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Abstract 

 

Context:  Generally, mutation analysis has been identified as a powerful testing method. Researchers have shown that 

its use as a testing criterion exercises quite thoroughly the system under test while it achieves to reveal more faults than 

standard structural testing criteria. Despite its potential, mutation fails to be adopted in a widespread practical use and 

its popularity falls significantly short when compared with other structural methods. This can be attributed to the lack of 

thorough studies dealing with the practical problems introduced by mutation and the assessment of the effort needed 

when applying it. Such an incident, masks the real cost involved preventing the development of easy and effective to 

use strategies to circumvent this problem.  

Objective:  In this paper, a path selection strategy for selecting test cases able to effectively kill mutants when 

performing weak mutation testing is presented and analysed.  

Method:  The testing effort is highly correlated with the number of attempts the tester makes in order to generate 

adequate test cases. Therefore, a significant influence on the efficiency associated with a test case generation strategy 

greatly depends on the number of candidate paths selected in order to achieve a predefined coverage goal. The effort 

can thus be related to the number of infeasible paths encountered during the test case generation process.  

Results:  An experiment, investigating well over 55 million of program paths is conducted based on a strategy that 

alleviates the effects of infeasible paths. Strategy details, along with a prototype implementation are reported and 

analysed through the experimental results obtained by its employment to a set of program units. 

Conclusion:  The results obtained suggest that the strategy used can play an important role in making the mutation 

testing method more appealing and practical. 
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1. Introduction 

 

Software testing establishes the main method for identifying errors while suggesting an acceptable level of 

confidence for the software under investigation. Assessing the quality of a given data set a coverage measure must be 

utilised. Such a measure, tries to determine the extent to which the occurrences of some software features have been 

successfully exercised. Different program features lead to different criteria and hence different testing requirements. 

Criteria usually require the execution with actual data, to exercise their characteristics such as statements, branches, 

decisions, paths etc. Thus, the use of coverage criteria can be also seen as a guide for selecting appropriate test cases to 

increase the level of the testing thoroughness.    



Mutation testing is a fault-based testing technique originally introduced by Hamlet [1] and DeMillo et al. [2]. 

Researchers have provided evidence that mutation testing forms a rather powerful testing criterion able to effectively 

detect more faults than most of its structural testing rivals  [3], [4]. Mutation testing induces syntactical alterations of 

the code under test with the aim of producing semantically different versions of the considered code. Each such mutated 

program version contains one simple syntactic change from the original source code. To assess the quality of the test 

cases, mutation requires the execution of the altered program versions with the goal of distinguishing them from the 

original one. A mutant is said to be killed if there exists such a test whereas, it is said to be equivalent if there is not. 

Assessing the testing quality is usually measured by a ratio of the killed over the totally introduced mutants. This 

constitutes a criterion usually referred to as the mutation testing criterion [5]. Generating test cases successfully, with 

respect to a predefined-targeted killing ratio of the introduced mutants forms the focus of this paper. 

 The generation of test cases when performing mutation can be a very costly incident. To generate mutation adequate 

test cases, a tester must design test cases able to infect, execute and reveal all the introduced mutants. The term infect is 

used to express the case where mutant execution caused a discrepancy in the program state, at the altered program point 

by the introduced mutant. This can be achieved by iteratively producing and executing test cases with both the original 

and the mutated program versions, in order to determine the mutants killed. The determination is done by comparing 

the outcomes of the original and the mutated program versions. This process can be very expensive if performed in a 

non systematic way. Researchers usually believe that mutation expenses are considerably higher than what the other 

white box criteria require. This belief relies on the huge number of testing requirements that it introduces and on the 

observation that mutation usually needs more test cases than the other structural testing criteria [3]. To date, the effort 

involved when applying mutation has received scant attention in the literature. This lack of effort quantification in 

relation to the absence of practical solutions addressing the peculiarities of the mutation testing process have resulted in 

its reduced usage compared to the other structural criteria such as branches, data flow, etc. 

In the present paper, a path based approach for generating mutation based test cases is proposed and empirically 

evaluated.  The experimental evaluation is performed with the aim of assessing the effort entailed by mutation testing 

during the test generation process. There are various ways in producing test cases. The one employed in the present 

study is based on selecting paths that the mutants lie on, and subsequently executing them with test data, thus utilising 

each one of the mutants in order to kill them. The drawbacks of such a strategy, as it has been reported in the literature, 

are attributed to the presence of infeasible paths [6], [7]. The strategy adopted in this exercise, seeks to reduce the 

undesirable effects of infeasible paths during the testing process and hence reciprocally, also reduce the overall testing 

effort. Therefore, it can be argued that there is a direct relationship between the number of generated test paths and the 

effort involved for performing mutation. In fact, and without any loss of generality, the experiment assesses the relative 

cost-effective application of weak mutation [8], [5] testing based on a proposed path selection method able to eliminate 

the undesirable effects of infeasible paths.  

The paper is organized as follows: In Section 2 the relevant to the conducted experiment notation and terminology is 

given along with some related to the area work. In Section 3 a path selection strategy which seeks to reduce the 

incidence of infeasible paths is proposed. In order to evaluate the strategy and to interpret its achievements, certain 

features of the prototype implementation are analysed and presented in section 4. Additionally, in section 5 the results 

of the application of the proposed strategy to derive mutation test cases to a set of program units, are presented. The 

important findings of the experimental study along with the nature of infeasible paths, together with certain 

characteristics of the proposed strategy, can justify pertinent comments about the effort associated with weak mutation 

testing in general. These are presented in section 6. Finally, the conclusions are discussed in section 7. 

 



2. Background and related work 

 

This section introduces the relevant notation, terminology and a brief description of the techniques used in the 

conducted experiment. Selected relevant related work on generating mutation adequate test cases is also described. 

 

2.1 Notation and terminology 

 

The control flow of a unit under test is usually modelled with a graph known as the Control Flow Graph (CFG) 

denoted by Gc(N, E), where C is a program unit whose connected directed graph is composed of a set of nodes N and a 

set of edges E. Each node n represents a basic block and each edge e represents a possible transfer of flow between two 

basic blocks say ni and nj with i ≠ j. A basic block (node n) is a simple sequence of one or more successive, executable 

statements, such that the sequence has only one entry and only one exit point and once execution of the entry point 

statement takes place, it will always cause a consecutive execution of all statements up to the exit one in a row. Based 

on the CFG a path is a finite sequence of edge-connected nodes <n1, n2, …, nk> such that for every j in 1 ≤ j ≤ k the 

nodes nj, nj+1 form an edge of the set E of Gc. An S-to-F path is usually referred to as a complete path, S and F being the 

entry and exit nodes of the graph respectively. A path may not always be a complete one and this is usually referred to 

as a subpath.  

Modelling a unit’s flow corresponds to one-to-one mapping between the “actual” program paths of code unit C and 

respective complete paths of Gc. Thus, actually executing one of C’s paths is equivalent to traversing, “covering” its 

corresponding path in Gc. Further, since the actual execution of a program path implies execution of its code elements 

covering a complete path (based on the model Gc) implies covering its constituent modelled elements.  

It must be noted here that the peculiarities of the different programming languages must be reflected in the CFG. In 

particular, there are issues that need specific and more detailed analysis that can affect the size of N and E thus also 

affecting any test data generation that attempts to use them as a basis. In particular, the problems that can arise deal with 

the compound decisions (containing short-circuit operators). In modern programming languages compound decisions 

must be converted to a series of simple ones, thus enforcing the introduction of additional nodes and edges for their 

representation. Details of the effects of such incidents can be found in [9].  

