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Abstract—The automatic test case generation is the principal 

issue of the software testing activity. Dynamic symbolic 

execution appears to be a promising approach to this matter 

as it has been shown to be quite powerful in producing the 

sought tests. Despite its power, it has only been effectively 

applied to the entry level criteria of the structural criteria 

hierarchy such as branch testing. In this paper an extension 

of this technique is proposed in order to effectively generate 

test data based on mutation testing. The proposed approach 

conjoins program transformation and dynamic symbolic 

execution techniques in order to successfully automate the 

test generation process. The propositions made in this paper 

have been incorporated into an automated framework for 

producing mutation based test cases. Its evaluation on a set 

of benchmark programs suggests that it is able to produce 

tests capable of killing most of the non equivalent introduced 

mutants. The same study also provides some evidence that 

by employing efficient heuristics it can be possible to 

perform mutation with reasonable resources. 

Keywords- automated test case generation, dynamic 

symbolic execution, mutation testing, mutant schemata  

I.  INTRODUCTION 

Software testing forms the main technique for 
identifying and removing software’s defects. Its 
application is performed by selecting candidate test cases 
and using them in order to exercise the software’s 
behavior. Thus, software testing can be seen as a test case 
sampling process. The process selects from the whole set 
(maybe infinite in size) of test cases a small but 
representative set. This is approximated by selecting tests 
based on an adequacy criterion. Testing criteria purpose is 
to guide the tester on selecting a specific set of test cases. 
That set is the one that covers program elements specified 
by the criterion. A more demanding (higher in the criteria 
hierarchy) criterion, usually results at higher quality test 
case sets. Hence, a higher level of confidence on the tested 
software can be established.  

Mutation testing is widely recognized as one of the 
most effective techniques for detecting faults. This was 
reinforced by the studies of Andrews et al. [1] and [2], by 
providing evidence that mutation testing is able to produce 
realistic fault detection estimates of a test suite. 
Additionally, mutation is regarded as rather expensive for 
practical use. This is attributed to the high number of test 
elements (mutants) that it introduces, on the one hand and 
the high number of infeasible ones (equivalent mutants), 
on the other. Moreover, the lack of efficient and also 
automated tools for producing the sought mutation based 

tests is also a fact that prohibits mutation’s practical use. 
These observations indicate that by automating efficiently 
the generation of mutation tests one can achieve a 
considerably high level of testing quality and hence 
establish a high level of confidence with reasonable 
resources. This forms the main issue of the present paper. 

Mutation testing is a fault based testing technique, 
originally proposed by Hamlet [3] and DeMillo [4]. 
Mutation works by injecting faults into the source code of 
the program under test. The testing quality is then 
measured based on the exposition ratio of these faults, a 
measure that is called mutation score. The utilized faults 
are called mutants and they are produced based on 
syntactic rules called mutation operators. In order to be 
practical [4], traditionally mutation operators introduce 
only simple faults i.e. by making one syntactic change at a 
time. The mutation testing process is performed by 
executing with the candidate test cases both the original 
and mutated programs versions. By observing the program 
outputs one can categorize the mutants into the killed and 
live categories. Killed are those that result in distinguished 
outputs while live are those of the opposite case. Generally 
there are two possible reasons why a mutant has been left 
alive. The first is that the utilized test data were not 
capable of revealing it, while the second is that there is no 
such data. In the second case the mutanted program is 
functionally equivalent to the original one and called 
equivalent.  

Automatically producing test cases is a very tedious 
task especially if done in a non automated way. Various 
techniques and tools have been proposed in the literature 
considering this task [5], [6], [7]. Generally, test data 
generation approaches can be divided into two classes, the 
static and dynamic ones. Symbolic execution [8] is a 
typical example of the static class while random testing 
[6], search based optimization [9] and dynamic symbolic 
execution [5] are typical examples of the dynamic class.    

One of the most commonly used techniques for 
producing test data is the random testing approach. This is 
because of the simplicity, full automation and direct 
implementation characteristics of this method. However, 
such an approach is ineffective to produce tests able to 
achieve a high level of coverage. This is due to the small 
probability of selecting specific values of interest from the 
program input domain. As a consequence random testing 
must be somehow directed in order to be more effective. 
This is achieved based on two approaches. The first 
utilizes search based optimization techniques while the 
second one is known as dynamic symbolic execution. This 



paper considers the second approach. The propositions 
made in this paper can be applied to search based methods 
in order to produce mutation based test cases.   

Dynamic symbolic execution (DSE) [10] also called 
directed random testing [11] or concolic execution [5] has 
been identified as a quite powerful technique for producing 
test data. This technique performs symbolic execution on 
programs guided by its actual execution. This is achieved 
by special program instrumentation that builds the 
symbolic path conditions dynamically i.e. driven by the 
program execution. By doing so, the process can be 
drastically simplified by approximating difficult to handle 
situations based on the actual values computed during 
program executions. Additionally, as it relies on program 
execution the process can always backtrack to random 
testing. Experiments show that tools utilizing this approach 
can achieve a remarkable coverage level [12], [10] and 
[13]. Thus, DSE forms an appropriate choice of test 
generation for performing mutation. 

