
Ukwikora: Continuous Inspection for Keyword-Driven Testing
Renaud Rwemalika

University of Luxembourg
Luxembourg

renaud.rwemalika@uni.lu

Marinos Kintis
University of Luxembourg

Luxembourg
marinos.kintis@uni.lu

Mike Papadakis
University of Luxembourg

Luxembourg
michail.papadakis@uni.lu

Yves Le Traon
University of Luxembourg

Luxembourg
yves.letraon@uni.lu

Pierre Lorrach
BGL BNP Paribas
Luxembourg

pierre.lorrach@bgl.lu

ABSTRACT
Automation of acceptance test suites becomes necessary in the
context of agile software development practices, which require
rapid feedback on the quality of code changes. To this end, com-
panies try to automate their acceptance tests as much as possible.
Unfortunately, the growth of the automated test suites, by several
automation testers, gives rise to potential test smells, i.e., poorly
designed test code, being introduced in the test code base, which in
turnmay increase the cost of maintaining the code and creating new
one. In this paper, we investigate this problem in the context of our
industrial partner, BGL BNP Paribas, and introduce Ukwikora, an au-
tomated tool that statically analyzes acceptance test suites, enabling
the continuous inspection of the test code base. Ukwikora targets
code written in the Robot Framework syntax, a popular framework
for writing Keyword-Driven tests. Ukwikora has been successfully
deployed at BGL BNP Paribas, detecting issues otherwise unknown
to the automation testers, such as the presence of duplicated test
code, dead test code and dependency issues among the tests. The
success of our case study reinforces the need for additional research
and tooling for acceptance test suites.

CCS CONCEPTS
• Software and its engineering→ Acceptance testing.

KEYWORDS
Continuous Inspection, Test Smell, Keyword-Driven Testing, Clones

ACM Reference Format:
Renaud Rwemalika,Marinos Kintis, Mike Papadakis, Yves Le Traon, and Pierre
Lorrach. 2019. Ukwikora: Continuous Inspection for Keyword-Driven Test-
ing. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3293882.3339003

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3339003

1 INTRODUCTION
As companies move towards more agile software development
practices, the need for rapid and reliable feedback on the quality of
every code change becomes of unparalleled importance. To achieve
such rapid feedback, companies invest in the creation of automated
test suites, across all testing levels, that guard the code base against
the insertion of software defects.

Automating acceptance tests (or end-to-end tests), i.e. testing
the system as a whole, usually from its graphical or user-facing
interface, ensuring that the system meets its requirements, remains
a difficult and error prone task. Automated acceptance test suites
faces two main challenges: the first one is the creation of the tests
themselves, and, secondly, maintaining the test suite as the appli-
cation under test evolves [1]. Different techniques aim at tackling
these issues. Capture/replay approaches, for instance, make the
generation of tests easy, at the expense of their maintainability.
On the other hand, writing automation scripts comes with a more
expensive test creation process but decreased maintenance cost [4].

While the maintenance cost of automation scripts is lower, many
factors might hinder the benefits of such approaches, with the most
prevalent one being the introduction of test smells, i.e. poorly de-
signed test code, in the test code base. Indeed, previous works[2, 7]
suggest that the presence of test smells has a strong negative im-
pact on test code comprehension and maintenance. Unfortunately,
tooling allowing automation testers to detect such smells in their
acceptance test suites remains scarce.

This paper presents Ukwikora1, a tool that aims at filling this gap.
It inspects test code developed using Robot Framework [5], an au-
tomation framework for acceptance testing, utilizing the Keyword-
Driven testing (KDT) approach. The reason for focusing on this
methodology is that our industrial partner, BGL BNP Paribas, has
adopted KDT in its effort to migrate from manual to automated ac-
ceptance testing. Thus, our tool focuses on supporting automation
testers in creating and maintaining such tests.

More precisely, Ukwikora aims at tackling the lack of static
analysis tooling for KDT test suites that automation testers at BGL
BNP Paribas, and at other companies, face. In our previous work
[6], we analyzed the evolution of such test suites and identified
several challenges that impact test maintenance. Specifically, as the
KDT test suites evolve, they become a complex software artifact,
suffering from the same problems as typical code bases do, e.g., the
presence of code duplication and dead code. Ukwikora addresses

1Availble at https://github.com/kabinja/ukwikora-inspector

https://doi.org/10.1145/3293882.3339003
https://doi.org/10.1145/3293882.3339003
https://github.com/kabinja/ukwikora-inspector

ISSTA ’19, July 15–19, 2019, Beijing, China Renaud Rwemalika, Marinos Kintis, Mike Papadakis, Yves Le Traon, and Pierre Lorrach

Figure 1: Main components of Ukwikora

such challenges by continuously analyzing the test code for test
smells and reporting the results back to the testers.

