values at different program points,
that can often be irrelevant for a particular assertion. Providing
a lot of irrelevant or redundant information to Goal-Oriented
Checking would make it less efficient. Our first point is thus
to determine which variables are relevant to a given assertion,
and at which program points they are. Then, relevant variables
are used to produce a set of hypotheses, that will be assumed
and used during the GOC step.

Extended API. Let P be a program, and A a set of assertions
in P whose validity we want to check. Let us denote by L the
set of locations in P , and by V the set of variables in P . We
represent relevant variables (and locations) for an assertion a
by a subset Ra = {(loc1, v1), . . . , (locn, vn)} of Set(L×V).
That is, Ra is a set of couples (loci, vi) such that the value
of the variable vi at location loci is considered relevant to the
assertion a.

In addition to the general API for SAC and GOC tech-
niques (introduced in Sec. III-B), the greybox combination
relies on some extensions. First, we require an enhanced GOC
validity check taking into account hypotheses:

GOC validity check VGOCP : H×A→ {1,0, ?},

where H denotes possible sets of hypotheses. Second, we
require two additional procedures. The first one computes the
set of relevant variables Ra (defined above) for the considered
GOC technique for each assertion a:

Relevant variables RGOCP : A→ Set(L× V)
a 7→ Ra

Given a computed state approximation S and a set of relevant
variables, the second procedure

Hypotheses creation HSACP : S× Set(L× V)→ H
(S,R) 7→ H

deduces a set of verified properties H for these variables
and locations that will be used as hypotheses by the GOC
analysis step. For instance, a pair (loci, vi) ∈ R may lead to
a hypothesis (loci,m ≤ vi ≤M) if the state approximation S
guarantees this interval of values for the variable vi at location
loci. Here again, we consider only sound hypotheses creation
procedures.

The method steps. The complete method SAC ⊕ GOC is
depicted in Fig. 3, where the boxes denote the main steps,
while their output, assumed to be when necessary also part
of the next steps’ input, is indicated on the arrow. First, a
SAC analysis step (ASAC) computes a state approximation
S. This step is performed only once, while the other ones
are executed once for each assertion a ∈ A. Next, if the
implication check (ISAC) returns 1 showing that a is valid,
the method terminates. Otherwise, the greybox part starts by
extracting the set Ra of variables and locations relevant to a.
Next, the set Ra and the previously computed approximation
S are used to deduce properties of relevant variables that will
be submitted as hypotheses to the last step. Finally, a GOC
analysis step (VGOCP ) checks if the assertion a can be proven
valid using the additional hypotheses in H .

Advantages. The proposed combined approach takes benefit
both from the global precision of the approximation computed
by SAC for the whole program and the local precision of
analysis for a given assertion ensured by GOC. Therefore,
this technique can be expected to provide a better precision
than the two methods used separately. Careful selection of
information transferred from SAC to GOC tries to minimize
information exchange: the amount of useless (irrelevant or
redundant) data is reduced thanks to the greybox combination.
On the other hand, even if not being blackbox, the greybox part
remains lightweight and non-invasive: only basic knowledge of
the GOC technique is required to implement the RGOCP step,
and only basic knowledge of datastructures and contents of
approximations computed by SAC is necessary to query them
and to produce hypotheses at the HSACP step. Neither SAC nor
GOC requires any modification of the underlying algorithms.
Moreover, the approximation S is computed only once, and
then used for all assertions. These elements constitute the
cornerstone of the proposed combination of the two methods.
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Fig. 3. Computing assertion validity status by the combined approach SAC⊕GOC for a given program P and all given assertions a ∈ A

Regarding soundness of the approach, notice that sound-
ness of the RGOCP step is not required: various heuristics can
be used to select relevant variables and locations that only
impact the number and location of the future hypotheses and
not their correctness. Yet, as mentioned above, the hypotheses
construction HSACP as well as the procedures defined in
Sec. III-B are required to be sound. Soundness of the combined
approach easily follows from soundness of both techniques:

Theorem 2 (Soundness). Assume that the combined tech-
niques SAC and GOC are both sound. Then SAC ⊕ GOC
is a sound Goal-Oriented Checking technique.

B. Implementation in FRAMA-C: VA⊕WP

The proposed SAC⊕GOC method is implemented on top
of the FRAMA-C framework, and extends the label infeasibility
detection service LUNCOV of LTEST (cf. Sec. II-B). We use
the VALUE and WP plugins as implementations of SAC and
GOC, respectively, and we denote by VA⊕WP their combina-
tion. These plugins have been presented in Sec. III-C. They
readily offer the requested API for SAC and GOC analyzers.

