
An Empirical Study of Web Flaky Tests:
Understanding and Unveiling DOM Event

Interaction Challenges
Yu Pei

SnT, University of Luxembourg
Luxembourg

yu.pei@uni.lu

Jeongju Sohn∗
Kyungpook National University

Korea
jeongju.sohn@knu.ac.kr

Mike Papadakis
SnT, University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Abstract—Flaky tests, which exhibit non-deterministic behavior
and fail without changes to the codebase, pose significant
challenges to the reliability and efficiency of software testing
processes. Despite extensive research on flaky tests in traditional
unit and integration testing, their impact and prevalence within
web user interface (UI) testing remains relatively unexplored,
especially concerning Document Object Model (DOM) events. In
web applications, DOM-related flakiness, resulting from unstable
interactions between DOM and events, is particularly prevalent.
This study conducts an empirical analysis of 123 flaky tests in
49 open-source web projects, focusing on the correlation between
DOM event interactions and test flakiness. Our findings indicate
that DOM events, and their associated interactions with the
application, can introduce flakiness in web UI tests; these events
are frequently associated with Event-DOM interactions (32.5%),
Event operations (22.8%), and Response evaluations (16.3%). The
analysis of DOM consistency and event interaction levels reveals
that element-level interactions across multiple DOMs are more
likely to cause flakiness than interactions confined to a single DOM
or occurring at the page level. Furthermore, the primary strategies
used by developers to handle these issues involve synchronizing
DOM interactions (50.4%), managing conditional event completion
(38.2%), and ensuring consistent DOM state transitions (11.4%).
We discovered that the Event-DOM category has the highest fixed
frequency (2.6 times), while the DOM category on sole takes
the longest time to resolve (153.4 days). This study provides
practical insights into improving web application testing practices
by highlighting the importance of understanding and managing
DOM event interactions.

Index Terms—Flaky Tests, Web UI Tests, DOM and Event
Interaction

I. INTRODUCTION

Flaky tests pose significant challenges to software testing
across various contexts [1], [2]. These tests are characterized
by unpredictable behavior, leading to inconsistent results even
when executed under the same conditions. For instance, tests
may randomly pass or fail during repeated executions on an
unchanged system. The inconsistent signals generated by flaky
tests often mislead developers by introducing false test feedback
and ultimately undermine developer confidence in the reliability
of test results [1]–[5].

*Corresponding author

The false signal obscures the true state of the system
under test: each false alert introduces additional uncertainty,
making it difficult to determine whether an observed test
failure is due to an actual system fault or a flaky test [6].
Consequently, developers are forced to engage in extensive
debugging processes, scrutinizing both test and source code.
This process is often time-consuming and labor-intensive,
requiring significant effort from both developers and testers [6],
[7]. As a result, this issue of flaky tests has been increasingly
recognized by researchers and industry professionals, with
major organizations, such as Facebook, Google, and Microsoft
actively seeking solutions to address this issue [8]–[12].

Despite ongoing active investigations into the root causes
and potential fixes for flaky tests, these issues are not
yet comprehensively understood [13]–[16]. This problem
is especially prevalent in Web User Interface (UI) testing,
where the performance and reliability of flaky tests require
further investigation and attention because of the complex
interactions between many components under various contexts
and environments [12], [17]–[20] Web UI testing focuses
on testing the application under analysis by interacting and
checking the application behaviour through its interface [21].
This involves assessing visual components to ensure they meet
specified requirements for functionality and performance. The
primary goal of UI testing is to verify that the visual elements,
functionality, and usability of interfaces (e.g., Graphical User
Interfaces (GUIs)) are well functioning [17], [22], [23]. Web UI
tests, therefore, operate in a distinct execution environment and
follow a different automation process compared to traditional
unit testing.

The Document Object Model (DOM) is a crucial component
of Web UI testing, which reflects the structure and content
of the web page that is tested [24], [25]. As such, UI testing
encompasses a wide range of DOM events, including user input
handling, interactions with elements and browser APIs, and the
downloading and rendering of interface resources such as im-
ages and scripts [26]. These events often occur asynchronously,
leading to a non-deterministic order of user actions and other
tasks. This non-deterministic behavior contributes to flakiness
in web UI testing [2], despite such implications, detailed studies

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Technical-Research Track

92



on how DOM event sequences impact flaky tests, including their
characteristics, causes, and repair strategies, remain notably
scarce [13], [15], [16].

This study aims to address the unexplored aspects of the
impact of DOM event interactions on flakiness in web UI
testing by conducting an empirical analysis focused on these
interactions. Specifically, the research will identify and analyze
the factors contributing to test flakiness, and evaluate (i.e.,
summarize and identify) the main strategies developers use to
manage flaky tests. Our ultimate goal is to provide practical
insights that can improve the reliability of web UI testing.
Particularly regarding flakiness and the impact and frequency
of various DOM event interaction types, our findings could be
a consideration for predicting or localizing flaky tests related
to DOM issues in web tests.

In summary, the main contributions of this paper are:
• We present a comprehensive empirical analysis of DOM

event interaction causes of flaky tests in web tests, identi-
fying and exploring the specific DOM event interactions
contributing to test flakiness, and providing insights into
their role and impact.

• We categorized flaky tests based on their impact and inter-
action with DOM event interaction. The empirical evalua-
tion indicates that interactions with flakiness are frequently
associated with Event-DOM interactions (32.5%), Event
operations (22.8%), and Response evaluations (16.3%).
The analysis of DOM consistency and event interaction
levels further reveals that element-level interactions across
multiple DOMs are more likely to cause flakiness.

• Our examination of strategies employed by developers
and built-in test frameworks to address DOM-related
flakiness reveals several prevalent methods and their asso-
ciated costs. The most commonly used approach involves
synchronizing DOM interactions (50.4%), followed by
managing conditional waits for event completion (38.2%)
and ensuring consistent DOM state transitions (11.4%).
Event-DOM interactions that events are triggered to change
the DOM require the most frequent fixes (2.6 times), while
DOM-type issues take the longest average to fix (153.4
days).

• We analyze the dataset of DOM event-related flaky tests
gathered from existing studies, comprising 49 web projects
and 123 test cases, evaluating the prevalence and nature of
flakiness in web testing. Our investigated dataset is pub-
licly available at https://doi.org/10.5281/zenodo.13862302.

II. BACKGROUND

A. Web user interface(UI) testing
The web user interface is the visual aspect of a software

application that dictates how users interact with the application
or website and how information is presented on the screen.
The user interface layer encompasses various elements such as
buttons, menus, text fields, and other controls that users interact
with while utilizing an application. These components are
critical for facilitating user interaction and ensuring a seamless
user experience [27].

