
On the Evolution of Keyword-Driven Test Suites
Renaud Rwemalika∗, Marinos Kintis∗, Mike Papadakis∗,

Yves Le Traon∗ and Pierre Lorrach†
∗SnT, University of Luxembourg, Luxembourg

†BGL BNP Paribas, Luxembourg
∗{firstname.surname}@uni.lu
†pierre.lorrach@bgl.lu

Abstract—Many companies rely on software testing to verify
that their software products meet their requirements. However,
test quality and, in particular, the quality of end-to-end testing
is relatively hard to achieve. The problem becomes challenging
when software evolves, as end-to-end test suites need to adapt and
conform to the evolved software. Unfortunately, end-to-end tests
are particularly fragile as any change in the application interface,
e.g., application flow, location or name of graphical user interface
elements, necessitates a change in the tests. This paper presents
an industrial case study on the evolution of Keyword-Driven
test suites, also known as Keyword-Driven Testing (KDT). Our
aim is to demonstrate the problem of test maintenance, identify
the benefits of Keyword-Driven Testing and overall improve
the understanding of test code evolution (at the acceptance
testing level). This information will support the development
of automatic techniques, such as test refactoring and repair,
and will motivate future research. To this end, we identify,
collect and analyze test code changes across the evolution of
industrial KDT test suites for a period of eight months. We
show that the problem of test maintenance is largely due to
test fragility (most commonly-performed changes are due to
locator and synchronization issues) and test clones (over 30%
of keywords are duplicated). We also show that the better test
design of KDT test suites has the potential for drastically reducing
(approximately 70%) the number of test code changes required
to support software evolution. To further validate our results,
we interview testers from BGL BNP Paribas and report their
perceptions on the advantages and challenges of keyword-driven
testing.

Index Terms—keyword-driven testing, acceptance testing, end-
to-end testing, test code evolution, test clones

I. INTRODUCTION

The increased adoption of Agile and DevOps methodologies
necessitates quick and reliable test feedback on every code
change. In this context, testing has an important role; to ensure
code integrity and protect from defects.

Acceptance testing is used by many companies to ensure
that the System Under Test (SUT) meets its requirements [1].
These tests are generated manually and, typically, designed
as a set of usage scenarios describing the manual steps to
be performed [2]. In the context of agile methodologies,
with rapid development and change pace, the cost of manual
acceptance testing is prohibitive. A solution to this problem is
test automation [3].

There are several ways to automate acceptance tests, e.g.,
Model Based Testing [4] and Capture/Replay [5]. Among
them, Keyword-Driven Testing (KDT) is a scripting technique

using keywords where each keyword describes a set of actions
that are required to perform a specific step. Using keywords,
testers can model concepts from the SUT with different levels
of abstraction (e.g. “Login” and “Click button”); targeting var-
ious domains: Web (Selenium), Android (Apium) and Desktop
(Sikuli); allowing different formalisms such as data driven tests
or the gherkins syntax.

Our study attempts to answer a fundamental question about
KDT: “What are the practical benefits and challenges of
adopting KDT?”. An answer to this question will have a
direct impact on practitioners who want to make an informed
decision about adopting a test automation technique and to
researchers who want to understand the KDT evolution and
automate test refactoring and repair.

Practitioners need experience reports on test automation
techniques in order to choose and perform the most appropriate
one. Interestingly, as the “World Quality Report (2017-18)”
[6] shows, practitioners struggle selecting appropriate test
automation methods. To ameliorate this, our work presents
benefits and challenges of KDT as resulted from the analysis of
eight-months of test evolution data from our industrial partner,
as well as, findings from the interviews conducted with the
corresponding practitioners.

Researchers aim at automating testing. Thus, they need
information about the challenges and benefits of KDT testing.
Our study sheds light on this manner by identifying and
quantifying the practical gains and losses of this practice. We
also look into the way KDT test suites are maintained by
identifying and categorising the nature of changes performed
during the KDT evolution. This information is essential to
better understand KDT maintenance and forms the basis of
automated test code refactoring and repair techniques.

Literature involves several studies related to the evolution of
test code, but they study other testing levels, e.g., the unit level
[7]–[10] or focus on different technologies [9]. Experience
reports related to end-to-end test evolution are scarce. In this
work, we present such a report in the context of KDT paradigm
with our partner, BGL BNP Paribas.

Our analysis reveals that test fragility (the sensitivity to
SUT evolution) and test clones (keywords with similar test
functionality) are the most important problems of KDT, while
at the same time KDT offers major opportunities for test code
reuse.



We observe that test fragility causes a constant test adapta-
tion (even in response to simple GUI changes) and that test
clones are prominent. We show that over 90% of the project
keywords are changed and over 30% of the the keywords are
clones. We also find that among identical clones, 50% of them
co-evolve. These findings indicate the need for automated test
repair and refactoring techniques.

On the positive side, our study provides evidence that
following the good design practices of KDT (such as the
separation of concern and the reusability of keywords) has
the potential to reduce the required number of maintenance
changes. Our analysis shows that this reduction is approxi-
mately 70% demonstrating major benefits of KDT.

Our results also help improving the understanding on the
fine-grained changes performed during the evolution of KDT.
We provide a taxonomy of test code changes and reveal the
presence of test clones caused by the difficulty of selecting
appropriate keywords. We believe that the main drawback
of KDT lies in the absence of appropriate tooling, allowing
to deal with test code growth, navigation and comprehen-
sion. Specifically, we show that practitioners agree with the
promises of KDT, on the advantages of the separation of
concern and the reusability of keywords.

To the best of our knowledge, this is the first study that
analyses the evolution of KDT test suites in real, industrial
settings. Our study was conducted in partnership with the
Quality Assurance team (QA) from the IT department of
BGL BNP Paribas. We analysed eight-months of test evolution
data which correspond to the first year of transition towards
automated acceptance testing using KDT. Overall, we studied
145 KDT test cases, 129 test code commits and 2,578 changes.