Let us provide more implementation details on the grey-
box combination, which is now implemented in the LUN-
COV plugin following the formal presentation of Sec. IV-A.
The possibility for several FRAMA-C analyzers to work on
the same program in different projects and to communicate
through annotations (e.g. assertions, assumes) in the common
specification language ACSL [22] significantly facilitates the
implementation. Basically, hypotheses H are implemented as
ACSL annotations assumed to be true. Here are a few hints
about the implementation of the additional requirements on
SAC and GOC described in Sec. IV-A.

• Support of hypotheses (in VGOCP ): the ability to
take into account assumed hypotheses is an essential
feature of WP. The implementation of hypotheses
insertion relies on the existing services offered by the
FRAMA-C kernel.

• Relevant locations and variables (RGOCP ): WP does
not provide such API function, so we add our own
simple function on top of it. Since the plugin works
in a modular way, our implementation just returns all
pairs of locations and variables found in the function
containing the assertion to check.

• Hypotheses creation (HP ): we rely on the primitives
offered by the VALUE plugin to explore the computed
approximation of reachable states, and we export
them as ACSL annotations. The actual implementation
returns annotations (on the form of interval and con-
gruence constraints) only for expressions evaluating to

integer values (including primitive variables, structure
fields, array values or values referenced by a pointer).
Note that missing other kind of information affects the
completeness of our method, but not its soundness.

Extension of LUNCOV. The earlier version [6] of LUNCOV,
the label infeasibility detection service of the LTEST toolset,
used only VALUE in a blackbox manner. The present work
extends it by two new modes. In the second mode, LUNCOV
constructs for each label l a program with its negation al and
runs WP in blackbox to check if al is valid (that is, by Lemma
1, if l is infeasible). The last mode implements the greybox
combination VA⊕WP described in Sec. IV-A and IV-B.

C. Use case

Fig. 4 illustrates how the combined technique VA⊕WP can
prove properties that could not be proven by each technique
separately. Frama-C_interval is a built-in FRAMA-C
function returning a non-deterministic value in the given range.

int main() {
int a = Frama_C_interval(0,20);
int x = Frama_C_interval(-1000,1000);
return g(x,a);

}
int g(int x, int a) {
int res;
if(x+a >= x)

res = 1;
else

res = 0;
//@assert res == 1;

}

Fig. 4. A valid assertion that is proven neither by VALUE nor by WP alone

The assertion in function g can be proven neither by VALUE
nor by WP alone on a platform like FRAMA-C. VALUE is
unable to prove that x+a >= x is always true because it
lacks relational domains and does not recognize that both
occurrences of x refer to the same variable and have the same
value. Working on a per function level, WP ignores possible
values of x and a in the function g and cannot prove the
validity of the assertion because of possible overflows.

In VA⊕WP, we first run VALUE on the whole program,
then use its results to insert relevant variable information into
g as shown in Fig. 5, that allows WP to prove the assertion.

V. EXPERIMENTAL EVALUATION

A. Research Questions

In this study we investigate whether static analyzers are
capable of detecting infeasible test requirements. Therefore,



int g(int x, int a) {
//@assume a >= 0 && a <= 20;
//@assume x >= -1000 && x <= 1000;
int res;
if(x+a >= x)
res = 1;

else
res = 0;

//@assert res == 1;
}

Fig. 5. Function g of Fig. 4 enriched with hypotheses for WP

a natural question to ask is about their relative effectiveness
and efficiency. By showing that these techniques can provide
a practical solution to the infeasibility problem, testers and
practitioners can adequately measure the true coverage of
their test suites. Another benefit is that test generation tools
can focus on covering feasible test requirements and hence,
improve their performance. In view of this, we seek to answer
the following three Research Questions (RQs):

RQ1: How effective are the static analyzers in detecting
infeasible test requirements?

RQ2: How efficient are the static analyzers in detecting
infeasible test requirements?

RQ3: To what extent can we speed-up the test generation
process by detecting infeasible test requirements?

B. Tools, subjects and test requirements

In our experiments we use the FRAMA-C and LTEST tools
as they were explicitly defined in Sections II-B, III-C and
IV-B. For RQ3, we consider the automatic test generation
procedure of LTEST, based on DSE? (cf. Section II-B).
We consider 12 benchmark programs2 taken from related
works [7], [6], mainly coming from the Siemens test suite
(tcas and replace), the Verisec benchmark (get_tag
and full_bad from Apache source code), and MediaBench
(gd from libgd). We also consider three coverage criteria:
CC, MCC and WM [1]. Each of these coverage criteria
were encoded with labels as explained in Section II-A. In
the case of WM, the labels mimic mutations introduced by
MuJava [23] for operators AOIU, AOR, COR and ROR [1],
which are considered very powerful in practice [28], [39]. Each
label is considered as a single test requirement. Overall, our
benchmark consists of 26 pairs program–test requirements.
Among the 1,270 test requirements of this benchmark, 121
were shown to be infeasible in a prior manual examination.
Experiments are performed under Linux on an Intel Core2
Duo 2.50GHz, 4GB of RAM. In the following only extracts of
our experimental results are given. Further details are available
online in an extended version of this paper2.

