
Automatic Mutation Test Case Generation Via Dynamic Symbolic Execution

Mike Papadakis and Nicos Malevris

Department of Informatics, Athens University of Economics and Business

 Athens, Greece

{mpapad, ngm}@aueb.gr

Abstract—The automatic test case generation is the principal

issue of the software testing activity. Dynamic symbolic

execution appears to be a promising approach to this matter

as it has been shown to be quite powerful in producing the

sought tests. Despite its power, it has only been effectively

applied to the entry level criteria of the structural criteria

hierarchy such as branch testing. In this paper an extension

of this technique is proposed in order to effectively generate

test data based on mutation testing. The proposed approach

conjoins program transformation and dynamic symbolic

execution techniques in order to successfully automate the

test generation process. The propositions made in this paper

have been incorporated into an automated framework for

producing mutation based test cases. Its evaluation on a set

of benchmark programs suggests that it is able to produce

tests capable of killing most of the non equivalent introduced

mutants. The same study also provides some evidence that

by employing efficient heuristics it can be possible to

perform mutation with reasonable resources.

Keywords- automated test case generation, dynamic

symbolic execution, mutation testing, mutant schemata

I. INTRODUCTION

Software testing forms the main technique for
identifying and removing software’s defects. Its
application is performed by selecting candidate test cases
and using them in order to exercise the software’s
behavior. Thus, software testing can be seen as a test case
sampling process. The process selects from the whole set
(maybe infinite in size) of test cases a small but
representative set. This is approximated by selecting tests
based on an adequacy criterion. Testing criteria purpose is
to guide the tester on selecting a specific set of test cases.
That set is the one that covers program elements specified
by the criterion. A more demanding (higher in the criteria
hierarchy) criterion, usually results at higher quality test
case sets. Hence, a higher level of confidence on the tested
software can be established.

Mutation testing is widely recognized as one of the
most effective techniques for detecting faults. This was
reinforced by the studies of Andrews et al. [1] and [2], by
providing evidence that mutation testing is able to produce
realistic fault detection estimates of a test suite.
Additionally, mutation is regarded as rather expensive for
practical use. This is attributed to the high number of test
elements (mutants) that it introduces, on the one hand and
the high number of infeasible ones (equivalent mutants),
on the other. Moreover, the lack of efficient and also
automated tools for producing the sought mutation based

tests is also a fact that prohibits mutation’s practical use.
These observations indicate that by automating efficiently
the generation of mutation tests one can achieve a
considerably high level of testing quality and hence
establish a high level of confidence with reasonable
resources. This forms the main issue of the present paper.

Mutation testing is a fault based testing technique,
originally proposed by Hamlet [3] and DeMillo [4].
Mutation works by injecting faults into the source code of
the program under test. The testing quality is then
measured based on the exposition ratio of these faults, a
measure that is called mutation score. The utilized faults
are called mutants and they are produced based on
syntactic rules called mutation operators. In order to be
practical [4], traditionally mutation operators introduce
only simple faults i.e. by making one syntactic change at a
time. The mutation testing process is performed by
executing with the candidate test cases both the original
and mutated programs versions. By observing the program
outputs one can categorize the mutants into the killed and
live categories. Killed are those that result in distinguished
outputs while live are those of the opposite case. Generally
there are two possible reasons why a mutant has been left
alive. The first is that the utilized test data were not
capable of revealing it, while the second is that there is no
such data. In the second case the mutanted program is
functionally equivalent to the original one and called
equivalent.

Automatically producing test cases is a very tedious
task especially if done in a non automated way. Various
techniques and tools have been proposed in the literature
considering this task [5], [6], [7]. Generally, test data
generation approaches can be divided into two classes, the
static and dynamic ones. Symbolic execution [8] is a
typical example of the static class while random testing
[6], search based optimization [9] and dynamic symbolic
execution [5] are typical examples of the dynamic class.

One of the most commonly used techniques for
producing test data is the random testing approach. This is
because of the simplicity, full automation and direct
implementation characteristics of this method. However,
such an approach is ineffective to produce tests able to
achieve a high level of coverage. This is due to the small
probability of selecting specific values of interest from the
program input domain. As a consequence random testing
must be somehow directed in order to be more effective.
This is achieved based on two approaches. The first
utilizes search based optimization techniques while the
second one is known as dynamic symbolic execution. This

paper considers the second approach. The propositions
made in this paper can be applied to search based methods
in order to produce mutation based test cases.

Dynamic symbolic execution (DSE) [10] also called
directed random testing [11] or concolic execution [5] has
been identified as a quite powerful technique for producing
test data. This technique performs symbolic execution on
programs guided by its actual execution. This is achieved
by special program instrumentation that builds the
symbolic path conditions dynamically i.e. driven by the
program execution. By doing so, the process can be
drastically simplified by approximating difficult to handle
situations based on the actual values computed during
program executions. Additionally, as it relies on program
execution the process can always backtrack to random
testing. Experiments show that tools utilizing this approach
can achieve a remarkable coverage level [12], [10] and
[13]. Thus, DSE forms an appropriate choice of test
generation for performing mutation.

Generally, in order to expose a fault, the faulty
program statement(s) must be exercised. The faulty
statement(s) must cause an internal program infection
which in order to be detected must be propagated to the
program’s output. The formulation of the above
observation forms the basis of producing tests according to
mutation. In the literature three conditions named
reachability, necessity and sufficiency [7] are used for this
task. The reachability condition states that the test
execution must exercise the mutant statement. This can be
achieved in a straightforward way by employing DSE. The
necessity condition states that the execution of the mutant
expression must produce a different internal state to the
original one. To achieve this with DSE there is a need to
embed into the program’s code the mutant infected
conditions. The sufficiency condition states that the internal
infection must propagate to the program’s output. In the
present paper this is approximated based on a path space
exploration performed by DSE. All the suggestions made
in this paper have been incorporated into an automated
framework for testing java programs according to mutation.