This study makes the following contributions::
1) A taxonomy based on a fine grained detection algorithm

able to measure evolution of a keyword-driven test suite
and a taxonomy of test code changes

2) An analysis of eight-months of KDT test code evolution
data in real, industrial settings. To the best of our
knowledge, this is the first research study that presents
results on the evolution of industrial, KDT test suites.

3) Perception from real-world practitioners on the advan-
tages and challenges of adopting KDT and maintaining
the corresponding test suites.

II. BACKGROUND

This section presents KDT, along with illustrative examples
and a description of its supporting framework, Robot Frame-
work [11], and the industrial context of our study.

A. Keyword-Driven Testing – KDT

KDT [12] aims at separating test design from technical
implementation. Its goal is to limit the exposure to unnec-
essary details and avoiding duplication. KDT advocates that
this separation of concerns allows tests to be written easier,
to create more maintainable tests and enables experts from
different fields and backgrounds, work together at different
levels of abstraction.

Fig. 1. An example of a KDT test.

Figure 1 shows an example of a KDT test. This test, named
“Valid Login” (line 5, adopted from the official documentation
of Robot Framework), is responsible for validating the correct
behaviour of the login form in an imaginary SUT. Lines 6–8
present the “steps” of the tests and, in KDT parlance, they
are calls to keywords. In turn, these keywords are defined
in the respective definition blocks between lines 10 and 28.
Each keyword is itself decomposed in a series of steps.
Keywords can have arguments. For instance, keyword “Open
browser” (line 12) takes two arguments, “${LOGIN URL}”
and “${BROWSER}”. The use of arguments to call keywords
allows to further extend the reuse of keywords.

As can be seen from the figure, most part of this fully
automated test is written in plain English. This enables the
unobstructed collaboration in the creation of the tests between
different experts. For instance, a business analyst can write
the high-level part of the test (lines 4–8) and an automation
expert can implement the remaining part of the test (lines 10-
35), adding the technical details to automate the steps.

KDT tests can be represented using a tree structure. Figure 2
shows this structure for the test of Figure 1. The root of the
tree (purple rectangle) is the Test Case that is executed by
calling all the keywords contained. The intermediary nodes
(white rectangles) are called User Keywords since they are



Fig. 2. Tree representation of the “Valid Login” KDT test.

created by the tester. Finally, the leaf nodes (green rectangles)
are Library Keywords. Library Keywords are implemented by
the system or an external library and responsible for either
controlling the control flow of the tests or interacting with the
SUT.

We group keywords into seven categories based on their
functionality and present them in Table I. We define a SYNC
keyword category for keywords dealing with the synchroniza-
tion between tests and SUT; e.g., a keyword that waits 10
seconds for a GUI element of the SUT to become available.
In the rest of the paper we use the term keyword to refer to
User Keywords unless stated otherwise.

B. Robot Framework

One the tools used for the application of KDT is Robot
Framework [11]. Robot Framework is a popular frame-
work used world-wide by major companies, including Nokia,
KONE, ABB. This is also the tool adopted by our industrial
partner and, thus, used in this work. Robot Framework is an
open source tool originally developed by Nokia Networks and
is mainly used for acceptance testing. The “Valid Login” KDT
test of Figure 1 was written using this framework.

One of the main advantages of Robot Framework is its high
modularity. Indeed, Robot Framework is platform-agnostic and
thanks to its driver plugin architecture, the core framework
does not require any knowledge of the SUT. For instance, in
Figure 1, lines 1–2 show that the script is using the external
library for Selenium to interact with the SUT. Another advan-
tage of the framework lies in its simple syntax, which makes
it easily accessible to testers, regardless of their background.

C. Industrial Context

In this work, we aim at investigating the evolution of KDT
test suites at the acceptance testing level based on the industrial
practice. To this end, we work together with BGL BNP Paribas
that has recently (1 year ago) adopted KDT and uses it in its
daily software development work for acceptance testing.

One of the reasons that our partner adopted KDT is that test
cases at this testing level were created by different domain
experts (business analysts and automation experts) and the
adoption of a common language between the experts was

TABLE I
KEYWORD CATEGORIES

Label Explanation

ACTION Keyword performing an action on the SUT capable of
modifying its state.

ASSERTION Keyword verifying that a predicate is true at a specific
point of test execution

CONTROLFOW Keyword allowing to modify the control flow of the test
execution.

GETTER Keyword allowing to extract an element from the SUT.
LOGGING Keyword dumping logs during execution.

SYNC Keyword relating to the synchronization between the
SUT and the tests.

USER Keyword created by a user.

imperative. All the tests used in our study have been created
by a team of 3 testers and 2 business analysts working at BGL
BNP Paribas using Robot Framework.

III. RESEARCH QUESTIONS

In this study, we attempt to answer two main questions about
KDT test suites at the acceptance testing level: “What are the
benefits and challenges of adopting KDT?” and “What kind
of changes are performed during the evolution of a KDT test
suite?”. Answers to these questions will enable practitioners to
make more informed decisions about KDT and will improve
our understanding of KDT test suite evolution. Thus, we pose
the following research questions:

RQ1: What types of test code changes are performed
during KDT test suite evolution?

Analyzing the changes performed by the testers during
KDT test suite evolution forms the basis of any automated
test refactoring and test repair technique. Although research
presents such information in the case of unit testing [7], no
previous study has discussed such fine-grained changes in the
context of KDT at the acceptance level, to the best of our
knowledge.

RQ2: How complex are the KDT test suites and how does
this complexity affect their evolution?

As mentioned in Section II, one of the advantages of KDT
is that it allows the separation of the technical implementation
details of test code and its corresponding intention. This fact
can lead to test suites having several “levels of abstraction”
(cf. Figure 2). To this day, it is not clear how complex
the KDT test code is and how this complexity affects its
evolution. Answering this question will provide us with a
better understanding of the difficulties faced by practitioners
when they try to apply KDT and can guide future research
directions in ameliorating these problems.