C. Detection power (RQ1)

Protocol. To answer RQ1 we compare the studied methods
in terms of detected infeasible test requirements. Thus, we
measure the number and the percentage of the infeasible
requirements detected, per program and method. In total we
investigate 26 cases, i.e., pairs of program and criterion, with
3 methods. Therefore, in total we perform 78 (26 X 3)
runs. The methods we consider are: (1) the value analysis
technique, through abstract interpretation, denoted as VA; (2)

the computation of weakest preconditions, denoted as WP;
and (3) the proposed combination of the VA and WP, denoted
VA⊕WP. It is noted that for the WP and VA⊕WP, a timeout
is set on the solver calls of 1 second (thanks to WP API).

Results. Table I records the results for RQ1. For each pair
of program and criterion, the table provides the total number
of infeasible labels (from a preliminary manual analysis [7]
), the number of detected infeasible requirements and the
percentage that they represent per studied method. Since the
studied methods are sound, false positives are impossible.

From these results it becomes evident that all the studied
methods detect numerous infeasible requirements. Out of the
three methods, our combined method VA⊕WP performs best
as it detects 98% of all the infeasible requirements. The VA
and WP methods detect 69% and 60% respectively. Interest-
ingly, VA and WP do not always detect the same infeasible
labels. For instance, WP identifies all the 11 requirements
in fourballs–WM while VA finds none. Regarding the
utf8-3–WM, VA identifies all the 29 labels while WP finds
only two. This is an indication that a possible combination
of these techniques, such as the VA⊕WP method, is fruitful.
Thus, VA⊕WP finds at least as much as VA and WP methods
on all the cases, while in some, i.e., replace-WM and
full_bad–WM, it performs even better.

TABLE I. INFEASIBLE LABEL DETECTION POWER

Program LOC Crit. #Lab #Inf VA WP VA ⊕ WP
#D %D #D %D #D %D

trityp 50 CC 24 0 0 – 0 – 0 –
MCC 28 0 0 – 0 – 0 –
WM 129 4 4 100% 4 100% 4 100%

fourballs 35 WM 67 11 0 0% 11 100% 11 100%
utf8-3 108 WM 84 29 29 100% 2 7% 29 100%
utf8-5 108 WM 84 2 2 100% 2 100% 2 100%
utf8-7 108 WM 84 2 2 100% 2 100% 2 100%
tcas 124 CC 10 0 0 – 0 – 0 –

MCC 12 1 0 0% 1 100% 1 100%
WM 111 10 6 60% 6 60% 10 100%

replace 100 WM 80 10 5 50% 3 30% 10 100%
full bad 219 CC 16 4 2 50% 4 100% 4 100%

MCC 39 15 9 60% 15 100% 15 100%
WM 46 12 7 58% 9 75% 11 92%

get tag-5 240 CC 20 0 0 – 0 – 0 –
MCC 26 0 0 – 0 – 0 –
WM 47 3 2 67% 0 0% 2 67%

get tag-6 240 CC 20 0 0 – 0 – 0 –
MCC 26 0 0 – 0 – 0 –
WM 47 3 2 67% 0 0% 2 67%

gd-5 319 CC 36 0 0 – 0 – 0 –
MCC 36 7 7 100% 7 100% 7 100%
WM 63 1 0 0% 0 0% 1 100%

gd-6 319 CC 36 0 0 – 0 – 0 –
MCC 36 7 7 100% 7 100% 7 100%
WM 63 0 0 – 0 – 0 –

Total 1,270 121 84 69% 73 60% 118 98%
Min 0 0 0% 0 0% 2 67%
Max 29 29 100% 15 100% 29 100%
Mean 4.7 3.2 63% 2.8 82% 4.5 95%
#D: number of detected infeasible labels %D: ratio of detected infeasible labels
–: no ratio of detected infeasible labels due to the absence of infeasible labels

D. Detection speed (RQ2)

In this section we address RQ2, that is about the required
time to detect infeasible requirements per studied method. To
this end, we investigate three scenarios; a) a priori which con-
sists of running the detection process before the test generation,



b) mixed which starts with a first round of test generation, then
applies the detection method and ends with a second round of
test generation and c) a posteriori which consists of running
the detection approach after the test generation process.

We investigate these scenarios since WP, as a Goal-
Oriented Checking, is strongly dependent on the number of
considered requirements. Thus, the goal of the a) scenario is
to measure the required time before performing any test gen-
eration and hence, check all the considered requirements. The
b) scenario aims at measuring the time needed when having a
fairly mixed set of feasible and infeasible requirements. The
goal of the c) scenario is to measure the required time when
almost all of the considered requirement are infeasible.