 

2.2  Testing based on selected paths 

 

Generally, path based approaches work by selecting an appropriate set of paths and trying to derive test cases for 

these selected paths. Generating test cases according to a selected path is traditionally performed based on symbolic 

execution [10], [11]. Recently, search based testing approaches [12], [13]  have also been proposed in order to tackle 

this problem effectively. In either case (using symbolic execution or search-based testing) the testing process works by 

iteratively selecting and producing tests for paths that cover the sought test elements. This activity entails the following 

steps: 

 

1. Select a set P of paths through Gc which covers the target code elements. 

2. Generate a set of data D that will drive the execution of C according to the selected set P. 

3. Execute the unit C with the set of data D.  

 



However, not all paths of Gc , selected in step 1., may represent valid computations with respect to the code unit C. 

These invalid paths are called infeasible paths, as there exist no data sets that will force their execution (see section 

2.3.2 for details). The existence and influence of infeasible paths in practice, plays a major role as it compels 

performing steps 1 and 2 iteratively in order to construct a set of data D that covers the target code elements. This 

difficulty can be extremely problematic [7], [14] and results in unbearable overheads as the conducted experiment 

shows, see section 6.3 for a discussion of this issue.  

Also, if mutation is to be considered, the control flow graph of C is rather inadequate to base the sought test path 

generation activity. Such being the case, a more appropriate model is needed as this is discussed in [15], where an 

enhanced CFG is suggested and is presented in section 3.2. 

 

2.3 Mutation testing criterion 

 

Mutation testing (as initially introduced), is a fault-based technique for the quality assessment of the various test 

cases as proposed by DeMillo et al. [2]. In practice, it is employed by creating a slightly different to the original 

program set of programs. The minor alterations to the original program are called mutants. The mutants are introduced 

by modifying the original program’s source code based on simple syntactic rules called mutation operators.  

Due to its notion, a mutant is nothing else but a deliberately inserted mistake.  

The tester’s goal when employing mutation is to create tests able to reveal these deliberately introduced mutants. In 

order to assess a test set, the tester should execute it both with the original and the mutated programs. In case the 

outputs of the original and a mutated program differ, the particular mutant is considered as covered (exercised) and 

referred to as killed. In the opposite case the mutant is considered as uncovered and referred to as alive. A live mutant 

indicates one of the following two situations: either a) the mutant is equivalent, i.e. the mutated program is functionally 

equivalent to the original and thus, revealing it test cases do not exist, or b) the test set is incapable of unrevealing and 

killing it.  

The test set D adequacy of a program C is measured by the mutation score (MS(C, D)) and the relative mutation 

score (MS
*
(C, D)) computed as follows: 

 

 

 

There have appeared in the literature, many interpretations of how to implement the mutation activity. The usual 

one, called strong mutation deals with the comparison of the original and mutated program outputs at the end of the 

execution process. Strong mutation is usually performed by introducing one alteration per program variation. This type 

of mutant is called first order mutant [16]. By simultaneously embedding many alterations to the program, the produced 

mutants are called higher order mutants [16], [17], [18]. Another mutation variant interpretation is weak mutation [8], 

[5], which tries to deal with the comparison of the program outputs immediately after the execution of the altered 

fraction of the program. In the present paper, the second approach is considered for two main reasons: First, as 

suggested in the literature [5], [19], [20] weak mutation constitutes a good alternative to strong mutation, and second, it 

is more straightforward to generate the relevant data as they are better embodied in the proposed path generation 

method as identified in existing attempts [21], [15].  

 



 

2.4 Generating Test Cases 

 

This section introduces the underlying concepts and issues, for the generation of test cases, as they are employed in 

the present paper.  

 

2.4.1. Symbolic execution 

 

The symbolic execution [10], [11] technique, analyses the source code of a program by replacing its actual input 

parameters with symbolic ones and simulating its execution based on a set of program paths. Executing a path 

symbolically, forms an effective way of describing its computations. Symbolically executing all possible program paths 

can result in the verification of the entire program. The method represents possible input values of program variables 

along a selected path as algebraic expressions by interpreting the operations performed along that path on the symbolic 

inputs. Thus, a symbolic state for a given point according to a selected path forms a mapping from input variables to 

symbolic values and a set of constraints called path condition over those symbolic values. Path conditions represent a 

set of constraints and symbolic expressions represent the mapping between the input variables to symbolic values and 

all together form the computations performed over the selected path. A symbolic expression is either a symbolic value 

or an expression composed over symbolic values, thus composed of variables, parentheses and programming language 

operators. Constraints are treated-evaluated as Boolean values (True or False) and composed of pairs of symbolic 

expressions related by one of the conditional operators (==, !=, <, ≤, >, ≥). 

A path condition thus, forms a conjunctive constraint set, obtained from the decisions of the selected path. For each 

program decision encountered, in a path, a new condition is built by replacing all variable references by its previously 

computed symbolic expressions and based on the decision’s outcome (true or false value) as formed by the path. 

Solving the path conditions results in input values which when assigned to the program, execution is driven along the 

selected path. If the path condition has no solution then the path is infeasible. 

 

2.4.2. The Feasible path and Equivalent mutant problem 

 

Gabow et al. [22] proved that the problem of obviating infeasible paths can be reduced to the “Halting Problem” 

thus forming an undecidable problem. In another study conducted by Budd and Angluin [23] it is proved that, in 

general, there is no computable procedure able to identify the functional equivalence between two given programs, 

argument which can be used to imply the undecidability of the equivalent mutant problem. Offutt and Pan [24] realised 

that the problem of equivalent mutants is an instance of the feasible path problem. The feasible path problem was 

formed as the problem of finding appropriate test data that satisfy a given testing requirement such as covering a node, 

branch, path or mutant. In view of this, they defined a set of constraints that represent conditions under which a mutant 

will die (in the weak mutation approach). The constraints system that forms these conditions is formed by the logical 

conjunction of a specific to each mutant constraint(s) with the disjunction of all paths conditions that reach the target 

mutant. A similar approach, based on program slicing, was presented by Hierons and Harman [25]. Additionally, this 

approach seeks potentially affected locations by a mutant, thus providing guidance to the tester. 

 

 

 



2.4.3. Selecting tests that kill mutants 

 

Practically, applying the testing criteria serves as a rule of thumb for selecting a subset of all possible inputs. The 

main objective of these rules is to guide the selection of test cases to those able to expose the majority of the program’s 

faults. Testing to fulfil a criterion establishes an associative, to the criterion used, confidence level.  

Generally, in order to expose a fault, a test case should necessarily execute the program’s source code part, 

containing it. Needed is also the execution of the fault so as to incorrectly affect the program’s state and this incorrect 

state to propagate to the programs output. The formulation of these three situations serves as the foundation guide to 

generate tests according to the mutation criterion and in the literature these are referred to as reachability, necessity and 

sufficiency conditions [21]. Based on these three conditions DeMillo and Offutt developed a test data generation 

technique called Constraint-Based Test data generation (CBT) [21].  

Current test data generation approaches [21], [26], [27]and [28] try to utilise directly the reachability and necessity 

conditions. The sufficiency condition due to its high complexity is indirectly satisfied either via the satisfaction of the 

reachability and necessity conditions only [26], [21] either with the use of some additional heuristics such as the 

mutants’ impact on the program execution [27], the search of the path space [29] and the fitness guided search of the 

path space [28]. As presented in [21], [19] and [28], tests that meet the reachability and necessity conditions have a 

higher chance of meeting the sufficiency condition too than those meeting the reachability condition only. These 

approaches describe the reachability conditions as a disjunction of the path conditions derived based on the symbolic 

execution of all paths reaching a target mutant. The necessity conditions are described based on the following 

formation:  

Let the original expression be e and the mutated one e’.  Then, the condition is formed by the necessity constraint    

“ e != e’ ”. 