Conclusively the contributions made by the present
paper can be summarized into the following points.

 An automated technique named Mutation-DSE for
producing test cases according to strong mutation
testing by employing dynamic symbolic execution.
To the best of our knowledge, it is the first
technique that uses dynamic symbolic execution to
effectively produce mutation based test cases.

 An efficient scheme to introduce, execute and
integrate the required mutants with dynamic test
data generation techniques.

 A case study indicating the feasibility,
effectiveness and practicality of the proposed
approach.

 An automated framework for testing java
programs, able to produce test cases based on
Mutation-DSE.

The rest of the paper is organized as follows. Section II
illustrates the application of the proposed technique on an
example program. Sections III and IV detail the underlying
concepts of mutation and describe the proposed technique
respectively. In Section V, the experimental results of the
conducted evaluation study on a set of benchmark
programs are given. Section VI presents some related to
the present work techniques. Finally, in Section VII
conclusions along with a discussion on the proposed
technique is given.

II. MOTIVATING EXAMPLE

This example section illustrates how the Mutation-DSE
can be adopted to produce mutation based test cases.
Generally to produce such tests based on a dynamic test
data generation approach there is a need to embed all the
suitable conditions under which mutants are killed into the
program’s source code [14]. This is due to the utilized test
models that the dynamic approaches incorporate and
determine during program execution. For example, DSE
requires the inclusion of mutant necessity constraints into
the dynamically built path conditions. Thus, the present
approach embeds into the program’s structure an
expression of the following form according to each
introduced mutant:

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ≠ 𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

To inject these expressions efficiently, a special form
of mutant schemata technique has to be employed. Details
of this approach are given in the Sections III and IV. For
the purposes of this example the mutanted programs can
be seen as multiple separate ones with only one mutant
introduced at a time. The mutanted program versions also
embed expression (1) into their structure. Figure 1 presents
an example method. The left part of this figure presents the
control flow graph of the original program while the right
one presents the control flow graph of a mutated version
based on mutant schemata. The mutated program version
incorporates all introduced mutants (every schematic
function can introduce mutants) but for illustration
purposes we may consider only the relational mutant say m
(> → ≥) of vertex 2.

In order to kill a mutant the test data must reach the
mutant statement, cause an internal infection and this
infection must propagate and have an impact on the
program output. To achieve this for the example mutant m,
the test data must reach vertex 2, make true the expression
(x + y ≥ 3) ≠ (x + y > 3) and return different results, in this
case x and x + y (the original program must return x :
(vertex 5) and the mutated program x + y : (vertices 3, 6)
or the opposite. Efficiently producing such test cases based
on DSE, requires a guide towards the abovementioned
program features [10], [12]. Because of the presence of
infeasible paths this guidance can only be a heuristic one,
see [15] for further details. The present approach adopts a
shortest path heuristic [12], [13] that tries to explore only
the relevant to the target mutant part of the program path
space.

int Foo(int x, int y)

1. if (y < 0)

6. return x+ y;

Finish

2. if(x + y > 3)

3. return x+ y; 4. if(x > 4)

5. return x;

int Foo(int x, int y)

1. if(RelationalLT(y, 0))

6. return ArithmeticPLUS(

Unary(x), Unary(y));

Finish

2. if(RelationalGT(ArithmeticPLUS(

Unary(x), Unary(y)), 3))

3. return ArithmeticPLUS(

Unary(x), Unary(y));

4. if(RelationalGT (

Unary(x), 4))

5. return Unary(x);

M. (x + y ≥ 3) ≠ ((x + y > 3))

Figure 1. CFG of original and mutated program versions. (Node M repressents the embedded neccesity condition of the relational mutant m:> → ≥)

This heuristic works by statically selecting the branching
node to be flipped based on the minimum distance from
the mutant node. This approach is followed for both
reaching – fulfilling the mutant necessity constraint and
propagating it to the program’s output.

Assume that the target mutant m of the example in
Figure 1 is to be killed. Additionally assume that the
existing or randomly generated test data are x = 10 and y =
10. The proposed approach based on the DSE will proceed
by executing the initial test set(s) on the mutanted program
version (Figure 1 right part). This results in traversing the
“1-6-Finish” path and producing the (y ≥ 0) constraint. By
negating this condition a new input is obtained, let it be
x=10, y =-15. This input traverses the path “1-2-3-Finish”.
Note that the mutant statement has been reached but the
data were unable to infect the program state at the mutant
point i.e. making the expression (x + y ≥ 3) ≠ (x + y > 3)
true. DSE now produces the path condition (y < 0) ˄ (x + y
≤ 3) ˄ (x + y < 3). In order to target on mutant’s m
necessity condition the proposed approach negates the
third condition i.e. (y < 0) ˄ (x + y ≤ 3) ˄ (x + y ≥ 3). This
results in a new test case x=18, y =-15 that fulfils the
necessity condition of mutant m. This test traverses the
path “1-2-4-6-Finish” and returns 3 upon exit (x + y on
node 6). Note that by executing the original program with
the same test case results in traversing the “1-2-3-Finish”
path and returning the same result 3 (x + y on node 3).
Thus, leaving the mutant alive, despite reaching and
forcing it to infect the program state.

The present approach tries to heuristically overcome
this difficulty by exploring the path space after the mutant
statement, or by taking a different path that reaches and
infects the program state or both. In this case the next step
towards fulfilling the sufficiency condition is performed as
follows. DSE on the test case x=18, y =-15 and mutant m
produces the path condition (y < 0) ˄ (x + y ≤ 3) ˄ (x + y ≥
3) ˄ (x > 4). By negating the last condition i.e. (y < 0) ˄ (x
+ y ≤ 3) ˄ (x + y ≥ 3) ˄ (x ≤ 4) a mutant killing test case
can be produced. Thus, a test, say x=4, y =-1, that
traverses the path “1-2-4-5-Finish” path and returns 4 as a
result (x on node 5) can be obtained. Note that exercising

with the same test cases the original program version
results in traversing the path “1-2-3-Finish” path and
returns 3 as a result (x + y on node 3). The process is then
iteratively continued in a similar fashion for all the
mutants remaining alive.