RQ3: Does code duplication exist in KDT test codebases?
What is its impact on the evolution of the test code?

Similar code fragments are known to exist in source code
and test code alike [13]–[16]. In RQ3, we investigate whether
KDT codebases contain duplicated test code and how these
test clones affect the evolution of the test codebase. Answering
this research question is important because if such test clones
exist, we need to investigate appropriate techniques to detect
them, analyze them and monitor their evolution.



RQ4: What are the practitioners’ perceptions of the bene-
fits and challenges of KDT in practice?

RQ4 pertains to documenting and analyzing the practition-
ers’ opinion about the advantages and disadvantages of KDT.
Such analysis can help other testers to adopt (or not) KDT.
Additionally, this research question gives us the opportunity
to ask the practitioners’ opinion about our results, validating
them and understanding them better.

IV. EXPERIMENTAL DESIGN AND ANALYSIS

This section presents the experimental design followed to
answer the research questions posed. First we formally define
the concepts that will be used throughout the rest of the paper
next we discuss the industrial project used in our study. Finally,
we present the experimental design we followed to answer
each RQ.

A. Definitions

Tree: Keywords can be represented as trees, thus, we
can define a tree T as an ordered, directed, acyclic graph
with nodes N(T ) and edges E(T ) ⊆ N(T )×N(T ). The
nodes of the tree denote keywords and each edge between
two keywords denotes a “step”: the parent keyword has
the child keyword as a step. For instance, in Figure 2,
keyword “Open Browser To Login Page” has four steps:
“Open Browser”, “Maximize Browser Window”, “Set
Selenium Speed” and “Login Page Should Be Open”. As
the tree is ordered, the execution of the steps will follow
the order in the tree, from left to right. A node with no
parent is a root node that should be defined in the Test
Case block, while a node with no children is a leaf node
and should be a Library Keyword.
Keyword Level: The level of keyword k, is the maximum
number of edges that exist on the subpath(s) from k to a
leaf keyword. In Figure 2, “Login Page Should Be Open”
is a level 1 keyword whereas “Open Browser To Login
Page” is a level 2. Library Keywords at the leaves of the
tree have a level 0.
Keyword Connectivity: Connectivity is a metric of
reusability among the keywords. A keyword can belong
to several test cases represented as trees: let keyword k
belong to trees T1, T2, ...Tn, i.e. k ∈ N(T1) ∪ N(T2) ∪
... ∪ N(Tn), then we calculate the connectivity of k
by counting the number of nodes (keywords) in the
subpath(s) from the root nodes of T1, T2, ...Tn to k.
Keyword Churn: Keyword churn is the number of lines
of code added, edited or deleted from one version to the
next over a period of time.

The last 3 definitions correspond to metrics used in our
study. The keyword level is used to group keywords having
equal levels together. According to the philosophy of KDT,
lower level keywords should be more linked to the technical
details of the SUT whereas higher level keywords should be
more abstract, expressing the functional requirements. The
connectivity metric expresses the degree to which a keyword
is reused and, as a consequence, the degree to which a change

20
17

-06

20
17

-07

20
17

-08

20
17

-09

20
17

-10

20
17

-11

20
17

-12

20
18

-01

20
18

-02

20
18

-03

20
18

-04
1000

1500

2000

2500

3000

3500

4000

4500

lin
es

 o
f c

od
e

Lines of Code

0

100

200

300

400

500

nu
m

be
r

Test Cases
User Keywords

Fig. 3. Evolution of TestSuiteA

to this keyword can impact the test suite. Finally, the churn
corresponds to the degree to which a keyword is changed
during the evolution of the test suite.

B. Industrial Project’s Description

The project used in our study, hereafter referred to as
SubjectA for confidentiality reasons, pertains to all the business
activities of our partner. The front-end is a web application
implemented in AngularJS, and, the back-end is composed
of hundreds of services written in various programming
languages. These services are managed by different teams,
involving more than 100 developers. The KDT test suite used
in our study, referred to as TestSuiteA, is developed by 3 testers
working at the Quality Assurance (QA) team of our partner
and 2 business analysts.

Figure 3 shows the evolution of TestSuiteA across the eight-
month period studied. The figure depicts the evolution of the
number of Test Cases comprising the test suite, the number of
User Keywords and the lines of code of the test suite. As can
be seen, our analysis begins with a test suite of 39 test cases,
139 user keywords and 1129 lines of code and ends with 117
test cases, 505 keywords and 4732 lines of code.

In the time span depicted in Figure 3, we isolated three
periods during which we saw an increased test creation activity
(shown in grey). After discussing with the QA team, they
corroborated that these periods were more focused on test
creation and the remaining ones on test maintenance. Thus,
we analyze separately these periods (greyed and non-greyed)
and refer to them as “Creation” and “Maintenance”.

C. Experimental Design

1) Answering RQ1: To answer RQ1, we extract all the
changes occurring in the test suite and group them per type of
change. The types identified describe an action (insert, update,
delete) performed on a code unit element (User Keyword, Test
Case, Variable, etc.).

To this end, we extracted the 129 commits from the evolu-
tion of TestSuiteA. For each pair of consecutive commits, we
gather the changes using a fine grain change algorithm.



Algorithm 1 Element Matcher
Input: E1 ⊂ vn, E2 ⊂ vn+1

Output: final matching set: Mfinal

1: Mfinal ← ∅
2: E1,unmatched ← ∅
3: for each e1 ∈ E1 do
4: if findMatchFileAndName(e1, E2) then
5: Mfinal ←Mfinal ∪ (e1, e2)
6: E2 ← E2 − e2
7: else
8: E1,unmatched ← E1,unmatched ∪ e1
9: end if

10: end for each
11: for each e1 ∈ E1,unmatched do
12: if findMatchF ileAndContent(e1, E2) then
13: Mfinal ←Mfinal ∪ (e1, e2)
14: E2 ← E2 − e2
15: else if findMatchNameAndContent(e1, E2) then
16: Mfinal ←Mfinal ∪ (e1, e2)
17: E2 ← E2 − e2
18: else
19: Mfinal ←Mfinal ∪ (e1, ∅)
20: end if
21: end for each
22: for each e2 ∈ E2 do
23: Mfinal ←Mfinal ∪ (∅, e2)
24: end for each

The algorithm relies on previous, state-of-the-art studies
[7], [17]–[19]. In these studies, the authors built abstract
syntax trees (ASTs) of Java classes and used tree edit distance
algorithms to extract an optimal change path from one tree to
the other, with each tree corresponding to a version of the
code base.