Web UI tests are scripts that are designed to simulate user
interactions and verify that the application behaves as expected
from an end user’s perspective [28]–[30]. These tests mimic
various user actions, such as clicking on controls, entering
text, and scrolling through pages, to ensure that the software
performs its intended functions correctly. By emulating real
user behavior, web UI tests help identify issues that could
affect usability and functionality. However, web UI tests can
be fragile, particularly when they are closely tied to the user
interface. Minor changes in the UI or underlying functionality
can cause these tests to fail, even if the changes do not affect the
overall application performance [31], [32]. This tight coupling
between the tests and UI elements requires careful management
to maintain test reliability and reduce the likelihood of test
failures due to insignificant modifications.

B. The DOM event interactions in flaky tests in web testing

In web application development, dependencies between
Document Object Model (DOM) elements and events are
critical for understanding the dynamic behavior of web pages.
When a web page is loaded, the browser constructs the DOM
elements for the page. The DOM links JavaScript with the
web page’s structure and content, allowing for a wide range
of user interactions and behaviors. DOM events are actions
triggered by user interactions, browser processes, or other
circumstances, such as loading a page or resizing the browser
window, which prompt JavaScript to respond. Common DOM
events include clicking a button, hovering over an element, and
scrolling. These events are essential for creating interactive and
responsive web applications [33]. As shown in the Figure 1,
when a user interacts with a web page, such as by clicking
a specific button or typing a keyword into a search field, the
corresponding event handler for the DOM element is activated.
An event handler is a JavaScript function designed to execute
specific code in response to an event. The browser then updates
the web page accordingly, providing immediate feedback to the
user. This process illustrates how the browser processes and
renders user actions by executing JavaScript code. As these
interactions are often asynchronous and involve a variety of
elements and states, ensuring the reliability and stability of UI
tests is a challenging but critical task.

Fig. 1: Execution traces of event-driven paths in web pages

Interactions between DOM elements and events can lead to
flakiness, i.e., passing and failing unexpectedly: the flakiness
arises from those where DOM elements influence events and
those where events influence DOM elements or the event
itself contributes to flakiness. In the first scenario, some events
depend on the state of specific DOM elements. If these DOM
elements are not in the expected state when the event occurs,
the event may fail or behave unpredictably. For example, in a
form submission, unforeseen failures may occur if elements

93



are dynamically updated by asynchronous operations. If the
event handler depends on the state of these elements, such as
their values or visibility, then flaky failure may arise if the
DOM has not been updated in time. On the other hand, events
can affect the states of DOM elements (e.g., modifying them),
often in response to user actions or other triggers. If these
events are not correctly synchronized, subsequent events that
depend on the updated DOM state may fail.

Previous work in this area, including static DOM event
dependency analysis by Sung et al., has laid the foundation
for understanding how JavaScript and DOM elements interact
to create dynamic web applications [19]. However, few studies
have specifically examined DOM event flakiness in web testing.
This paper aims to investigate the causes and characteristics of
DOM events that contribute to test flakiness in web applications.

III. EXPERIMENT SETTING

A. Motivating Example

The code snippet in Figure 2 illustrates a real-world flaky
test example that motivated us to explore the causes and
characteristics of flakiness in web UI tests involving DOM
events. Figure 2 presents an example with an explicit flaky
marked commit in the metamask-extension project1, one of
the open-source projects we analyzed. The issue begins by
clicking on the account details button to open the
account options menu, triggering a modal dialog without
waiting for it to appear fully. The flaky line (line 80) attempts to
locate the QR code address element before it finishes rendering,
leading to flaky failures. To resolve this issue, the fixed line
(line 79, marked in green) adds a waitFor statement to ensure
the element is fully loaded before interacting with it, preventing
delayed or incomplete DOM rendering. This example illustrates
how the non-determinism in DOM event interactions may cause
flakiness in web UI tests.

Fig. 2: An example of DOM event interaction flaky test case.

B. Data Collection

Previous studies have explored various flaky test datasets to
understand flakiness, patching, and exploitation. Our dataset
builds on two prior studies on DOM-related flaky test cases,
supplemented with newly collected data. We obtained data
from three main sources: (1) the UI-based flaky test dataset [2],
(2) the async wait flaky test in web tests [34], and (3) relevant
GitHub projects; these projects were selected based on their
frequent usage and stars they received.

1https://github.com/oxgersa/metamask-extension/commit/a3d232ed

1) UI-based flaky test dataset: we chose the dataset because
it contains a diverse set of flaky UI test samples, which allows
us to easily filter out those involving DOM events interaction.
Furthermore, it demonstrates the relationship between the
causes of flakiness and the strategies used to address them,
which aligns with our research goals.

TABLE I: Subjects. #all, #flakyrelated and #flakydom are the number of total commits,
flakiness-related commits, and flakiness-dom related commits. The three parts
of our dataset, namely D1, D2, and D3, are from the UI-based dataset, async
wait flaky dataset, and open-source projects, respectively. #stars is the number
of users who have marked a repository with a star.

Commits
Project #stars #all #flakyrelated #flakydom

D1

gestalt 4.2k 5132 4 4
angular 94.6k 30.123 93 2
Waterfox 3.5k 908.887 760 2
gotify/server 10.2k 595 5 2
next.js 121k 20.833 66 1
gatsby 55k 21.655 11 1
influxdb 27.9k 49.241 112 1
angular/components 24.1k 11.751 39 1
desktop 4.4k 7804 26 1
influxdb 27.9k 49.241 112 1
baseweb 8.6k 3401 6 1
plotly.js 16.6k 26.347 87 1

D2

jbrowse-components 187 9208 35 5
elem-ing-software 1 579 5 5
flashmap-production 0 7325 14 4
dom-testing-extended 0 171 2 2
preact-devtools 303 1472 12 2
coinscan-front 6 184 4 2
dotcom-rendering 239 29.249 24 1
elm-select 20 584 1 1
eui 6k 5935 18 1
wonder-blocks 142 1942 5 1
keptn 1.8k 8448 24 1
shopify-theme 153 220 1 1
azure2jira 0 20 1 1
liquid 64 1824 2 1
js-libp2p 2.2k 6267 2 1
racp 6 2031 16 1

D3

wp-calypso 12.4k 67.359 74 9
zeeve-grafana 0 42.041 65 7
sourcegraph 9.7k 36.203 213 7
owncloud/web 414 14.35 36 6
aiid 156 3967 63 6
metamask-extension 0 15.902 16 5
evaka 32 16.574 165 5
frontend-kaleidos 2 18.909 105 5
devtools-frontend 451 20.526 319 4
fictional-parakeet 1 15.677 16 3
web-stories-wp 754 15.017 47 3
fleet 2.2k 11.844 44 3
wellcomecollection 37 30.126 16 2
workbench 45 7778 57 2
juice-shop 0 18.212 18 2
MetaMaskTest 0 13.62 5 1
fundamental-ngx 256 8420 12 1
signals-frontend 8 10.384 15 1
uwazi 210 17.965 56 1
lisk-desktop 584 26.429 14 1
cdap-ui 18 51.496 212 1

Total 49 - - 3055 123

2) Async wait flaky tests in web tests: the dataset includes a
reproducible collection of web projects with flaky tests related
to async wait operations. The dataset is divided into time-based

94



and DOM-based cases, with the latter matching our focus on
DOM-event flakiness.