III. MUTATION TESTING AND FRAMEWORK

A. Mutation Testing

Fault based techniques introduce a number of faults
into the program’s source code and pose the requirement
of exposing them. Thus, testing based on a fault based
criterion such as mutation requires the production of
mutant revealing test cases. DeMillo and Offutt developed
a static test data generation technique called Constraint
based test data generation (CBT) [7] for the generation of
such tests. This approach tries to model with an algebraic
set of constraints the suitable killable conditions for the
introduced mutants. This can be generally achieved by
selecting candidate program paths and specific to each
mutant constraints [7] thus fulfilling the mutants
Reachability and Necessity constraints. The sufficiency
condition because of its high complexity is satisfied
indirectly through the joint satisfaction of the reachability
and necessity conditions. This approach has recently been
extended [16] in order to be performed in an efficient way
by reducing the effects of infeasible paths.

Both approaches [7] and [16] rely on a static path
selection method and symbolic evaluation. The static form
of symbolic execution suffers from several shortcomings
that result on low effectiveness and applicability [17]. It is
these drawbacks that the DSE method tries to handle [5],
[10] and [11]. The major difference in philosophy of the
above approaches with the present one, apart from the
utilized technical details, is that the others try to statically
select and produce the candidate paths and constraints,
while the present approach produces them dynamically. To
achieve this for mutation there is a need to embed the
mutants into the program’s under test code. This is
performed based on the mutant schemata technique [18].

TABLE I. UTILIZED MUTATION OPERATORS

Description

Replaces a relational expression by altering the included

operator with the other operators, and by the true and false

expressions, e.g. a > b by a ≥ b, true etc.

Replaces an arithmetic expressioin by altering the included

operator by the other operators, and by the first operand and the

second one, e.g. a + b by a - b, a etc.

Inserts the absolute, -absolute expression and the requirement of

0 value (if 0 then the mutant is killed), e.g. a by abs(a), -abs(a)

and a == 0

B. Parameterized Mutants and Adaptations

The mutant schemata technique [18] encodes all the
introduced mutants into one meta-program by replacing
each pair of operands participating in an operation with a
call to a schematic function that represents this operation.
The right part of Figure 1 presents a simplified example of
this approach. The present approach expands the
suggestions of the mutant schemata technique by
incorporating the evaluation of the mutants’ execution
(formula 1) within the schematic function and after each
mutated program statement. This is due to the need of
forcing the mutant to infect both the mutant occurrence
and the mutant statement. For example consider the
application of an arithmetic mutant operator e.g. (x + y →
x - y), say m’, on vertex 2 of Figure 1. The m’ evaluation
results in conditions x + y ≠ x - y at mutant occurrence
place and (x + y > 3) ≠ (x - y > 3) at mutant statement.
Note that fulfilling the first condition does not necessarily
guarantee the fulfillment of the second one. A similar
approach has been undertaken in [14] for reducing the
killing of weak mutants to a path - branch coverage
problem.

The utilized form of mutant schemata achieves to
incorporate the mutant necessity condition into the
program structure based on the mutant evaluation
statements that it introduces. It must be noted that these
evaluation statements do not affect the logic or the
performed computations of the program under test and
their placement is used only for the test generation process
as presented in the example section. The unary increment
and decrement operators require a more complicated
treatment as they change the program state. Thus, they are
replaced by an appropriate expression of plus or minus 1
on the evaluation statements. Following the original
suggestions of the mutant schemata technique [18] the
utilized meta-program introduces parameterized mutants.
This is based on the use of global parameter values which
control the application of mutant or original program
expressions (by introducing controlling statements of the
form: if (mutantID == targetID). In the present approach
the parameters additionally control the mutant’s evaluation
statements in order to avoid introducing considerable
overheads. Additionally, as it is explained in the following
section, the dynamic nature of the DSE approach
effectively ignores the introduced complexity of these
controlling statements based on the actual execution.

Figure 2. The proposed proccess

C. Proposed Framework

The present approach targets on traditional (method
level) mutation operators. The chosen operators for the
succeeding case study are those presented and briefly
described in Table I. These were chosen based on the
propositions made by Wong and Mathur [19] and Offutt et
al. [20]. Similar mutation operators are also utilized in
many empirical studies and tools such as [1], [2], [21] and
[22]. An overview of the proposed approach is given in
Figure 2. The process starts by generating the schematic
meta-program version of the program under test.
Additionally, the mutant schemata generation component
produces a static structure of the call and control flow
graphs and a list of the introduced mutants with their
respective program statements. These two artifacts are then
passed to the test generation module. This module
iteratively selects a mutant as a target, performs DSE on
the schematic meta-program and produces some test cases.
These test cases are then passed to the test executor which
determines their execution path, the mutants that the test
cases can infect and the mutants that are killed. Then the
process continues with the next iteration. Finally, after
reaching a predefined number of iterations or time limit
the process ends and reports the produced test cases and
the achieved mutation score.

IV. MUTATION BASED DYNAMIC SYMBOLIC EXECUTION

A. Dynamic Symbolic Execution

Dynamic symbolic execution forms a dynamic
adaptation of the traditional static application of symbolic
execution [8]. Unlike the traditional approach of statically

--

--

Mutant Schemata

--

--

...