Protocol. We consider the time required to run each detection
method per program and scenario, i.e., a priori, mixed and a
posteriori. In the a priori approach, the detection consider all
labels as inputs. In the mixed approach, we chose to use a fast
but unguided test generation on the first round: random testing
with a budget of 1 sec. This time frame was used for both
generation and test execution (needed to report coverage). In
our system, 984 to 1124 tests are generated per each program
in the specified time. To increase the variability of the selected
tests, we chose tests between 20 random generations with
the median number of covered requirements. The uncovered
requirements after this random generation step are the input of
the infeasible detection process. In the a posteriori approach,
we use DSE? as our test generation method. The labels not
covered after DSE? are the inputs of the detection.

Overall, by combining the 26 pairs of programs and re-
quirements with the 3 detection methods and the 3 scenarios,
a total number of 234 runs are performed.

Results. A summary of our results is given in Table II. The
table records for each detection method and studied scenario
the number of the considered requirements, and the total
required time to detect infeasible labels. It also records the
minimum, maximum, and arithmetic mean of the needed time
to run the detection on all programs. The average times are
also represented as a bar plot on Fig. 6.

From these results we can see that the detection time is
reasonable. Indeed, even in the worst case (max) 130.1 sec.
are required. Within this time, 2 out of 84 labels are detected.
These results also confirm that the required time of WP and
VA⊕WP depend on the number of considered requirements.
We observe a considerable decrease with the number of labels
when using WP or VA⊕WP. The results also shows that in
the mixed scenario less than half of the time of the a priori
scenario is required on average.

TABLE II. DETECTION SPEED SUMMARY (IN SECONDS)

a priori mixed approach a posteriori

#Lab VA WP VA
⊕WP #Lab VA WP VA

⊕WP #Lab VA WP VA
⊕WP

Total 1,270 21.5 994 1,272 480 20.8 416 548 121 13.4 90.5 29.4
Min 10 0.5 5.2 5.5 0 0.5 0.9 1.2 0 0.5 0.4 0.7
Max 129 1.9 127 130 68 1.9 62.5 64.6 29 1.9 50.7 3.9
Mean 48.8 0.8 38.2 48.9 18.5 0.8 16.7 21.9 4.7 0.8 5.7 1.8

#Lab: number of considered labels: in the a priori approach, all labels are considered,
in the a posteriori approach, only labels not covered by DSE?,

and in the mixed approach, only labels not covered by the random testing

a priori mixed a posteriori
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Fig. 6. Average detection time of the studied methods per considered scenario

E. Impact on test generation (RQ3)

This section focuses on RQ3, that is, on measuring the
impact of the knowledge of infeasible requirements on the
automated test generation process.

Protocol. In this experiments, we consider only two ap-
proaches: (1) LUNCOV+DSE?: first use one of the detection
method of LUNCOV, then the DSE? test generation; (2)
RT+LUNCOV+DSE?: first exploit random testing to find easy
coverable labels, then run LUNCOV, finally run the DSE? test
generation to complete the test suite. Recall that LUNCOV
forms the implementation of the VA⊕WP approach. Each
experiment includes both test generation and infeasible test
requirement detection. Various data are recorded, in particular,
the reported coverage ratio, as well as, the time needed by
the test generation and by the infeasible test requirement
detection. Note that the reported coverage ratio remove from
consideration the detected infeasible labels.

Results. Table III shows a summary of the coverage ratio
reported by DSE? for both approaches (they report the same
coverage ratio). As a reference, we provide also the coverage
ratio for DSE? without detection and given a manual and
perfect detection of infeasible labels. It shows the three meth-
ods improve the coverage ratio. In particular the minimum
coverage ratio gains goes from 90.5% to more than 95%.
Our hybrid method by detecting more infeasible considerably
impacts the reported coverage. It allows in our benchmark to
report automatically a nearly complete coverage with a 99.2%
average coverage ratio.

TABLE III. SUMMARY OF REPORTED COVERAGE RATIOS

Coverage ratio reported by DSE?

Detection
method

None VA WP VA
⊕WP Perfect*

Total 90.5% 96.9% 95.9% 99.2% 100.0%
Min 61.54% 80.0% 67.1% 91.7% 100.0%
Max 100.00% 100.0% 100.0% 100.0% 100.0%
Mean 91.10% 96.6% 97.1% 99.2% 100.0%

* preliminary, manual detection of infeasible labels

Table VI summarizes the speed-up on the total test gen-
eration and infeasible label detection. We observe that the
infeasible label detection cost is not always counterbalanced



by a speed-up in the test generation. In fact, for approach (1),
LUNCOV+DSE?, for both WP-based detection, a slow-down
occurs. Approach (2), RT+LUNCOV+DSE?, obtains better
results with a mean speed-up of 3.8x. However, we observe
in some cases very good speed-ups with multiple two-digit
speed-ups as well as a tree-digit speed-up of 107x. Overall the
speed-up on the whole benchmark is systematically good.

