
On the Coupling between Vulnerabilities and
LLM-generated Mutants: A Study on Vul4J dataset

Aayush Garg
University of Luxembourg

aayush.garg@uni.lu

Renzo Degiovanni
University of Luxembourg
renzo.degiovanni@uni.lu

Mike Papadakis
University of Luxembourg
michail.papadakis@uni.lu

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Abstract—With the release of powerful language models
trained on large code corpus (e.g., CodeBERT, trained on 6.4
million programs), a new family of mutation testing tools has
arisen that promises to generate more “natural” mutants, where
the mutated code aims at following the implicit rules and coding
conventions produced by programmers.

In this paper, we empirically study the observable behavior
of CodeBERT-generated mutants and to what extent are these
coupled with software vulnerabilities. To do so, we carefully
analyze 45 reproducible vulnerabilities from the Vul4J dataset
to determine whether the mutants and vulnerabilities fail the
same tests and whether the failures are for the same reasons or
not. Hence, we define different degrees of vulnerability-coupling
classes. Strongly coupled mutants fail the same tests for the same
reasons as the vulnerabilities, while test coupled mutants fail the
same tests but for some different reason as the vulnerabilities.
Partial coupling classes are also considered.

Overall, CodeBERT-generated mutants strongly coupled with
32 out of these 45 vulnerabilities (i.e. the mutants fail on the
same tests for the same reasons), while another 7 vulnerabilities
are test-coupled by CodeBERT mutants (i.e. the mutants fail
on the same tests but not for the same reasons). Interestingly,
CodeBERT mutants are diverse enough to couple vulnerabilities
from 14 out of the 15 types of vulnerabilities explored, i.e.,
CWEs (Common Weakness Enumeration). Finally, we observe
that strongly coupled mutants are scarce (1.17% of the killable
mutants), test coupled mutants represent 7.2%, and 64.9% of
the killable mutants are not coupled with the vulnerabilities.

I. INTRODUCTION

Research and practice with mutation testing have shown
that it is one of the most powerful testing techniques [2], [18],
[23], [41]. Apart from testing the software in general, mutation
testing has been proven to be useful in supporting many soft-
ware engineering activities which include improving test suite
strength [1], [9], selecting quality software specifications [30],
[31], [44], among others. However, its use in tackling software
security issues has received little attention. A few works fo-
cused on model-based testing [6], [32] and proposed security-
specific mutation operators to inject potential security-specific
leaks into models that can lead to test cases capable of finding
attack traces in internet protocol implementations. Other works
proposed new security-specific mutation operators that aim
to mimic common security bug patterns in Java [29] and
C [26], [34]. These works empirically showed that traditional
mutation operators are unlikely to exercise security-related
aspects of the applications. Hence, they proposed operators
that attempt to convert non-vulnerable code to vulnerable

by mimicking common real-world security bugs. However,
pattern-based approaches have two major limitations. On one
hand, designing security-specific mutation operators is not a
trivial task since it requires manual analysis and comprehen-
sion of the vulnerability classes that cannot be easily expanded
to the extensive set of realistic vulnerability types (e.g. they
restrict to memory [29] and web application [34] bugs). On
the other hand, these mutation operators can alter the program
semantics which may not be convincing for developers as
they may perceive them as unrealistic/uninteresting [4], hence
obstructing their usability.

In the literature, language models have been explored to
accomplish code completion [28], test oracle generation [45],
program repair [10], among other software engineering tasks.
With the aim of producing more realistic and natural code,
a new family of tools based on language models has recently
arisen. Language models are being used for mutant generation
yielding to several mutation testing tools such as SemSeed [40]
and DeepMutation [46]. While these tools are subjected to
expensive training on datasets containing thousands of buggy
code examples, there is an increasing interest in using pre-
trained language models for mutant generation [3], [17], [42].
The mutation testing tool µBERT [17] is one such example
that uses CodeBERT [20] to generate mutants by masking and
replacing tokens with CodeBERT’s suggested replacements.

Since pre-trained language models were trained on large
code corpus (e.g. CodeBERT was trained on more than 6.4
million programs), their predictions are typically considered
representative of the code produced by the programmers.
Hence, we wonder:
Are mutants generated by pre-trained language models cou-
pled with software vulnerabilities?

A positive answer to this question can be promising for the
use of such mutants to form an initial step towards defining
vulnerability-focused testing requirements. We believe that
these requirements are particularly useful when building re-
gression test suites for security-intensive applications.

To answer this question we conduct a controlled experiment
on the Vul4J dataset [8] of 45 reproducible vulnerabilities with
severity ranging from medium to high. For each vulnerability,
Vul4J provides the corresponding vulnerable and fixed (non-
vulnerable) files, and the test suites with the Proof of Vulnera-
bility (PoV), that is, a set of test cases for which some of them
fail in the vulnerable version (i.e. trigger the vulnerability) but



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

pass on the fixed one. Then, we run the PoV test suites on the
mutants and vulnerabilities and analyze to what extent these
behave similarly. To do so, we follow a similar procedure
as Gay and Salahirad [24] to study the coupling between
mutants and real-faults and perform a manual analysis to check
whether the mutants and vulnerabilities break the same or
different tests and if they fail for the same reasons or not.

Hence, we define different vulnerability-coupling classes
between mutants and vulnerabilities measured in terms of the
number and reasons for failing tests (PoVs). A mutant is said
strongly coupled with a vulnerability if it fails on the same
PoV tests and for the same reasons as vulnerabilities (i.e.
same observable exceptions and error messages are thrown).
A mutant is said test coupled with a vulnerability if it fails on
the same PoV tests but at least one of the failures is for some
different reason. Mutants that fail on a subset of the PoV tests
for the same or different reasons as the vulnerability are said
partially coupled or partially test coupled, respectively, to the
vulnerability.

Overall, we found that for 39 out of 45 studied vulnerabili-
ties (i.e., 87.7%) there exist mutants that are somehow coupled
with vulnerabilities, i.e., such mutants fail one or more tests
that are failed by the respective vulnerabilities irrespective
of the reasons. More precisely, µBERT-generated mutants
strongly coupled with 32 out of these 39 vulnerabilities (i.e.
the mutants fail on the same tests for the same reasons),
while for the remaining 7 µBERT generates some test coupled
mutants (i.e. the mutants fail on the same tests but not for
the same reason). In addition to the strongly and test coupled
mutants, µBERT generates mutants that partially couple with
such vulnerabilities as well.

The Common Weakness Enumeration Specification (CWE)
provides a common language of discourse for discussing,
finding and dealing with the causes of software security
vulnerabilities as they are found in code, design, or system
architecture. Each individual CWE represents a single vul-
nerability type [12]. Interestingly, the LLM-generated mutants
couple with a broad variety of vulnerabilities, coupling with
14 out of the 15 CWEs explored in our study. For instance,
coupling with CWE-20 (Improper Input Validation), CWE-
835 (Infinite Loop), CWE-79 (Improper Neutralization of Web
Input), among others, missing only the CWE-287 (Improper
Authentication). Finally, we study the distribution of coupled
mutants and observe that: strongly coupled mutants represent
1.17% of the entire pool of killable mutants; test coupled
mutants represent 7.2% of the overall killable mutants; while
64.97% of the killable mutants are not coupled with the
vulnerabilities (i.e. they fail on tests that are not related with
the vulnerabilities at all) and the remaining are partially (test)
coupled with the vulnerabilities.