Mutants-CFG

Mutation

Coverage Report

Schematic

Meta-program

Test Suites

Program under test

Test Executor

Dynamic Symbolic

Execution

Path-Mutant Selection

Tester

selecting candidate paths, producing the path conditions
and then trying to find the sough tests, the DSE is directed
and approximated by the actual program execution. This is
done by performing symbolic execution simultaneously to
the actual execution (following symbolically the actual
execution path and dynamically building the path
condition). The path condition is maintained during the
actual program execution based on a monitor mechanism.
This mechanism updates appropriately the path condition
whenever the course execution encounters a decision
program point. Next, using the generated symbolic path
constraints and by iteratively negating each one of them it
generates new inputs that will traverse a different
execution path. Gradually, the process continues until it
explores all the feasible program paths. This approach is
impractical and thus heuristics should be employed [10],
[12] and [13] in order to guide the search towards
exploring only a small, relevant and representative set of
paths from the whole path space. More details on the
utilization of DSE are given in [5], [11] and [13].

The benefits of employing DSE over the static
symbolic execution is that the complex expressions or
uncontrolled program fragments can always be
approximated based on the actual program values
encountered during the program execution [5]. This means
that the path conditions do not necessarily express
precisely all the performed operations or program
decisions of a traversed path. Conversely, this leads to an
under-approximation of the set of feasible paths which is
appropriate for testing [10]. Thus, a trade-off between
precision and efficiency has to be paid. One additional
benefit identified during the present study was that by
selecting candidate paths dynamically, one can effectively
ignore some infeasible ones, caused by flag or internal
variables. As the values of these variables depend solely
on the traversed path, it is guaranteed that trying to negate
them will result in an infeasible path. By abstracting the
symbolic states and expressions towards the actual
execution, these infeasible paths can be easily identified
and hence can be ignored. It is this ability of the DSE
technique that the present approach takes advantage of in
order to efficiently prune away the parameterized mutants
(irrelevant to the targeted one) and their evaluations.

B. Mutation Dynamic Symbolic Execution

Employing the DSE for producing mutation based test
cases faces many challenges mainly due to the mutation
testing special characteristics. First, the vast number of
mutated program versions that need to be produced and
executed. This forms a research issue for mutation [23]
which falls outside the scope of the present research.
Despite this, the additional overheads of DSE’s
requirements can result in a big burden because of: a) the
required instrumentation of the monitor mechanism and b)
the execution of the mutated program versions. These two
facts should normally increase considerably the mutant
production, compilation and execution costs. This should
constitute a major overhead. Second, the effective
handling of mutant necessity and sufficiency constraints

Figure 3. Incremental selection of tests-candidate program states

under the dynamic nature (the program conditions are built
dynamically) of DSE must be addressed. Third, scalability
issues of the approach must also be addressed. Recall DSE
targets on finding all feasible program paths, a quite costly
and often impossible task. Its application in combination
with the vast number of mutanted program versions should
result in prohibitive levels of effort or cost.

The proposed approach in order to be practical tries to
handle all the above mentioned difficulties in an efficient
way. It adopts a state of the art technique, mutant
schemata, in order to produce and execute the mutated
program versions under either the DSE mode or actual
mode, efficiently. By utilizing the schemata DSE
overheads are kept to a minimum, since only one meta-
program is produced. Additionally, a considerable
reduction on the required execution time can be achieved,
when compared to the separate compilation process [22].
Furthermore, the special form of the utilized schemata, as
described in the above section, embeds all the mutants’
necessity conditions into the program’s structure. The
reason for doing so is twofold. First, it results in the
incorporation of the mutants’ necessity conditions into the
dynamically built path ones, fact that makes possible the
killing of mutants based on DSE. Second, by doing so it
becomes possible to execute all mutants with one
execution run [14] and thus record the infected mutants
efficiently. Then, the process can continue by executing
according to strong mutation only those mutants that have
been left alive and are able to infect the program state (the
rest can safely be ignored). This results in major execution
savings. Additionally, the benefits of DSE, such as the
simplifications based on the actual program values, also
apply on mutant conditions (cases of arithmetic operators
or method calls i.e. *, %, / power).

C. Proposed Approach

The practicality of the proposed approach is mainly
based on the utilized heuristics for the efficient handling of
the mutant’s reachability, necessity and sufficiency
conditions. The proposed approach utilizes in an
incremental fashion the shortest path heuristic, which was
found to be a quite effective one in the context of branch
coverage [12], [13]. Informally the approach follows the

procedure of Figure 3. The approach tries to incrementally
drive the search of the path space and program states
towards those paths that reach, infect and expose the
targeted mutants. In Figure 3 the outer box represents the
whole program state population, the black point indicate
the generated states while the neighborhoods (clouds)
represent the space elimination to hit the targets.

The proposed approach works by selecting the next
branching point to be negated based on its minimal
distance from the targeted mutant statement. Specifically it
operates on three conditions-modes: a) into trying to reach
the mutant, b) trying to infect and c) trying to propagate. If
the selected test does not reach the mutant statement (case
a) the utilization of the minimum distance approach is
straightforward. If the mutant is reached (case b) it selects
and negates the mutant “simple” necessity constraint (at
the mutant position level), the combined one (at the mutant
statement level) and the original one. In case of non
symbolic constraints (involve only local variables) a
random flipping point is selected.