Fig. 7 shows as a bar plot the average time test generation
plus detection. The average time of DSE? without detection is
marked by a red line. It shows that the average time generation
plus detection in both approaches and for all detection method
is well under the DSE? line. We also observe the clear
difference between the two approaches, RT+LUNCOV+DSE?
being the more efficient.

TABLE IV. DETECTION AND TEST GENERATION SPEED-UP SUMMARY

LUNCOV = VA LUNCOV = WP LUNCOV = VA⊕WP
Speedup Speedup Speedup

LUNCOV
+DSE?

Total 1.3x 1.1x 1.1x
Min 0.7x 0.03x 0.05x
Max 10.3x 2.4x 2.3x
Mean 1.4x 0.5x 0.4x

RT(1s)
+LUNCOV
+DSE?

Total 2.4x 2.2x 2.2x
Min 0.5x 0.1x 0.1x
Max 107.0x 74.1x 55.4x
Mean 7.5x 5.1x 3.8x

LUNCOV+DSE? RT+LUNCOV+DSE?
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Fig. 7. Average detection and test generation times

F. Evaluation Conclusions

RQ1. Our evaluation shows that sound static analyzers can be
used to detect most infeasible test requirements. In particular,
our implementation of the greybox analysis achieves a nearly
perfect detection of infeasible test requirements.

RQ2. Detecting infeasible requirements requires a reasonable
amount of time. Our experiment reveals the link between the
number of test requirements and the speed of the detection
process. Thus, we propose a simple approach that reduces
significantly the time required by the analyzers through a
preliminary step of (cheap) random testing.

RQ3. Detecting infeasible test requirements influences test
generation in two ways. First, it allows us to report coverage

that are better (higher ratio) and closer to the truth. Second,
it speed-up test generation. In particular, our approach that
combines random testing, infeasible requirement detection and
DSE? is on average 3.8 times faster than DSE? alone.

VI. RELATED WORK

This section discusses techniques dealing with infeasible
requirements for both structural testing, VI-A, and mutation
testing, VI-B, as our approach applies in both contexts.

A. Infeasible test requirements for structural testing

Most of the techniques found in literature aim at reducing
the effects of infeasible paths and thus, help the test generation
process. Ngo and Tan [25] suggested using trace patterns to
identify unexplored paths that are likely to be infeasible. In a
similar manner Delahaye et al. [12] showed many paths are
infeasible due to the same reason. Thus, they suggested infer-
ring what causes the infeasibility and generalize it to identify
unexplored paths. They also show that when this approach
is combined with dynamic symbolic execution considerable
savings can be gained. Fraser and Arcuri [15] suggested
aiming at all the test requirements and not separately at each
one. This way, the wasted effort, i.e., the effort expended on
generating test cases for infeasible requirements, is reduced.
All these techniques aim at improving the efficiency of the test
generation method and not detecting infeasible requirements.
Thus, they can be adopted and used instead of our DSE?.

Goldberg et al. [17] suggested that when all the paths lead-
ing to a test requirement are infeasible then, this requirement
is infeasible. Thus, they used symbolic execution and theorem
provers to identify infeasible paths and some infeasible test
requirements. In a similar way, Offutt and Pan [27] used con-
straint based testing to encode all the constraints under which a
test requirement can be covered. If these constraints cannot be
solved then, the requirements are infeasible. However, these
methods are not applicable even on small programs due to
the infinite number of the involved paths [40]. Additionally,
the imprecise handling of program aliases [33] and non-linear
constraints [2] further reduce the applicability of the methods.

Detecting infeasible requirements has been attempted using
model checkers. Beyer et al. [9] integrate symbolic execution
and abstraction to generate test cases and prove the infea-
sibility of some requirements. Beckman et al. [8] adopt the
computation of the weakest precondition to prove that some
statements are not reachable. Their aim was to formally verify
some properties on the tested system and not to support the
testing process. This was done by Baluda et al. [5]. Baluda
et al. used model abstraction refinement based on the weakest
precondition and integrate it with dynamic symbolic execution
to support structural testing. Our approach differs from this
one, by using a hybrid combination of value analysis with
weakest precondition independently of the test generation pro-
cess. Additionally, our approach is the first one that employs
static analysis approaches to automatically detect infeasible
requirements for a wide range of testing criteria such as the
multiple condition coverage and weak mutation.

B. Equivalent Mutants

Detecting equivalent mutants is a known undecidable prob-
lem [3]. This problem is an instance of the infeasibility



problem [27] in the sense that equivalent mutants are the
infeasible requirements of the mutation criterion. Similar to the
structural infeasible requirements, very few approaches exist
for equivalent mutants. We briefly discuss them here.