II. BACKGROUND

A. Mutation Testing

Mutation testing is a popular fault-based testing tech-
nique [2], [18]. It works by introducing slight syntactic
modifications to the original program, a.k.a., mutants. These

mutants are artificially seeded faults that aim at simulating
bugs present in the software. The tester designs test cases in
order to kill these mutants, i.e., to distinguish the observable
behavior between a mutant and the original program. Thus,
selecting specific mutants enables testing specific structures
of a given language that the testing process seeks [23].
Due to this flexibility, mutation testing is used to guide test
generation [38], to perform test assessment [37], to uncover
subtle faults [9], and to infer strong assertions [22], [30].

B. µBERT

µBERT [17] is a mutation testing tool that uses a pre-trained
language model CodeBERT to generate mutants by masking
and replacing tokens. µBERT takes a Java class and extracts
the expressions to mutate. It then masks the token of interest,
e.g. a variable name, and invokes CodeBERT to complete
the masked sequence (i.e., to predict the missing token).
This approach has been proven efficient in increasing the
fault detection of test suites [17] and improving the accuracy
of learning-based bug-detectors [42] and thus, we consider
it as a representative of pre-trained language-model-based
techniques. For instance, consider the sequence int total
= out.length; taken form Figure 1a, µBERT mutates the
object field access expression length by feeding CodeBERT
with the masked sequence int total = out.<mask>;.
CodeBERT predicts the 5 most likely tokens to replace the
masked one, e.g., it predicts total, length, size, count
and value for the given masked sequence. µBERT takes these
predictions and generates mutants by replacing the masked
token with the predicted ones (per masked token creates five
mutants). µBERT discards non-compilable mutants and those
syntactically the same as the original program (cases in which
CodeBERT predicts the original masked token).

C. Code Vulnerabilities

Common Vulnerability Exposures (CVE) [16] defines a
security vulnerability as “a flaw in a software, firmware,
hardware, or service component resulting from a weakness
that can be exploited, causing a negative impact to the
confidentiality, integrity, or availability of an impacted com-
ponent or components.”. The inadvertence of a developer
or insufficient knowledge of defensive programming usually
causes these weaknesses. Vulnerabilities are usually reported
in publicly available databases to promote their disclosure and
fix. One such example is National Vulnerability Database,
aka NVD [35]. NVD is the U.S. government repository of
standards based vulnerability management data. All vulner-
abilities in the NVD have been assigned a CVE (Common
Vulnerabilities and Exposures) identifier. The Common Vul-
nerabilities and Exposures (CVE) Program’s primary purpose
is to uniquely identify vulnerabilities and to associate specific
versions of codebases (e.g., software and shared libraries)
to those vulnerabilities. The use of CVEs ensures that two
or more parties can confidently refer to a CVE identifier
(ID) when discussing or sharing information about a unique
vulnerability.



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();

if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}

}
}

}

(a) Vulnerable Code (CVE-2018-17201)

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();
if (n < 0) {
throw new ImageReadException("Error

decompressing RGBE file"); }
if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}
}
}

}

(b) Fixed Code

private static void decompress
(final InputStream in, final byte[] out)
throws IOException {
int position = 0;
final int total = out.length;
while (position < total) {
final int n = in.read();
if (n == 0) { // ‘<’ modified to ‘==’
throw new ImageReadException("Error

decompressing RGBE file"); }
if (n > 128) {
final int value = in.read();
for (int i = 0; i < (n & 0x7f); i++) {
out[position++] = (byte) value; }

} else {
for (int i = 0; i < n; i++) {
out[position++] = (byte) in.read();}
}

}
}

(c) Vulnerability-coupled Mutant

Fig. 1: Vulnerability CVE-2018-17201 (Fig. 1a) that allows “Infinite Loop” making code hang, which further enables Denial-
of-Service (DoS) attack is fixed with the conditional exception using “if” expression (Fig. 1b). The mutant (Fig. 1c) modifies
the “if” condition that nullifies the fix and strongly couples with the vulnerability.

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }

relativeUrl = relativeUrl.replace("{" +
name + "}",
canonicalizeForPath(value,
encoded));

}

(a) Vulnerable Code (CVE-2018-1000850)

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }

String replacement =
canonicalizeForPath(value, encoded);

String newRelativeUrl =
relativeUrl.replace("{" + name +
"}", replacement);

if (PATH_TRAVERSAL
.matcher(newRelativeUrl)
.matches()) {
throw new IllegalArgumentException(
"@Path parameters shouldn’t perform

path traversal (’.’ or ’..’): " +
value); }

relativeUrl = newRelativeUrl;
}

(b) Fixed Code

void addPathParam(String name, String
value, boolean encoded) {

if (relativeUrl == null) {
throw new AssertionError(); }
String replacement =

canonicalizeForPath(value, encoded);
String newRelativeUrl =

relativeUrl.replace("{" + name +
"}", replacement);

if (PATH_TRAVERSAL
.matcher(name)//passed argument changed
.matches()) {
throw new IllegalArgumentException(
"@Path parameters shouldn’t perform

path traversal (’.’ or ’..’): " +
value); }

relativeUrl = newRelativeUrl;
}

(c) Vulnerability-coupled Mutant

Fig. 2: Vulnerability CVE-2018-1000850 that allows “Path Traversal”, which further enables access to a Restricted Directory
(Fig. 2a) is fixed with the conditional exception in case ‘.’ or ‘..’ appears in the “newRelativeUrl” (Fig. 2b). The
strongly coupled mutant (Fig. 2c) changes the “newRelativeUrl” passed as an argument by “name”, which nullifies the
fix and re-introduce the vulnerable behavior.

III. MOTIVATING EXAMPLES

Figures 1 and 2 show motivating examples of mutants cou-
pling with vulnerabilities. Figure 1 demonstrates the example
of high severity (7.5) vulnerability CVE-2018-17201 [14] that
allows “Infinite Loop”, a.k.a., a loop with unreachable exit
condition when parsing input files. This makes the code hang
which allows an attacker to perform a Denial-of-Service (DoS)
attack. The vulnerable code (Fig. 1a) is fixed with the use of
an “if” expression (Fig. 1b) to throw an exception and moves
out of the loop in case of such an event. Fig. 1c shows one
µBERT’s mutant in which the “if” condition is modified, i.e.,
the binary operator “<” is modified to “==”. This modification
makes the “if” condition never executed, nullifying the fix,
and behaving exactly the same as the vulnerable code.