Mutation Based Dynamic Symbolic Execution
Required: Set T (initial test cases)

 Meta-CFG (the Control flow graph of the meta-program)
 MutantSet (set of introduced mutants)

 k,z –value limits

1. Prodedure main

2. Order MutantSet in an ascending order of distances from the
program’s input to the mutant statements

3. TargetSet = MutantSet
4. for repeated times //algorithm repeatitions

5. for each mutant m ∈ TargetSet
6. index = 0

7. while m is live AND index < k // k tries

8. t = NextTest(m)
9. f = Flip(t, m)

10. run and produce path condition pc //DSE

11. negate the flipping point(s) f and produce path condition(s) pc’
12. if pc’ is solvable

13. produce a new test case t

14. add t on T set
15. execute mutants against t, record execution path

 and infected mutants

16. remove killed mutant from TargetSet
17. end if

18. index ++

19. end while
20. end for

21. end for

22. Procedure NextTest(m)

//Selects the next test t to proceed with DSE
23. Select all tests T’ from set T that traverse different program paths

24. put T’ on a priority queue that prioritizes tests based on the following
criteria a) infect m (highest priority) and b) according to their

minimum distance from the m’s vertex (higher priority on the

closest to the mutant vertex traversed paths).
25. return the next test from the priority queue

26. Procedure Flip(t, m)

//Selects the flipping point f of test t in order to kill mutant m

27. if m is infected
28. select the z closest points after the mutated vertex

29. if m is reached

30. select the mutant statement(s)
31. if m is not reached

32. select the closest point to the mutated vertex

To make this more understandable consider the case of (a
+ b > k → a + abs(b) > k). Suppose that this mutant has
been exercised with the data a=15, b = 2, k = 0. The
process at first tries the condition (b < 0) (produced by the
mutant position level condition) and produces the test a =
15, b = -10, k = 0. This test infects the mutant at this
position level but not at the statement level. Then, it tries
to infect at statement level, i.e. (b < 0) ˄ (a + b > k) ˄ (a
+ abs(b) ≤ k). As this is found to be infeasible, the process
continues with the original statement i.e. (b < 0) ˄ (a + b
≤ k) and produces the test a = -15, b = -10, k = 0. Finally,
it repeats the negation at statement level, i.e. (b < 0) ˄ (a
+ b ≤ k) ˄ (a + abs(b) > k) and produces the sought test
a=5, b = -10, k = 0.

Finally if the targeted mutant has been reached and
infected but not exposed (case c) the process selects and
negates z branching points after the mutant statement. The
whole process is performed k times before moving to the
next target mutant. This is an essential cost effective limit
enforced by the presence of equivalent mutants, infeasible
paths and incompleteness of the technique.

This approach, despite being an approximation
technique, in practice can be quite effective even by
employing small k and z values. This is attributed to the
collaterally killed mutants, i.e., mutants that are killed
without being targeted. Thus, if the technique fails to kill a
mutant, it still has many chances to kill it by targeting on
the remaining alive ones. Furthermore, as the process
produces new tests by using existing or random ones, it
becomes possible for the tester to assist the process by
adding some manually produced test cases. These can then
be utilized for the purposes of killing additional mutants.

Finally, a complete view of the proposed approach is
given by the Mutation Based Symbolic Execution
algorithm which utilizes the concepts and techniques
described in this and the previous sections.

V. EVALUATION STUDY

This section describes an empirical evaluation of the
proposed approach on a selected set of widely used in the
literature programs. The following case study has been
performed utilizing an automated framework for the test of
java programs. This framework has been implemented on
top of the jFuzz tool [24], by incorporating the suggestions
made in the present paper. Although the utilized
programming language is java, the primary examined aim
is the method level mutation operators [22], described in
Table I. Thus, the results should also hold for procedural
languages, such as C, too. The following experimental
study provides some evidence indicating the applicability,
the effectiveness and efficiency of the proposed approach.

A. Experimental Regime

The experiment described in this section uses a
prototype implementation of the proposed approach on a
set of five extensively used programs in experimental
studies in the context of mutation. Details of these
programs are given in Table II. The first of the selected

programs (Tritype) has been widely used in test data
generation approaches of mutation [7], [16], [25] (see
related work section). The second one (remainder) forms
an implementation that calculates the remainder of a
division procedure. The last four of the selected programs
are part of the well known Siemens program suite [26].
These programs (Replace, Tcas and Schedule) have been
used in most of the recent experimental studies of mutation
i.e. [1], [2] and [23]. For the purposes of the present
experiment these programs were rewritten in java (the
programming language handled by the prototype tool)
taking special care on keeping unaffected the control flow
structure and the program computations. This is a common
practice in testing experiments also undertaken in [19] and
[27]. Using the selected programs an experimental study
was undertaken in order to determine the benefits of
employing the proposed approach. To this extend, two
measures were employed, one representing the method’s
effectiveness i.e., the ability of the produced tests to kill
most of the mutants and one representing the method’s
cost, i.e., the process required amount of effort to achieve
specific levels of coverage. The experiment and the
obtained results were based on the following parameters.
A k-value (line 7 of the algorithm) equal to five, two
repeated times (line 4 of the algorithm) and z-value equal
to all the unique propagation points of each case (line 28
of the algorithm).

To investigate the ability of the proposed approach to
produce mutation based test data the number of the killed
mutants was measured per chosen program. This number
was then compared with an estimate to the number of all
killable (non equivalent) mutants. The identification of
equivalent mutants form a well known undecidable
problem [28] and their manual evaluation require
extensive analysis [21] resulting in huge amount of effort.
Thus, in order to complete the present experiment with
reasonable resources the number of equivalent mutants
was estimated based on the number of the killed mutants
by the accompanied with the programs test suite (the
Siemens programs have a comprehensive accompanied
test suite, see the [29] for details about the construction of
these tests). This approach is common on mutation testing
experiments, also undertaken on most of the recent
experimental studies of mutation testing, see [23]. It is
noted that for the Tritype and Remainder programs the
equivalent mutants were detected based on manual
analysis, thus, measuring precisely their number.

The method’s required cost on achieving specific
levels of coverage is measured based on the number of the
algorithm’s iteration cycles. This number reflects the
application cost of the approach as it is proportional to the
number of calls to the utilized constraint solver. The
number of constraint solver calls forms a representative
effort estimate [10], as the time taken by the various
constraint solvers dominates the entire process [10] (the
time spend by the strategies on selecting nodes or mutants
constraints to be solved is negligible) and also this time
may vary significantly between different utilized solvers.
An additional cost factor, introduced by the mutation

testing process, is related to the required number of the
mutant executions in order to determine the killed mutants.
A similar cost factor has been considered in [30]. The
present approach tries to reduce this cost factor efficiently
as described on Section IV.B.