3) Collected from GitHub: we concentrated on flaky behav-
ior caused by DOM events issues in web applications, which
could be one of the most common sources of flakiness. To
collect cases of DOM event flaky cases, we retrieve commits
from GitHub repositories. We began by exploring web projects
that received more stars or contained a large number of commits,
and whose source code was available on GitHub. Following a
methodology similar to Romano et al. [2] and Pei et al. [34],
we searched for relevant commits using keywords like ”e2e”,

”flaky”, ”flakiness”, and further filtered with terms such as
”DOM”, ”element”, and ”events” to ensure the relevance to
DOM-related flakiness.

We conducted a two-round verification process to ensure
the relevance of identified commits. First, we reviewed the
commit messages to ensure that the issues were related to flaky
tests and DOM interactions. Then, two authors reviewed the
associated code changes to ensure they addressed DOM event
interactions. After excluding irrelevant or redundant commits,
we identified 49 web application projects with 123 commits
specifically related to DOM event flakiness.

C. Categorization and Analysis

In this section, we analyzed the collected flaky tests to
identify the key triggers of flaky behavior. We manually
inspected relevant commits and test statements to pinpoint
the code or conditions contributing to flakiness. To better
understand the DOM event interactions in flaky tests, we
examined all 123 commits that we collected in detail. For
each commit, we analyzed the interactions leading up to (i.e.,
before) flakiness and those directly involved in the flakiness,
along with the commit information (e.g., commit messages) and
associated code changes. We then categorized these flakiness-
related interactions, more specifically, the statements containing
them, into six categories based on their impact on DOM
modifications and event sequences to uncover trends in DOM
event flakiness. These six categories are as follows:

• ED (Event-DOM): These statements involve an event
directly modifying the DOM. The type is significant
because it represents the connection between events
and changes in the web page’s structure or con-
tent. For example, in the code snippet2, line 63 the
statement await driver.clickElement({text:
"Approve", tag: "button"}), the click event

directly affects the DOM by interacting with the Approve
button, potentially triggering DOM changes.

• E (Event): These statements contain only user or system
events, such as clicking, triggering an event, or loading a
page, without directly modifying the DOM. An example
can be cy.visit("/")3 in Cypress, which initiates the
action of navigating to the page. While this action does
not directly interact with the DOM, it triggers processes

2https://github.com/MetaMask/metamask-extension/commit/359f782
3https://github.com/influxdata/influxdb/commit/5d4248e

such as page loading and script execution, which can
eventually result in DOM changes.

• DE (DOM-Event): Refers to statements where a DOM
modification leads to the triggering of an event, like
modifying an input field that triggers a change event.
For instance, line 151 the statement await page
.locator(editPublicLinkRenameConfirm).
click()4 showcases how locating an element (a DOM
interaction) results in the triggering of a click event.
This type may result in flakiness if the DOM is altered
inconsistently and the event trigger differs due to delays
in rendering.

• D (DOM): These statements simply modify the DOM
structure, for instance, adding elements, changing
attributes, updating styles, or retrieving elements. In
line 103 the statement5 const fileList = await
getContentBySelector(".attach-name
span:not(.attach-size)"), a CSS selector is
used to retrieve elements from the DOM, which may
be further manipulated or analyzed by attached listeners
or observers. If the DOM changes dynamically and
inconsistently – such as elements not being fully loaded
or styles not yet applied, tests may become flaky.

• R (Response): These statements are used to validate or
respond to the outcomes of previous DOM modifications
or events typically involving assertions or verifications
within a test sequence. These statements are important
for ensuring that the expected changes in the DOM,
triggered by events, have occurred as anticipated. The
line 23 e2e.components.LoadingIndicator.
icon().should(’have.length’, 0);6 checks
the DOM to ensure that a loading indicator is not present.
Response statements may contribute to flakiness if they
rely on DOM states that are not yet fully settled or
consistent across test runs.

• O (Other): These statements involve other opera-
tions that are not directly related to DOM ma-
nipulation or events. These operations may con-
tain variable declarations, function definitions, or any
other relevant logic for setting up environments.
For example, var getExplorationElements =
function(explorationTitle)7 defines a variable
and declares a function rather than interacting with the
DOM or events. These statements are generally less
susceptible to causing flakiness.

IV. THE IMPACT OF DOM-EVENT INTERACTIONS ON
FLAKINESS

The primary goal of this study is to explore the causes
and strategies for addressing DOM event-related flaky tests.
Specifically, this research seeks to understand how different
DOM event interactions contribute to flaky test occurrences,

4https://github.com/owncloud/web/commit/854a0ab
5https://github.com/huridocs/uwazi/commit/27056d0
6https://github.com/Zeeve-App/zeeve-grafana/commit/86f2ed8
7https://github.com/BrowserWorks/Waterfox/commit/ab8e14b

95



one of the main factors in developing stable and reliable web
test scenarios. We analyze the frequency and distribution of
these DOM event interactions within our dataset, assessing
the impact of DOM event interaction sequences on flakiness
in web tests. Based on our observations and understanding
of flaky tests, we identify four key factors that contribute to
DOM-related flakiness:

• F1 - Current-statement type: the type of interaction that
is currently investigated for it being directly involved in
flaky behavior.

• F2 - Statement-before-current type: the type of the
interaction immediately preceding the flaky behavior.

• F3 - Same DOM or not: Indicates whether the DOM
elements involved in the flaky behavior come from the
same DOM (Y) or the different DOMs (N).

• F4 - Event interaction level: Indicates the level of event
interaction during test execution: page level (P), element
level (E), or both (PE).

Specifically, both F1 and F2 are categorized into the six
interaction types (i.e., Event (E), DOM (D), Event-DOM (ED),
DOM-Event (DE), Response (R), and Other (O)) defined in
Section III-C. We then further label each statement with state-
ment detail (e.g., for const detailsModal = await
driver.findVisibleElement(’span.modal’); as
find-element), composing the final label for each statement.8

The statement details refer to the details of the statement,
usually containing specific events or DOM event pairs.

TABLE II: The DOM event flakiness categories of the statement from the
motivating example. The F1, F2, F3, and F4 denote the different factors,
as explained above. The flaky or not column indicates whether the current
interaction leads to flakiness.