 

2.5 Practical Problems posed by Mutation  

 

Practically applying mutation requires the completion of four main activities. Each one of the performed activities 

introduces various difficulties which make the use of mutation quite expensive. These activities are: a) the mutant 

programs generation, b) the test case generation, c) the test case execution and d) the evaluation of the achieved 

mutation score. All these activities are mainly influenced by the number of the introduced mutants which in practice 

turns out to be enormous. Specifically, the number of the introduced mutants has been quantified as O (Vals x Refs) 

[30],where Vals is the number of data objects and Refs is the number of data references. Reducing the number of the 

introduced mutants forms one of the key research issues of mutation testing research. To date, two main approaches 

have appeared in the literature. The first one considers only a small sample of the whole mutant set which is selected at 

random [31], [16]. The second one, named selective or constraint mutation [32], [16], applies only a subset of the 

mutant operators. Both these approaches achieve to considerably reduce the introduced number of mutants, 

nevertheless, the problem of the huge number of the introduced mutants still remains. 

The generation of mutated programs naturally requires the production and compilation of many program versions, 

one per introduced mutant. In practice, as this number can be enormous, the mutant generation results in a huge 

compilation effort. To alleviate this problem, various approaches have been proposed in the literature. The most 

important ones are the mutant schemata [33], [30] the compiler-integrated [34] and interpreted approaches [31]. The 

mutant schemata method “enables to encode all mutations into one source-level program” [33], [30] and thus avoiding 

performing a huge number of compilations. The compiler-integrated method utilizes a special compiler that produces 



code patches that act as the mutants when applied to the code under test. Thus, instead of compiling the various mutant 

programs, only the patch application is required. Finally, interpreted execution approaches [31] can also be used in 

order to avoid the huge compilation overheads. It is noted that the prototype developed for the present research, utilizes 

this method.  

Mutation score evaluation poses the need for executing the introduced mutant programs with the produced test cases 

in order to determine the killed ones. In practice mutant execution requires a huge amount of resources [8], [5] as the 

number of mutants may be enormous. To tackle this problem, various mutation testing alternatives have been proposed. 

The one utilized in the present paper is named weak or firm mutation [8], [5], [20]. Additionally, performing mutation 

requires the identification of the equivalent mutants in order to evaluate the adequacy of the produced test cases. This is 

a well known undecidable problem as discussed in section 2.4.2 and thus only heuristic approaches can be utilized.  

All the abovementioned issues are open for future research and are not directly dealt with in the present paper. 

However, successfully resolving them will make mutation to be widely adopted in practice. The main point addressed 

by the present paper is the automation of the test case generation according to mutation. This forms a difficult and open 

research problem of mutation [18]. Additionally, addressing the test case generation problem paves the way for the 

complete automation of the mutation testing process. Generating test cases for killing mutants, introduces some special 

challenges not faced in the case of structural testing. It is these challenges that are tackled by the approach described in 

the present paper and details are given in the following sections. 

 

2.6  Related Work 

 

Although mutation testing has been suggested and studied for over three decades now, strategies that guide the 

generation of test cases and its practical employment are very limited. A small number of research articles dealing with 

the generation of test cases or the mutation testing application effort have appeared in the literature as also pointed out 

in [18].  

DeMillo and Offutt proposed the CBT method [21] which briefly discussed in section 2.4.3. This method tries to 

describe in algebraic expressions, the conditions under which a mutant is killed. They introduced the reachability 

condition which states that the mutated code must be exercised by the execution path of the test cases. If a test case fails 

to execute the mutated code, it is guaranteed that the test case has no chance of revealing the seeded mutant [21]. This is 

a direct consequence of the mutation application as it introduces one syntactic change to every mutated program and 

thus both execution paths, the one of the original and the other of the mutated program, form the same execution 

computations. The necessity condition states that the execution of the mutated statement must cause a discrepancy 

compared to the original program state [21]. The sufficiency condition states that the infected program state must 

propagate up to the last program statement. The execution path and its computations must use the internal different 

value calculated at the mutated statement (necessity condition) and must form a different observable computation from 

there onwards to the program’s output.   

The CBT approach [21] uses control flow analysis, symbolic evaluation, mutant related constraints, a constraint 

satisfaction technique and test case executions in order to automatically generate the required test data. The method 

targets on the reachability and necessity conditions while assuming that fulfilling them will also indirectly meet the 

sufficiency condition too. These two conditions are described as mathematical systems of constraints which are conjoint 

and solved by a constraint satisfaction technique called domain reduction. The reachability condition is described by a 

path expression of all program paths from input to the mutated statement node, in fact all loopless program paths. The 

necessity conditions are described by a specific, to each mutant, expression(s) in order to infect the program’s state 



immediately after the mutated statement. The above approach has been implemented in a tool which integrates with the 

Mothra [31]  mutation testing environment and automates the mutation based test case generation for programs written 

in the Fortran programming language. Although empirical evaluation of the CBT technique reveals its effectiveness 

[21], yet it suffers from many shortcomings associated with symbolic evaluation. Specifically, problems can occur in 

the presence of arrays, loops, nested expressions and non linear expressions as recognized in [35], [5]. Moreover, issues 

such as the exhaustive generation of program paths affect its cost-effectiveness also appear. 

In an attempt to address some of the drawbacks of the CBT method, the Dynamic Domain Reduction (DDR) [35] 

method was proposed. The DDR method was developed based on the CBT approach by embedding some dynamic 

features in order to effectively handle program constructs and develop a more efficient constraint satisfaction technique. 

The DDR method tries to generate, in a similar fashion to the CBT method, a set of values for each input variable (its 

domain), that makes the path expression true, for all the set values. Its difference comes from the reduction procedure 

that is performed based on a search method over the input variables domains. Specifically, the method traverses a 

selected path and at each encountered branch predicate it reduces the input variables’ domains. This is done so as to 

evaluate these branch predicates to “true” for any assignment of values from the reduced domain set. When all selected 

predicates have been examined, the reduced domains form sets of the required test cases that traverse the selected path. 

In the work of Baars et al. [13] an attempt to generate test cases based on search based testing is suggested. This work 

introduces a symbolic execution based fitness function, based on the symbolic information of selected paths, in order to 

efficiently guide the test input search. This approach shows that path selection strategies when integrated with search 

based testing are able to provide practical solutions to the symbolic execution difficulties.  

Other dynamic approaches based on searching input domain sets have been proposed for various testing criteria. 

Ayari et al. [36] proposed an evolutionary approach based on the Ant Colony Optimisation (ACO) to automate the 

generation of input variables. This work is based on the foundations of the CBT approach by measuring how close a test 

case is to reach and kill a mutant. A generic approach on using state of art techniques such as the dynamic test 

generation approaches has been proposed in [26] by utilizing mutant schemata. The mutant schemata technique [26] 

achieve to help automated tools to perform mutation, by reducing the weakly killing mutant problem to the covering 

branches one. Thus, existing structural automated tools and techniques can be directly utilized for performing mutation. 

More recently, Harman et al. [28] proposed a hybrid approach based on Dynamic Symbolic Execution and Search 

Based Software Testing in order to effectively kill either first or higher order mutants. This approach aims at fulfilling 

the mutants’ sufficiency condition via search based testing. Their results suggest that by doing so an average 

improvement of approximately 15% and 16% on the mutation scores of first and second order mutation can be gained.    