B. Experimental Results

This section reports results on performing mutation
testing based on the selected program set. Figure 4
presents the cost and effectiveness measures of the
proposed approach for the six employed programs. The
graphs are plots of the number of killed mutants against
the required number of iterations. The horizontal lines at
the top of the graphs represent an estimate of the killable
mutants’ number (killed mutants from the accompanied
test suites). From these plots it can be observed that a
significant number of the killable mutants can be killed by
requiring only a relatively small number of the algorithm
iteration cycles. In all the examined cases the percentage
of killed mutants over the estimated killable ones is above
the 85% level (Replace 86.5%, Tcas 100%, Schedule 91%,
Remainder 97.5 and Tritype 96.8%). Additionally, it can
be observed that the increase of the killed mutants
converges significantly at the beginning of the process and
gradually falling thereafter. The slow convergence of the
process after a number of iteration cycles should be
attributed to the existence of equivalent and hard to kill
mutants. Aiming at those hard to kill mutants requires
more iteration cycles, resulting in a considerable amount
of additional effort.

The existence of equivalent mutants imposes the need
for additional attempts of the utilized approach in order to
be killed. As this cannot be done, these attempts fall
astray. Moreover, as the equivalent mutants’ number
remains constant for all the process iteration cycles and the
number of killable mutants decreases, the percentage of
equivalent to killable ones gradually increases [21]. Thus,
the effect of the equivalent mutants on the required process
effort gradually increases fact that is evident on the plots
of Figure 4. Considering the killable mutants, it can be
observed that some mutants remain alive after the utilized
number of iterations. An inspection analysis on the live
killable mutants revealed that the process achieved to
infect them, while it failed to make these changes
observable to the program’s output (failed to propagate).

TABLE II. SELECTED PROGRAMS

Program Description
Lines of

Code

Number of

mutants

Tritype
Triangle

classification
40 314

Remainder
Remainder

evaluation
50 324

Replace
Pattern matching

and substitution
500 937

Tcas

Trafic collision

avoidance system
120 213

Schedule Process scheduler 200 165

Figure 4. Mutants killed VS iterations number by the Mutation-DSE

TABLE III. APPLICATION RESULTS

Program
½ Iterations All Iterations

Killed

Mutants

 Solver

Calls

No.

Executions

Killed

Mutants

Solver

Calls

No.

Executions

Tritype 214 1012 500 216 1588 514

Remainder 234 2749 435 235 5498 741

Replace 514 14740 19400 520 30238 80471

Tcas 136 1733 3729 137 3705 4720

Schedule 94 714 293 94 949 303

C. Mutant Execution Cost

A major part of the mutation testing overheads is due
to the execution of the candidate set of mutants. As the
dynamic approaches rely on many program executions
their use on mutation is escalated due to the required high
number of actual executions (vast number of mutants).
Table II measures the overheads encountered by the
proposed approach. Additionally, Table II summarizes the
obtained results, recording the number of killed mutants,
the number of calls to the underlying solver and the
number of mutant executions for the undertaken iterations
(½ of all undertaken iterations and the total as recorded in
the graphs of Figure 4), for the selected set of programs.

From these results it can be observed that only a small
number of mutants can be killed in the second half part of
the employed iterations, while the number of mutant
executions and the number of calls to the constraint solver
(cost factors) increase significantly. It is noted that the
number of mutant executions in the cases of Replace and
Tcas increase faster than the number of constraint solver
calls, due to the existence of mutants that are infected but
not killed by the produced test cases.

VI. RELATED WORK

Over three decades have gone by since the initial
suggestions of mutation [3] and [4] During this period, a
considerable amount of research has been carried out as
stated in the survey conducted in [23]. Despite this,
particular aspects of mutation, such as the automated
generation of test cases, have barely been researched. This
fact is common to all the structural testing methods, where,
only the last years substantial progress is recorded. Thus,
the application of these advances to mutation testing form
an active research area that also motivated the suggestions
made in the present paper.

Most of the progress in the area of generating test cases
according to mutation has been carried out by the work of
DeMillo and Offutt [7] in a method named Constraint
Based Testing (CBT). As discussed in the previous
sections the CBT approach tries to model the reachability,
necessity and sufficiency conditions into algebraic
constraint systems. Then these algebraic systems are
solved in order to produce the sought test data. This is
achieved based on the use of techniques such as symbolic
evaluation, constraint based testing and domain reduction.
In this approach a static form of symbolic execution is
employed. This results into problems mainly due to the
static nature of the symbolic evaluation such as the
handling of arrays, loops, non linear expressions and the
path explosion problem. To overcome these difficulties a
dynamic approach needs to be employed [17], such an
approach is the one proposed in the present paper.

 Another approach based on symbolic execution and
the selection of paths is the work presented in [16]. In this
work an augmented graph called enhanced control flow
graph is constructed. This graph embeds all the mutant
conditions into its arcs providing a suitable test model for
producing the required test cases. By employing an
efficient path selection heuristic on this augmented graph,
one can achieve high mutation coverage with limited
resources [16]. Additionally, cost effective strategies can
also be employed thus providing decisive advantages
compared with the CBT method.

Attempts on adopting dynamic test data generation
approaches such as evolutionary testing have also
appeared in the literature. Ayari et al. [25] proposed an
evolutionary approach for the generation of mutation test
data. In this work a search based minimization technique
was employed in order to generate test data. The chosen
techniques were some metaheuristic search methods
guided by a fitness function that measured the closeness of
reaching the targeted mutants. Another evolutionary based
approach is that of Braudry et al. [30]. In this work genetic
algorithms were employed in order to augment an existing
test suite according to mutation. The fitness calculations
were performed based on the achieved mutation score. The
drawback of these two methods is that it do not guide the
search method by quantitatively measuring the closeness
of killing specific mutants. This fact makes the search not
only inefficient but also ineffective for killing many
mutants. Nevertheless, these two approaches employ a

different philosophy to the one presented here. However,
such a comparison falls outside the scope of the present
research and forms a matter of future research.