Generally, in order to expose a fault, the faulty 
program statement(s) must be exercised. The faulty 
statement(s) must cause an internal program infection 
which in order to be detected must be propagated to the 
program’s output. The formulation of the above 
observation forms the basis of producing tests according to 
mutation. In the literature three conditions named 
reachability, necessity and sufficiency [7] are used for this 
task. The reachability condition states that the test 
execution must exercise the mutant statement. This can be 
achieved in a straightforward way by employing DSE. The 
necessity condition states that the execution of the mutant 
expression must produce a different internal state to the 
original one. To achieve this with DSE there is a need to 
embed into the program’s code the mutant infected 
conditions. The sufficiency condition states that the internal 
infection must propagate to the program’s output. In the 
present paper this is approximated based on a path space 
exploration performed by DSE. All the suggestions made 
in this paper have been incorporated into an automated 
framework for testing java programs according to mutation.  

Conclusively the contributions made by the present 
paper can be summarized into the following points.  

 An automated technique named Mutation-DSE for 
producing test cases according to strong mutation 
testing by employing dynamic symbolic execution. 
To the best of our knowledge, it is the first 
technique that uses dynamic symbolic execution to 
effectively produce mutation based test cases. 

 An efficient scheme to introduce, execute and 
integrate the required mutants with dynamic test 
data generation techniques. 

 A case study indicating the feasibility, 
effectiveness and practicality of the proposed 
approach.  

 An automated framework for testing java 
programs, able to produce test cases based on 
Mutation-DSE.  

The rest of the paper is organized as follows. Section II 
illustrates the application of the proposed technique on an 
example program. Sections III and IV detail the underlying 
concepts of mutation and describe the proposed technique 
respectively. In Section V, the experimental results of the 
conducted evaluation study on a set of benchmark 
programs are given. Section VI presents some related to 
the present work techniques. Finally, in Section VII 
conclusions along with a discussion on the proposed 
technique is given. 

II. MOTIVATING EXAMPLE 

This example section illustrates how the Mutation-DSE 
can be adopted to produce mutation based test cases. 
Generally to produce such tests based on a dynamic test 
data generation approach there is a need to embed all the 
suitable conditions under which mutants are killed into the 
program’s source code [14]. This is due to the utilized test 
models that the dynamic approaches incorporate and 
determine during program execution. For example, DSE 
requires the inclusion of mutant necessity constraints into 
the dynamically built path conditions. Thus, the present 
approach embeds into the program’s structure an 
expression of the following form according to each 
introduced mutant: 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ≠ 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

To inject these expressions efficiently, a special form 
of mutant schemata technique has to be employed. Details 
of this approach are given in the Sections III and IV. For 
the purposes of this example the mutanted programs can 
be seen as multiple separate ones with only one mutant 
introduced at a time. The mutanted program versions also 
embed expression (1) into their structure. Figure 1 presents 
an example method. The left part of this figure presents the 
control flow graph of the original program while the right 
one presents the control flow graph of a mutated version 
based on mutant schemata. The mutated program version 
incorporates all introduced mutants (every schematic 
function can introduce mutants) but for illustration 
purposes we may consider only the relational mutant say m 
( > → ≥ ) of vertex 2.  

In order to kill a mutant the test data must reach the 
mutant statement, cause an internal infection and this 
infection must propagate and have an impact on the 
program output. To achieve this for the example mutant m, 
the test data must reach vertex 2, make true the expression 
(x + y ≥ 3) ≠ (x + y > 3) and return different results, in this 
case x and x + y (the original program must return x : 
(vertex 5) and the mutated program x + y : (vertices 3, 6)  
or the opposite. Efficiently producing such test cases based 
on DSE, requires a guide towards the abovementioned 
program features [10], [12]. Because of the presence of 
infeasible paths this guidance can only be a heuristic one, 
see [15] for further details.  The present approach adopts a 
shortest path heuristic [12], [13] that tries to explore only 
the relevant to the target mutant part of the program path 
space. 



int Foo( int x, int y )

1. if ( y < 0 )

6. return x+ y;

Finish

2. if( x + y > 3 )

3. return x+ y; 4. if( x > 4 )

5. return x;

int Foo( int x, int y )

1. if(RelationalLT(y, 0))

6. return ArithmeticPLUS(

Unary(x), Unary(y));

Finish

2. if(RelationalGT(ArithmeticPLUS(

Unary(x), Unary(y)), 3))

3. return ArithmeticPLUS(

Unary(x), Unary(y));

4. if(RelationalGT ( 

Unary(x), 4))

5. return Unary(x);

M. (x + y ≥ 3) ≠ ((x + y > 3))

Figure 1.  CFG of original and mutated program versions. (Node M repressents the embedded neccesity condition of the relational mutant m:> → ≥ )  

This heuristic works by statically selecting the branching 
node to be flipped based on the minimum distance from 
the mutant node. This approach is followed for both 
reaching – fulfilling the mutant necessity constraint and 
propagating it to the program’s output. 