To detect the changes, the algorithm works in two phases:
1) Finding a match between elements of v1 ∈ V and

v2 ∈ V where V is the set of versions – with one
version corresponding to one commit – to come up with
a mapping e1n → e2n where emn ∈ En and En is the
set of elements from vn.

2) Finding a minimum edit script that transforms V1 to V2

given the computed mapping.
Phase 1 is essential to the edit script since the more elements

that can be matched, the better the minimum edit script will
perform. Phase 2 produces an edit script detecting the basic
edit operations INSERT, UPDATE, DELETE for each pair of
matched elements.

Listing 1 presents the algorithm used for phase 1 to find an
appropriate matching set E1n → E2n.

• Lines 3–10: Search for two elements present in the same
file with the same name. If no match is found from e1 ∈
E1, it is tagged as unmatched.

• Lines 11–21: The same operation is performed, relaxing
the constraints. First, at line 12 the name is relaxed, to
check if the element was renamed. Then at line 15 the file

is relaxed to check if the element was moved to another
file. If no suitable match is found for e1 ∈ E1, it is
matched with a null element and will be consider as a
DELETE operation in phase 2.

• Lines 22–24: Check if there are elements from E2 that
weren’t matched, in which case they will be considered
as an INSERT operation in phase 2.

In phase 2, for each pair of matched elements, we extract
the differences. In the case of User Keyword and Test Case, we
use an edit distance algorithm on the sequence of steps which
is a modification of the String-to-String algorithm presented
in [20] using the Levenshtein edit distance.

2) Answering RQ2: For each keyword we extract its level
and connectivity, using the tree structure of KDT presented in
Section IV-A. We then cluster the keywords by each of these
metrics. For each group, we analyze the number of changes
performed and the keyword churn. In order to avoid skewing
the churn results, we compute the churn during “Creation” and
“Maintenance” separately.

Next, we attempt to provide an estimation of the number
of changes saved due to the reusability offered by KDT. To
answer this, for each tests, we create a sequence of steps
executed during execution. Therefore, if a keyword is used
twice, the steps from that keyword would appear twice in the
sequence. We then compute the changes for each sequence of
step execution from one version to the next. The sequences of
steps obtained are similar to the ones generated by a classical
Capture/Replay (CR) tool. While these results cannot be used
to directly compare the maintenance cost of CR and KDT, it
provides an estimation of the benefits of reusing keywords.

3) Answering RQ3: To answer this question, we extract
similar keywords, also referred to as clones in the literature,
and we analyze their evolution. To detect test clones in KDT
test suites, we built a clone detection tool specifically designed
for KDT test code. The tool is based on the fine grain change
algorithm presented in the previous section. We extract the
differences between each pair of keywords k1, k2 ∈ En,
ignoring changes related to documentation and update name
(cf. Table II). For each pair k1, k2 we check whether they
belong to one of the two types of clones analyzed in our work
(definitions adopted from [16]):

• Type I keyword clones: identical keywords except for
changes in whitespace, layout and documentation. The
clone detection tool tags a keyword pair as Type I clones
only in the case of an empty set of differences.

• Type II keyword clones: keywords with a content syn-
tactically identical except for step arguments. The clone
detection tool tags a pair as Type II clones only if the set
contains differences of type update step arguments and/or
update step return values from Table II.

Additionally, for each keyword, we extract the set of
changes happening during the period under study. From this
change list, we define 3 types of keyword evolution:

• Keyword evolving: If the change list of a keyword k is
not empty, it is defined as evolving.



TABLE II
TYPES AND TOTAL AMOUNT OF CHANGES OVER THE 8-MONTHS STUDY

change type Creation Maintenance

insert documentation 430 2
insert step 135 62
insert test case 94 12
insert user keyword 394 80
insert variable 286 77
update documentation 106 96
update for loop body 0 0
update for loop condition 0 0
update name 45 6
update step 249 107
update step arguments 105 144
update step expression 7 6
update step return values 0 1
update step type 5 3
update variable definition 34 45
delete documentation 0 2
delete step 25 34
delete test case 26 2
delete user keyword 70 38
delete variable 6 23

Total 2017 738

• Keyword co-evolving: Among the set of keywords evolv-
ing, keywords k1, k2 are defined as co-evolving if their
changed list is identical.

• Keyword not evolving: Keyword k is defined as not
evolving if its change list is empty.

Finally, we analyze the relationship between keyword evo-
lution and keyword similarity by cross analysis of categories.

4) Answering RQ4: To answer RQ4, we conduct a series
of interviews with the 3 testers working on TestSuiteA at BGL
BNP Paribas. The interviews were based on a questionnaire of
14 open-ended questions and were conducted in a semi-formal
setting. The aim of these interviews is two-fold. First, we
aim at gathering qualitative data to support our observations
and, second, we want to collect impressions and anecdotal
evidences from the practitioners on their adoption of KDT. The
interviews were analyzed based on the two main questions of
the study.

V. RESULTS

A. RQ1: Types of Changes during KDT Test Suite Evolution

This research question pertains to the types of changes
performed by the testers during TestSuiteA’s evolution. The
identified types and their total amount are presented in Table II.
The first column of the table shows the type of changes as
extracted by our change algorithm. The next columns present
the total amount of these changes during the Creation and
Maintenance periods (as defined in Section IV-B) over the 8
months of the study.