Line F1 F2 F3 F4 flaky
number Current-statement Statement-before-current Same dom Level or not

line 77 ED (find-element) ED (click-element) N E Y
line 80 ED (find-element) ED (find-element) N E N
line 81 ED (find-element) ED (find-element) Y E N
line 83 ED (click-element) ED (find-element) N E N
line 84 ED (wait-element) ED (click-element) N E N

We categorize each statement independently within a cate-
gory for each factor. Table II illustrates how the categorization
can be done by categorizing statements by their interactions
with the DOM and events from the motivating example in
Section III-A. Here, line 77, marked as contributing to the
flakiness, searches for a visible DOM element that matches the
CSS selector span.modal and waits for it to become visible
before saving it in detailsModal. Hence, it is categorized
as ED (find-element) for F1 and ED (find-element) for F2,
and the flakiness occurred at the element level and was not
introduced by the same DOM element. Building on the initial
categorization of interaction types, we further categorize the
DOM event interactions in the statements using four distinct
factors, combined with the statement details, to provide a

8The final statement label in F1 and F2 is composed of the statement
category by six interaction types and the statement detail.

structured framework for understanding and addressing test
flakiness related to DOM event issues.

A. Results

1) DOM event interaction exploration : A crucial aspect
of web application involves interacting with the DOM through
events triggered by user actions or browser processes. The
stability and reliability of web applications depend significantly
on the correct functioning of these DOM and event interactions.
Flaky tests in web testing, which yield inconsistent results
without any code changes, often stem from the unpredictable
nature of DOM event sequences. Figure 3 illustrates the
interaction between the user, DOM, and the browser during
event-driven web processes. These points include the handling
of events and subsequent changes to the DOM, as well as
the impact of DOM updates on event execution. When a user
triggers an event, it initiates operations that interact with DOM
elements and update the page structure. The browser then
processes these updates based on its interpretation. The dashed
arrows (red) in the figure indicate potential flakiness points
where inconsistencies may arise if DOM changes are not fully
propagated before the browser processes events.

Figure 4 exemplifies the interaction between events and the
DOM across different lines of code (line 77 to line 84). Each
line corresponds to an event (denoted as e1 to e5) that interacts
with the DOM (d1 to d4) and is processed by the browser.
The blue arrow at L80 represents the interaction that was
responsible for the flakiness; in this flaky test, the interaction
between DOM (d1) and the event (e2) was unstable (i.e., when
the find event was triggered, the rendering of DOM element was
not finished), causing a test to flake. The remaining statements
of the test proceeded in sequence, triggering corresponding
modifications in the DOM, without exhibiting any flakiness.9

Fig. 3: The execution traces of DOM event-driven paths within a web
application comprise potential flakiness points.

To enable a detailed comparison with non-flaky cases, we
collected non-flaky interactions from 114 of the 123 tests in
our dataset. Each case represents interactions in a flaky test that
did not cause flakiness, typically the preceding or subsequent
interactions of flaky-related events. The discrepancy between
the number of flaky and non-flaky cases is due to the exclusion
of nine tests, where only one or two DOM event statements
were present, all of which contributed to flakiness. As a result,

9For example, when e3 is triggered, the corresponding update to the DOM
(i.e., d2) has already been completed, and e4 then manipulates the subsequent
DOM (i.e., d3)

96



Fig. 4: Motivating example of DOM event interaction traces

once the flaky-related interactions were identified, no additional
non-flaky statements remained for these tests, leaving 114 non-
flaky tests. Table III compares the distribution of F1 factor
values between flaky and non-flaky cases, where F1 represents
interaction type involved and the details of the statements
currently inspected. The goal is to identify specific interactions
that are more likely to lead to flakiness than others.

From Table III, we observe distinct trends between flaky
and non-flaky interactions. Overall, response-type (R) interac-
tions—those checking or verifying the outcome of actions—are
more prevalent in flaky cases (28% of the total) compared to
non-flaky cases (16%); this suggests that flaky behaviors often
result from preceding interactions and are then manifested
during response processing. The preference for flaky behavior
is also evident in the DOM type (D), where the number of flaky
interactions (16) is four times higher than non-flaky interactions
(4). In terms of percentage over the total (i.e., frequency), flaky
cases with DOM-type interactions are more than three times as
frequent (13% vs. 4%). In contrast, for the Event type (E), an
opposite trend is observed, with non-flaky interactions being
nearly twice as common as flaky interactions, both in absolute
numbers (34 vs. 18) and frequency (30% vs. 15%), implying
that event operations alone are less likely to cause flakiness.

For the Event-DOM (ED) and DOM-Event (DE) types, we
observed similar numbers of flaky and non-flaky interactions.
However, a closer inspection of the statement details (in
the second column) reveals patterns related to the coupling
between DOM elements and events. For instance, in ED-
type interactions, wait-element is more common in non-flaky
cases than in flaky ones, with the same trend for find-element,
although the difference is smaller. In contrast, click-element
shows similar numbers and frequencies for both flaky and
non-flaky cases, while hover-element exhibited flaky behavior
in all instances. These findings suggest that the tightness of the
coupling between events and DOM elements (or their status)
affects the likelihood of flaky behavior. wait-element is the
most tightly coupled to the DOM element’s status, explicitly
depending on the element being in a specific state, and is
associated with non-flaky behavior. click-element is moderately
coupled, as it requires the element to be in an actionable state,
with an equal number of flaky and non-flaky cases observed.
In contrast, find-element and hover-element are loosely coupled
with operations. find-element simply locates the element without
requiring it to be in a particular state beyond visibility, while
hover-element does not explicitly depend on the element’s state.

This relatively loose coupling of operation unexpectedly leads
to flaky behavior, potentially because developers may pay less
attention to these actions during testing. Thus, we posit that
the degree of coupling between events and DOM elements
significantly influences the probability of flaky behavior.

To further investigate what leads to flaky and non-flaky
behavior, we analyzed the combinations of statement-before-
current and current-statement types (i.e., F2:F1) to assess the
impact of operation sequences by considering the previous
statement (F2). Table IV presents the top five most frequent
combinations of F1 and F2 factors, along with the top two
most frequent statement detail combinations for each. Overall,
we can observe the trends that we observed in Table III10 are
scrutinized in Table IV.

The first row in Table IV, click-element:find-element, further
shows how the find-element operation contributes to flaky
behavior. Here, we can infer that failing to wait for the element
to be fully rendered or accessible after the click event leads
to flakiness when attempting to access the element via the
find-element operation. Conversely, reversing the order (i.e.,
find-element:click-event sequence in the non-flaky column)
often results in stable behavior. This stability is likely because
finding an element followed by clicking it involves well-defined
operations, producing relatively deterministic outcomes. In this
sequence, the DOm is generally in a more stable state, reducing
the risk of unexpected behavior. This comparison highlights
how specific sequences within ED:ED interactions affect the
likelihood of flaky or non-flaky outcomes.

Overall, the combinations of interaction types between the
previous and current statements suggest that the primary causes
of flakiness may arise from inconsistent DOM modifications
and poor synchronization between events and responses. The ob-
servations from the previous example in ED:ED - the example
of find-element:click-ele - support this statement, showing how
inconsistent DOM modifications from the previous statement
affect the following event. The sequence of operations we
observed in ED:R (e.g., click-ele:response) further supports
this statement. The outcomes of these operations are often
dependent on the state of the DOM element (e.g., an element
being loaded or updated) by the previous statement, which may
not always be ready at the expected time. When the execution
status differs between different runs of the same test, the test’s
outcome varies, leading to flakiness.