Assume that the target mutant m of the example in 
Figure 1 is to be killed. Additionally assume that the 
existing or randomly generated test data are x = 10 and y = 
10. The proposed approach based on the DSE will proceed 
by executing the initial test set(s) on the mutanted program 
version (Figure 1 right part). This results in traversing the 
“1-6-Finish” path and producing the (y ≥ 0) constraint. By 
negating this condition a new input is obtained, let it be 
x=10, y =-15. This input traverses the path “1-2-3-Finish”. 
Note that the mutant statement has been reached but the 
data were unable to infect the program state at the mutant 
point i.e. making the expression (x + y ≥ 3) ≠ (x + y > 3) 
true. DSE now produces the path condition (y < 0) ˄ (x + y 
≤ 3) ˄ (x + y < 3). In order to target on mutant’s m 
necessity condition the proposed approach negates the 
third condition i.e. (y < 0) ˄ (x + y ≤ 3) ˄ (x + y ≥ 3). This 
results in a new test case x=18, y =-15 that fulfils the 
necessity condition of mutant m. This test traverses the 
path “1-2-4-6-Finish” and returns 3 upon exit (x + y on 
node 6). Note that by executing the original program with 
the same test case results in traversing the “1-2-3-Finish” 
path and returning the same result 3 (x + y on node 3). 
Thus, leaving the mutant alive, despite reaching and 
forcing it to infect the program state.  

The present approach tries to heuristically overcome 
this difficulty by exploring the path space after the mutant 
statement, or by taking a different path that reaches and 
infects the program state or both. In this case the next step 
towards fulfilling the sufficiency condition is performed as 
follows. DSE on the test case x=18, y =-15 and mutant m 
produces the path condition (y < 0) ˄ (x + y ≤ 3) ˄ (x + y ≥ 
3) ˄ (x > 4). By negating the last condition i.e. (y < 0) ˄ (x 
+ y ≤ 3) ˄ (x + y ≥ 3) ˄ (x ≤ 4) a mutant killing test case 
can be produced. Thus, a test, say x=4, y =-1, that 
traverses the path “1-2-4-5-Finish” path and returns 4 as a 
result (x on node 5) can be obtained. Note that exercising 

with the same test cases the original program version 
results in traversing the path “1-2-3-Finish” path and 
returns 3 as a result (x + y on node 3). The process is then 
iteratively continued in a similar fashion for all the 
mutants remaining alive.   

III. MUTATION TESTING AND FRAMEWORK 

A. Mutation Testing 

Fault based techniques introduce a number of faults 
into the program’s source code and pose the requirement 
of exposing them. Thus, testing based on a fault based 
criterion such as mutation requires the production of 
mutant revealing test cases. DeMillo and Offutt developed 
a static test data generation technique called Constraint 
based test data generation (CBT)  [7] for the generation of 
such tests. This approach tries to model with an algebraic 
set of constraints the suitable killable conditions for the 
introduced mutants. This can be generally achieved by 
selecting candidate program paths and specific to each 
mutant constraints [7] thus fulfilling the mutants 
Reachability and Necessity constraints. The sufficiency 
condition because of its high complexity is satisfied 
indirectly through the joint satisfaction of the reachability 
and necessity conditions. This approach has recently been 
extended [16] in order to be performed in an efficient way 
by reducing the effects of infeasible paths.  

Both approaches [7] and [16] rely on a static path 
selection method and symbolic evaluation. The static form 
of symbolic execution suffers from several shortcomings 
that result on low effectiveness and applicability [17]. It is 
these drawbacks that the DSE method tries to handle [5], 
[10] and [11]. The major difference in philosophy of the 
above approaches with the present one, apart from the 
utilized technical details, is that the others try to statically 
select and produce the candidate paths and constraints, 
while the present approach produces them dynamically. To 
achieve this for mutation there is a need to embed the 
mutants into the program’s under test code. This is 
performed based on the mutant schemata technique [18].  



TABLE I.  UTILIZED MUTATION OPERATORS 

Description 

Replaces a relational expression by altering the included 

operator with the other operators, and by the true and false 

expressions, e.g. a > b by a ≥ b, true etc. 

Replaces an arithmetic expressioin by altering the included 

operator by the other operators, and by the first operand and the 

second one, e.g. a + b by a - b, a etc. 

Inserts the absolute, -absolute expression and the requirement of 

0 value (if 0 then the mutant is killed), e.g. a by abs(a), -abs(a) 

and a == 0 

 

B. Parameterized Mutants and Adaptations  

The mutant schemata technique [18] encodes all the 
introduced mutants into one meta-program by replacing 
each pair of operands participating in an operation with a 
call to a schematic function that represents this operation. 
The right part of Figure 1 presents a simplified example of 
this approach. The present approach expands the 
suggestions of the mutant schemata technique by 
incorporating the evaluation of the mutants’ execution 
(formula 1) within the schematic function and after each 
mutated program statement. This is due to the need of 
forcing the mutant to infect both the mutant occurrence 
and the mutant statement. For example consider the 
application of an arithmetic mutant operator e.g. (x + y → 
x - y), say m’, on vertex 2 of Figure 1. The m’ evaluation 
results in conditions x + y ≠ x - y at mutant occurrence 
place and (x + y > 3) ≠ (x - y > 3) at mutant statement. 
Note that fulfilling the first condition does not necessarily 
guarantee the fulfillment of the second one. A similar 
approach has been undertaken in [14] for reducing the 
killing of weak mutants to a path - branch coverage 
problem.  