Figure 2 demonstrates the example of another high severity
vulnerability CVE-2018-1000850 [13] that allows “Directory
Traversal” that can result in an attacker manipulating the URL
to add or delete resources otherwise unavailable to him/her.
The vulnerable code (Fig. 2a) is fixed with the use of an “if”

expression (Fig. 2b) to throw an exception in case ‘.’ or
‘..’ appears in the “newRelativeUrl” (Fig. 2b). Fig. 2c
shows one µBERT’s mutant in which the passed argument
is changed from “newRelativeUrl” to “name” which
changes the matching criteria, hence nullifying the fix, and
introducing same vulnerability behavior.

IV. RESEARCH QUESTIONS

We start our analysis by investigating how many vulnera-
bilities in our dataset can be behaviourally coupled by one
or more µBERT mutants, i.e., mutants failing the PoVs (tests
that were failed by the respective vulnerabilities). Therefore
we ask:

RQ1 How many vulnerabilities (CVEs) and their types
(CWEs) can be coupled by LLM-based mutants?

For this task, we rely on Vul4J dataset [8] (section V-A)
for obtaining vulnerable projects with vulnerabilities, corre-
sponding fixes, and PoV test suites, and on µBERT [17]
(section II-B) for generating mutants. In the Vul4J dataset,



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

TABLE I: The table records the Vulnerability dataset details that include CVE ID, CWE ID and description, Severity level
(that ranges from 0 to 10), number of Files and Methods that were modified during the vulnerability fix, and number of Tests
that are failed by the vulnerability a.k.a. Proof of Vulnerability (PoV).

CVE CWE CWE description Severity # Files #Methods Failed Tests
(Vulnerability) (Vulnerability type) (Description of Vulnerability cause) (0 - 10) modified modified (PoV)

CVE-2017-18349 CWE-20 Improper Input Validation 9.8 1 1 1
CVE-2013-2186 CWE-20 Improper Input Validation 7.5 1 1 2
CVE-2014-0050 CWE-264 Permissions, Privileges, and Access Controls 7.5 2 5 1
CVE-2018-17201 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2015-5253 CWE-264 Permissions, Privileges, and Access Controls 4.0 1 1 1
HTTPCLIENT-1803 CWE-noinfo No information provided by NIST NA 1 1 1
PDFBOX-3341 CWE-noinfo No information provided by NIST NA 1 1 1
CVE-2017-5662 CWE-611 Improper Restriction of XML External Entity Reference 7.3 1 2 1
CVE-2018-11797 CWE-noinfo No information provided by NIST 5.5 1 1 1
CVE-2016-6802 CWE-284 Improper Access Control 7.5 1 1 3
CVE-2016-6798 CWE-611 Improper Restriction of XML External Entity Reference 9.8 1 2 1
CVE-2017-15717 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 2

Page Generation (’Cross-site Scripting’)
CVE-2016-4465 CWE-20 Improper Input Validation 5.3 1 1 1
CVE-2014-0116 CWE-264 Permissions, Privileges, and Access Controls 5.8 1 4 1
CVE-2016-8738 CWE-20 Improper Input Validation 5.8 1 1 2
CVE-2016-4436 CWE-noinfo No information provided by NIST 9.8 1 2 1
CVE-2016-2162 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 1

Page Generation (’Cross-site Scripting’)
CVE-2018-8017 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 2 1
CVE-2014-4172 CWE-74 Improper Neutralization of Special Elements in Output 9.8 2 2 1

Used by a Downstream Component (’Injection’)
CVE-2019-3775 CWE-287 Improper Authentication 6.5 1 1 1
CVE-2018-1002200 CWE-22 Improper Limitation of a Pathname to a Restricted 5.5 1 1 1

Directory (’Path Traversal’)
CVE-2017-1000487 CWE-78 Improper Neutralization of Special Elements used 9.8 3 17 12

in an OS Command (’OS Command Injection’)
CVE-2018-20227 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 5 1

Directory (’Path Traversal’)
CVE-2013-5960 CWE-310 Cryptographic Issues 5.8 1 2 15
CVE-2018-1000854 CWE-74 Improper Neutralization of Special Elements in Output 9.8 1 2 1

Used by a Downstream Component (’Injection’)
CVE-2016-3720 CWE-noinfo No information provided by NIST 9.8 1 1 1
CVE-2016-7051 CWE-611 Improper Restriction of XML External Entity Reference 8.6 1 1 1
CVE-2018-1000531 CWE-20 Improper Input Validation 7.5 1 1 1
CVE-2018-1000125 CWE-20 Improper Input Validation 9.8 1 4 1
APACHE-COMMONS-001 CWE-noinfo No information provided by NIST NA 1 1 1
CVE-2013-4378 CWE-79 Improper Neutralization of Input During Web 4.3 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000865 CWE-269 Improper Privilege Management 8.8 1 3 1
CVE-2018-1000089 CWE-532 Insertion of Sensitive Information into Log File 7.4 1 2 1
CVE-2015-6748 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2016-10006 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000615 CWE-noinfo No information provided by NIST 7.5 1 1 1
CVE-2017-8046 CWE-20 Improper Input Validation 9.8 2 5 1
CVE-2018-11771 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 1 2
CVE-2018-15756 CWE-noinfo No information provided by NIST 7.5 1 5 2
CVE-2018-1000850 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 2 3

Directory (’Path Traversal’)
CVE-2017-1000207 CWE-502 Deserialization of Untrusted Data 8.8 1 3 1
CVE-2019-10173 CWE-502 Deserialization of Untrusted Data 9.8 1 7 1
CVE-2019-12402 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2020-1953 CWE-noinfo No information provided by NIST 10.0 1 7 2

the fixes (for the vulnerabilities) passed the corresponding
project’s test suite (containing the PoV tests) in 45 cases for
which we mention the details in Table I. µBERT produces
mutants from the fixed version, which are checked for coupling
the observable behavior of corresponding vulnerability by
executing the mutants on the PoV test suites. We manually
analyze whether the generated mutants and vulnerabilities
break the same tests for the same reasons, and determine how
semantically similar the generated mutants are, i.e., if they are
strongly, partially, or not coupled at all.

We also study the prevalence and distribution of µBERT

mutants that couple with the vulnerabilities. Hence, we ask:
RQ2 What is the prevalence and distribution of these LLM-

based mutants that couple with the vulnerabilities?

V. EXPERIMENTAL SETUP AND METHODOLOGY

A. Vul4J: the set of reproducible vulnerabilities under study

There exist several vulnerability datasets for many pro-
gramming languages [5], [19], [21]. However, they do not
contain bug-witnessing test cases to reproduce vulnerabilities,
i.e., Proof of Vulnerability (PoV). Such test cases are essential
for this study in order to determine whether generated mutants



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

are Vulnerability-coupled mutants, as explained in the section
above. In general, it is hard to reproduce exploitation (i.e.,
PoV) for vulnerabilities. Vul4J [8] is a dataset of real vulner-
abilities, with the corresponding fixes and the PoV test cases,
that we utilized for this study. However, due to a few test cases
failing even after applying the provided vulnerability-fixes, we
had to exclude a few vulnerabilities. In total, we conducted this
study on 45 vulnerabilities. In Table I, we mention the details
of considered vulnerabilities that include CVE ID, CWE ID
and description, Severity level (that ranges from 0 to 10,
provided by National Vulnerability Database [35]), number of
Files and Methods that were modified during the vulnerability
fix, and number of Tests that are failed by the vulnerability
a.k.a. Proof of Vulnerability (PoV).