We see that during Creation, the main activities in terms
of number of changes is “insert documentation”, “insert user
keyword”, “insert variable” and “update step”. The first three
types of changes are naturally related to test creation, so this
outcome is expected. A more interesting finding is that a lot of
effort is devoted in documenting the keywords created. After

0 50 100 150 200 250 300 350
number of changes

change user step

change sync step

change action step

change assert step

change log step

change get step
Maintenance
Creation

Fig. 4. Total number of step changes per type

discussing with the QA team, this effort is justified by the fact
that this documentation will prove useful in the case of KDT
test failures. “Update step” refers to modifications of steps of
existing keywords. The specific kinds of modifications will be
further investigated later in the section (see also Figure 4).

During Maintenance, the main types of changes performed
are the “update step arguments”, the “update step”, “update
documentation” and “insert user keyword”. After manually
analyzing the changes to the arguments, we found two preva-
lent categories of commonly-changed arguments: arguments
referring to synchronization between the SUT and the KDT
tests, e.g. wait 3 seconds and arguments referring to locators,
i.e., ways of locating elements in the GUI interface of the
SUT. The arguments of the first category are typically used in
the SYNC category of Table I, and the latter at keywords of
the ACTION and ASSERTION categories. Our results suggest
that keywords belonging to these categories experience a high
number of changes. Practioners corroborate those results and
motivate those results in RQ4.

Most changes during KDT test evolution refer to
synchronization or element location changes between
the SUT and the test suite and to assertions (keyword
categories: SYNC, ACTION & ASSERTION).

Apart from “update step arguments”, “update step” consti-
tutes one of the most common change for both Creation and
Maintenance periods. To further investigate the nature of these
changes, Figure 4 plots the number of changes (x-axis) against
the category of the enclosing keywords (y-axis), as presented
in Table I with different colors for the periods studied.

As can be seen from the figure, change user steps is by
far the greatest activity during creation, we see that changes
in synchronization steps are equally important during mainte-
nance. The interview conducted in RQ4 motivate that finding
and explains it by the fact that many keywords are refactored
during creation of new tests to become more generic so they
can be reused. Another trend is that except for the user steps,
all other categories evolve more during maintenance. This is
due to the same effect as mentioned earlier where changes



Test Case User Keyword
0

50

100

150
ke

yw
or

ds
 p

er
 v

er
si

on

level
1
2
3
4
5
6

(a) Keyword Level

00 01 02 03 04 05 06 07 08 09 10+
0

50

100

150

ke
yw

or
ds

 p
er

 v
er

si
on

(b) Keyword Connectivity

1 2 3 4 5 6
level

0

5

10

15

co
nn

ec
tiv

ity

(c) Connectivity per level category

Fig. 5. Understanding KDT Test Suite Complexity

in the application cause tests to break. user steps are less
affected by that effect since they are more abstract and thus
less sensitive to trivial application evolution.

B. RQ2: KDT Test Suite Complexity and Evolution

The results for RQ2 are split into two parts: first, results
about the complexity of KDT test suites are reported; and,
second, the way this complexity affects its evolution is pre-
sented.

1) KDT test suite complexity: To understand KDT test suite
complexity, we calculate the keyword level and connectivity
metrics, defined in Section IV-A. The first metric refers to the
different “abstraction levels” (moving from pure technical to
requirements expression) of the test suite and the second one,
to the reusability among the keywords. Figures 5(a) and 5(b)
present the corresponding results.

Figure 5(a) depicts our results of the keyword level for
Test Cases and User Keywords, with the y-axis referring to
the number of keywords per version. Recall that Test Cases
are the complete instantiation of a test - root node in the
tree representation - and User Keywords are user defined
abstraction of the steps - intermediate nodes in the tree
representation - (see also Section II-A). As can be seen from
the figure, most Tests Cases are relatively complex, with a
level of 5, whereas most User Keywords are simple (levels
1 to 2). This indicates that most user defined actions remain
simple, in accordance with the philosophy of KDT.

KDT Test Cases are complex having several levels of
abstraction, whereas most User Keywords are simple.

Regarding the keyword reusability, Figure 5(b) plots the
number of keywords per version (y-axis) with the keyword
connectivity (x-axis). As can be seen, there is a high degree
of reusability among User Keywords. More precisely, only
20.34% of the lines of code are used only once. Overall, the
reused keywords amount to 51.56% of the total lines of code
of TestSuiteA. As we will see next, this reusability is key to
the decreased cost of the KDT test suite maintenance.

Another interesting finding is the presence of dead test
code, i.e., keywords not used anywhere in TestSuiteA; these
keywords have a connectivity of 0 in Figure 5(b). In total,
5.58% of the keywords were not used, which amounts to
4.58% of the test codebase. When we presented our findings to

the QA team, they were surprised and confirmed the existence
of dead code, explaining that there is no tooling to support
such analysis. Our tool solves this issue and it is planned to
be integrated into the team’s test code development processes.

To investigate whether keywords of a particular level tend
to be more reused than others, Figure 5(c) plots the keyword
connectivity among the different keyword levels. By examin-
ing the figure, it becomes clear that keywords levels exhibit
relatively high connectivity, indicating that the reusability
of keywords is not restricted to a particular level with the
exception of level 1 showing a slightly higher connectivity.

There is a high degree of reusability among the key-
words with 60% of keywords being reused, summing
to 51.56% lines of test code savings.

2) KDT complexity and evolution: The second part of
RQ2 refers to the evolution of KDT test suites and how
their complexity affects it. To better understand the amount
of changes performed during test code evolution, Figure 6
presents the test code churn (y-axis) over the eight-month
period analyzed (x-axis), with a similar setup to Figure 3.

The purple line in the figure denotes the average churn
across TestSuiteA’s evolution and the light purple, its variance
represented here by the standard deviation. From the figure,
it can be observed that during Creation, the churn is 8.13%,
on average, whereas in the Maintenance period, its value is
3.61%. Overall, keywords are changed with a churn rate of
5.11%. This number suggests that keywords are not entirely
rewritten, but localized modifications are performed.