The mutation testing effort depends on the number of mutants involved. Strategies involving mutation should 

therefore attempt to limit the number of the mutants introduced, while avoiding the introduction of equivalent ones. 

Such an approach is proposed in [17] where the construction of higher order mutants with the use of search based 

optimization approaches is utilized. In this work it is suggested that the number of mutants and equivalent ones can be 

dramatically limited by introducing more than one mutant at a time. Sampling higher order mutants can also reduce 

various cost factors of mutation such as the number of introduce mutants, equivalent ones and the number of required 

test cases [37]. However, both of these approaches rely on mutation analysis rather than on generating test data as in the 

present paper. 

 

3. The Method Used 

 



The aim of the present paper is to provide a practical insight on generating test cases for killing mutants. To this 

end, a path based strategy is proposed along with its assessment on the required effort with respect to the generated 

candidate sets of test paths. Additionally, guidelines for the application of mutation testing are also given, by measuring 

the ability of killing mutants utilizing test paths. The reason behind the choice of candidate sets of paths as a 

measurement of the effort stems from the observation that infeasible paths greatly influence the effort associated with 

the testing process [6], [7]. This is evident from the following experiments where a huge number of paths are analyzed 

in order to find a small number of feasible paths, see section 6.3 for a discussion on the influence of infeasible paths on 

the testing effort. Additionally, following the propositions made by Weyuker [38], the hidden cost of infeasible - 

unexecutable testing requirements of the various testing criteria must be taken into account when evaluating their effort. 

A method embodying these observations is described and analysed in this section.  

 

3.1 The extended shortest path method 

 

The a priori prediction of the infeasibility of a program path is an undecidable problem and thus heuristic techniques 

that automatically select likely to be feasible paths can be employed only. In view of this, Yates and Hennell [39] 

advanced, and argued the proposition that: 

 

A program path that involves q >= 0 predicates is more likely to be feasible than one involving p > q.  

 

Formal statistical investigation of this proposition was undertaken in Yates and Malevris [14], wherein it was 

concluded, with great statistical significance, that the feasibility of a path decays exponentially with the increasing 

number of the predicates it involves. As a result, Yates and Malevris [14] proposed a path selection method, to reduce, a 

priori, the incidence of infeasible paths amongst those that are generated for the purpose of branch testing. Although 

introduced to support branch testing, the method was founded only upon a consideration of the number of predicates in 

a program path. Thus, the method does not seek to optimise, in any way, on any one testing criterion. Hence, it maybe 

used with equal validity, and without bias, in an attempt to fulfil any other testing criterion. It is this path generation 

method’s spirit that was extended to allow its use to effectively produce the sought test cases for performing mutation 

testing.  

In general the proposed approach selects candidate paths from the enhanced control flow graph model which is 

detailed in the next subsection. Specifically, the selection of the path sets is performed relying solely on the adopted 

graph representation. Thus, the only factor that affects the consideration order of the selected paths is the paths’ length, 

which is represented by the sum of the contained nodes weights.         

The strategy for illustration purposes herein can be outlined as: 

  

While ( MS(C,D) < 1 AND i < k ), 

     Repeat steps 1, 2 and 3 once for each mutant element e in set M. 

1. Generate the next candidate path i

e  (aiming at mutant element e) 

2. If path found to be feasible, then recalculate the value of Coverage based on actual execution.  

3. Eliminate all covered elements from the mutant set M.   

 



Here, i

e denotes the ith shortest path through element e and k = maximum number of practically viable paths 

(beyond which the generation of extra paths is prohibitive).  Steps 2 and 3 actually generate and execute the required 

test data against the live mutants.  

The basics of this method are derived directly from the propositions about path feasibility and the number of 

predicate constraints they involve [39], [14]. The validity of the analogy between predicates and mutant constraints in 

respect of selecting likely to be feasible path sets is well established. Mutant related constraints are constructed through 

simple syntactic source code alternations based on arithmetic, relational and logical operators, ingredients of predicate 

constraints. Moreover, the majority of the considered conditions contained in candidate test paths are predicate 

conditions. Nevertheless, due to the use of mutant constraint sets in conjunction to predicate ones, may naturally result 

in an increase of the incidence of infeasible paths. This increase is totally attributed to the nature of mutation testing 

affecting its overheads. Accordingly, it is imperative that any method applied to fulfil a high demanding criterion such 

as mutation, must be able to alleviate the undesirable effects of infeasible paths.   

There exists a number of fundamental matters that need to be detailed in order to proceed with the employment of 

the proposed method and are summarised as follows: 

 

1. Path based mutant representation and selection mechanism. 

2. The method used to generate the 
i

e  

3. The interpretation of the criterion “MS(C,D) < 1” 

4. The criterion for selecting uncovered mutants 

 

Their details are given in the succeeding subsections. 

 

3.2 Mutant Repressentation and Path Selection  

 

The representation of the structure of a code unit by its CFG is well known, understood and forms the basic model 

of path testing for most of the white box testing criteria. Unfortunately, this cannot be considered to be the case for 

mutation since mutants are not represented or identified by the CFG structure. Additionally, mutation testing requires 

an execution path in both the original and the mutated program versions in order to cover-kill the corresponding mutant. 

For mutation a more elegant model is needed [15]. In accordance with the suggestions made in the literature concerning 

weak mutation [8] and by using mutants’ necessity conditions [21], it is possible to construct an augmented CFG by 

enhancing it with mutant related constraints together with the corresponding mutants. The enhanced graph is built 

simply by adding a special type of vertex for each mutant representing its necessity constraint. Thus, for each 

introduced mutant one additional node is introduced in the enhanced graph. 

Every introduced mutant is associated with a CFG program node, the one that the mutant appears in the source code. 

Every mutant related vertex is connected with its original corresponding node (original CFG) and represents a special 

mutant related necessity constraint. A dummy node is introduced in order to connect all the mutant vertices with the 

original CFG and in order to keep the original CFG unaffected. Figure 1 demonstrates the construction of the enhanced 

control flow graph where both graphs are displayed. The proposed approach test model is completed by assigning 

weights to the CFG nodes. The original CFG nodes bear a weight value calculated as defined in section 2. The mutant 

related nodes are assigned an infinite weight value in order to be ignored through the path selection method. It is noted 

that the selected candidate paths for a specific branch are the k
th

-shortest ones that reach the considered branch. The 

infinite weighted nodes will thus be ignored by the selected paths as by generation they must be shortest. 
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Figure 1. The Enhanced Control Flow Graph. 

 

Since a path not containing any mutant vertex represents an exact path in the original test code unit, that path can 

form the basis for the fulfilment of the mutant’s reachability conditions. Additionally, every feasible path containing 

one or more mutant vertices fulfils both the reachability and necessity mutant conditions of the respective mutants. 

Conversely, an infeasible path from the beginning of the graph up to and including a mutant, say m(a), indicates the 

absence of possible test data to reveal it, hence, if no such a feasible path exists, this leads to the determination of the 

mutant as being equivalent. Covering all enhanced control flow graph mutant nodes, results in a straightforward 

coverage of the weak mutation criterion and the fulfilment of the reachability and necessity conditions of all program 

mutants too. In the remainder of the paper the term coverage is used to indicate the coverage of the enhanced control 

flow graph mutant nodes which is actually the mutation score achieved with respect to weak mutation. Based on the 

above observations the proposed strategy tries to effectively select paths that will cover the corresponding mutant 

vertices of the enhanced control flow graph. In order to avoid confusion it must be noted that the selected paths are used 

in order to guide the test generation process on producing tests and not on indentifying infeasible ones. Infeasible path 

identification is performed by the test generation method utilized, which in our case is the symbolic evaluation. By 

selecting the k
th

-shortest paths, a higher probability of the path feasibility is established.  