Baldwin and Sayward [3] observed that some mutants form
optimized or de-optimized versions of the original program
and they suggested using compiler optimization techniques
to detect them. This idea was empirically investigated by
Offutt and Craft [26] and found that on average 45% of
all the existing equivalent mutants can be detected. Offutt
and Pan [27] model the conditions under which a mutant
can be killed as a constraint satisfaction problem. When this
problem has no solution the mutants are equivalent. Empirical
results suggest that this method can detect on average 47%
of all the equivalent mutants. Note that like in our case, these
approaches aim at identifying weak equivalent mutants and not
strong ones. However, they have the inherent problems of the
constraint-based methods such as the imprecise handling of
program aliases [33] and non-linear constraints [2]. Papadakis
et al. [31] demonstrated that 30% of the strongly equivalent
mutants can be detected by using compilers. Our approach
differs from this one in two essential ways. First, we handle
weak mutants while they target strong ones. Second, we
use state-of-the-art verification technologies while they use
standard compiler optimizations. Note that the two approaches
are complementary for strong mutation: our method identifies
mutants, 95%, that can be neither reached nor infected, while
the compiler technique identifies mutants, 45%, that cannot
propagate.

Voas and McGraw [36] suggested using program slicing to
assist the detection of equivalent mutants. This idea was de-
veloped by Hierons et al. [20] who formally showed that their
slicing techniques can be employed to assist the identification
of equivalent mutants and in some cases to detect some of
them. Hierons et al. also demonstrated that slicing subsumes
the constraint based technique of Offutt and Pan [27]. Harman
et al. [18] showed that dependence analysis can be used to
detect and assist the identification of equivalent mutants. These
techniques were not thoroughly evaluated since only synthetic
data were used. Additionally, they suffers from the inherent
limitations of the slicing and dependence analysis technology.

Other approaches tackle this problem based on mutant
classification, i.e., classify likely equivalent and non-equivalent
mutants based on run-time properties of the mutants. Schuler
and Zeller [34] suggested measuring the impact of mutants on
the program execution. They found that among several impact
measures, coverage was the most effective one. This idea was
extended by Kintis et al. [21] using higher order mutants. Their
results indicate that higher order mutants can provide more
accurate results than those provided by Schuler and Zeller.
Papadakis, et al. [30] defined the mutation process when using
mutant classification. They demonstrated that using mutant
classification is profitable only when low quality test suites are
employed and up to a certain limit. Contrary to our approach,
these approaches are not sound, i.e., they have many false
positives. They can also be applied in a complementary way
to our approach by identifying likely equivalent mutants from
those not found by our approach [34]. Further details about
the equivalent mutants on other mutation domains and can be
found at a relevant survey about equivalent mutants [24].

VII. DISCUSSION

Our findings suggest that it is possible to identify almost all
infeasible test requirements. This implies that the accuracy of
the measured coverage scores is improved. Testers can use our
technique to decide with confidence when to stop the testing
process. Additionally, since most of the infeasible requirements
can be removed, it becomes easier to target full coverage.
According to Frankl and Iakounenko [14] this is desirable since
the majority of the faults are triggered when covering higher
coverage levels, i.e., from 80% to 100% of decision coverage.

Although our approach handles weak mutation, it can be
directly applied to detect strong equivalent mutants. All weakly
equivalent mutants are also strongly equivalent mutants [41]
and thus, our approach provides the following two benefits.
First, it reduces the involved manual effort of identifying
equivalent mutants. According to Yao et al. [41], equivalent
mutant detection techniques focusing on weak mutation have
the potential to detect approximately 60% of all the strong
equivalent mutants. Therefore, since our approach detects more
than 80% of the weak mutants, we can argue that the proposed
approach is powerful enough to detect approximately half of
all the involved mutants. Second, it reduces the required time
to generate the test cases as our results show. The current
state-of-the-art in strong mutation-based test generation aims
at weakly killing the mutants first and then at strongly killing
them [19], [32]. Therefore, along these lines we can target
strong mutants after applying our approach.

Finally, it is noted that our method can be applied to MCDC
criterion by weakening its requirements into GACC require-
ments. GACC requirements can be encoded as labels [29].

A. Threats to Validity and Limitations

As it is usual in software testing studies, a major concern
is about the representativeness, i.e., external validity, of the
chosen subjects. To reduce this threat we employed a recent
benchmark set composed of 12 programs [7]. These vary both
with respect to application domain and size. We were restricted
to this benchmark since we needed to measure the extent of
the detected infeasible requirements.