B. Vulnerability-Coupling Classes

Similarly to the procedure followed by Gay and Salahi-
rad [24] to study the coupling between mutants and real-faults,
we determine the degree of coupling between a mutant with
a vulnerability by analyzing the failing tests and the reasons
of the failures. Hence, given a mutant, a vulnerability, and the
developer-written test suite with the corresponding PoVs, we
define the following classes:

• Strong Coupling: if the mutant and the vulnerability fail
on exactly the same PoV tests for the same reasons
(i.e. same exception/error is thrown). In the case where
the mutant fails on additional tests not triggering the
vulnerability (i.e. not PoVs), we denote it by Strong
Coupling + Additional.

• Test Coupling: if the mutant and the vulnerability fail
on exactly the same PoV tests but one or more fail for
differing reasons. Whether the mutant fails on additional
tests, we denote it by Test Coupling + Additional.

• Partial Coupling: if the mutant and the vulnerability fail
on some, but not all, PoV tests for exactly the same
reasons. If the mutant also fails on additional not PoV
tests, we denote it by Partial Coupling + Additional.

• Partial Test Coupling: if the mutant and the vulnerability
fail on some, but not all the PoV tests but one or more
fail for differing reasons. We use Partial Test Coupling +
Additional to indicate that the mutant fail on additional
tests.

• No Coupling: if the mutant is only killed by tests not
triggering the vulnerability (i.e. the PoVs do not kill the
mutant).

It is worth clarifying that our manual analysis focuses on
the killable mutants since our similarity metrics rely on the
observable behavior of test executions (non-killable mutants
are trivially dissimilar to vulnerabilities’ behavior).

C. Experimental Procedure

Our empirical analysis goes as follows:
1) We started by installing and analyzing the vulnerabilities

from Vul4J. To perform mutation analysis we required
a passing test suite after applying the fix of the vul-
nerability. We noticed that some test cases failed even

after applying the vulnerability-fixes provided by Vul4J.
Hence, we had to exclude these few cases. We finally
ended up considering 45 vulnerabilities for our study,
shown in Table I, for which the PoV test suites fail on the
vulnerable versions and pass on the corresponding fixes.

2) For each vulnerability, we execute the PoV test suite and
record the failing tests and the reasons for failure (i.e.,
exceptions or error messages).

3) We generate the mutants by running µBERT [17] on
the modified files of the vulnerability-fixes for the 45
projects, producing in total 7,725 mutants killable by the
provided Vul4J developer-written suites.

4) We re-execute the vulnerabilities test suites on each
mutant and record the failing tests and the reasons for
failure.

5) Finally, we assess the behavioral similarities between the
mutants and vulnerabilities to determine their coupling
category according to our definition in Section V-B.

Once the analysis is complete, to answer RQ1, we first check
which mutants failed the same tests as the vulnerability, and
then we do a manual analysis to determine if they fail for
the same reasons or not. This will allow us to determine how
many vulnerabilities are (strongly or partially) coupled by the
generated mutants. To answer RQ2, we focus on the number
of mutants coupling with the vulnerabilities to determine their
prevalence and distribution.

VI. EXPERIMENTAL RESULTS

A. RQ1: Vulnerabilities Coupling

Figure 3.a summarises the number of vulnerabilities for
which at least one mutant couples with them. Precisely, we
can observe that µBERT mutants strongly or partially couple
with 39 out of the 45 vulnerabilities analyzed, while for
the remaining 6 vulnerabilities, no generated mutant shares a
behavioral similarity with the vulnerabilities exhibited by the
developer-written test suites in Vul4J. In the following, we
discuss in detail the different categories of coupling observed.

a) Strong Coupling: Figure 3.b shows that for 21 out of
the 45 studied vulnerabilities, µBERT generated at least one
mutant that strongly coupled with those vulnerabilities. This
means that these strongly coupled mutants break exactly the
same tests for the same reasons as the vulnerabilities. We also
observe that for 11 more vulnerabilities (24 in total) there is
at least one mutant that behaves the same as the vulnerability
but also fails on additional tests (Strong Coupling + Additional
in Figure 3.b). Overall, considering these two sets of mutants
together, we can observe that µBERT generates mutants that
behave the same or almost the same as 32 out of the 45
vulnerabilities. Thus, guiding the mutation testing process with
these CodeBERT-generated mutants can lead to test suites that
potentially find code vulnerabilities.

b) Test Coupling: Figure 3.c indicates that for 11 out of
the 45 vulnerabilities, µBERT can generate at least one mutant
that fails the same tests as the vulnerability but a few of the
failures are for a different reason. This number can go to 32



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

(a)

(b)

(c)

(d)

(e)

Fig. 3: Vulnerability coupling distribution

if we also consider the mutants that fail some additional tests
than the vulnerabilities. Overall, test coupled mutants can help
to detect closely similar, but not the same, program deviations
as the vulnerabilities, which makes them a very promising set
of test requirements for security-aware testing.

c) Partial Coupling: Figure 3.d shows that for 3 vul-
nerabilities, µBERT generated mutants partially couple with
vulnerabilities. This infers that these mutants break some of

0

0

0

4

1

0

2

5

0

0
0

24

2

0

1

Strong Coupling
(+ Additional)

Test Coupling
(+ Additional)

Partial Coupling
(+ Additional)

Partial Test Coupling
(+ Additional)

Strong Coupling
(+ Additional)
Test Coupling
(+ Additional)
Partial Coupling
(+ Additional)
Partial Test Coupling
(+ Additional)

Fig. 4: Coupling complementarity w.r.t. CVE

the tests (but not all) that are triggered by the vulnerabilities
and for the same reasons as well. We also observed that these
3 vulnerabilities are also partially coupled with the mutants
(Partial Coupling + Additional) that, in addition to breaking
some of the vulnerability-triggering tests, also break other tests
as shown in the Figure 3.d. As these mutants capture partially
the deviations induced by the 3 coupled vulnerabilities, these
may also serve as partial test requirements for designing
security-specific test suites.

d) Partial Test Coupling: Figure 3.e shows that, for
5 vulnerabilities, mutants generated by µBERT couple with
vulnerabilities by breaking some of the tests that are also
triggered by the vulnerabilities irrespective of the reasons for
failures (Partial Test Coupling mutants). Furthermore, for 1
additional vulnerability, the generated mutants break some of
the tests triggered by the vulnerability along with breaking
other tests (Partial Test Coupling + Additional in Figure 3.e).
As these mutants break some of the tests triggered by the
5 vulnerabilities, irrespective of the reasons for the failures,
these can also help in the mutation testing process as test
requirements to target potential vulnerabilities.