One possible concern about the enhanced control flow graph is its size, which grows in relation to the mutants’ 

number. This practice may result in huge graphs as the number of the introduced mutants can be an excessive one. 

Despite this, the graphs’ size is not a problem as it forms only a representation of the program under test. Additionally, 

the use of k
th

-shortest paths along with the infinite weights of the mutant nodes on the enhanced control flow graph 

results in considering only the original program CFG nodes. Thus, the introduced complexity of the mutant vertices is 

alleviated and their impact on the path selection method is negligible.    



 

3.3 Incremental selection of paths 

 

The path generation method used for mutation testing is in analogy to that used for testing branches. The targeted 

candidate path set consists of the k
th

-shortest program paths, again in the sense of containing a minimum number of 

predicates, which together cover the inserted mutants. These k
th

-shortest paths through a mutant vertex m can be defined 

as follows: 

xmxSkk

m  ),()()(

 
 

Where ),()( xSk denotes the k
th

 shortest path from the starting vertex S to the target vertex x of GC. The introduced 

arc that connects the vertex x with the mutant node m is denoted as xm, and   denotes a sequence. All mutants are 

handled based on a k-value, the limit on the number of generated paths, used by the strategy. The practicality of the 

method relies on the selection of an appropriate k-value beyond which all left alive mutants are treated as being 

equivalent. Also, some additional advantages of embodying this method are that it uses the philosophy of suggesting 

paths with the least number of predicates, and in particular, it even considers shorter paths to symbolically execute as it 

only considers the paths up to the mutated node and not entire entry to exit paths. This incident not only increases the 

possibility of such subpaths being even more likely to be feasible, as they contain fewer predicates, but also reduces the 

execution cost per path when symbolically executed as it will be discussed. 

 

3.4 Handling infeasible requirements 

 

Generally the goal of full coverage (killing all mutants) can be accomplished only when MS(C, D) = 1. MS(C,D) is 

the ratio of the killed mutants constituting thus a test effectiveness measure. Unfortunately, in practice, to fulfil 

MS(C,D) = 1 is a very tedious exercise. Even with less demanding criteria such as node coverage where a similar test 

effectiveness ratio needs to be justified, full coverage of the nodes can be difficult to achieve due to the presence of 

infeasible paths. In mutation testing the existence of equivalent mutants makes it rather impossible to kill them, hence, 

making it difficult to achieve full coverage (killing of all mutants). This compels the necessity of defining the relative 

coverage MS
*
(C,D) as the ratio of killed mutants to the number of not equivalent mutants. Such being the case, it is 

required to deduce and eliminate all equivalent mutants in order to proceed with the calculation of MS
*
(C,D). This task 

can only be performed heuristically, as it is not possible to directly deduce all the equivalent mutants. As a 

consequence, in the experimental study presented in the next section it was necessary to adopt an effective and practical 

way of deriving the equivalent and killable mutants. Following the spirit of the proposed approach a reasonably high 

threshold of approximately 50,000 paths per mutant was assumed. Beyond that threshold all mutated versions were 

considered to be equivalent with the original. The reason for assuming such a threshold is based on the nature of the 

effort-coverage relation which indicates the exponential trend of the effort as recorded by the experiment performed in 

section 5. Also the contribution to the totally killed mutants beyond the 30,000 paths (Table 4) is insignificant.  

     

3.5 The criterion for selecting uncovered mutants 

 

At each iteration of the proposed approach there is a set of live mutants needed to be covered. In almost every case 

the set contains more than one uncovered-live mutant elements. The question that is raised is: Which is the order they 

should be selected in an attempt to be killed? Alternatively, which mutant should be tried to be killed first? The answer 



to the above question is given by adhering to the well established philosophy that: a program path that involves 0q  

predicates is more likely to be feasible than one involving qp  . Specifically, the remaining live mutants are classified 

according to the length of the shortest path each one lies on. Thus, attempts to increase coverage are always ordered in 

respect of a path’s length. Due to this ordered rule, the candidate mutant that is selected to be killed next is the one 

whose path containing it is the shortest in length among the others. Ties are broken arbitrarily.  

 

4. A unified mutation testing System 

 

The presented approach and the succeeding experiments were conducted based on a prototype tool, implemented for 

the present study. The tool automatically generates and executes test cases by employing the concepts presented in the 

preceding sections. It has been entirely built using the java programming language. It also incorporates the LpSolve 

[40] package for solving path conditions. It operates on programs written in the SymExLan [41] script language and 

utilises the experience gained from the previously developed tool Volcano [42]. A similar in philosophy tool is 

proposed in [43] with the aim of producing test cases for branch testing. The preset paper expands the suggestions made 

in [43] and [15] for targeting mutants. 

 

4.1. Overview  

 

A high level view of the prototype architecture is presented in Figure 2. The prototype is composed of the following 5 

modules which are represented as rectangles: 

 Parser: This module analyses the SymExLan scripts and generates an appropriate test model. 

 Mutant Generator: It enhances the test model with mutant related constraints.  

 Path generator: This module generates candidate paths for a given target (branch or node). 

 Symbolic Executor: The unit that symbolically executes selected paths, constructs path expressions and 

transforms them to linear programming problems  

 Interpreter Verifier: It executes and enhances with random values the actual test cases generated. Its main use is 

to calculate the achieved coverage.   

 

It also embodies some intermediate structures and reports, represented as ellipsis, such as: 

 Test Models: the model of CFG and Enhanced CFG with their corresponding computations. 

 Test Reports: Reports containing the test execution path and a list of the killed mutants by a test case. 

 

4.2. Detailed description 

 

4.2.1. Parser 

 

 Parsing is handled by a program that reads SymExLan scripts  [41] and generates the system internal test model, 

containing the original Control Flow Graph and a set of algebraic computations corresponding to each basic block - 

node. The SymExLan scripts are automatically produced from external source to source compiler systems. For integrity 

reasons, Figure 3 gives an example of such a script for a method that calculates the absolute expression of a float 

number. Further details about the SymExLan scripts can be found in [41].   
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Figure 2. Tool’s architecture 

4.2.2. Test Models 

 

 The test models (original and enhanced models) contain a graph representation of the program’s control flow 

containing in each node its respective symbolic computations. All symbolic computations have been transformed to 

simple ones, by transforming all compound predicates into multiple simple computations. By doing so, during symbolic 

evaluation, the path conditions of all selected paths are represented by a conjunctive formula of symbolic computations. 

Thus, all path expressions can be straightforwardly transformed into linear programming problems with a relative small 

and equal to the number of the programs input variables. An additional argument behind keeping all symbolic 

computations is that during symbolic evaluation the number of variables is kept to a minimum. This results in a higher 

performance when employing optimization methods such as linear programming, to solve the path constraints.  

4.2.3. Mutant generator  

 

The mutant generator module is responsible for generating mutant constraints and enhancing the test model 

appropriately. The generated mutant constraints are the necessity ones as suggested by the CBT approach [21]. Thus, 

every mutant constraint follows the constraint template of “ e != e’ ”, where e adheres to the original expression and e’ 

to the mutated one. Every mutant vertex corresponds to its necessity constraint in conjunction with some sufficiency 

ones. The path condition generated for a selected path that reaches a mutant vertex corresponds to a conjunction of both 

the reachability and necessity conditions. In order to reduce the weak mutation inefficiency some additional sufficiency 

constraints based on the propositions of firm mutation [20], [19] are followed. In accordance with the suggestions made 



by Offutt and Lee [19] the necessity constraints are extended in order to produce differences in the program predicates 

and in particular at the end of the basic block that contains the mutated statement. In occurrences of logical operators 

some additional complementary constraints are used in order to cause the mutant predicate differences to propagate to 

the whole decision (avoiding masking through the remaining logical conditions). These additional constraints are 

formed based on the consideration of the mutated part of the logical expression as the basic one, which should 

independently affect the decision’s outcome, while treating the rest of the expression in accordance to the MCDC 

criterion. These conditions are generated by using the tree method as proposed by Offutt et al. [44].  