The utilized form of mutant schemata achieves to 
incorporate the mutant necessity condition into the 
program structure based on the mutant evaluation 
statements that it introduces. It must be noted that these 
evaluation statements do not affect the logic or the 
performed computations of the program under test and 
their placement is used only for the test generation process 
as presented in the example section. The unary increment 
and decrement operators require a more complicated 
treatment as they change the program state. Thus, they are 
replaced by an appropriate expression of plus or minus 1 
on the evaluation statements. Following the original 
suggestions of the mutant schemata technique [18] the 
utilized meta-program introduces parameterized mutants. 
This is based on the use of global parameter values which 
control the application of mutant or original program 
expressions (by introducing controlling statements of the 
form: if ( mutantID == targetID ). In the present approach 
the parameters additionally control the mutant’s evaluation 
statements in order to avoid introducing considerable 
overheads. Additionally, as it is explained in the following 
section, the dynamic nature of the DSE approach 
effectively ignores the introduced complexity of these 
controlling statements based on the actual execution.  

 

Figure 2.  The proposed proccess 

C. Proposed Framework 

The present approach targets on traditional (method 
level) mutation operators. The chosen operators for the 
succeeding case study are those presented and briefly 
described in Table I. These were chosen based on the 
propositions made by Wong and Mathur [19] and Offutt et 
al. [20]. Similar mutation operators are also utilized in 
many empirical studies and tools such as [1], [2], [21] and 
[22]. An overview of the proposed approach is given in 
Figure 2. The process starts by generating the schematic 
meta-program version of the program under test. 
Additionally, the mutant schemata generation component 
produces a static structure of the call and control flow 
graphs and a list of the introduced mutants with their 
respective program statements. These two artifacts are then 
passed to the test generation module. This module 
iteratively selects a mutant as a target, performs DSE on 
the schematic meta-program and produces some test cases. 
These test cases are then passed to the test executor which 
determines their execution path, the mutants that the test 
cases can infect and the mutants that are killed. Then the 
process continues with the next iteration. Finally, after 
reaching a predefined number of iterations or time limit 
the process ends and reports the produced test cases and 
the achieved mutation score.   

IV. MUTATION BASED DYNAMIC SYMBOLIC EXECUTION 

A. Dynamic Symbolic Execution 

Dynamic symbolic execution forms a dynamic 
adaptation of the traditional static application of symbolic 
execution [8]. Unlike the traditional approach of statically 
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selecting candidate paths, producing the path conditions 
and then trying to find the sough tests, the DSE is directed 
and approximated by the actual program execution. This is 
done by performing symbolic execution simultaneously to 
the actual execution (following symbolically the actual 
execution path and dynamically building the path 
condition). The path condition is maintained during the 
actual program execution based on a monitor mechanism. 
This mechanism updates appropriately the path condition 
whenever the course execution encounters a decision 
program point. Next, using the generated symbolic path 
constraints and by iteratively negating each one of them it 
generates new inputs that will traverse a different 
execution path. Gradually, the process continues until it 
explores all the feasible program paths. This approach is 
impractical and thus heuristics should be employed [10], 
[12] and [13] in order to guide the search towards 
exploring only a small, relevant and representative set of 
paths from the whole path space. More details on the 
utilization of DSE are given in [5], [11] and [13]. 

The benefits of employing DSE over the static 
symbolic execution is that the complex expressions or 
uncontrolled program fragments can always be 
approximated based on the actual program values 
encountered during the program execution [5]. This means 
that the path conditions do not necessarily express 
precisely all the performed operations or program 
decisions of a traversed path. Conversely, this leads to an 
under-approximation of the set of feasible paths which is 
appropriate for testing [10]. Thus, a trade-off between 
precision and efficiency has to be paid.  One additional 
benefit identified during the present study was that by 
selecting candidate paths dynamically, one can effectively 
ignore some infeasible ones, caused by flag or internal 
variables. As the values of these variables depend solely 
on the traversed path, it is guaranteed that trying to negate 
them will result in an infeasible path. By abstracting the 
symbolic states and expressions towards the actual 
execution, these infeasible paths can be easily identified 
and hence can be ignored. It is this ability of the DSE 
technique that the present approach takes advantage of in 
order to efficiently prune away the parameterized mutants 
(irrelevant to the targeted one) and their evaluations. 

B. Mutation  Dynamic Symbolic Execution 

Employing the DSE for producing mutation based test 
cases faces many challenges mainly due to the mutation 
testing special characteristics. First, the vast number of 
mutated program versions that need to be produced and 
executed. This forms a research issue for mutation [23] 
which falls outside the scope of the present research. 
Despite this, the additional overheads of DSE’s 
requirements can result in a big burden because of: a) the 
required instrumentation of the monitor mechanism and b) 
the execution of the mutated program versions. These two 
facts should normally increase considerably the mutant 
production, compilation and execution costs. This should 
constitute a major overhead. Second, the effective 
handling  of  mutant necessity and  sufficiency  constraints  

 

Figure 3.  Incremental selection of tests-candidate program states 

under the dynamic nature (the program conditions are built 
dynamically) of DSE must be addressed. Third, scalability 
issues of the approach must also be addressed. Recall DSE 
targets on finding all feasible program paths, a quite costly 
and often impossible task. Its application in combination 
with the vast number of mutanted program versions should 
result in prohibitive levels of effort or cost. 