Non-flaky cases often involve operations and events that are
more typical (e.g., find-element:click-ele example), or those
that naturally follow one another in a more consistent manner.
For instance, the (e-update: e-update) reflects a relatively
steady state without involving DOM elements, instead one
event follows another. Similarly, (find-element: e-wait) involves
finding an element and then explicitly waiting, which allows
for sufficient time for the DOM to stabilize before the next
operation. Summarized, the differences between flaky and
non-flaky sequences emphasize the importance of carefully

10For the currently observed statement (F1), R is more frequently observed
in flaky behavior, E shows the opposite, and ED is most frequent for both
flaky and non-flaky behaviors but with different statement details.

97



managing DOM event interactions and considering the timing
and state of the DOM event interaction when designing
tests. Flaky tests often stem from operations dependent on
unpredictable DOM or asynchronous events, while non-flaky
tests involve stable and predictable sequences. Ensuring that
interactions are properly arranged and synchronized with the
DOM state can mitigate even-related flakiness, resulting in
more reliable and consistent test outcomes.

TABLE III: Comparison of F1 (i.e., the final statement label by the statement
detail and the type of involving interactions or events) between flaky and
non-flaky tests. #number is the number of tests belonging to each division.
The value within the parentheses is the percentage of the total number of flaky
tests, i.e., frequency. all is the total number of tests per type.

F1
Flaky Non-flaky

Type Statement detail #number (percent) #number (percent)

find-element 17 (0.14) 13 (0.11)
click-element 12 (0.10) 12 (0.11)

ED (Event-DOM) wait-element 5 (0.04) 13 (0.11)
hover-element 2 (0.02) 0 (0)

all - 36 (0.29) 38 (0.33)

e-click 2 (0.02) 5 (0.04)
e-get 4 (0.03) 3 (0.03)

E (Event) e-update 8 (0.07) 13 (0.11)
e-wait 2 (0.02) 5 (0.04)
e-load 1 (0.01) 2 (0.02)

e-request 1 (0.01) 6 (0.05)
all - 18 (0.15) 34 (0.30)

element-wait 2 (0.02) 0 (0)
DE (DOM-Event) element-find 1 (0.01) 3 (0.03)

element-click 15 (0.12) 17 (0.15)
all - 18 (0.15) 20 (0.18)

D (DOM) DOM-element 16 (0.13) 4 (0.04)

R (Response) response-related 35 (0.28) 18 (0.16)

O (Others) - - -

Total - 123 114

2) The impact of DOM consistency and interaction level:
Figure 5 illustrates the distribution of flaky tests based on
two factors: F3-Same DOM or not and F4-Event interaction
level types. The left chart shows that 76.4% of flaky tests
occurred when elements were spread across different DOMs,
while 23.6% of cases involved flakiness within a consistent
DOM. The right chart indicates that 80.5% of flaky tests are
related to element-level interactions, suggesting that flakiness
primarily arises from issues when interacting with specific
DOM elements. Moreover, 17.1% of flaky tests involve both
page- and element-level interactions, while only 2.4% are asso-
ciated with page-level interactions alone. These findings suggest
that flaky behavior is more frequently linked to operations on
DOM elements than to page-level events and may result from
interactions involving multiple DOMs rather than a single DOM.
Overall, the charts highlight that DOM inconsistencies and
element-level interactions are major contributors to flakiness.

Summary We identified the prevalence and frequency of
flaky behavior related to DOM events in web tests. The
most common causes of DOM events flakiness in web UI
testing are associated with element interactions, asynchronous
operations, and event loads. Flaky test interactions, such as
Event-DOM, DOM, and Response, highlight flakiness issues

Fig. 5: The distribution of the same DOM element and event interaction levels
associated with flakiness. Y and N are yes and no to whether the elements
belong to the same DOM; P, E, and PE refer page level, element level, both.

in scenarios involving DOM element availability and event
handling. The analysis of the consistency of involving DOMs
and the interaction level reveals that element-level interactions
across multiple DOMs are more likely to cause flakiness than
the cases within a single DOM and at the page-level.

V. THE COMMON STRATEGIES AND TIME COSTS TO
ADDRESS DOM EVENT FLAKINESS

The study in Section IV shows that we investigate various
existence and frequencies of DOM event flakiness in web tests.
In this section, we focus on understanding developers’ strategies
to fix DOM-related flaky tests and assessing the challenges of
these issues. By categorizing and comparing common solution
patterns for DOM event-related issues, we also examine how
existing web test frameworks provide integrated solutions to
address DOM event interaction flakiness.

A. Results

1) Fixing strategies: This investigation aimed to identify
and categorize the common approaches developers employ
to mitigate and resolve flaky tests. Based on our dataset, we
identified three primary strategies and the results are as follows:

• DOM interaction synchronization mechanism: This strat-
egy involves adding synchronization logic to ensure
that DOM elements are fully loaded and ready for
interaction before proceeding with certain actions. By
employing methods like waitFor or waitUntil, developers
can explicitly wait for specific DOM elements to be
present, thereby reducing the likelihood of flakiness caused
by elements not being available during interaction.

• Conditional event completion waits: This approach in-
volves introducing specific or dynamic delays in test
execution to accommodate timing issues. By using func-
tions such as sleep, delay, or timeout, the test allows
sufficient time for page loading, ongoing operations, or
the completion of interactions before proceeding to the
next step, thereby minimizing the chances of encountering
flakiness due to timing inconsistencies.

• Consistent DOM state transitions: This strategy focus
on ensuring that responses from asynchronous callbacks
are properly received and processed before progressing
to subsequent testing steps. By waiting for complete and
accurate data, this approach helps prevent flakiness arising

98



TABLE IV: The top five flaky and non-flaky DOM event interaction combinations with detailed examples are listed below. These refer to Statement-before-current
and Current-statement interactions (i.e., F2:F1). The top two frequent combinations for each category are provided. #number and percent indicate the test
count and the test percentage for each type.

Flaky Type Flaky statement detail (Top-2) Non-Flaky Type Non-Flaky statement detail (Top-2)
Top No. F2:F1 #number (percent) F2: F1 #number (percent) F2:F1 #number (percent) F2: F1 #number (percent)

1 ED:ED 19 (0.15) click-ele: find-ele 9 (0.07) ED:ED 23 (0.2) find-ele: click-ele 5 (0.04)
find-ele: find-ele 4 (0.03) click-ele: wait-ele 4 (0.04)

find-ele: wait-ele 4 (0.04)

2 ED:R 12 (0.10) click-ele: response 5 (0.04) E:E 14 (0.12) e-update: e-update 4 (0.04)
find-ele: response 4 (0.03) e-load: e-wait 2 (0.02)

3 E:ED 11 (0.09) e-load: click-ele 6 (0.05) ED:E 9 (0.07) find-ele: e-wait 3 (0.03)
e-load: wait-ele 6 (0.05) click-ele: e-update 3 (0.03)

4 E:R 9 (0.07) e-update: response 6 (0.05) DE:DE 8 (0.07) element-click: element-wait 6 (0.05)
e-click: response 2 (0.02) element-wait: element-click 2 (0.02)

5 DE:DE 8 (0.07) element-click: element-click 6 (0.05) E:ED 7 (0.06) e-load: click-ele 2 (0.02)
element-click: element-find 1 (0.01) e-load: wait-ele 2 (0.02)

e-get: find-ele 2 (0.02)

from the use of incomplete or incorrect data in rendering
DOM elements.