In the present paper an experimental study of the effort entailed by the weak mutation testing method has been 

undertaken. For experimental purposes the effort is directly associated with the considered candidate mutant set. Of the 

possibly excessive number of mutants, the considered set is a reduced one, as this has been proposed in [45]. Based on 

this study, the candidate set is similar to the one proposed by Offutt et al. [32]. The discrepancy between the two is that 

the set as in [45] produces a smaller sample as it considers additional restrictions that remove some redundant mutants. 

Thus, the selected mutants have the same strengths with the full mutant set. In other words, it was found in [45] that 

tests that are capable of killing the reduced set of mutants are also capable of killing all the introduced mutants of the 

whole set, as proposed by Offutt et al. [32]. This is not contrary to the validity of the experiment since the main issue is 

to concentrate on effective ways of killing the mutants irrespective of their number. The existence of more mutants 

would have possibly added only minor additional effort. Table 1 describes the produced necessity constraints of the 

produced mutant set. The resulting set uses all 5 mutation operators (Relational, Logical, Arithmetic, Absolute and 

Unary), as proposed by Offutt et al. [32]. Thus, a set of 3 mutants is produced based on the Relational operator; a set of 

2
n
 mutants is produced based on the number of operands n in the compound expression due to the Logical operator; a 

set of 3 mutants is produced according to the Absolute operator (following the original description [46]); a set of 5 

mutants is produced  according to the Arithmetic operator;  a set of 2 mutants based on the Unary operator is produced 

for each occurrence in a decision statement, as in the rest of the occurrences in other statements, as it has been argued 

by DeMilo and Offutt [21] killing the mutants is a  fairly elementary task.  

 

 

Figure 3. SymExLan script example  

 

NAME  ABSOLUTE 

TYPE  float 

IDENT 1 

GRAPH  [Start] true [1] 

  [Start] false [2] 

       [1] always [Final] 

       [2] always [Final] 

PATHS Path1 = [Start]-[1]-[Final] 

     Path2 = [Start]-[2]-[Final] 

NODES [Start:IF] 

COND  : (x<0) 

REFS  : 1,2 

[1:SIMPLE] 

  ASSN  : absolute=-x 

             REFS  : 3 

     [2:SIMPLE] 

  ASSN  : absolute=x 

             REFS  : 4,5 

[Final:SIMPLE] 

  REFS  : 6 

DECLARATIONS PVAL: X is float in PROCS(1) 



Table 1. Utilized necessity conditions 

Operator Conditions 

Relational 

expression (a op b) 

a > b 

a < b 

a == b 

Logical 

expression (a op b) 

a==T && b==T 

a==F && b==T 

a==T && b==F 

a==F && b==F 

Absolute 

arithmetic variable (a) 

a == 0 

a > 0 

a < 0 

Arithmetic 

expression (a op b), mutant operator (m(op)) 
a op b != a m(op) b 

Unary 

Predicate expression (exp) 

exp != exp + 1 

exp != exp - 1 

 

4.2.4. Path generation 

 

 The path generation module generates a set of k
th

-shortest paths from the graph’s start point to a given target node. 

There are various graph theoretic algorithms in the literature for tackling this problem. The system actually uses an 

adaptation of the method suggested by Yates and Malevris [14]. It is noted that in both the original and the enhanced 

test models the paths generated are identical with the addition of the mutant node and the arc connecting it in the case of 

the enhanced CFG. 

 

4.2.5. Symbolic executor 

 

The Symbolic executor module is integrated with the path selection strategy and performs symbolic evaluation for a 

given/selected path in order to derive its path expression in terms of input variables. This expression is then transformed 

into a linear programming problem and solved based on linear optimisation techniques [47]. In case the linear 

programming problem results in a solution, its solution values do form the required inputs. In the opposite case where 

no solution can be found, the path is determined to be infeasible. The Linear Programming problem is formed in a 

straightforward way as the test model adopted uses only simple constraints which are directly incorporated into the 

linear problem formulation. The objective function to be max(min)imised can be a trivial one as it can be satisfied by 

any solution of the linear problem in the solution space. Here, it must be noted that the logical expressions are handled 

based on the selected paths made on the adopted graph model. As stated in the previous sections, compound - logical 

predicates have been split into multiple simple computations and thus, their handling is based on the path selection 

method used. Different selected sub-paths of the simple computation nodes that correspond to one compound predicate 

represent different logical computations.     

One of the general problems encountered is that of handling non-linear expressions. To tackle this problem the 

prototype tries to isolate these expressions by eliminating them and based on actual executions to overcome it in an 

indirect way as suggested by [42]. Other approaches for handling non-linear expressions can be found in [48], [49]. 

Other known problems of the linear programming and general to the constraint solving for the symbolic execution are 

the handling of string constraints. This is a matter beyond the scope of the present research and not considered. A 

possible approach for handling it can be found in [50] where a constraint solver over string constraints is proposed. 

Other difficulties may arise due to the presence of pointers and tables. Their handling is based on the approach 



proposed by the work of Koutsikas and Malevris  [42] who suggest the use of a memory table. A similar approach 

based on enumeration and propagation of the alias relations is described in [51]. These approaches deal with the 

ambiguous arrays and pointer references effectively. In fact they achieve to solve all the encountered ambiguous 

references. However, they have the drawback of introducing additional constraints to the produced path conditions. In 

the performed experiment, presented in the next section, the employed approach [42] achieved to solve the encountered 

ambiguous references and thus, determining the generated feasible and infeasible paths accurately.  

 

4.2.6. Mutant execution 

 

Test execution tasks are performed based on an independent to the test generation system, responsible for verifying 

the killed mutants and enhancing with random values the redundant to test generation input variables. The system is 

based entirely on an interpreter that simulates the actual executions and computations performed by the considered test 

program. Based on the appropriate input values (determined by the symbolic execution module) a simulated execution 

is performed on each graph node of the test model and its execution path is traced. As the simulated execution continues 

beyond the mutated point in the program under test, it traverses code that has not been executed symbolically.  This fact 

may result in a need for new input values, these are given based on their type and application input domain through 

random selection.  

All introduced mutants are evaluated with only one execution run per test case. This is an advantage of performing 

weak mutation instead of strong one. This is in accordance to the suggestions made by Howden [8] who advocates that 

in weak mutation it is acceptable to execute all reachable mutants in one program place. The proposed approach 

generalizes this argument to all the reachable mutants by the traversed execution path. This is achieved by performing 

the simulated execution and evaluating all the reachable by the test cases mutants. When the simulated execution 

reaches a mutant related node it performs an evaluation check on all its mutant constraints in order to determine if they 

would be killed or not. Then, the execution continues by returning to the mutant related node (dummy node) in order to 

keep on with the original program execution. This way, all mutants encountered in the examined execution path are 

evaluated.  

The use of the test executor module compliments the symbolic execution method by embedding dynamic features 

such as random testing and actual execution evaluations. It also serves as a validation system of the generated tests and 

helps in verifying the killed mutants.  