The proposed approach in order to be practical tries to 
handle all the above mentioned difficulties in an efficient 
way. It adopts a state of the art technique, mutant 
schemata, in order to produce and execute the mutated 
program versions under either the DSE mode or actual 
mode, efficiently. By utilizing the schemata DSE 
overheads are kept to a minimum, since only one meta-
program is produced. Additionally, a considerable 
reduction on the required execution time can be achieved, 
when compared to the separate compilation process [22]. 
Furthermore, the special form of the utilized schemata, as 
described in the above section, embeds all the mutants’ 
necessity conditions into the program’s structure. The 
reason for doing so is twofold. First, it results in the 
incorporation of the mutants’ necessity conditions into the 
dynamically built path ones, fact that makes possible the 
killing of mutants based on DSE. Second, by doing so it 
becomes possible to execute all mutants with one 
execution run [14] and thus record the infected mutants 
efficiently. Then, the process can continue by executing 
according to strong mutation only those mutants that have 
been left alive and are able to infect the program state (the 
rest can safely be ignored). This results in major execution 
savings. Additionally, the benefits of DSE, such as the 
simplifications based on the actual program values, also 
apply on mutant conditions (cases of arithmetic operators 
or method calls i.e. *, %, / power).  

C. Proposed Approach 

The practicality of the proposed approach is mainly 
based on the utilized heuristics for the efficient handling of 
the mutant’s reachability, necessity and sufficiency 
conditions. The proposed approach utilizes in an 
incremental fashion the shortest path heuristic, which was 
found to be a quite effective one in the context of branch 
coverage [12], [13]. Informally the approach follows the 



procedure of Figure 3. The approach tries to incrementally 
drive the search of the path space and program states 
towards those paths that reach, infect and expose the 
targeted mutants. In Figure 3 the outer box represents the 
whole program state population, the black point indicate 
the generated states while the neighborhoods (clouds) 
represent the space elimination to hit the targets. 

The proposed approach works by selecting the next 
branching point to be negated based on its minimal 
distance from the targeted mutant statement. Specifically it 
operates on three conditions-modes: a) into trying to reach 
the mutant, b) trying to infect and c) trying to propagate. If 
the selected test does not reach the mutant statement (case 
a) the utilization of the minimum distance approach is 
straightforward. If the mutant is reached (case b) it selects 
and negates the mutant “simple” necessity constraint (at 
the mutant position level), the combined one (at the mutant 
statement level) and the original one. In case of non 
symbolic constraints (involve only local variables) a 
random flipping point is selected.   
 

Mutation Based Dynamic Symbolic Execution  
Required: Set T (initial test cases) 

                 Meta-CFG (the Control flow graph of the meta-program) 
                 MutantSet (set of introduced mutants) 

                 k,z –value limits 
 

1.  Prodedure main 

2. Order MutantSet in an ascending order of distances from the 
program’s input to the mutant statements 

3.  TargetSet = MutantSet 
4.  for repeated times //algorithm repeatitions 

5.     for each mutant m ∈ TargetSet 
6.         index = 0 

7.         while m is live AND index < k // k tries 

8.             t = NextTest(m) 
9.             f = Flip(t, m) 

10.           run and produce path condition pc //DSE 

11.           negate the flipping point(s) f and produce path condition(s) pc’ 
12.            if pc’ is solvable   

13.                     produce a new test case t 

14.                     add t on T set 
15.                     execute mutants against t, record execution path  

        and infected mutants 

16.                     remove killed mutant from TargetSet 
17.           end if 

18.       index ++ 

19.       end while 
20.    end for 

21. end for 
 

22. Procedure NextTest(m)  

//Selects the next test t to proceed with DSE 
23. Select all tests T’ from set T that traverse different program paths 

24. put T’ on a priority queue that prioritizes tests based on the following  
criteria a) infect m (highest priority) and b) according to their 

minimum distance from the m’s vertex (higher priority on the 

closest to the mutant vertex traversed paths).  
25. return the next test from the priority queue 
 

26. Procedure Flip(t, m) 

//Selects the flipping point f of test t in order to kill mutant m  

27. if m is infected  
28.      select the z closest points after the mutated vertex  

29. if m is reached  

30.      select the mutant statement(s) 
31. if m is not reached  

32.      select the closest point to the mutated vertex  

To make this more understandable consider the case of (a 
+ b > k → a + abs(b) > k). Suppose that this mutant has 
been exercised with the data a=15, b = 2, k = 0. The 
process at first tries the condition (b < 0) (produced by the 
mutant position level condition) and produces the test a = 
15, b = -10, k = 0. This test infects the mutant at this 
position level but not at the statement level. Then, it tries 
to infect at statement level, i.e. (b < 0) ˄ (a + b > k) ˄ (a 
+ abs(b) ≤ k). As this is found to be infeasible, the process 
continues with the original statement i.e. (b < 0) ˄ (a + b 
≤ k) and produces the test a = -15, b = -10, k = 0. Finally, 
it repeats the negation at statement level, i.e. (b < 0) ˄ (a 
+ b ≤ k) ˄ (a + abs(b) > k) and produces the sought test 
a=5, b = -10, k = 0. 

Finally if the targeted mutant has been reached and 
infected but not exposed (case c) the process selects and 
negates z branching points after the mutant statement. The 
whole process is performed k times before moving to the 
next target mutant. This is an essential cost effective limit 
enforced by the presence of equivalent mutants, infeasible 
paths and incompleteness of the technique.  

This approach, despite being an approximation 
technique, in practice can be quite effective even by 
employing small k and z values. This is attributed to the 
collaterally killed mutants, i.e., mutants that are killed 
without being targeted. Thus, if the technique fails to kill a 
mutant, it still has many chances to kill it by targeting on 
the remaining alive ones. Furthermore, as the process 
produces new tests by using existing or random ones, it 
becomes possible for the tester to assist the process by 
adding some manually produced test cases. These can then 
be utilized for the purposes of killing additional mutants.  