e) Coupling Complementarity: We also study the com-
plementary nature of the mutants belonging to different
vulnerability-coupling classes. Figure 4 shows the different
kinds of coupling for each vulnerability. For just 1 vulner-
ability (CVE-2016-6802), we observed that µBERT-generated
mutants couple with all vulnerability-coupling classes (i.e.,
strongly, partially, and test coupling). We also observe that for
5 vulnerabilities, µBERT-generated mutants fully or partially
“test couple” with the vulnerability, but no mutant neither
strongly nor partially coupled with it. Interestingly, for 5
vulnerabilities we observed that µBERT-generated mutants
either strongly couple or have no relation at all with the
vulnerabilities. Interestingly, for the 39 vulnerabilities that are
coupled somehow by a mutant, we observe that there always
exists at least one µBERT-generated mutant that fails all the
same tests as the vulnerabilities (and possibly some additional
tests) irrespective of the reasons. That is, the vulnerability-
coupling classes “Strong Coupling (+ Additional)” and “Test
Coupling (+ Additional)” cover the 39 coupled vulnerabilities.
This is very appealing as it indicates that the context-aware



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

TABLE II: Scope of Mutant-coupling with Vulnerability Types

Vulnerability LLM-generated Mutants
Types (CWE) Strong Strong Test Test Partial Partial Partial Partial Overall

Coupling Coupling Coupling Coupling Coupling Coupling Test Test Coupling
+ + + Coupling Coupling Score

Additional Additional Additional +
Tests Tests Tests Additional

Failed Failed Failed Tests
Failed

CWE-20 2 6 4 6/7
CVE-2013-2186 ✓ ✓
CVE-2016-4465 ✓ ✓
CVE-2016-8738 ✓ ✓
CVE-2017-18349 ✓ ✓
CVE-2017-8046

CVE-2018-1000125 ✓ ✓
CVE-2018-1000531 ✓ ✓

CWE-22 2 3 1 3 1 1 3/3
CVE-2018-1000850 ✓ ✓ ✓ ✓ ✓ ✓
CVE-2018-1002200 ✓ ✓

CVE-2018-20227 ✓ ✓ ✓

CWE-264 1 2 2/3
CVE-2014-0050
CVE-2014-0116 ✓ ✓
CVE-2015-5253 ✓

CWE-269 1 1 1 1/1
CVE-2018-1000865 ✓ ✓ ✓

CWE-284 1 1 1 1 1 1 1 1 1/1
CVE-2016-6802 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CWE-287 0/1
CVE-2019-3775

CWE-310 1 1 1/1
CVE-2013-5960 ✓ ✓

CWE-502 1 1 1 1/2
CVE-2017-1000207

CVE-2019-10173 ✓ ✓ ✓

CWE-532 1 1 1/1
CVE-2018-1000089 ✓ ✓

CWE-611 2 1 2 2 3/3
CVE-2016-6798 ✓ ✓ ✓
CVE-2016-7051 ✓ ✓
CVE-2017-5662 ✓ ✓

CWE-74 2 2 1 2/2
CVE-2014-4172 ✓ ✓ ✓

CVE-2018-1000854 ✓ ✓

CWE-78 1 1 1 1 1 1/1
CVE-2017-1000487 ✓ ✓ ✓ ✓ ✓

CWE-79 2 2 1 4 5/5
CVE-2013-4378 ✓
CVE-2015-6748 ✓ ✓
CVE-2016-10006 ✓ ✓
CVE-2016-2162 ✓ ✓ ✓
CVE-2017-15717 ✓

CWE-835 4 1 3 3 1 4/4
CVE-2018-11771 ✓ ✓ ✓ ✓ ✓
CVE-2018-17201 ✓ ✓ ✓
CVE-2018-8017 ✓ ✓
CVE-2019-12402 ✓ ✓

CWE-noinfo 2 5 3 6 1 1 2 1 8/9
APACHE-COMMONS-001 ✓ ✓

CVE-2016-3720 ✓ ✓
CVE-2016-4436

CVE-2018-1000615 ✓
CVE-2018-11797 ✓ ✓ ✓
CVE-2018-15756 ✓ ✓ ✓ ✓ ✓
CVE-2020-1953 ✓ ✓

HTTPCLIENT-1803 ✓ ✓ ✓
PDFBOX-3341 ✓ ✓ ✓

mutations are very effective in deviating the program behavior
similar to vulnerabilities.

f) Vulnerability Type (CWE) Coupling: We observe that
µBERT-generated mutants coupled with 14 out of 15 vulner-
ability types (CWE) representing multiple instances (CVEs)
of the vulnerabilities. Table II details the scope of mutant-
coupling with vulnerability types. An exception to this is the
case of CWE-287, which is concerned with the Improper
Authentication practices in the source code for which we

have 1 instance, i.e., CVE-2019-3775 in our vulnerability set.
For vulnerability instances (CVE) where NVD [35] contains
no information under which vulnerability type these can be
categorized, we group such instances under CWE-noinfo. We
observe that µBERT-generated mutants either Strongly couple
or Test Couple (with Additional Tests Fail) with 8 out of 9
instances of CWE-noinfo. This observation of ours is also
valid for other CWEs in our vulnerability set, where most
mutants are either Strongly coupled or Test coupled (with



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

0 20 40 60 80 100
Coupling Mutants(%)

"PDFBOX-3341"
"HTTPCLIENT-1803"

"CVE-2020-1953"
"CVE-2019-12402"
"CVE-2019-10173"
"CVE-2018-8017"

"CVE-2018-20227"
"CVE-2018-17201"
"CVE-2018-15756"
"CVE-2018-11797"
"CVE-2018-11771"

"CVE-2018-1002200"
"CVE-2018-1000865"
"CVE-2018-1000854"
"CVE-2018-1000850"
"CVE-2018-1000615"
"CVE-2018-1000531"
"CVE-2018-1000125"
"CVE-2018-1000089"

"CVE-2017-5662"
"CVE-2017-18349"
"CVE-2017-15717"

"CVE-2017-1000487"
"CVE-2016-8738"
"CVE-2016-7051"
"CVE-2016-6802"
"CVE-2016-6798"
"CVE-2016-4465"
"CVE-2016-3720"
"CVE-2016-2162"

"CVE-2016-10006"
"CVE-2015-6748"
"CVE-2015-5253"
"CVE-2014-4172"
"CVE-2014-0116"
"CVE-2013-5960"
"CVE-2013-4378"
"CVE-2013-2186"

"APACHE-COMMONS-001"
CV

E

Coupling Categories
Strong Coupling
Strong Coupling + Additional
Test Coupling

Test Coupling + Additional
Partial Coupling
Partial Coupling + Additional

Partial Test Coupling
Partial Test Coupling + Additional

Fig. 5: Coupling Mutants’ distribution across Vulnerabilities

additional tests failed) with the CWEs and complement each
other.

Answer to RQ1: µBERT-generated mutants couple
with 39 out of 45 vulnerabilities, where 32 can be
strongly coupled (i.e. the mutants fail on the same tests
for the same reasons) and the remaining 7 can be test
coupled (i.e. the mutants fail on the same tests but not
necessarily for the same reason). This finding provides
evidence that pre-trained language models have the
capability to generate test requirements (mutants) that
induce program behavioral deviations similar to vul-
nerabilities, making possible an effective vulnerability-
aware mutation testing process.