 

5. Experimental regime 

 

The experimental results reported in this section were obtained by the application of the proposed strategy to a 

sample of 30 program units, a list of which is given in the Appendix. All the selected units have no calls to other 

functions as these have been “inlined” in the units under test. The sample consists of programs written in various 

programming languages some of which have been referenced in the literature [21], [6] and [43]. The units were selected 

based on their use in the literature, the observation that they contained certain important features such as: nesting, loop 

constructs, use of arrays and also many infeasible paths. The sample consists of 10 code units written in Delphi (units 1-

10) and 20 code units written in C and other languages (units 11-30). In Table 2 details of the selected sample units are 



presented, where the LOC denotes the number of lines of code that the units are composed
1
 of, the number of generated 

mutants and the number of live mutants they contain. The column housing the live mutants records the number of 

mutants remaining alive after the completion of the experiment. For the reasons analysed before i.e. in section 3.3, they 

are treated as equivalent. Each program unit was first transformed into the SymExLan [41] script language (the 

intermediate representation used in the tool). Following, they were assessed by the tool that uses the proposed method 

for path selection for performing weak mutation testing as this has been presented in detail in the preceding sections. 

The application of the proposed method to these units resulted in the generation of well over 55 million program paths 

and in a total of 4517 mutants. 

Table 2. Unit details 

Program Units LOC 
No. of 

Branches 

No. of 

Mutants 

No. of Live 

Mutants 

overstrike 60 34 143 51 

entab 48 31 123 35 

getkbd 74 40 216 57 

shell 40 21 127 52 

dodash 59 27 164 48 

triangle 44 31 170 43 

newpas 59 33 158 52 

newcats 51 26 112 36 

catsub 96 56 224 42 

gtext 80 48 171 51 

tritype 70 51 281 81 

try 22 13 102 8 

atoi 46 27 124 23 

entab2 40 22 99 35 

91_function 24 12 72 24 

calcnum 39 25 128 57 

findmax 29 18 102 11 

includenum 76 32 151 44 

addqueue 51 31 135 32 

findpos 45 28 97 14 

checkdigit 42 33 126 19 

checksides 27 19 52 0 

seekpos 50 29 135 13 

stringcount 42 25 99 19 

wc 33 18 86 19 

getop 72 48 238 51 

remainder 74 38 289 116 

triangle2 93 62 310 130 

newdash 52 24 152 34 

91_function2 38 23 131 37 

 

5.1. Experimental Results 

 

The results obtained by applying the method are depicted in Table 3. There are three major categories for the 

different number of k paths considered in the experiment. More specifically, the k values of 1, 50, 300, 5,000, and 

50,000 are presented in the table, each sub containing three categories namely Coverage, Paths and Tests. These reflect 

the level of relative mutation score coverage MS
*
(C, D) achieved, the number of the paths generated and the number of 

feasible paths encountered i.e. used for generating tests (tests entry in the table). Also, the total and mean values for all 

                                                           
1
 The LOC were measured after their conversion to the SymExLan language by considering the Nodes and Declaration 

sections of the scripts [41] C. Koutsikas, N. Malevris, A new script language applicable to symbolic execution systems, 

Int. J. Comput. Appl., 28 (2006) 1-11..   



categories are tabulated. It must be noted here that for the purposes of the experiment and as these have been analysed 

in detail, a maximum of 50,000 paths were used beyond which, as it will be discussed in section 6, it is prohibitive to 

generate more paths. Beyond that point, all live mutants were treated as being equivalent. The application of the method 

to each program unit resulted in a total of 522 feasible paths – tests cases. The number of so few feasible paths in such a 

big path set considered is attributed to the anomalies introduced by the insertion of the mutants which forced even 

feasible paths in the initial graph, to become infeasible as their presence created conflicting situations. The first iteration 

(k=1) of the proposed approach realised full (100%) relative coverage for 6 units while for 16 units it achieved over 

90% of relative coverage, whereas for the remaining 14 units the coverages achieved varied between 40.22% and 

87.85%. The mean coverage achieved for all units reached the value of 83.35%. Subsequent iterations resulted in higher 

coverage values for all program units. In the first 50 (k =50) iterations of the strategy, full relative coverage was 

achieved for 16 units and for only 6 (of the remaining 14 units) the score fell under 90%. It must be noted that the 

lowest achieved coverage was that of 68.97% for unit 5 and the mean value recorded was 94.52%. Beyond 50 iterations 

there is a high escalation of the number of infeasible paths generated and that resulted in a low coverage increment in 

the succeeding iterations. Thus, the mean increase of coverage for the paths generated between k=50 and k=300 

increased by only approximately 2.80%. Coverage increase was experienced for 9 units where the values recorded 

varied between 0.63% and 20.69%. In total full relative coverage was experienced for 19 units with a value range of 

[79.55%, 100%]. It must be emphasized here that there is only a marginal increase in the coverage achieved despite the 

considerable amount of paths generated. This matter is discussed in section 6, however, it must be highlighted that the 

effort related to the coverage changes, increases exponentially and may not be advisable to employ the method beyond 

specific k-values. 

 

Table 3. Results derived from the application of the proposed strategy 

Unit 
k = 1 k = 50 k = 300 k = 5,000 k = 50,000 

Coverage Paths Tests Coverage Paths Tests Coverage Paths Tests Coverage Paths Tests Coverage Paths Tests 

1 40.22% 165 4 93.48% 5258 8 96.74% 23775 9 100.00% 348546 10 100.00% 3412626 10 

2 59.09% 98 3 79.55% 3680 7 79.55% 20180 7 100.00% 239052 8 100.00% 2266752 8 

3 98.11% 108 25 99.37% 4078 26 100.00% 24182 27 100.00% 400182 27 100.00% 4004982 27 

4 76.00% 84 1 100.00% 3404 7 100.00% 16405 7 100.00% 232605 7 100.00% 2305365 7 

5 61.21% 122 3 68.97% 5831 6 89.66% 31040 11 94.83% 382231 13 100.00% 3107984 15 

6 96.85% 81 13 100.00% 3071 14 100.00% 18321 14 100.00% 305021 14 100.00% 3053681 14 

7 77.36% 93 1 86.79% 4003 6 86.79% 22526 6 100.00% 290804 11 100.00% 2814164 11 

8 100.00% 61 12 100.00% 2462 12 100.00% 14712 12 100.00% 245012 12 100.00% 2452952 12 

9 78.02% 129 12 89.56% 5458 15 96.15% 24096 20 99.45% 318036 25 100.00% 3089806 26 

10 68.33% 134 12 88.33% 3914 14 94.17% 19973 16 97.50% 277532 19 100.00% 2594710 21 

11 52.00% 255 14 100.00% 1730 36 100.00% 3022 36 100.00% 3022 36 100.00% 3022 36 

12 100.00% 51 20 100.00% 737 20 100.00% 4225 20 100.00% 70025 20 100.00% 700865 20 

13 71.29% 75 8 94.06% 2053 23 94.06% 10463 23 100.00% 92715 25 100.00% 674015 25 

14 98.44% 53 5 100.00% 2367 6 100.00% 14117 6 100.00% 235017 6 100.00% 2352837 6 

15 100.00% 34 6 100.00% 1308 6 100.00% 7248 6 100.00% 110648 6 100.00% 1101968 6 

16 97.18% 82 9 100.00% 3562 10 100.00% 21312 10 100.00% 355012 10 100.00% 3554272 10 

17 83.52% 49 14 100.00% 738 17 100.00% 4238 17 100.00% 70038 17 100.00% 700878 17 

18 87.85% 93 12 100.00% 3177 17 100.00% 16681 17 100.00% 235617 17 100.00% 2308377 17 