2 TOOL DESCRIPTION
Ukwikora takes as input the Robot Framework test suites written
in the Robot Framework syntax, see Source code collection compo-
nent in Figure 1. Leveraging on the hierarchical structure of the
keywords, each test can be represented as an ordered, directed,
acyclic tree T with nodes N (T) and edges E(T) ⊆ N (T) × N (T).
The nodes N (T) represent keywords and each edge E(T) between
two keywords denotes a “step”: the parent keyword has the child
keyword as a step. Since keywords can be used multiple times, by
more than one tests, the test suite considered as a whole can be
represented as a directed acyclic graph (DAG), G , where each node
is defined as one of:

• Test Cases Entry point into the graph, called by the frame-
work to be executed. Each test case considered individually
is the root of a tree T .

• User Keywords Internal nodes of the graph, they are cre-
ated by the user, hence their name, to provide modularity and
explainability to the test. Each User Keyword is composed
of steps, which are calls to a User Keyword or to Library
Keyword.

• Library Keywords Represent the exit point of the graph to
perform concrete actions on the SUT, or the leaves of the tree
representation of a single test. Provided by the framework
or external libraries, they perform concrete actions, such as
interactions with the SUT, logging or assertions.

We use the generated DAG as an intermediate representation
of the test code to perform our analysis, see Test code analysis
component in Figure 1. The tool supports multi projects analysis
building a single graph for all the project while annotating each
node with the project it belongs to. This representation allows the
use of graph theory in order to generate metrics, detect violations,

Table 1: Clone types

Label Explanation

Type I
Identical keywords except for changes in whitespace, layout and
documentation. The clone detection algorithm tags a keyword pair as
Type I clones only in the case of an empty set of differences.

Type II

Keywords with a content syntactically identical except for step
arguments and return values. The clone detection algorithm tags a pair
as Type II clones only if the set contains differences of type update step
arguments and/or update step return values

Type III Superset of Type II clones, ignoring differences of type update step, add
step and remove step if the step belongs to the category logging.

Type IV

Keyword performing the same sequence of actions on the SUT,
regardless of the internal configuration of the tree. The clone detection
algorithm tags a keyword pair as Type IV clones if the sequences of
leaf nodes is strictly identical.

Figure 2: Projects Dependency Graph extracted from Uk-
wikora

duplicated test code and dead test code. Note that while the tool
targets the specific syntax of Robot Framework in this first version,
extracting the parsing module would allow to support different
syntax for KDT since all analysis are performed on the intermediate
representation of the language.

The results of the analysis are presented in a static website com-
posed of a series of dashboards providing information both at the
inter- and intra-project level, see Report generation component in
Figure 1. The content of the dashboards are defined with the help
of our partners at BGL BNP Paribas, who are already using the tool
in production.

In the remaining of this section, we present the different type of
analysis performed on the intermediate representation of the test
code base.

2.1 Projects Dependency Graph
To improve modularity and re-usability testers build generic li-
braries containing low level functionalities that can be reused by
different projects. The project dependency module of the tool pro-
vides a way to visualize dependencies between projects. The need
of this visualization originated from what we consider as weakness
of the Robot Framework language, namely, the way transitive de-
pendencies are managed. Unlike popular languages like Java, C++
or Python, when a file is loaded by another one, all its dependencies
are loaded and made visible as well.

Ukwikora: Continuous Inspection for Keyword-Driven Testing ISSTA ’19, July 15–19, 2019, Beijing, China

Figure 3: Percentage of duplicated lines extracted from the
Summary Page of Ukwikora

Output. The dependency graph page of the tool presents a com-
plete project dependency graph, allowing the tester to assess the
complexity of the test suites as well as detecting issues such as
cyclic dependencies. Furthermore, as shown in Figure 2, the graph
can become complex and difficult to analyze, therefore in each
project page, we can observe a graph of its dependencies as well as
projects depending on it.

2.2 Project Statistics
One of the criteria often linked to maintenance effort is the com-
plexity of a project. The more complex a project and its components
are, the harder it is to make it evolve and maintain the test code
base. Detecting in time the growth of complexity of a project might
prevent it from becoming to hard to manage. To this end, we defined
a series of four metrics focusing on the complexity of the keywords
composing a project.

2.2.1 Keywords Size. The size of keyword k (Test Case or User
Keyword), is the number of nodes that exist on the subpath(s) from
k to all the leaf keywords (Library Keyword).

2.2.2 Keywords Level. The level of keyword k (Test Case or User
Keyword), is the maximum number of edges that exist on the sub-
path(s) from k to a leaf keyword (Library Keyword). According to
the philosophy of KDT, the higher the value is, the more abstract
the keyword. High level keywords define business processes while
low level keywords define concrete way of interacting with the
SUT.