Approaches using dynamic test generation methods for
mutation are quite limited. Perhaps the only, to the authors
knowledge, approach is the work in [14] on weak
mutation. In this attempt, a special form of mutant
schemata is employed in order to reduce the mutant killing
problem (weak mutants) into a covering braches one.
Then, by employing existing automated tools for structural
testing, these mutants-branches can be effectively killed-
covered. The present approach is based on these ideas and
extends them in order to target on a more demanding
criterion such as strong mutation. Additionally, the present
research specifically deals with some of the special
characteristics of mutation as described in Section IV.
Further, the present research also considers the method’s
efficiency.

Considering the test data generation approaches in
general, applied on different testing contexts e.g. branch
testing, many more attempts appear in the literature. The
most relevant to the present one are those that utilize DSE
[5] and [11] and have already been discussed in the
previous sections. In [12] and [13], a shortest path
heuristic has been employed in order to efficiently perform
branch testing, with promising results. In [10] some
additional heuristics inspired by the fitness functions used
in evolutionary testing [9] are effectively adopted for
guiding the DSE process.

Finally, various tools and techniques have been
proposed by researchers based on either pure symbolic
execution or pure dynamic approaches such as search
based testing [9]. In [31] a symbolic execution system for
testing java programs is proposed. This approach uses
symbolic execution only at specific program features
selected by the tester. Then by using actual program
executions it is achieved to both effectively “set-up” the
symbolic execution environment and “proceed” with the
irrelevant to the interest features program parts.
Additionally, an automated and quite powerful tool that
incorporates evolutionary testing was suggested by
Tonella [32]. Further, in the work of Lakhotia et al. [33] a
technique that adapts search based optimization for the test
of programs containing pointers and dynamic data
structures has been proposed.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a novel technique for automating
the generation of mutation based test cases. The technique
proposed here makes use of state of the art techniques such
as mutant schemata and dynamic symbolic execution in
order to produce high quality test data. The philosophy
behind the proposed approach is to use mutation analysis
for producing tests instead of assessing them only. Thus,
mutation acts as a yardstick towards producing the sought
tests. Additionally, the present approach automates
efficiently the mutant evaluation process in order to
minimize the mutation testing overheads. This is achieved
by combining two special forms of mutant schemata, one

for weak and one for strong mutation, resulting in major
execution savings as the experimental results show.

The suggestions made in this paper have been
implemented into an automated framework for java. The
performed experimental study constitutes one of the few
ones (see related work section) and also the largest one in
the context of mutation based test data generation. The
experimental results obtained in this paper suggest that the
proposed approach can produce test cases of high quality
as they are able to kill a remarkable number of the
introduced mutants. Evidence, is also provided to support
the argument that these tests can be produced at a
relatively low cost and that the proposed approach can be
also applicable to larger cases. Further, by utilizing all the
benefits of the DSE technique (handling of pointers,
arrays, loops, non linear expressions and the path
explosion problem), the present approach comprises a
major improvement over the existing techniques.

The conducted study has also revealed some interesting
points–observations concerning test data generation and
mutation testing. The first observation is that the existence
of collaterally killed mutants (mutants that are killed when
targeting to others) helps to overcome the faced difficulties
of killing specific mutants. Thus, if the process fails to kill
a non equivalent mutant (when targeting to it), it still has a
chance of killing it by targeting to others. The second
observation concerns some benefits of aiming at
equivalent mutants. Generally, it is believed that attempts
to kill equivalent mutants result in a waste of effort. While
this being true, the attempts to kill them may result in
killing, reaching or infecting other mutants collaterally.
Additionally, the incremental nature of the proposed
approach (targeting first at mutant infection) may result in
producing test cases capable of infecting equivalent
mutants. These tests are redundant in respect of strong
mutation but not in respect of weak and for this reason
they are of additional value. Furthermore, if the utilized
approach fails to kill some non-equivalent strong mutants
it may still be able to kill the respective weak ones (finds
tests able to infect the mutant, but fail to propagate to the
program’s output) resulting in some additional test cases
(possibly valuable). Moreover, if the produced tests are
able to kill all non equivalent weak mutants, these tests,
under the use of specific mutant operators [34] can
subsume various structural criteria such as the multiple
condition coverage criterion [34]. It is noted that this
argument does not hold for strong mutation because of the
existence of strongly equivalent mutants. The last
observation obtained from this experiment suggests that by
employing a mixed approach of symbolic execution and
random testing (find data up to certain points and then
continue with random or actual execution) when targeting
on mutants, results in finding many feasible paths
collaterally. Thus, most of the mutants have been reached
from the previously examined mutants reducing the
required effort to reach them.

In future some extensions are also being planned.
These are the effective incorporation of additional
heuristics dealing with the path explosion and the

equivalent mutant problems. Specifically, the
incorporation of appropriate fitness evaluations [10] and
search based testing [9] is currently under research.
Additionally, series of experiments are also scheduled in
order to efficiently incorporate heuristics for the
identification of equivalent mutants such as [28] and
potential strategies to avoid them along the lines suggested
by Schuler and Zeller [21].

ACKNOWLEDGMENT

This work is supported by the Basic Research Funding
(PEVE 2010) program of the Athens University of
Economics and Business.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche, "Is mutation an
appropriate tool for testing experiments?," in Proceedings of the
27th international conference on Software engineering, St. Louis,
MO, USA, 2005, pp. 402-411.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, "Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria," IEEE Trans. Softw. Eng., vol. 32, pp. 608-624, 2006.