Finally, a complete view of the proposed approach is 
given by the Mutation Based Symbolic Execution 
algorithm which utilizes the concepts and techniques 
described in this and the previous sections. 

V. EVALUATION STUDY 

This section describes an empirical evaluation of the 
proposed approach on a selected set of widely used in the 
literature programs. The following case study has been 
performed utilizing an automated framework for the test of 
java programs. This framework has been implemented on 
top of the jFuzz tool [24], by incorporating the suggestions 
made in the present paper. Although the utilized 
programming language is java, the primary examined aim 
is the method level mutation operators [22], described in 
Table I. Thus, the results should also hold for procedural 
languages, such as C, too. The following experimental 
study provides some evidence indicating the applicability, 
the effectiveness and efficiency of the proposed approach.  

A. Experimental Regime 

The experiment described in this section uses a 
prototype implementation of the proposed approach on a 
set of five extensively used programs in experimental 
studies in the context of mutation. Details of these 
programs are given in Table II. The first of the selected 



programs (Tritype) has been widely used in test data 
generation approaches of mutation [7], [16], [25] (see 
related work section). The second one (remainder) forms 
an implementation that calculates the remainder of a 
division procedure. The last four of the selected programs 
are part of the well known Siemens program suite [26]. 
These programs (Replace, Tcas and Schedule) have been 
used in most of the recent experimental studies of mutation 
i.e. [1], [2] and [23]. For the purposes of the present 
experiment these programs were rewritten in java (the 
programming language handled by the prototype tool) 
taking special care on keeping unaffected the control flow 
structure and the program computations. This is a common 
practice in testing experiments also undertaken in [19] and 
[27]. Using the selected programs an experimental study 
was undertaken in order to determine the benefits of 
employing the proposed approach. To this extend, two 
measures were employed, one representing the method’s 
effectiveness i.e., the ability of the produced tests to kill 
most of the mutants and one representing the method’s 
cost, i.e., the process required amount of effort to achieve 
specific levels of coverage. The experiment and the 
obtained results were based on the following parameters. 
A k-value (line 7 of the algorithm) equal to five, two 
repeated times (line 4 of the algorithm) and z-value equal 
to all the unique propagation points of each case (line 28 
of the algorithm). 

To investigate the ability of the proposed approach to 
produce mutation based test data the number of the killed 
mutants was measured per chosen program. This number 
was then compared with an estimate to the number of all 
killable (non equivalent) mutants. The identification of 
equivalent mutants form a well known undecidable 
problem [28] and their manual evaluation require 
extensive analysis [21] resulting in huge amount of effort. 
Thus, in order to complete the present experiment with 
reasonable resources the number of equivalent mutants 
was estimated based on the number of the killed mutants 
by the accompanied with the programs test suite (the 
Siemens programs have a comprehensive accompanied 
test suite, see the [29] for details about the construction of 
these tests). This approach is common on mutation testing 
experiments, also undertaken on most of the recent 
experimental studies of mutation testing, see [23]. It is 
noted that for the Tritype and Remainder programs the 
equivalent mutants were detected based on manual 
analysis, thus, measuring precisely their number.  

The method’s required cost on achieving specific 
levels of coverage is measured based on the number of the 
algorithm’s iteration cycles. This number reflects the 
application cost of the approach as it is proportional to the 
number of calls to the utilized constraint solver. The 
number of constraint solver calls forms a representative 
effort estimate [10], as the time taken by the various 
constraint solvers dominates the entire process [10] (the 
time spend by the strategies on selecting nodes or mutants 
constraints to be solved is negligible) and also this time 
may vary significantly between different utilized solvers. 
An additional cost factor, introduced by the mutation 

testing process, is related to the required number of the 
mutant executions in order to determine the killed mutants. 
A similar cost factor has been considered in [30]. The 
present approach tries to reduce this cost factor efficiently 
as described on Section IV.B.  

B. Experimental Results 

This section reports results on performing mutation 
testing based on the selected program set. Figure 4 
presents the cost and effectiveness measures of the 
proposed approach for the six employed programs. The 
graphs are plots of the number of killed mutants against 
the required number of iterations. The horizontal lines at 
the top of the graphs represent an estimate of the killable 
mutants’ number (killed mutants from the accompanied 
test suites). From these plots it can be observed that a 
significant number of the killable mutants can be killed by 
requiring only a relatively small number of the algorithm 
iteration cycles. In all the examined cases the percentage 
of killed mutants over the estimated killable ones is above 
the 85% level (Replace 86.5%, Tcas 100%, Schedule 91%, 
Remainder 97.5 and Tritype 96.8%). Additionally, it can 
be observed that the increase of the killed mutants 
converges significantly at the beginning of the process and 
gradually falling thereafter. The slow convergence of the 
process after a number of iteration cycles should be 
attributed to the existence of equivalent and hard to kill 
mutants. Aiming at those hard to kill mutants requires 
more iteration cycles, resulting in a considerable amount 
of additional effort. 