Another issue is the scalability of our approach since we
did not demonstrate its applicability on large programs. While,
this is an open issue that we plan to address in the near future, it
can be argued that our approach is as applicable and scalable
as the techniques that we apply. We rely on Value Analysis
and Weakest Precondition methods as implemented within the
FRAMA-C framework. These particular implementations are
currently used by industry [22, Sec. 11] to analyze safety-
critical embedded software (Airbus, Dassault, EdF) or security-
critical programs (PolarSSL, QuickLZ). Moreover, our imple-
mentation handles all C language constructs except of multi-
thread mechanisms and recursive functions. Thus, we believe
that our propositions are indeed applicable to real-world
software. Moreover, note that Weakest Precondition methods
are inherently scalable since they work in a modular way.
Hence, we can strongly expect that the (good) experimental
results reported in Sec. V for WP still hold on much larger
programs. Though, the primary contribution of this article is
to demonstrate that static analysis techniques can be used to
detect infeasible test requirements such as equivalent mutants.
Future research will focus on scalability issues.



Other threats are due to possible defects in our tools, i.e.,
internal validity. To reduce this threat we carefully test our
implementation. Additionally, the employed benchmark, which
has known infeasible test requirements, served as a sanity
check for our implementation. It is noted that the employed
tools have also passed successfully the NIST SATE V Ockham
Sound Analysis Criteria4 thus, providing confidence on the
reported results. Furthermore, to reduce the above-mentioned
threats we made our tool and all the experimental subjects
publicly available2.

Finally, additional threats can be attributed to the used
measurements, i.e., construct validity. However, infeasible re-
quirements form a well known issue which is usually acknowl-
edged by the literature as one of the most important and time
consuming tasks of the software testing process. Similarly, the
studied criteria might not be the most appropriate ones. To
reduce this threat we used a wide range of testing criteria, most
of which are included in software testing standards and are
among the most popular ones in the software testing literature.

VIII. CONCLUSION

In this paper we used static analysis techniques to detect in-
feasible test requirements for several structural testing criteria,
i.e., condition coverage, multiple condition coverage and weak
mutation. We leverage two state-of-the-art techniques, namely
Value Analysis and Weakest Precondition, and determined
their ability to detect infeasible requirements in an automatic
and sound way. Going a step further, we proposed a lightweight
greybox scheme that combines these techniques. Our empirical
results demonstrate that our method can detect a high ratio
of infeasible test requirements, on average 95%, in a few
seconds. Therefore, our approach improves the testing process
by allowing a precise coverage measurement and by speeding-
up automatic test generation tools.
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APPENDIX

A. Automated Test Generation for Labels: DSE?

Let us recall here a few basic facts about Symbolic Ex-
ecution (SE) and Dynamic Symbolic Execution (DSE) [16],
[35], [38]. A simplified view of SE is depicted in Algorithm 1.
We assume that the set of paths of P , denoted Paths(P ), is
finite. In practice, testing tools enforce this assumption through
a bound on path lengths. The algorithm iteratively builds a test
suite TS by exploring all program paths. The key insight of SE
is to compute a path predicate ψσ for a path σ ∈ Paths(P )
such that for any input valuation t ∈ D, we have: t satisfies
ψσ iff P (t) covers σ. As most SE tools, Algorithm 1 uses
a procedure for path predicate computation (with predicates
in some theory T ), and relies on a solver taking a formula
ψ ∈ T and returning either sat with a solution t or unsat. DSE
enhances SE by interleaving concrete and symbolic executions.
The dynamically collected information can help the symbolic
step, for example, by suggesting relevant approximations.

Algorithm 1: Symbolic Execution algorithm
Input: a program P with finite set of paths Paths(P )
Output: TS, a set of pairs (t, σ) such that P (t) covers

σ
1 TS := ∅;
2 Spaths := Paths(P );
3 while Spaths 6= ∅ do
4 choose σ ∈ Spaths; Spaths := Spaths \ {σ};
5 compute path predicate ψσ for σ ;
6 switch solve(ψσ) do
7 case sat(t): TS := TS ∪ {(t, σ)};
8 case unsat: skip;
9 endsw

10 end
11 return TS;

Based on dynamic symbolic execution, the DSE? method,
proposed in [7] and further improved in [6], offers an efficient
test generation technique natively supporting labels. Compared
to other DSE-based algorithms for coverage criteria, DSE?
brings several benefits. First, it has the major advantage of
being generic due to labels. Second, thanks to a tight instru-
mentation of the program and other specific optimizations for
labels, the method’s overhead in terms of explored paths over
the classic DSE is linear in the number of labels. Previous
methods, such as [29], reported an exponential increase of
the search space.