To investigate further how the complexity of the KDT
test code affects its evolution, Figure 7 plots the number of
changes, for the whole period studied, against the keyword
connectivity and level and Figure 8 plots the churn against
the same metrics.

After examining Figure 7(a), it becomes clear that keyword
reused one to three times are mostly changed. Keywords
with higher connectivity do not change that often. Moreover,
the figure shows that changes are performed on dead code
(connectivity 0). This confirms that testers are unware of the
fact that these keywords are never executed, generating easy
to avoid maintenance. Regarding the results for changes and
level, depicted in Figure 7(b), we can observe that the changes
to Test Cases do not follow a specific trend, whereas for the



20
17

-06

20
17

-07

20
17

-08

20
17

-09

20
17

-10

20
17

-11

20
17

-12

20
18

-01

20
18

-02

20
18

-03

20
18

-04
0

10

20

30

40

50

60

70
ch

ur
n 

[%
]

Fig. 6. KDT test code evolution: Churn over time

00 01 02 03 04 05 06 07 08 09 10+
0

100

200

300

nu
m

be
r o

f c
ha

ng
es

(a) Connectivity

1 2 3 4 5 6
0

200

400

600

nu
m

be
r o

f c
ha

ng
es

Test Case
User Keyword

(b) Level

Fig. 7. Changes distribution according to level and connectivity

changes to the Users Keywords, the lower level the keyword
is, the more it is suceptible to be changed.

Regarding our findings on the relation between churn rate
and connectivity, depicted in Figure 8(a) for the Creation and
Maintenance periods, we can conclude that, during Creation,
keywords that are reused often, i.e. higher connectivity, exhibit
approximately 50%-60% increased churn rate, whereas, during
Maintenance the opposite holds. Finally, regarding the results
presented in Figure 8(b) about churn and keyword level, we
can see that, during Creation, keywords with lower levels
exhibit high churn values, whereas in Maintenance this only
holds for keywords of level 1. These results suggest that low
level, highly reused keywords (basic action on the SUT), are
evolving at a higher rate.

As we saw earlier, in TestSuiteA’s evolution, keyword

00 01 02 03 04 05 06 07 08 09 10+
0

10

20

30

ch
ur

n 
[%

]

Creation
Maintenance

(a) Connectivity

1 2 3 4 5 6
0

2

4

6

8

ch
ur

n 
[%

]

Creation
Maintenance

(b) Level

Fig. 8. Churn distribution according to level and connectivity

changed with a churn rate of 5.11% but we also saw in the
previous section that keywords are reused often. This raises
the questions: How many changes have been saved due to
the reusability of the keywords? To answer this question, we
compare the the number of changes applied to TestSuiteA to
the same suite without the keyword abstraction as explained in
Section IV-C2. We find that using KDT reduces the number of
changes applied on TestSuiteA by 70.77% during “Creation”,
by 72.69% during “Maintenance” with an overall reduction
during the entire period of 71.31%.

The reuse of keywords reduces the maintenance cost
by more than 70%. Changes are mostly done to
keywords that are reused one, two or three times. Low
level keywords are the ones that are changed most
often. Keywords are evolving with a churn rate of 5%.

C. RQ3: KDT, Test Clones and Evolution

In RQ3, we explore whether KDT test suites contain test
clones and how these clones affect TestSuiteA’s evolution.
Table III presents the corresponding results. The table presents
the total number of keywords that appear during the evolution
of TestSuiteA (for all 129 versions) for each type of clone
detected (first column – Type I keyword clones, Type II and
non-clones(“Others”)) and each type of evolution (second col-
umn). The types of evolution studied are the divided into three
categories: keywords that are evolving strictly in the same
way as others (“Co-evolution”), keywords that are evolving
independently from others (“Evolution”) and keywords that
do not evolve (“No change”).



TABLE III
KDT TEST CLONES AND EVOLUTION

Types of Evolution
Keywords Co-evolution Evolution No change Total

Type I 3526 3599 412 7537 (13.7%)
Type II 171 8462 491 9124 (16.5%)
Others 1888 33433 3184 38505 (69.8%)

Total 5585 45494 4087 55166 (100%)
Percent 10.1% 82.5% 7.4% -

We can observe several interesting findings from the table.
First, we see that Type I and Type II clones comprise 30.2% of
the total amount keywords, indicating that almost one third of
the test code written is duplicated. This finding highlights the
fact that practitioners applying KDT will benefit from tools
and techniques that can assist them in managing test clones.

Secondly, our results suggest that approximately 50% of the
Type I test clones evolve in the exact same way, indicating
that the practitioners apply the same changes multiple times,
wasting valuable effort. This is a high figure, especially when
compared to the co-evolution of non-cloned keywords which
is 4.9%. Taking these results into consideration and the fact
that almost 10% of the keywords are evolving in the same way,
it becomes obvious that automated refactoring techniques can
reduce the maintenance effort of KDT test suite evolution.

Finally, another interesting result exhibited in Table III
concerns the overall evolution. We observe that only 7.4%
of the keywords are not evolving. This shows that during the
TestSuiteA’s evolution more than 90% of the keywords are
modified.

Test clones exist in KDT test code. Type I and II clones
amount to 30% of the test codebase. 50% of Type
I clones evolve the same way, suggesting plenty of
opportunities for test refactoring. More than 90% of
the keywords evolve during their lifetime.

D. RQ4: Benefits and challenges of KDT: The Practitioners’
perspective

This research question pertains to the benefits and chal-
lenges of KDT as perceived by the practitioners. In the
following, we present the main findings of our interviews
grouped by the two main questions of our study:

1) What are the benefits and challenges of adopting KDT?:
All interviewees agreed on two main benefits of KDT: the
low learning curve and its simple syntax. Thanks to its syntax
that is close to the natural language, new users can easily
start being productive. This syntax is also well-suited for
communication purposes with teams that may have different
backgrounds and expertize. The layered structure of keywords
(i.e., the different keyword levels) plays an important role in
facilitating this by hiding the technical details at the lower
levels of the test suite and exhibiting the more business-
oriented at the higher levels.