2.2.3 Keywords Connectivity. The connectivity of a keyword is a
metric of re-usability among the keywords. Let keyword k belong
to a дraph G, then we calculate the connectivity of k by counting
the number of nodes (keywords) in the subpath(s) from the entry
points of G to k .

2.2.4 Test Cases Sequence Length. Let a test case TC be the root
of a tree T . The sequence length of a test case TC is the number of
concrete actions perform by the test, defined as the number of leaf
nodes of the tree T .

2.3 Duplicate Test Code Detection
Our previous work[6] detected a large amount of similar test code,
called clones. We observed that clones composed up to 30 percent
of the total amount of keywords, indicating that almost one third of
the test code written is duplicated. Clones create several difficulties

Figure 4: Number of lines of dead test code per project ex-
tracted from the Summary Page of Ukwikora

with inconsistencies during test code evolution generating bugs.
Furthermore, we observed that about 50 percent of the strictly sim-
ilar test code (clone Type I) evolve identically, indicating an added
cost in the maintenance cost completely avoidable by refactoring.

The clone detection algorithm is based on the fine grain changed
algorithm defined in [6] which extract the change set between two
keywords. The clone detection, ignoring changes impacting the
documentation and the name of the keyword, detects the changes
between the two keyword and assign a clone categories defined in
Table 1 for each pair of keyword. If a pair does not satisfy any of
the definitions, then the keywords are not clones.

Output. In the summary, see Figure 3, and in each of the project
pages, statistics about the amount duplicated test code are displayed
in order for the tester to evaluate the level of duplication of the test
code base. Furthermore, a test code duplication page offers a table
containing all the clones, clustered by group of similar keywords.
Each row contains information about the location of the keywords
duplicated, the type of clones and whether the clones are inter- or
intra-application.

2.4 Dead Test Code Detection
During refactoring and evolution activities, the call graph might
generate keywords not called by any other. In this work, we define
dead test code any User Keyword or Variable never called in a
step, in other words not connected to a Test Case, and therefore
never executed. While building the graph representation of the test
suite, the tool keeps track of all the callers and the callees for each
keyword are variable. Therefore, detecting detecting dead test code
only consist of flagging User Keywords and Variables for which no
callers were detected.

Output. For each project, the percentage of dead test code is
presented in term of lines of code, see Figure 4. Furthermore, a dead
test code page contains a table where each row contains information
about the location of the unused User Keywords and Variables in
order for the tester to be able to locate them and clean the test code.

2.5 Bad Practices and Error Detection
In its current version the tool allow to detect two types of bad prac-
tices and two error types. However, conducting an analysis of the
typical change patterns and the execution results, we intend to ex-
tend the set, specifically to address issues such as weak locators and
weak synchronization points causing false positive and flackiness.

ISSTA ’19, July 15–19, 2019, Beijing, China Renaud Rwemalika, Marinos Kintis, Mike Papadakis, Yves Le Traon, and Pierre Lorrach

2.5.1 Duplicated Keyword Error. If two keywords have the same
name in the same scope, it causes the program to crash during
runtime. However, since keyword resolution is a dynamic process
in Robot Framework, the error might be revealed after a lengthy
execution time, reducing the velocity of the team to detect and
address such bugs. During the analysis, while resolving names, the
tool checks for duplicate names.

2.5.2 Missing Definition. Identifies steps for which no keyword is
associated or a missing variable, therefore generating an edge in the
graph with no target node. Upon analysis of the results, we observe
that we have false positive for keywords generated dynamically and
therefore invisible during static analysis. This violation constitute
the only one generating false positive, however, relying to heavily
on dynamic loading might hinder the readability of the test suite
and therefore, the results are kept and displayed.

2.5.3 Transitive Dependency Warning. We call transitive depen-
dency warning a call to a keyword not defined in the same file or
in a direct dependency but in an indirect dependency as explained
in Section 2.1.

2.5.4 Duplicated Variable Warning. During the resolution of vari-
able names, if two variables have the same name and are defined in
Variable blocks, the frameworks loads the first variable it encoun-
ters and discards all subsequent definitions. This behavior might
lead to unexpected behavior, assigning wrong values to variables.

Output. All these errors and warning are grouped in a single ta-
ble, giving the level of the violation (warning or error) as well as the
location and its reason. Each row of the table contains information
about the location of the violation, the cause and its severity.

3 CASE STUDY
In this section, we present the results generated by Ukwikora on
the KDT code base at BGL BNP Paribas. The tool is integrated in
their production pipeline where the tool runs nightly (via Jenkins),
generating a report with its results. First, the tool checks out all
the test projects defined in its configuration file, analyzes them and
generates a report for the automation testers. The report is then
deployed on a server accessible by the members of the team. The
KDT test code is composed of 43 projects accounting for 44,521
lines of test code, 452 test cases and 4,448 keywords.