The existence of equivalent mutants imposes the need 
for additional attempts of the utilized approach in order to 
be killed. As this cannot be done, these attempts fall 
astray. Moreover, as the equivalent mutants’ number 
remains constant for all the process iteration cycles and the 
number of killable mutants decreases, the percentage of 
equivalent to killable ones gradually increases [21]. Thus, 
the effect of the equivalent mutants on the required process 
effort gradually increases fact that is evident on the plots 
of Figure 4. Considering the killable mutants, it can be 
observed that some mutants remain alive after the utilized 
number of iterations. An inspection analysis on the live 
killable mutants revealed that the process achieved to 
infect them, while it failed to make these changes 
observable to the program’s output (failed to propagate).   

TABLE II.   SELECTED PROGRAMS 

Program Description 
Lines of 

Code 

Number of 

mutants 

Tritype 
Triangle 

classification 
40 314 

Remainder 
Remainder 

evaluation 
50 324 

Replace 
Pattern matching 

and substitution 
500 937 

Tcas 

Trafic collision 

avoidance system 
120 213 

Schedule Process scheduler 200 165 



 

 

 

Figure 4.  Mutants killed VS iterations number by the Mutation-DSE  

TABLE III.  APPLICATION RESULTS 

Program 
½ Iterations All Iterations 

Killed 

Mutants 

 Solver 

Calls 

No. 

Executions 

Killed 

Mutants 

Solver 

Calls 

No. 

Executions 

Tritype 214 1012 500 216 1588 514 

Remainder 234 2749 435 235 5498 741 

Replace 514 14740 19400 520 30238 80471 

Tcas 136 1733 3729 137 3705 4720 

Schedule 94 714 293 94 949 303 

C. Mutant Execution Cost 

A major part of the mutation testing overheads is due 
to the execution of the candidate set of mutants. As the 
dynamic approaches rely on many program executions 
their use on mutation is escalated due to the required high 
number of actual executions (vast number of mutants). 
Table II measures the overheads encountered by the 
proposed approach. Additionally, Table II summarizes the 
obtained results, recording the number of killed mutants, 
the number of calls to the underlying solver and the 
number of mutant executions for the undertaken iterations 
(½ of all undertaken iterations and the total as recorded in 
the graphs of Figure 4), for the selected set of programs.  

From these results it can be observed that only a small 
number of mutants can be killed in the second half part of 
the employed iterations, while the number of mutant 
executions and the number of calls to the constraint solver 
(cost factors) increase significantly. It is noted that the 
number of mutant executions in the cases of Replace and 
Tcas increase faster than the number of constraint solver 
calls, due to the existence of mutants that are infected but 
not killed by the produced test cases.      

VI. RELATED WORK 

Over three decades have gone by since the initial 
suggestions of mutation [3] and [4] During this period, a  
considerable amount of research has been carried out as 
stated in the survey conducted in [23]. Despite this, 
particular aspects of mutation, such as the automated 
generation of test cases, have barely been researched. This 
fact is common to all the structural testing methods, where, 
only the last years substantial progress is recorded. Thus, 
the application of these advances to mutation testing form 
an active research area that also motivated the suggestions 
made in the present paper. 

Most of the progress in the area of generating test cases 
according to mutation has been carried out by the work of  
DeMillo and Offutt [7] in a method named Constraint 
Based Testing (CBT). As discussed in the previous 
sections the CBT approach tries to model the reachability, 
necessity and sufficiency conditions into algebraic 
constraint systems. Then these algebraic systems are 
solved in order to produce the sought test data. This is 
achieved based on the use of techniques such as symbolic 
evaluation, constraint based testing and domain reduction. 
In this approach a static form of symbolic execution is 
employed. This results into problems mainly due to the 
static nature of the symbolic evaluation such as the 
handling of arrays, loops, non linear expressions and the 
path explosion problem. To overcome these difficulties a 
dynamic approach needs to be employed [17], such an 
approach is the one proposed in the present paper.    

 Another approach based on symbolic execution and 
the selection of paths is the work presented in [16]. In this 
work an augmented graph called enhanced control flow 
graph is constructed. This graph embeds all the mutant 
conditions into its arcs providing a suitable test model for 
producing the required test cases. By employing an 
efficient path selection heuristic on this augmented graph, 
one can achieve high mutation coverage with limited 
resources [16]. Additionally, cost effective strategies can 
also be employed thus providing decisive advantages 
compared with the CBT method.  

Attempts on adopting dynamic test data generation 
approaches such as evolutionary testing have also 
appeared in the literature. Ayari et al. [25]  proposed an 
evolutionary approach for the generation of mutation test 
data. In this work a search based minimization technique 
was employed in order to generate test data. The chosen 
techniques were some metaheuristic search methods 
guided by a fitness function that measured the closeness of 
reaching the targeted mutants. Another evolutionary based 
approach is that of Braudry et al. [30]. In this work genetic 
algorithms were employed in order to augment an existing 
test suite according to mutation. The fitness calculations 
were performed based on the achieved mutation score. The 
drawback of these two methods is that it do not guide the 
search method by quantitatively measuring the closeness 
of killing specific mutants. This fact makes the search not 
only inefficient but also ineffective for killing many 
mutants. Nevertheless, these two approaches employ a 



different philosophy to the one presented here. However, 
such a comparison falls outside the scope of the present 
research and forms a matter of future research. 