The distribution of common approaches used to address
testing concerns involving DOM events is presented in Table V.
The most prevalent strategy is ensuring elements are fully
loaded before interaction (50.4%), followed by introducing
dynamic delays (38.2%), and ensuring stable DOM state transi-
tions (11.4%), with corresponding occurrence rates provided for
each. By understanding and using these approaches, developers
can improve the reliability and robustness of web UI tests,
leading to more stable and reliable web applications.

In addition to examining the strategies commonly employed
by developers to address DOM-related flakiness, we further
examined the methods incorporated into popular web testing
frameworks to address these issues. Table VI presents the
methods offered by common web testing frameworks to
address DOM-related flaky tests. Each framework is described,
along with methods developers can use to manage DOM-
related flakiness. The commonly used test frameworks like
Cypress (26.8%), Jest (26%), and Puppeteer (20.3%) offer
robust synchronization mechanisms to deal with flakiness
issues between DOM modifications and event handling. These
frameworks provide methods such as waitFor, waitForSelector,
and waitForFunction to ensure that the DOM is fully loaded
and the events have been properly processed before proceeding
with test execution. The result shows that many widely
used frameworks have incorporated tools to handle DOM
events interaction inconsistently, helping developers reduce the
flakiness of their tests. Such features are particularly valuable in
complex, dynamic web applications where the DOM structure
is frequently updated and event-driven issues are common. By
leveraging these tools, developers could write more stable and
reliable UI tests that are less vulnerable to flakiness caused by
DOM event synchronization issues.

2) Fixing cost: Table VII illustrates the relationship between
various types of DOM event interaction flakiness (ED, D, DE, E,
R) and the corresponding strategies employed to fix these issues
in web testing. It provides key metrics such as the frequency of
fixes, the time taken to resolve issues and the relationship with
the strategies used to fix them. From the table, we see that the

average fixed frequency of flaky events per type ranges from 2.1
to 2.6, with type ED (Event-DOM) having the highest average
of 2.6. We speculate that, as events and DOM elements interact
closely during web application execution, unstable event-to-
DOM interactions could cause frequent but difficult-to-diagnose
flaky behaviors; such interactions involve both event triggering
and subsequent DOM modifications, further complicating root
cause detection and prolonging resolution times. Flaky tests
related to type D (DOM) are typically the longest to resolve,
averaging 153.4 days, while DE (DOM-Event) interactions are
resolved more quickly, averaging 58.7 days. Type DOM has a
longer average days to fix because DOM manipulation alone
can lead to complex states that are difficult to synchronize,
particularly when dynamic content and asynchronous updates
are involved. DOM state management and transitions may not
be easily captured in test scripts, resulting in longer debugging
and fixing times. The duration of type DE is relatively short
(58.7 days), likely because DE involves more direct interactions
between the DOM state and subsequent event firing, which are
easier to pinpoint and fix than the asynchronous event chains
found in type ED.

DOM-Sync (short for DOM interaction synchronization
mechanism) is prevalent across all types, especially for ED
(14 fixes) and D (13 fixes), because synchronization of DOM
interactions is fundamental to resolving flaky tests. Events often
interact with the DOM in a way that makes it necessary to
wait for DOM updates before moving on. In ED cases, DOM-
sync is necessary as both event and DOM elements highly
impact each other, leading to frequent synchronization issues.
Conditional event completion waits apply when tests rely on
specific events to complete before moving forward. For pure
DOM flakiness, the event is less relevant, hence the absence of
this fix. Instead, DOM synchronization becomes the dominant
solution. However, for ED and R (Event-Response), events
play a major role, leading to moderate usage of event-wait
strategies. DOM-Transitions (Consistent DOM state transitions)
are most frequently applied to the ED and R types (15 fixes
each) because both types involve interactions between events or
responses and the DOM, and unstable DOM states often result
from asynchronous transitions. This issue requires developers

99



TABLE V: Common fixed strategies for the Dom-events flaky tests

Fixed strategy category Description Examples #Occurrences

DOM interaction synchronization mechanism Ensure elements are fully loaded and visible
before interaction.

await driver.waitForSelector(’.
qr-code__address’);11 wait to ensure
’qr-code address’ element available.

62 (50.4%)

Conditional event completion waits Introduce timeout or dynamic delays in tests. cy.wait(500);12 add 500ms delay. 47 (38.2%)

Consistent DOM state transitions Response to data procurement and requests to
ensure that the test is not affected by data or
network factors.

await pWaitFor(()=> connection.
streams.length === 0);13 add await
to ensure API response before verifying DOM
results.

14 (11.4%)

TABLE VI: Methods to deal with flaky tests in common web testing frameworks

Web test framework Description Methods to address DOM-related flaky tests #Numbers

Chai Chai is a BDD/TDD assertion library for the browser that can
be paired with any JavaScript testing framework.

assert.equal(); expect().tobe(); timeout(); 1 (0.8%)

BrowserTestUtils BrowserTestUtils provide useful test utilities for working with
the browser in browser mocha tests.

TestUtils.waitForCondition(); TestUtils.
waitFor.visibilityOf();

2 (1.6%)

Cypress Cypress is a modern JavaScript-based E2E testing framework
for web apps.

cy.wait(time); cy.waitFor(’element’);cy.
method().should();

33 (26.8%)

Jasmine Jasmine is a Behavior Driven Development testing framework
for JavaScript.

waitsFor(); 1 (0.8%)

Jest Jest is a testing framework that can adapt to any JavaScript
library or framework.

page.waitFor(); page.waitForSelector();
page.waitForTimeout();

32 (26%)

Playwright Playwright is a framework for web testing and automation. page.waitForLoadState(); page.
waitForNavigation(); page.waitForSelector()
; page.waitForTimeout();

23 (18.7%)

Protractor Protractor is an end-to-end test framework for Angular and
AngularJS applications.

browser.wait(); browser.sleep(); 5 (4.1%)

Puppeteer Puppeteer is used for tasks like creating screenshots, crawling
pages, and testing web applications.

waitForExists(); waitForSelector();
waitForFunction(); timeout();

25 (20.3%)

Selenium WebDriver Selenium Webdriver are often used for testing web applications
and tasks that require interaction with the browser.

timeouts(); wait.until(); 1 (0.8%)

to ensure that the DOM reaches a stable state before subsequent
actions are taken. DOM transitions are important to preventing
inconsistencies and ensuring the DOM correctly reflects the
state expected by the test.