The main challenges encountered by the practitioners reside
in their interaction with the SUT. Even a small evolution of

the SUT can easily break the tests. Additionally, the testers
discuss that finding the elements of the SUT that will be used
in the tests is challenging, especially in applications where
testability was not the primary concern.

2) What kind of changes are performed on the test suite and
why?: The testers report two main reasons for the changes:
SUT evolution and keyword adaptation.

Regarding the SUT evolution, the testers reported that as
the SUT evolves, its components evolve as well which will
cause the tests to adapt. The testers focus on two types of
changes that are in according to our findings regarding RQ1
(cf. Section V-A): locators, i.e., finding which GUI elements
of the SUT should be used in the tests and synchronization
issues between the tests and the SUT.

Regarding keyword adaptation, the testers said that they
create keywords in a “best effort” approach to cover the current
needs. As new features of tests are developed, keywords are
modified to become more generic. This fact explains the results
illustrated in Figure 4 where we observed many changes in
user steps during Creation.

Practitioners find KDT easy to adopt, with a sim-
ple syntax that facilitates communication. The main
reasons for test code evolution are due to locators,
synchronization issues and keyword refactoring.

VI. THREATS TO VALIDITY

Threats to the external validity result from the generalization
of our results outside the context of the study. Conducting the
study with one industrial partner, the conclusions we draw
may not be able to generalize to other companies using KDT.
However, SubjectA is built using popular technologies, i.e.,
web frameworks and Java, which are wide-spread across the
industry. Secondly and most important, this study is the first
one, to the best of our knowledge, that analyzes the evolution
of KDT test suites based on real-world data. Of course, this
does not preclude the need for other studies to investigate
further our results. Finally, another potential threat originates
from the fact that we interviewed only 3 testers for RQ4.

Threats to the internal validity are due to the design of
the study, potentially impacting our conclusions. The simple
syntax of the test code allows for a robust model to be
constructed. Our change algorithm presents some limitations:
although phase 2 is based on the state of the art, it cannot
detect Move operations, resulting instead in two operations
Delete followed by an Insert. This limitation might have
influenced our results during the accounting of the number
of changes. However, the rather low number of the delete step
operations (cf. Table II) indicates that this effect is marginal.
Regarding the clone detection algorithm, as shown in [14], the
rate of false-positives is known to be low for Type I and Type
II clones.

Threat to construct validity result from the non suitability
of the metrics used to evaluate the results. The main threat
lies in the division of our work in two periods: “Creation”



and “Maintenance”. While empirical data motivated this sep-
aration, they lack of theoretical grounding. Further work on
the test execution is needed to better motivate this decision.

VII. RELATED WORK

In the literature, we find a great amount of work tackling the
problem of test code evolution. For instance [10] and [8] ana-
lyze the co-evolution between test code and production code.
Levin et al. [8] analyze 61 open source projects to establish
a relationship between test maintenance and production code
maintenance. They create a model to see what type of changes
in the code base cause maintenance of the test suite.

Pinto et al. [7] analyze the evolution of test suites and extract
actions performed on the test suite in order to see how the
test suite is evolving. They conclude that test repair occurs
in practice and that it is not due to only assertion fixes and
suggest further research of automatic repair tools. Although
this work is similar to ours, the focus of the study is the unit
level while we focus on the acceptance level.

To the best of our knowledge, Skoglund and Runeson [21]
were the first to conduct an empirical study on the evolution of
system level tests. The authors conduct an exploratory analysis
to investigate potential test suite maintenance issues. They
explore three strategies to minimize the number of changes in
the test code resulting from a production code change. Their
study found that in one strategy, more changes were needed to
maintain the test code while with the other no changes were
needed to the unit test code. However, since their dataset is
synthetic, they only draw qualitative conclusions.

Grechanik et al. [22] perform a cost-benefit analysis of
tool-based GUI-based application (GAP) functional test suites
versus manual maintenance. They describe a case study with
45 professional programmers and test engineers. They show
that the automated GUI testing approach (QTP) reports more
broken test script statements due to changes in GUI with
fewer false positives than the manual approach. However,
they recommend against the tool-based repair approach for
experienced test engineers because of the high cost of each
license and the low added value.

Shewchuk et al. [23] create a functional test suite using the
tool IRFT for the open source project JEdit. In their work,
they measure the effort to create and maintain the test suite
and compared its size and number of changes against the
production code. They conclude that the method to create test
using IRFT is effective, with respect of the effort needed to
develop and maintain functional test suites as well as the fault
detection capabilities of those suites. One limitation of this
study is that it uses synthetic test suites.

Alegroth et al. [9], [24] analyze the costs and factors associ-
ated with the maintenance of Visual GUI testing (VGT) based
on an empirical study. They identified 13 factors influencing
maintenance. Their work shows that the cost of creation is
much higher than the cost of maintenance. They also show
that the cost of maintenance can be reduced by frequent
evolutions instead of few big changes. Lastly, the authors build
a cost model comparing manual testing to automated testing.

They conclude that the return on investment of using VGT is
positive.

In their work, Labuschagne et al. [25] explore the cost and
benefits of automated regression testing in practice. To do so,
they select 61 projects and analyze their test execution reports.
They show that in some cases tests break because of invalid
assumption and that maintenance cost could be reduced via
the use of better development processes.

Another similar study is the one of Lavoie et al. [16] who
analyzed potential code duplication in TTNC-3 test scripts in
industrial telecommunication software. Their findings suggest
that 24% of the code fragments in the test suites are clones.
We find analogous evidence of the presence of clones in KDT
test code.