B. RQ2: Prevalence and Distribution of Vulnerability-
coupling Mutants

Figure 5 and Table III show the distribution of the different
coupled mutants across all the studied vulnerabilities. Out of
the 7,725 killable mutants generated by µBERT, a total of 90
mutants strongly coupled with the vulnerabilities representing

the 1.17% of the killable mutants. If we also consider the 288
mutants (3.73%) that strongly couple with the vulnerabilities
but also break other tests (Strong Coupling + Additional), we
end up with a total of 378 mutants (4.9%) that behave almost
the same as the vulnerabilities. Moreover, we can observe that
556 (7.2%) and 1,341 (17.36%) mutants break the same tests,
plus some additional tests respectively, as the vulnerabilities,
leading to a total of 1,897 mutants (24,56%) that test couple
with the vulnerabilities. We can also observe that 431 mutants
(41, 83, 37, and 270, respectively) maintain some kind of
partial coupling or test coupling with the vulnerabilities,
constituting 5.58% on the killable mutants. The remaining
5,019 mutants of the killable mutants, i.e. the 64.97%, fail
on tests that are not related to the vulnerabilities at all.

Given the scarcity of µBERT-generated mutants that
strongly couple with vulnerabilities (only 1.17% of the total
killable mutants), it might be important in the future to account
for an approach that can prioritize or predict which mutants are
more likely to couple with vulnerabilities. This may constitute
an open and challenging problem for future research.



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

TABLE III: Distribution of Mutants coupling with Vulnerabilities

CVE LLM-generated Mutants
(Vulnerabilities)

Strong Strong Test Test Partial Partial Partial Partial Other Total
Coupling Coupling Coupling Coupling Coupling Coupling Test Test Tests Killable

+ + + Coupling Coupling Failed
Additional Additional Additional + (No

Tests Tests Tests Additional Coupling)
Failed Failed Failed Tests

Failed

APACHE-COMMONS-001 1 15 57 73
CVE-2013-2186 2 5 68 75
CVE-2013-4378 2 25 27
CVE-2013-5960 1 2 62 65
CVE-2014-0050 270 270
CVE-2014-0116 3 7 42 52
CVE-2014-4172 10 2 4 57 73
CVE-2015-5253 46 10 56
CVE-2015-6748 26 2 222 250
CVE-2016-10006 1 40 159 200
CVE-2016-2162 1 36 3 45 85
CVE-2016-3720 11 1 191 203
CVE-2016-4436 41 41
CVE-2016-4465 3 6 21 30
CVE-2016-6798 10 9 1 294 314
CVE-2016-6802 7 7 9 15 7 23 19 26 42 155
CVE-2016-7051 11 1 191 203
CVE-2016-8738 4 6 23 33

CVE-2017-1000207 9 9
CVE-2017-1000487 16 21 54 3 103 37 234
CVE-2017-15717 77 229 306
CVE-2017-18349 1 24 96 121
CVE-2017-5662 6 80 86
CVE-2017-8046 9 9

CVE-2018-1000089 7 16 53 76
CVE-2018-1000125 14 28 64 106
CVE-2018-1000531 2 33 82 117
CVE-2018-1000615 38 38
CVE-2018-1000850 1 8 1 19 9 101 74 213
CVE-2018-1000854 1 1 2
CVE-2018-1000865 2 37 18 202 259
CVE-2018-1002200 3 9 143 155
CVE-2018-11771 2 11 10 119 1 605 748
CVE-2018-11797 5 1 10 92 108
CVE-2018-15756 33 13 6 4 39 89 184
CVE-2018-17201 2 6 98 65 171
CVE-2018-20227 3 2 2 2 9
CVE-2018-8017 3 14 17
CVE-2019-10173 10 18 1 564 593
CVE-2019-12402 1 11 113 125
CVE-2019-3775 9 9
CVE-2020-1953 1 2 2 5

HTTPCLIENT-1803 5 4 15 316 340
PDFBOX-3341 2 308 826 344 1,480

Total 90 288 556 1,341 41 83 37 270 5,019 7,725
(1.17%) (3.73%) (7.2%) (17.36%) (0.53%) (1.07%) (0.48%) (3.5%) (64.97%)

Answer to RQ2: Only 90 µBERT-generated mutants
(i.e., 1.17% of mutant set) strongly couple with the
vulnerabilities, and a further 288 mutants (i.e., 3.73%)
behave the same as the vulnerabilities but also fail a
few additional tests. Moreover, a total of 556 mutants
(i.e., 7.2% of the mutant set) test couple with the vul-
nerabilities (by failing the same tests but for different
reasons). Considering the scarcity of strongly coupled
mutants, it may be imperative to employ an effective
mutant selection method to facilitate a rather efficient
vulnerability-aware mutation testing process.

VII. THREATS TO VALIDITY

External Validity: Threats may relate to the generalization
of our results w.r.t. the vulnerabilities that we were unable
to consider for our study due to their non-existing PoV tests.
We consider this threat of low importance as our evaluation

expands to 15 different types (CWEs) of vulnerabilities with
severity ranging from 10.0 (highest in the severity scale) to
4.0 (low). Additionally, our considered vulnerabilities have
their fixes spanning from a single method to multiple methods
modified during the fix (as shown in Table I). We verify all the
vulnerabilities and their fixes by executing PoV tests provided
by Vul4J [8]. Other threats may relate to the mutant generation
tool, i.e., µBERT that we used. This choice was made since
µBERT relies on CodeBERT to produce mutations that look
natural and are effective for mutation testing. We consider
this threat of low importance since µBERT effectively coupled
39 vulnerabilities, and by using a better mutant generation
tool one can produce more vulnerability-coupled mutants,
augmenting the chances of coupling other vulnerabilities.

Internal Validity: Threats may relate to the developer-written
test suites we used and the mutants considered as vulnerability
coupled. We used well-tested projects provided by the Vul4J



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

dataset [8]. To be more accurate, our underlying assumption
is that the extensive pool of tests including the Proof-of-
Vulnerability (PoV) available in our experiments is a valid
approximation of the program’s test executions, especially the
proof of a vulnerability and its verified fix, and capture the
developers’ intentions of which parts of the program are worth
to be tested.

Construct Validity: Threats may relate to our metric to
measure the similarity of a mutant and a vulnerability, i.e.,
the vulnerability-coupling classes. We relied on the failing
tests and reasons for failure because it is widely known in the
fault-seeding community as a representative metric to capture
the semantic similarity between a seeded and real fault [24].
In the context of this study, the seeded fault is a mutant and
the real fault is a vulnerability. We consider this threat of
low importance since the failed tests and failure reasons of a
mutant and a vulnerability represent their observable behavior
and serves its purpose for this study.