Figure 3 presents the percentage of clones across all projects.
With values of 11.4% for Type I clone and 27.6% for Type II clones,
we see that there is a high potential for refactoring. This result
corroborates previous studies, e.g. [3], once again highlighting the
need for better tooling for automation testers. However, we see that
Type III and Type IV clones remain low with values of 0.63% and
0.0% respectively. Interviewing the team and analyzing the results,
we see that a large portion of the duplicated code is due to the lack
of knowledge of the existence of the functionality in the code base,
especially in the case of cross-project code duplication.

Figure 4 shows the number of test code lines never executed
(dead code) for each of the 43 projects. The values go as high as
27.2% of dead code for a project of more than 7000 lines of test code.
The main reason for this, as explained by the testers after analyzing
the results, is due to refactoring activities. Indeed, in the absence of

static analysis tools, during refactoring deprecated keywords and
variables are often kept in fear of breaking production test code.

Ukwikora has been successfully used by both project managers
and automation testers. The former appreciate the clear KPIs pro-
vided by the report and the latter the information about the lo-
cations and causes of the issues reported allowing them to take
action if needed. Ukwikora provides a central point of reference and
communication between different roles at BGL BNP Paribas which
is one of the main goals of every continuous inspection tool.

To conclude our evaluation, we asked the users of Ukwikorawhich
were the main weaknesses or missing features of the tool. Accord-
ing to their answers, the main weaknesses reside in the static nature
of the results. Indeed, while the tool provides a snapshot of the
state of the code base, the lack of historical data makes it hard to
control the evolution of the KPIs.

4 CONCLUSION
This paper presents Ukwikora, a static analysis tool for continu-
ous inspection of Keyword-Driven test suites written in the Robot
Framework syntax. It analyzes the test code and provides informa-
tion about its health and potential test smells introduced. The tool
has been successfully deployed at BGL BNP Paribas and has been
used in production for a month, providing valuable feedback to
project managers and automation experts.

In the future, we plan on addressing the users’ requests by adding
historical data allowing to complement our analyses. Furthermore,
we plan to improve test smell detection. For this purpose, we are
conducting a systematic analysis on change patterns in the test
code in order to isolate bad practices leading to systematic fixes.

ACKNOWLEDGEMENT
This work is partially funded by Alphonse Weicker Foundation and
by the Luxembourg National Research Fund2.

REFERENCES
[1] Emil Alégroth, Robert Feldt, and Pirjo Kolström. 2016. Maintenance of Automated

Test Suites in Industry: An Empirical study on Visual GUI Testing. Information
and Software Technology 73 (feb 2016), 66–80. https://doi.org/10.1016/j.infsof.2016.
01.012 arXiv:1602.01226

[2] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (aug 2015), 1052–1094. https://doi.org/10.1007/s10664-
014-9313-0

[3] Thierry Lavoie, Mathieu Mérineau, Ettore Merlo, and Pascal Potvin. 2017. A case
study of TTCN-3 test scripts clone analysis in an industrial telecommunication
setting. Information and Software Technology 87 (jul 2017), 32–45. https://doi.org/
10.1016/j.infsof.2017.01.008

[4] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2013. Capture-
replay vs. programmable web testing: An empirical assessment during test case
evolution. In 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE,
272–281. https://doi.org/10.1109/WCRE.2013.6671302

[5] Robot RobotFramework. 2019. Introduction. http://robotframework.org/
[6] Renaud Rwemalika, Marinos Kintis, Mike Papadakis, Yves Le Traon, and Pierre

Lorrach. 2019. On the Evolution of Keyword-Driven Test Suites. In 12th IEEE
Conference on Software Testing, Validation and Verification (ICST). IEEE Computer
Society, Xi’an, 335–345. https://doi.org/10.1109/ICST.2019.00040

[7] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, andDenys Poshyvanyk. 2016. An empirical investigation
into the nature of test smells. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering - ASE 2016. ACM Press, New York,
New York, USA, 4–15. https://doi.org/10.1145/2970276.2970340

2references C17/IS/11686509/CODEMATES and AFR PHD 11278802

https://doi.org/10.1016/j.infsof.2016.01.012
https://doi.org/10.1016/j.infsof.2016.01.012
http://arxiv.org/abs/1602.01226
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1016/j.infsof.2017.01.008
https://doi.org/10.1016/j.infsof.2017.01.008
https://doi.org/10.1109/WCRE.2013.6671302
http://robotframework.org/
https://doi.org/10.1109/ICST.2019.00040
https://doi.org/10.1145/2970276.2970340

	Abstract
	1 Introduction
	2 Tool Description
	2.1 Projects Dependency Graph
	2.2 Project Statistics
	2.3 Duplicate Test Code Detection
	2.4 Dead Test Code Detection
	2.5 Bad Practices and Error Detection

	3 Case Study
	4 Conclusion
	References