Although much work has been conducted on test evolution,
work on acceptance testing code evolution is still scarce. In
this study, we try to fill this gap and provide quantitative
and qualitative data on the cost and benefits of creating and
maintaining KDT in practice.

VIII. CONCLUSION AND FUTURE WORK

Understanding the changes performed by testers during
test code evolution is key to automated test refactoring and
repair techniques and will provide valuable information on
the challenges they face. Towards this direction, this paper
presents an extensive study on the evolution of industrial
Keyword-Driven (KDT) test suites across an eight-month
period where we identify and categorise the corresponding
test code changes. Our results suggest that KDT test design is
complex with several levels of abstraction and that this design
favours reusability; more than 60% of the keywords are reused
which has the potential of reducing the changes needed during
evolution up to 70%.

Additionally, we find that keywords change with a relatively
low rate (approximately 5%) indicating that after a keyword’s
creation only fine-grained, localised changes are performed
by the testers. Our results suggest that the most common
changes to KDT tests are caused by synchronization or element
location changes between the SUT and the test suite and to
the assertions of the tests. Our findings indicate that during
evolution 90% of the keywords evolve and that test clones exist
in KDT test suites; approximately 30% of the keywords are
duplicated. Finally, we report on the practitioners’ perception
on the challenges and benefits of adopting KDT.

This work forms the first step towards improving test quality
and supporting test maintenance. Our results show that KDT
techniques require tooling to support keyword selection, test
refactoring and test repair.

ACKNOWLEDGEMENT

The authors would like to thank Raphaël Formica, Mo-
hamed Reqba, Isabelle Hoffert-Clausse and Christophe Chat-
tou. This work is partially funded by Alphonse Weicker
Foundation and by the Luxembourg National Research Fund1

1references C17/IS/11686509/CODEMATES and AFR PHD 11278802



REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed. New
York, NY, USA: Cambridge University Press, 2016.

[2] V. Garousi and M. V. Mäntylä, “When and what to automate in software
testing? A multi-vocal literature review,” Information and Software
Technology, vol. 76, pp. 92–117, aug 2016.

[3] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Automat-
ing test automation,” in 2012 34th International Conference on Software
Engineering (ICSE), June 2012, pp. 881–891.

[4] S. Sivanandan and Yogeesha C. B, “Agile development cycle: Approach
to design an effective Model Based Testing with Behaviour driven
automation framework,” in 20th Annual International Conference on
Advanced Computing and Communications (ADCOM). IEEE, sep 2014,
pp. 22–25.

[5] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-
directed test scripts,” in 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 2009, pp. 408–418.

[6] Capgemini Sogeti and Micro Focus, “World Quality Report
2017-18,” p. 74, 2017, (last accessed on October 2018). [On-
line]. Available: https://www.sogeti.com/globalassets/global/downloads/
testing/wqr-2017-2018/wqr 2017 v9 secure.pdf

[7] L. S. Pinto, S. Sinha, and A. Orso, “Understanding Myths and Reali-
ties of Test-suite Evolution,” Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
vol. 1, pp. 33:1–33:11, 2012.

[8] S. Levin and A. Yehudai, “The co-evolution of test maintenance and
code maintenance through the lens of fine-grained semantic changes,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sept 2017, pp. 35–46.

[9] E. Alégroth, R. Feldt, and P. Kolström, “Maintenance of automated
test suites in industry: An empirical study on Visual GUI Testing,”
Information and Software Technology, vol. 73, pp. 66–80, 2016.

[10] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, jun 2011.

[11] R. RobotFramework. (2018) Introduction. [Online]. Available: http:
//robotframework.org/

[12] Jingfan Tang, Xiaohua Cao, and A. Ma, “Towards adaptive framework
of keyword driven automation testing,” in 2008 IEEE International
Conference on Automation and Logistics, no. September. IEEE, sep
2008, pp. 1631–1636.

[13] B. Baker, “On finding duplication and near-duplication in large software
systems,” in Reverse Engineering, 1995., Proceedings of 2nd Working
Conference on, Jul 1995, pp. 86–95.

[14] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, may
2009.

[15] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Inf. Softw. Tech., vol. 55, no. 7, pp. 1165 – 1199,
2013.

[16] T. Lavoie, M. Mérineau, E. Merlo, and P. Potvin, “A case study of
TTCN-3 test scripts clone analysis in an industrial telecommunication
setting,” Information and Software Technology, vol. 87, pp. 32–45, jul
2017.

[17] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Pro-
ceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’96. New York, NY, USA: ACM,
1996, pp. 493–504.

[18] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering - ASE ’14. New York, New York, USA: ACM Press, 2014,
pp. 313–324.

[19] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
Nov 2007.

[20] E. Ukkonen, “Algorithms for approximate string matching,” Information
and Control, vol. 64, no. 1-3, pp. 100–118, jan 1985.

[21] M. Skoglund and P. Runeson, “A case study on regression test suite
maintenance in system evolution,” in IEEE International Conference on
Software Maintenance, ICSM, 2004, pp. 438–442.

[22] M. Grechanik, Q. Xie, and C. Fu, “Experimental assessment of manual
versus tool-based maintenance of GUI-directed test scripts,” in 2009
IEEE International Conference on Software Maintenance. IEEE, sep
2009, pp. 9–18.

[23] Y. Shewchuk and V. Garousi, “Experience with Maintenance of a
Functional GUI Test Suite using IBM Rational Functional Tester,” in
Proceedings of the 22nd International Conference on Software Engi-
neering & Knowledge Engineering (SEKE’2010), Redwood City, San
Francisco Bay, CA, USA, 2010, pp. 489–494.

[24] E. Alegroth, R. Feldt, and H. H. Olsson, “Transitioning Manual System
Test Suites to Automated Testing: An Industrial Case Study,” in 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation. IEEE, mar 2013, pp. 56–65.

[25] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of
regression testing in practice: a study of Java projects using continuous
integration,” Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2017, pp. 821–830, 2017.

https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
http://robotframework.org/
http://robotframework.org/