[3] R. G. Hamlet, "Testing Programs with the Aid of a Compiler,"
IEEE Trans. Softw. Eng., vol. 3, pp. 279-290, 1977.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test
Data Selection: Help for the Practicing Programmer," Computer,
vol. 11, pp. 34-41, 1978.

[5] K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit testing
engine for C," in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering,
Lisbon, Portugal, 2005, pp. 263-272.

[6] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, "Feedback-
Directed Random Test Generation," in Proceedings of the 29th
international conference on Software Engineering, 2007, pp. 75-84.

[7] R. A. DeMillo and A. J. Offutt, "Constraint-Based Automatic Test
Data Generation," IEEE Trans. Softw. Eng., vol. 17, pp. 900-910,
1991.

[8] J. C. King, "Symbolic execution and program testing," Commun.
ACM, vol. 19, pp. 385-394, 1976.

[9] P. McMinn, "Search-based software test data generation: a survey:
Research Articles," Softw. Test. Verif. Reliab., vol. 14, pp. 105-
156, 2004.

[10] T. Xie, N. Tillmann, P. d. Halleux, and W. Schulte, "Fitness-
Guided Path Exploration in Dynamic Symbolic Execution," in the
39th International Conference on Dependable Systems and
Networks, 2008.

[11] P. Godefroid, N. Klarlund, and K. Sen, "DART: directed
automated random testing," in Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, Chicago, IL, USA, 2005, pp. 213-223.

[12] J. Burnim and K. Sen, "Heuristics for Scalable Dynamic Test
Generation," in Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering,
2008, pp. 443-446.

[13] C. Cadar, D. Dunbar, and D. Engler, "KLEE Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs," in OSDI, 2008.

[14] M. Papadakis, N. Malevris, and M. Kallia, "Towards Automating
the Generation of Mutation Tests," in AST 2010, Cape Town,
2010.

[15] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil, "On Two
Problems in the Generation of Program Test Paths," IEEE Trans.
Softw. Eng., vol. 2, pp. 227-231, 1976.

[16] M. Papadakis and N. Malevris, "An Effective Path Selection
Strategy for Mutation Testing," in Proceedings of the 16th Asia-
Pacific Software Engineering Conference, 2009.

[17] A. J. Offutt, Z. Jin, and J. Pan, "The dynamic domain reduction
procedure for test data generation," Softw. Pract. Exper., vol. 29,
pp. 167-193, 1999.

[18] R. H. Untch, A. J. Offutt, and M. J. Harrold, "Mutation analysis
using mutant schemata," in Proceedings of the 1993 ACM
SIGSOFT international symposium on Software testing and
analysis, Cambridge, Massachusetts, United States, 1993, pp. 139-
148.

[19] W. E. Wong and A. P. Mathur, "Reducing the cost of mutation
testing: an empirical study," J. Syst. Softw., vol. 31, pp. 185-196,
1995.

[20] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, "An
experimental determination of sufficient mutant operators," ACM
Trans. Softw. Eng. Methodol., vol. 5, pp. 99-118, 1996.

[21] D. Schuler and A. Zeller, "(Un-)Covering Equivalent Mutants,"
Paris, France, 2010.

[22] Y.-S. Ma, J. Offutt, and Y. R. Kwon, "MuJava: an automated class
mutation system: Research Articles," Softw. Test. Verif. Reliab.,
vol. 15, pp. 97-133, 2005.

[23] Y. Jia and M. Harman, "An Analysis and Survey of the
Development of Mutation Testing," IEEE Transactions of Software
Engineering, vol. To appear, 2010.

[24] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, "jFuzz: A
concolic whitebox fuzzer for Java," in NFM, 2009.

[25] K. Ayari, S. Bouktif, and G. Antoniol, "Automatic mutation test
input data generation via ant colony," in Proceedings of the 9th
annual conference on Genetic and evolutionary computation,
London, England, 2007, pp. 1074-1081.

[26] H. Do, S. Elbaum, and G. Rothermel, "Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact," Empirical Softw. Engg., vol. 10, pp. 405-435,
2005.

[27] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and
M. J. Harrold, "MATRIX: Maintenance-Oriented Testing
Requirements Identifier and Examiner," in Proceedings of the
Testing: Academic \& Industrial Conference on Practice And
Research Techniques, 2006, pp. 137-146.

[28] A. J. Offutt and J. Pan, "Automatically Detecting Equivalent
Mutants and Infeasible Paths," Software Testing, Veri and
Reliability, vol. 7, pp. 165-192, 1997.

[29] M. Harder, J. Mellen, and M. D. Ernst, "Improving test suites via
operational abstraction," in Proceedings of the 25th International
Conference on Software Engineering, Portland, Oregon, 2003, pp.
60-71.

[30] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. L. Traon, "Genes
and Bacteria for Automatic Test Cases Optimization in the .NET
Environment," in Proceedings of the 13th International Symposium
on Software Reliability Engineering, 2002, p. 195.

[31] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, "Combining unit-level
symbolic execution and system-level concrete execution for testing
nasa software," in Proceedings of the 2008 international
symposium on Software testing and analysis, Seattle, WA, USA,
2008, pp. 15-26.

[32] P. Tonella, "Evolutionary testing of classes," SIGSOFT Softw.
Eng. Notes, vol. 29, pp. 119-128, 2004.

[33] K. Lakhotia, M. Harman, and P. McMinn, "Handling dynamic data
structures in search based testing," in Proceedings of the 10th
annual conference on Genetic and evolutionary computation,
Atlanta, GA, USA, 2008, pp. 1759-1766.

[34] J. Offutt and J. Voas, "Subsumption of Condition Coverage
Techniques by Mutation Testing," Dept. of Information and
Software Systems Engineering, George Mason Univ., Fairfax, Va.,
1996.