VIII. RELATED WORK

The coupling effect between seeded and real faults have
been widely studied by the community, focused specially in
traditional grammar-based mutations [24], [27], [39]. Some
recent studies also provided evidence that mutations generated
by LLMs, like µBERT, can effectively couple with real-
faults [36]. Despite there are several approaches that design
specific patterns to try to inject specific vulnerabilities (dis-
cussed below), there is no evidence whether the mutations
generated by pre-trained language models can couple or not
with vulnerabilities behavior.

The unlikelihood of standard PIT [11] operators to produce
security-aware mutants was observed by Loise et al. [29]
where the authors designed pattern based operators to target
specific vulnerabilities. They relied on static analysis for
validation of generated mutants to have similarities with their
targeted vulnerabilities.

Fault modeling related to security policies was explored by
Mouehli et al. [33] where they designed mutation operators
corresponding to fault models for access control security
policies. Their designed operators targeted modifying user
roles and deleting policy rules to modify application context,
targeting the implementation of access control policies.

Mutating high-level security protocol language (HLPSL)
models to generate abstract test cases was explored by Dadeau
et al. [15] where their proposed mutations targeted to introduce
leaks in the security protocols. They relied on the automated
validation of Internet security protocols and applications tool
set to declare the mutated protocol unsafe and capable of
exploiting the security flaws.

Targeting black box testing by mutating web applications’
abstract models was explored by Buchler et al. [7] where they
produced model mutants by removing authorization checks
and introducing noisy (non-sanitized) data. They relied on
model-checkers to generate execution traces of their mutated
models to create of intermediate test cases. Their work was fo-
cused on guiding penetration testers to find attacks exploiting

implementation-based vulnerabilities (e.g., a missing check in
a RBAC system, or non-sanitized data leading to XSS attacks).

Similar to Loise et al., Nanavati et al. [34] also show
that traditional mutation operators only simulate some simple
syntactic errors. Hence, they designed memory mutation oper-
ators to target memory faults and control flow deviation. They
focused on programs in C language and relied on memory
allocation primitives in specific to C. Similarly, Shahriar and
Zulkernine [43] and Ghosh et al. [25] also defined mutation
operators related to the memory faults. Their designed opera-
tors also exploited memory manipulation in C programs (such
as buffer overflows, uninitialized memory allocations, etc.),
which security attacks may exploit. These works also focused
on programs in C language.

Unlike the above-mentioned related works, we do not target
a specific vulnerability pattern/type. Also, since we rely on a
pre-trained language model (employed by µBERT), we do not
require to design specific mutation operators to target specific
security issues. Additionally, our validation of vulnerability-
coupled mutants is not based on a static analysis, but rather
a dynamic proof as our produced/predicted vulnerability-
coupled mutants fail tests that were failed by respective
vulnerabilities, a.k.a., Proof-of-vulnerability (PoV).

IX. CONCLUSION

In this study, we showed that a large language model
based mutation testing tool can effectively generate mutants
that couple with the observable behavior of vulnerabilities.
We showed that µBERT can generate mutants that break
the same tests and for the same reasons as 32 out of the
45 studied vulnerabilities. Additionally, µBERT can generate
mutants that, although for not the same reasons, break the
same tests as the other (remaining) 7 vulnerabilities. Over-
all, the Large Language Model based mutation managed to
“strongly couple” or “test couple” a total of 39 out of the 45
vulnerabilities. This provides evidence that LLMs can produce
mutations that deviate program behaviors in the same way
as the vulnerabilities. We also observed that strongly coupled
mutants are a few, i.e., 1.17% of the entire mutant set. Thus,
there is a need to prioritize or select these mutants to facilitate
a rather efficient vulnerability-aware mutation testing process.
We plan to explore this line of research in the near future.

X. DATA AVAILABILITY

The dataset consisting of our executable scripts and the
source code of all projects (vulnerable and fixed), individual
classes modified during the fix, i.e., vulnerable and fixed
(where fixed classes were used for mutation), and the gener-
ated mutants are publicly available in our GitHub repository1.

ACKNOWLEDGMENT

This work is supported by the Luxembourg National
Research Fund (FNR) through the CORE project grant
C20/IS/14761415/TestFlakes.

1https://github.com/garghub/VulnerabilityCouplingMutants



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

REFERENCES

[1] Paul Ammann, Márcio Eduardo Delamaro, and Jeff Offutt. Establishing
theoretical minimal sets of mutants. In Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pages 21–30. IEEE
Computer Society, 2014.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[3] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel.
Code generation tools (almost) for free? A study of few-shot, pre-trained
language models on code. CoRR, abs/2206.01335, 2022.

[4] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz
Machalica, Satish Chandra, and Erik Meijer. What it would take
to use mutation testing in industry - A study at facebook. In 43rd
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP), pages 268–277. IEEE, 2021.

[5] Guru Prasad Bhandari, Amara Naseer, and Leon Moonen. Cvefixes:
automated collection of vulnerabilities and their fixes from open-source
software. In Shane McIntosh, Xin Xia, and Sousuke Amasaki, editors,
PROMISE ’21: 17th International Conference on Predictive Models and
Data Analytics in Software Engineering, Athens Greece, August 19-20,
2021, pages 30–39. ACM, 2021.

[6] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Se-
curity mutants for property-based testing. In Martin Gogolla and
Burkhart Wolff, editors, Tests and Proofs - 5th International Conference,
TAP@TOOLS 2011, Zurich, Switzerland, June 30 - July 1, 2011.
Proceedings, volume 6706 of Lecture Notes in Computer Science, pages
69–77. Springer, 2011.

[7] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-
automatic security testing of web applications from a secure model.
In Sixth International Conference on Software Security and Reliability,
SERE 2012, Gaithersburg, Maryland, USA, 20-22 June 2012, pages 253–
262. IEEE, 2012.

[8] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Dı́az Ferreyra.
Vul4j: A dataset of reproducible java vulnerabilities geared towards the
study of program repair techniques. In 19th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022, pages 464–468. ACM, 2022.

[9] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark
Harman. An empirical study on mutation, statement and branch coverage
fault revelation that avoids the unreliable clean program assumption. In
Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, editors,
Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages
597–608. IEEE / ACM, 2017.

[10] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Trans. Software
Eng., 47(9):1943–1959, 2021.

[11] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis,
and Anthony Ventresque. Pit: A practical mutation testing tool for java
(demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, page 449–452, New York, NY, USA,
2016. Association for Computing Machinery.

[12] Common weakness enumeration. https://nvd.nist.gov/vuln/categories,
(accessed January 02, 2024).

[13] Cve-2018-1000850. https://nvd.nist.gov/vuln/detail/
CVE-2018-1000850, (accessed January 10, 2023).

[14] Cve-2018-17201. https://nvd.nist.gov/vuln/detail/CVE-2018-17201, (ac-
cessed January 10, 2023).

[15] Frédéric Dadeau, Pierre-Cyrille Héam, Rafik Kheddam, Ghazi Maatoug,
and Michaël Rusinowitch. Model-based mutation testing from security
protocols in HLPSL. Softw. Test. Verification Reliab., 25(5-7):684–711,
2015.