TABLE VII: The correlation between DOM event interaction types and
developer’s fix strategies. The Avg. refers to the average within each type. The
Frequency and Days denote the fixed frequency for each type and the number
of days cost to fix. DOM-sync, Event-waits, DOM-transitions short for DOM
interaction synchronization mechanism, Conditional event completion waits,
and Consistent DOM state transitions.

Fix Frequency Fix Days Fix strategies (#number per type)

Type (min-max) Avg. Avg. DOM-sync DOM-transitions Event-waits

ED (Event-DOM) (1-8) 2.6 123.2 17 2 17

E (Event) (1-3) 2.1 117.5 9 4 5

DE (DOM-Event) (1-8) 2.2 58.7 10 1 7

D (DOM) (1-6) 2.0 153.4 13 0 3

R (Response) (1-7) 2.1 71.2 13 7 15

Summary The most prevalent strategies for mitigating
DOM-related flaky tests include managing DOM interaction
synchronization (50.4%), followed by handling conditional
waits for event completion (38.2%), and ensuring consistent
DOM state transitions (11.4%). Many web testing frameworks
already incorporate built-in methods to address DOM event
interaction issues. Developers should actively leverage these
tools to minimize flakiness and enhance the reliability of their
tests. Furthermore, the Event-DOM type shows the highest
fix frequency (2.6 times) while the DOM-type issues take the
longest time to resolve (153.4 days). The findings indicate
that the DOM interaction synchronization mechanism is the
most commonly utilized fix across all types. Strategies such

as conditional event completion waits and consistent DOM
state transitions are also employed to address the DOM event
interaction flakiness in certain scenarios.

VI. DISCUSSION

The prevalence of flakiness due to DOM event interactions.
Flakiness in web tests differs significantly from traditional unit
tests due to the complexities of modern web applications. While
unit tests focus on isolated code in controlled environments,
web UI tests involve dynamic interactions between the DOM,
user events, and asynchronous operations, making them more
susceptible to variability. Our study highlights that flakiness
frequently often arises from unstable DOM-event interactions,
especially when involving multiple DOM elements or requir-
ing cross-element synchronization. The practical impact of
understanding DOM event flakiness. By prioritizing high-
frequency flaky categories in web tests, such as Event-DOM
interactions, developers can effectively address the issues
with the highest impact in advance. Furthermore, managing
conditional event completions and ensuring the DOM event
dependencies is important to reduce the risk of test flakiness.
By incorporating these insights into testing frameworks and
workflows, developers could mitigate the expense of debugging
and enhance the overall test stability.

VII. THREATS TO VALIDITY

Construct validity threats The study is primarily focused on
the flakiness commits from publicly open-source web projects
on GitHub. The observations related to DOM-event pairs mainly

100



focus on web UI testing, which might limit their applicability
to other types of testing. Nonetheless, we hold the belief
that our analysis outcomes are equally applicable to scenarios
involving user interaction, such as mobile testing. Furthermore,
to mitigate this issue, we have selected projects that have
been previously investigated in related studies to encompass
a diverse range of DOM-related flakiness cases, making our
data a reasonable representation of real-world scenarios.
Internal validity threats Internal validity relates to the extent
to which observed relationships between variables can be
attributed to the causal effects under investigation. In this
study, potential threats to internal validity include subjective
decisions made during data selection and analysis, which could
introduce bias or errors in identifying causes of flaky tests.
To ensure accuracy, we reviewed all relevant commits from
prior studies on DOM flakiness. We eliminated non-relevant
commits and conducted a manual examination of the remaining
data to verify its relevance to flaky DOM event tests. At least
two authors reviewed the dataset to reach a consensus.
External validity threats The external validity of our study’s
findings may be limited beyond the specific types of DOM
events and web testing scenarios analyzed. Different types
of DOM interactions, such as complex event sequences or
interactions with third-party components, may exhibit patterns
of flakiness that were not fully captured in our analysis.

VIII. RELATED WORK

The impact of flaky tests has been studied in various research
domains. Research on flaky tests has gained significant attention
in recent years, particularly in the context of their causes,
identifying strategies, and repair strategies. Luo et al. conducted
a foundational study that classified flaky tests into various types
based on their causes and detection methods. They identified
that asynchronous operations and timing issues were significant
contributors to flakiness in UI tests [1]. Subsequent studies,
such as those by Huo and Clause, highlighted concurrency
issues and resource management as additional sources of flaky
tests. They found that race conditions and improper handling
of shared resources often lead to unpredictable test outcomes,
particularly in complex UI environments where multiple threads
or processes interact simultaneously [35]. Lam et al. conducted
a study on the overall lifecycle of flaky tests in six large-scale
Microsoft projects and found that the Async Wait issues are
the most common flaky tests with the projects. Therefore, the
authors confirm that the categorizations of flaky tests proposed
by previous studies applied to open-source projects also apply
to the proprietary Microsoft projects studied [3].

Romano et al. identified the main causes and fixed strategies
for flaky tests in UI Testing projects, identifying asynchronous
wait updates and event sequencing issues as prevalent causes.
They also provide a foundational understanding of how DOM
events contribute to test flakiness [2]. Hashemi and colleagues
investigate the prevalence and causes of flaky tests within
JavaScript projects and identify common sources of flakiness,
such as asynchronous operations and timing issues [36]. Pei
et al. further emphasized the importance of synchronization

techniques and event-handling strategies in minimizing test
flakiness in web projects, which aligned closely with our
study’s objectives [34]. Dong et al. present a method for
identifying flaky tests by systematically varying event order
during test execution, revealing inconsistencies that indicate
non-deterministic behavior in Android applications [37]. Wang
et al. introduce a strategy to identify and mitigate flaky
tests by focusing on tests that produce different outcomes
when executed multiple times under the same conditions [38].
Addressing flaky tests involves both preventive and fixed
strategies. There have also been several studies that have
been targeted to detect certain types of flaky tests. Bell
et al. introduced a test repair tool that fixes flaky tests to
improve their reliability. The tool employs dynamic analysis
to detect flaky behavior and applies corrective actions, such
as adjusting wait times or isolating external dependencies, to
mitigate flakiness [39]. Lam et al. developed a preliminary tool,
RootFinder, which analyzes the logs of passing and failing
executions of the same test to suggest method calls that could
be responsible for the flakiness [40]. Later, Shi et al. proposed
iFixFlakies, an automated framework of fixing order-dependent
tests. The findings possess the potential to significantly improve
the quality and stability of web testing within open-source
projects. This study builds on these foundations by specifically
targeting DOM event interaction flakiness in web UI testing,
an underexplored area in the existing literature.