B. Research question Q2

C. Research question Q3



TABLE V. DETAILED RESULTS FOR INFEASIBLE LABEL DETECTION SPEED (IN SECONDS)

Program Crit. A priori Mixed approach A posteriori

#Lab VA WP VA
⊕ WP #Lab VA WP VA

⊕ WP #Lab VA WP VA
⊕ WP

trityp CC 24 0.6 11.9 14.9 12 0.6 6.4 6.8 0
MCC 28 0.5 13.9 14.7 12 0.5 6.8 6.9 0
WM 129 0.7 74.4 81.0 68 0.7 39.7 42.3 4 0.7 2.2 0.8

fourballs WM 67 0.5 27.2 28.2 42 0.5 16.2 17.3 11 0.5 2.8 2.7

utf8-3 WM 84 0.5 127.2 75.5 31 0.5 54.8 4.7 29 0.5 50.7 0.7

utf8-5 WM 84 0.6 127.2 130.1 35 0.6 62.1 64.4 2 0.6 0.9 0.8

utf8-7 WM 84 0.6 127.2 128.4 35 0.6 62.5 64.6 2 0.6 0.9 0.8

tcas CC 10 0.7 5.2 5.5 0 0
MCC 12 0.5 6.4 6.9 1 0.5 1.0 1.2 1 0.5 0.4 1.1

tcas’ WM 111 0.7 55.4 54.8 21 0.7 8.2 8.1 10 0.7 3.6 3.0

replace WM 80 0.8 39.1 39.6 15 0.8 8.9 4.2 10 0.8 4.8 1.6

full bad CC 16 0.5 10.3 17.7 7 0.5 4.1 6.6 4 0.5 1.2 0.9
MCC 39 0.6 22.0 37.5 23 0.6 11.7 17.4 15 0.6 3.9 2.3
WM 46 0.7 27.8 39.0 18 0.7 9.4 13.0 12 0.7 4.2 2.5

get tag-5 CC 20 0.7 11.1 18.5 1 0.7 1.1 2.2 0
MCC 26 0.7 15.8 27.0 2 0.7 0.9 4.3 0
WM 47 0.7 31.3 58.9 13 0.7 9.9 21.3 3 0.7 1.9 1.3

get tag-6 CC 20 0.6 11.1 18.5 2 0.6 1.7 4.8 0
MCC 26 0.6 15.7 27.0 2 0.6 1.9 4.3 0
WM 47 0.7 31.3 59.0 15 0.7 11.3 25.3 3 0.7 4.1 2.2

gd-5 CC 36 1.2 23.6 53.8 21 1.2 13.7 38.5 0
MCC 36 1.9 31.0 48.8 22 1.9 15.8 32.4 7 1.9 3.5 2.0
WM 63 1.7 47.2 92.0 20 1.7 18.4 42.8 1 1.7 1.9 3.9

gd-6 CC 36 1.1 23.7 53.8 20 1.1 14.9 40.1 0
MCC 36 1.9 30.2 49.0 22 1.9 16.1 31.8 7 1.9 3.5 2.7
WM 63 1.5 47.0 92.0 20 1.5 18.7 42.4 0

Total 1,270 21.5 994 1,272 480 20.8 416 548 121 13.4 90.5 29.4

Min 10 0.5 5.2 5.5 0 0.5 0.9 1.2 0 0.5 0.4 0.7
Max 129 1.9 127.2 130.1 68 1.9 62.5 64.6 29 1.9 50.7 3.9
Mean 48.8 0.8 38.2 48.9 18.5 0.8 16.7 21.9 4.7 0.8 5.7 1.8

#Lab: number of considered labels: in the a priori approach, all labels are considered,
in the a posteriori approach, only labels not covered by DSE?,

and in the mixed approach XXX

TABLE VI. DETAILED SUMMARY OF DETECTION AND TEST GENERATION TIMES (IN SECONDS)

LUNCOV = VA LUNCOV = WP LUNCOV = VA⊕WP
DSE? LUNCOV DSE? Total Speedup LUNCOV DSE? Total Speedup LUNCOV DSE? Total Speedup

LUNCOV+DSE?

Total 10,147.3 21.48 7,696.7 7,718.2 1.3 994.0 8,037.2 9,031.2 1.1 1,272.0 7,693.2 8,965.2 1.1
Min 1.4 0.47 1.4 2.0 0.7 5.2 1.4 6.8 0.03 5.5 1.4 7.1 0.05
Max 3,434.9 1.91 2,033.3 2,034.8 10.3 127.2 2,338.1 2,369.4 2.4 130.1 2,033.3 2,125.3 2.3
Mean 390.3 0.8 296.0 296.9 1.4 38.2 309.1 347.4 0.5 48.9 295.9 344.8 0.4
Random testing (1s)+LUNCOV+DSE?

Total 10,147.3 21 4,160 4,206 2.4 416 4,139 4,581 2.2 548 4,123 4,695 2.2
Min 1.4 0.5 1.6 3.1 0.5 0.9 1.5 3.5 0.1 1.2 1.5 4.9 0.1
Max 3,434.9 1.9 1,948.2 1,949.8 107.0 62.5 1,948.2 1,960.4 74.1 64.6 1,948.2 1,974.5 55.4
Mean 390.3 0.8 166.4 168.2 7.5 16.7 165.6 183.2 5.1 21.9 164.9 187.8 3.8