[16] Definition of vulnerability. https://www.cve.org/ResourcesSupport/
Glossary/#, (accessed January 10, 2023).

[17] Renzo Degiovanni and Mike Papadakis. µbert: Mutation testing using
pre-trained language models. In 15th IEEE International Conference on
Software Testing, Verification and Validation Workshops ICST Workshops
2022, Valencia, Spain, April 4-13, 2022, pages 160–169. IEEE, 2022.

[18] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints
on test data selection: Help for the practicing programmer. Computer,
11(4):34–41, 1978.

[19] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. A C/C++
code vulnerability dataset with code changes and CVE summaries. In
Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup,
editors, MSR ’20: 17th International Conference on Mining Software
Repositories, Seoul, Republic of Korea, 29-30 June, 2020, pages 508–
512. ACM, 2020.

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. Codebert: A pre-trained model for programming and natural
languages. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, EMNLP, volume
EMNLP 2020 of Findings of ACL, pages 1536–1547. Association for
Computational Linguistics, 2020.

[21] Aayush Garg, Renzo Degiovanni, Matthieu Jimenez, Maxime Cordy,
Mike Papadakis, and Yves Le Traon. Learning from what we know: How
to perform vulnerability prediction using noisy historical data. Empir.
Softw. Eng., 27(7):169, 2022.

[22] Aayush Garg, Renzo Degiovanni, Facundo Molina, Maxime Cordy,
Nazareno Aguirre, Mike Papadakis, and Yves Le Traon. Enabling effi-
cient assertion inference. In 2023 IEEE 34th International Symposium
on Software Reliability Engineering (ISSRE), pages 623–634, 2023.

[23] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu
Chekam, Mike Papadakis, and Yves Le Traon. Cerebro: Static sub-
suming mutant selection. IEEE Transactions on Software Engineering,
pages 1–1, 2022.

[24] Gregory Gay and Alireza Salahirad. How closely are common mutation
operators coupled to real faults? In IEEE Conference on Software
Testing, Verification and Validation, ICST 2023, Dublin, Ireland, April
16-20, 2023, pages 129–140. IEEE, 2023.

[25] Anup K. Ghosh, Tom O’Connor, and Gary McGraw. An automated
approach for identifying potential vulnerabilities in software. In Security
and Privacy - 1998 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 3-6, 1998, Proceedings, pages 104–114. IEEE Computer
Society, 1998.

[26] Philipp Görz, Björn Mathis, Keno Hassler, Emre Güler, Thorsten Holz,
Andreas Zeller, and Rahul Gopinath. Systematic assessment of fuzzers
using mutation analysis. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 4535–4552, Anaheim, CA, August 2023. USENIX
Association.

[27] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Shing-Chi Cheung, Alessandro Orso,
and Margaret-Anne D. Storey, editors, Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages
654–665. ACM, 2014.

[28] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based
pre-trained language model for code completion. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, page 473–485, New York, NY, USA, 2021. Association
for Computing Machinery.

[29] Thomas Loise, Xavier Devroey, Gilles Perrouin, Mike Papadakis, and
Patrick Heymans. Towards security-aware mutation testing. In 2017
IEEE International Conference on Software Testing, Verification and
Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March 13-
17, 2017, pages 97–102. IEEE Computer Society, 2017.

[30] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. Fuzzing
class specifications. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022, pages 1008–1020. ACM, 2022.

[31] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias.
Evospex: An evolutionary algorithm for learning postconditions. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1223–1235. IEEE, 2021.

[32] Tejeddine Mouelhi, Franck Fleurey, Benoit Baudry, and Yves Le Traon.
A model-based framework for security policy specification, deployment
and testing. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel,
Axel Uhl, and Markus Völter, editors, Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS 2008,
Toulouse, France, September 28 - October 3, 2008. Proceedings, volume
5301 of Lecture Notes in Computer Science, pages 537–552. Springer,
2008.

[33] Tejeddine Mouelhi, Yves Le Traon, and Benoit Baudry. Mutation
analysis for security tests qualification. In Testing: Academic and



Pre-print - Accepted at the 17th IEEE International Conference on Software Testing, Verification and Validation (ICST) 2024

Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pages 233–242, 2007.

[34] Jay Nanavati, Fan Wu, Mark Harman, Yue Jia, and Jens Krinke.
Mutation testing of memory-related operators. In Eighth IEEE Inter-
national Conference on Software Testing, Verification and Validation,
ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, pages 1–10.
IEEE Computer Society, 2015.

[35] National vulnerability database. https://nvd.nist.gov, (accessed January
10, 2023).

[36] Milos Ojdanic, Aayush Garg, Ahmed Khanfir, Renzo Degiovanni, Mike
Papadakis, and Yves Le Traon. Syntactic versus semantic similarity of
artificial and real faults in mutation testing studies. IEEE Trans. Software
Eng., 49(7):3922–3938, 2023.

[37] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and
Yves Le Traon. Threats to the validity of mutation-based test assessment.
In Andreas Zeller and Abhik Roychoudhury, editors, Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, pages 354–365. ACM,
2016.

[38] Mike Papadakis and Nicos Malevris. Automatic mutation test case
generation via dynamic symbolic execution. In IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE 2010, San Jose,
CA, USA, 1-4 November 2010, pages 121–130. IEEE Computer Society,
2010.

[39] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. Are
mutation scores correlated with real fault detection?: a large scale
empirical study on the relationship between mutants and real faults.
In Proceedings of the 40th International Conference on Software En-
gineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pages 537–548, 2018.

[40] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-
based approach for creating realistic bugs. In Diomidis Spinellis,
Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors,
ESEC/FSE 2021, pages 906–918. ACM, 2021.

[41] Stuart Reid. Software fault injection: Inoculating programs against
errors, by jeffrey voas and gary mcgraw, wiley, 1998 (book review).
Softw. Test. Verification Reliab., 9(1):75–76, 1999.

[42] Cedric Richter and Heike Wehrheim. Learning realistic mutations: Bug
creation for neural bug detectors. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 162–173, 2022.

[43] Hossain Shahriar and Mohammad Zulkernine. Mutation-based testing
of buffer overflow vulnerabilities. In Proceedings of the 32nd Annual
IEEE International Computer Software and Applications Conference,
COMPSAC 2008, 28 July - 1 August 2008, Turku, Finland, pages 979–
984. IEEE Computer Society, 2008.

[44] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè.
Evolutionary improvement of assertion oracles. In ESEC/FSE ’20, USA,
November 8-13, 2020, pages 1178–1189. ACM, 2020.

[45] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundare-
san. Generating accurate assert statements for unit test cases using
pretrained transformers. In IEEE/ACM AST@ICSE 2022, Pittsburgh,
PA, USA, May 21-22, 2022, pages 54–64. ACM/IEEE, 2022.

[46] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele
Bavota, Massimiliano Di Penta, and Denys Poshyvanyk. Deepmutation:
A neural mutation tool. In ICSE: Companion Proceedings, ICSE ’20,
page 29–32, New York, USA, 2020. ACM.