IX. CONCLUSION

This study provides an in-depth empirical analysis of test
flakiness arising from DOM event interactions in web UI
testing. Our findings reveal that flaky tests frequently arise from
the unpredictable interactions between DOM and events. The
findings demonstrate that unforeseen DOM interactions, asyn-
chronous operations, and event execution handling processes
are the primary contributors to flakiness. By examining various
interaction types, including current and preceding interactions,
the analysis reveals a strong correlation between these factors
and the occurrence of flaky tests. Moreover, major strategies for
mitigating DOM-related flakiness involve synchronizing DOM
interactions, implementing conditional event completion waits,
and ensuring consistent DOM state transitions. These findings
emphasize the complexity of managing flakiness in web tests
and the necessity for robust testing practices, especially given
the dynamic nature of DOM interactions. Our study offers
practical insights to improve web application testing reliability
and encourages future research into advanced methods for
detecting and localizing this flakiness to further enhance the
testing stability and dependability.

X. ACKNOWLEDGMENTS

This work is supported by the Luxembourg National
Research Funds (FNR) through the CORE project grant
C20/IS/14761415/TestFlakes and partly supported by the
National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No.2021R1A5A1021944).

101



REFERENCES

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, vol. 16-21-November-2014, nov
2014, pp. 643–653.

[2] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An empirical
analysis of ui-based flaky tests,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1585–
1597.

[3] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1–29, 2020.

[4] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A survey of
flaky tests,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 1, pp. 1–74, 2021.

[5] S. Habchi, G. Haben, M. Papadakis, M. Cordy, and Y. Le Traon, “A
qualitative study on the sources, impacts, and mitigation strategies of
flaky tests,” in 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST). IEEE, 2022, pp. 244–255.

[6] G. Haben, S. Habchi, J. Micco, M. Harman, M. Papadakis, M. Cordy,
and Y. L. Traon, “The importance of accounting for execution failures
when predicting test flakiness,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, Industry
Showcase, ASE 2024, Sacramento, California, United States. IEEE /
ACM, 2024.

[7] M. Eck, M. Castelluccio, F. Palomba, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” arXiv, pp. 830–840, 2019.

[8] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive test
selection,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
2019, pp. 91–100.

[9] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing
and predicting which bugs get reopened,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1074–
1083.

[10] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming google-scale continuous testing,” in 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp.
233–242.

[11] W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” Proceedings - International Conference on
Software Engineering, pp. 1471–1482, 2020.

[12] J. Lampel, S. Just, S. Apel, and A. Zeller, “When life gives you
oranges: detecting and diagnosing intermittent job failures at mozilla,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1381–1392.

[13] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A framework
for detecting and partially classifying flaky tests,” Proceedings - 2019
IEEE 12th International Conference on Software Testing, Verification
and Validation, ICST 2019, pp. 312–322, 2019.

[14] S. Habchi, G. Haben, J. Sohn, A. Franci, M. Papadakis, M. Cordy, and
Y. Le Traon, “What made this test flake? pinpointing classes responsible
for test flakiness,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 352–363.

[15] F. P. V. Pontillo and F. Ferrucci, “Static test flakiness prediction: How
far can we go?” in Empirical Software Engineering, 2022.

[16] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “Empirically
evaluating flaky test detection techniques combining test case rerunning
and machine learning models,” Empirical Software Engineering, vol. 28,
no. 3, p. 72, 2023.

[17] A. Marchetto, F. Ricca, and P. Tonella, “An empirical validation of a
web fault taxonomy and its usage for web testing,” Journal of Web
Engineering, pp. 316–345, 2009.

[18] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing
transition-based test selection algorithms at google,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019. IEEE / ACM, 2019, pp. 101–110. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00019

[19] C. Sung, M. Kusano, N. Sinha, and C. Wang, “Static dom event
dependency analysis for testing web applications,” in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 447–459.

[20] D. Olianas, M. Leotta, F. Ricca, and L. Villa, “Reducing flakiness in end-
to-end test suites: An experience report,” in International Conference on
the Quality of Information and Communications Technology. Springer,
2021, pp. 3–17.

[21] A. M. Memon, A comprehensive framework for testing graphical user
interfaces. University of Pittsburgh, 2001.

[22] J. Strecker and A. M. Memon, “Testing graphical user interfaces,” in
Encyclopedia of Information Science and Technology, Second Edition.
IGI Global, 2009, pp. 3739–3744.

[23] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian,
“Terminator: Better automated ui test case prioritization,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 883–894.

[24] A. Mesbah, A. Van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 35–53, 2011.

[25] K. Barbosa, R. Ferreira, G. Pinto, M. d’Amorim, and B. Miranda, “Test
flakiness across programming languages,” IEEE Transactions on Software
Engineering, vol. 49, no. 4, pp. 2039–2052, 2022.

[26] A. Heiskanen, “Robotic process automation in automated gui testing of
web applications,” 2021.

[27] H. M. El-Bakry, A. M. Riad, M. Abu-Elsoud, S. Mohamed, A. E.
Hassan, M. S. Kandel, and N. Mastorakis, “Adaptive user interface
for web applications,” in Recent Advances in Business Administration:
Proceedings of the 4th WSEAS International Conference on Business
Administration (ICBA’10), 2010, pp. 20–22.

[28] A. Mesbah and A. Van Deursen, “Invariant-based automatic testing of
ajax user interfaces,” in 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 2009, pp. 210–220.

[29] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie, “A systematic
mapping study of web application testing,” Information and Software
Technology, vol. 55, no. 8, pp. 1374–1396, 2013.

[30] S. Doğan, A. Betin-Can, and V. Garousi, “Web application testing: A
systematic literature review,” Journal of Systems and Software, vol. 91,
pp. 174–201, 2014.

[31] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 67–78.

[32] P. Aho and T. Vos, “Challenges in automated testing through graphical
user interface,” in 2018 ieee international conference on software testing,
verification and validation workshops (icstw). IEEE, 2018, pp. 118–121.

[33] B. A. Myers and M. B. Rosson, “Survey on user interface programming,”
in Proceedings of the SIGCHI conference on Human factors in computing
systems, 1992, pp. 195–202.

[34] Y. Pei, J. Sohn, S. Habchi, and M. Papadakis, “Non-flaky and nearly-
optimal time-based treatment of asynchronous wait web tests,” ACM
Transactions on Software Engineering and Methodology, 2024.

[35] C. Huo and J. Clause, “Improving oracle quality by detecting brittle
assertions and unused inputs in tests,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 621–631.

[36] N. Hashemi, A. Tahir, and S. Rasheed, “An empirical study of flaky
tests in javascript,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 24–34.

[37] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test detection
in android via event order exploration,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021, pp. 367–
378.

[38] A. Wei, P. Yi, Z. Li, T. Xie, D. Marinov, and W. Lam, “Preempting
flaky tests via non-idempotent-outcome tests,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 1730–1742.

[39] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in Proceedings of the 40th
international conference on software engineering, 2018, pp. 433–444.

[40] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root
Causing Flaky Tests in a Large-Scale Industrial Setting,” in Proceedings
ofthe 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’19). Beijing, China: ACM Press, 2019, pp. 101–
111.

102