Approaches using dynamic test generation methods for 
mutation are quite limited. Perhaps the only, to the authors 
knowledge, approach is the work in [14] on weak 
mutation. In this attempt, a special form of mutant 
schemata is employed in order to reduce the mutant killing 
problem (weak mutants) into a covering braches one. 
Then, by employing existing automated tools for structural 
testing, these mutants-branches can be effectively killed-
covered. The present approach is based on these ideas and 
extends them in order to target on a more demanding 
criterion such as strong mutation. Additionally, the present 
research specifically deals with some of the special 
characteristics of mutation as described in Section IV.  
Further, the present research also considers the method’s 
efficiency. 

Considering the test data generation approaches in 
general, applied on different testing contexts e.g. branch 
testing, many more attempts appear in the literature. The 
most relevant to the present one are those that utilize DSE 
[5] and [11]  and have already been discussed in the 
previous sections. In [12] and [13], a shortest path 
heuristic has been employed in order to efficiently perform 
branch testing, with promising results. In [10] some 
additional heuristics inspired by the fitness functions used 
in evolutionary testing [9] are effectively adopted for 
guiding the DSE process.  

Finally, various tools and techniques have been 
proposed by researchers based on either pure symbolic 
execution or pure dynamic approaches such as search 
based testing [9]. In [31] a symbolic execution system for 
testing java programs is proposed. This approach uses 
symbolic execution only at specific program features 
selected by the tester. Then by using actual program 
executions it is achieved to both effectively “set-up” the 
symbolic execution environment and “proceed” with the 
irrelevant to the interest features program parts. 
Additionally, an automated and quite powerful tool that 
incorporates evolutionary testing was suggested by 
Tonella [32]. Further, in the work of Lakhotia et al. [33] a 
technique that adapts search based optimization for the test 
of programs containing pointers and dynamic data 
structures has been proposed.  

VII. CONCLUSION AND FUTURE WORK 

This paper introduces a novel technique for automating 
the generation of mutation based test cases. The technique 
proposed here makes use of state of the art techniques such 
as mutant schemata and dynamic symbolic execution in 
order to produce high quality test data. The philosophy 
behind the proposed approach is to use mutation analysis 
for producing tests instead of assessing them only. Thus, 
mutation acts as a yardstick towards producing the sought 
tests. Additionally, the present approach automates 
efficiently the mutant evaluation process in order to 
minimize the mutation testing overheads. This is achieved 
by combining two special forms of mutant schemata, one 

for weak and one for strong mutation, resulting in major 
execution savings as the experimental results show.  

The suggestions made in this paper have been 
implemented into an automated framework for java. The 
performed experimental study constitutes one of the few 
ones (see related work section) and also the largest one in 
the context of mutation based test data generation. The 
experimental results obtained in this paper suggest that the 
proposed approach can produce test cases of high quality 
as they are able to kill a remarkable number of the 
introduced mutants. Evidence, is also provided to support 
the argument that these tests can be produced at a 
relatively low cost and that the proposed approach can be 
also applicable to larger cases. Further, by utilizing all the 
benefits of the DSE technique (handling of pointers, 
arrays, loops, non linear expressions and the path 
explosion problem), the present approach comprises a 
major improvement over the existing techniques.   

The conducted study has also revealed some interesting 
points–observations concerning test data generation and 
mutation testing. The first observation is that the existence 
of collaterally killed mutants (mutants that are killed when 
targeting to others) helps to overcome the faced difficulties 
of killing specific mutants. Thus, if the process fails to kill 
a non equivalent mutant (when targeting to it), it still has a 
chance of killing it by targeting to others. The second 
observation concerns some benefits of aiming at 
equivalent mutants. Generally, it is believed that attempts 
to kill equivalent mutants result in a waste of effort. While 
this being true, the attempts to kill them may result in 
killing, reaching or infecting other mutants collaterally. 
Additionally, the incremental nature of the proposed 
approach (targeting first at mutant infection) may result in 
producing test cases capable of infecting equivalent 
mutants. These tests are redundant in respect of strong 
mutation but not in respect of weak and for this reason 
they are of additional value. Furthermore, if the utilized 
approach fails to kill some non-equivalent strong mutants 
it may still be able to kill the respective weak ones (finds 
tests able to infect the mutant, but fail to propagate to the 
program’s output) resulting in some additional test cases 
(possibly valuable). Moreover, if the produced tests are 
able to kill all non equivalent weak mutants, these tests, 
under the use of specific mutant operators [34] can 
subsume various structural criteria such as the multiple 
condition coverage criterion [34]. It is noted that this 
argument does not hold for strong mutation because of the 
existence of strongly equivalent mutants. The last 
observation obtained from this experiment suggests that by 
employing a mixed approach of symbolic execution and 
random testing (find data up to certain points and then 
continue with random or actual execution) when targeting 
on mutants, results in finding many feasible paths 
collaterally. Thus, most of the mutants have been reached 
from the previously examined mutants reducing the 
required effort to reach them.   

In future some extensions are also being planned. 
These are the effective incorporation of additional 
heuristics dealing with the path explosion and the 



equivalent mutant problems. Specifically, the 
incorporation of appropriate fitness evaluations [10] and 
search based testing [9] is currently under research. 
Additionally, series of experiments are also scheduled in 
order to efficiently incorporate heuristics for the 
identification of equivalent mutants such as [28] and 
potential strategies to avoid them along the lines suggested 
by Schuler and Zeller [21].  
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