19 63.11% 97 6 95.15% 2609 15 95.15% 12734 15 95.15% 149034 15 100.00% 1290262 17 

20 95.18% 40 10 100.00% 814 14 100.00% 4574 14 100.00% 75074 14 100.00% 750974 14 

21 99.07% 84 26 100.00% 1165 27 100.00% 6650 27 100.00% 110050 27 100.00% 350369 27 

22 100.00% 22 16 100.00% 22 16 100.00% 22 16 100.00% 22 16 100.00% 22 16 

23 100.00% 53 17 100.00% 886 17 100.00% 5123 17 100.00% 85023 17 100.00% 851043 17 

24 93.75% 38 9 98.75% 1226 13 98.75% 7226 13 98.75% 120026 13 100.00% 1181935 14 

25 95.52% 34 8 98.51% 1115 10 100.00% 6491 11 100.00% 105191 11 100.00% 1051451 11 

26 100.00% 205 44 100.00% 3439 44 100.00% 19873 44 100.00% 330073 44 100.00% 3304033 44 

27 99.42% 147 14 100.00% 3124 15 100.00% 18228 15 100.00% 132492 15 100.00% 1213932 15 

28 91.67% 212 20 91.67% 6239 20 100.00% 32719 23 100.00% 371115 23 100.00% 2849415 23 

29 60.83% 120 4 70.00% 5731 7 90.00% 30440 12 95.00% 372231 14 100.00% 3007864 16 

30 85.11% 81 15 91.49% 2486 18 96.81% 12273 19 100.00% 135341 20 100.00% 1306901 20 

Total -  2900 363 -  85687 466 -  452869 490 - 6196787 512 - 57657457 522 

Mean 83.35% 96.67 12.10 94.52% 2856.23 15.53 97.32% 15095.63 16.33 99.33% 206559.57 17.07 100% 1921915.23 17.40 



 

Figure 4. Mean Coverage for all k values  

The results of the experiment for higher k-values (300 < k < 50,000) resulted in a 2.68% coverage increase. This was 

achieved with only 32 total test cases (feasible paths) contributed in the above range of k values. In conclusion, for the 

last 2 columns of the table (k=5,000 and k=50,000), it can be argued that for the first 5,000 iterations 6 units still remain 

not fully covered, resulting in coverage values for all 30 units in the range [94.83%, 100%] with a mean coverage value 

of 99.33%. Additionally, 22 more test cases are produced at the iteration increment range from 300 to 5,000, making a 

total of 10 test cases only found i.e. 10 feasible paths only in the range from 5,000 to 50,000.   

The results obtained are summarised in Figure 4., where the mean actual Ck and the mean relative Ck
*
 coverages  for 

all values of k in the range [0, 50,000] against k are plotted. The values of Ck and Ck
*
 are defined as: 

 

and  

 

Where  and are the values of MS
*
 and MS and  the data set after k iterations of the proposed 

method for unit i.  

It is self evident from the graph that the increase in coverage is quite considerable for minor values of k and beyond 

the 1,400 value, only a subtle increase occurred. This enables the argument, without any loss of generality, that the 

significant contribution in the coverage achieved when attempting to kill the mutants is attributed to the first part of the 

graph where up to 1400 paths are recorder beyond which, the increase is insignificant hence can be ignored. Figure 5 

displays the reduced graph deduced from that of Figure 4. where the values of coverages for k in the range [1, 1400] are 

considered. This has allowed to make the entries of smaller path values more apparent. As pointed before after the 50 

iterations the coverage rate begins to slow and in fact, no additional increase is observed until the 120 iterations. The 

rate of coverage increase slows down and this becomes even more evident for k in the range of [630, 50000], where the 

relative values attained are: for C632
*

 = 98.14%, C913
* 

= 98.90%, C1605
*
 = 99.00%, C4764

*
 = 99.33%, C6912

*
 = 99.45%, 

C7740
*
 = 99.76%, C20296

*
 = 99.85%, C28110

* 
= 99.88%, C40295

* 
= 99.91%,           C40396

* 
= 100%. The actual values are 

spread in a similar fashion. 



The reduction of the graph also makes more evident that the significant increase in the coverage achieved is 

recorded for the ranges [1, 50], [51, 150] and [151, 300]. The total coverages recorded in these ranges being 94.52%, 

95.1% and 97.32% respectively. The next point of significant increase is for k = 632 where a relative coverage of 

98.14% was achieved. Full relative coverage was achieved after the generation of paths for k = 40,396 making it more 

debatable that the benefit of such a subtle increase is worthless with respect to the huge number of paths needed to be 

considered in order to achieve it, hence involving more effort too.   

 

 

Figure 5. Reduced Mean Coverage graph 

 

5.2. The Effort required by the strategy 

 

Clearly as it has already been established there is a direct relationship between the number of paths generated and 

the coverage achieved when seeking to kill the mutants. The initial path sets do provide the basis in order to achieve a 

fundamental first coverage. Then onwards, a significant number of paths is required to increase the coverage and hence 

the percentage of killed mutants. The reason behind this, is due to the existence of equivalent mutants and infeasible 

program paths. The incidence of both equivalent mutants and infeasible paths require an incremental number of tries 

from the tester in order to find suitable tests-feasible paths or determine, if possible, the equivalence of the live mutants. 

This can only be performed in an exhaustive way requiring a possibly infinite number of paths–test cases to be 

generated. This fact also indicates the suitability of the k
th

-shortest paths heuristic in order to make the mutation testing 

criterion applicable. The results obtained and the nature of the graph seem to suggest that it may not be cost-effective to 

generate more than approximately 50 candidate paths per mutant constraint in an attempt to raise the mutation score. 

This result is along the same lines with the results derived in previous studies using the k-paths strategy in the context of 

structural testing [14]. However, the use of the best k-value is a matter of the undertaken policy and in view of this a 

high value could be perhaps advisable if critical applications were to be considered or if the cost-effect is not an issue.  



The reason for considering such a testing strategy according to a specific k-value is twofold. First, it places practical 

bounds on the effort associated with the employment of the strategy, note that the actual number of paths in most 

program units tends to be infinite. Second, the equivalent mutants do result in infeasible paths when attempting to kill 

them. Such being the case, any attempt to generate paths to kill them, emerges the problem of an infinite number of 

infeasible paths (in the worst case and if the structure of the program supports it e.g. loops). By employing such a 

stopping rule, this result in a practical heuristic that overcomes the equivalent mutant problem based on the effort 

investment per each mutant.  

In order to substantiate the benefits of the proposed method, it is needed to establish the effort per each mutant 

considered. This will provide a useful yardstick for estimating the overall test data generation procedure effort. For this 

reason, the average values of the numbers of paths needed to be generated per mutant are presented in Table 4; together 

with the mean values of the actual and relative coverages achieved as well as the number of paths generated. 

It must be noted here that the presence of equivalent mutants and infeasible paths not only does affect the practical 

matters of employing the mutation testing criterion, but also the theoretical ability to accurately predict the number of 

test cases needed, and therefore the effort too, on the following grounds. The absence of both equivalent mutants and 

infeasible paths would require in the worst case the generation of at most 4517 paths (number of mutants) if a distinct 

path were needed per mutant. In the best case as the problem can be converted into that of covering the arcs of the 

enhanced CFG, a method such as the one presented in [52] can provide a minimum number of paths needed. Thus, 

providing both upper and lower bounds for the total effort needed to kill the mutants.  

 

Table 4. Total and per mutant paths towards coverage 

K-Value 
Mean value of MS. 

Actual Coverage 

Mean value of MS
*
. 

Relative Coverage 

Number of paths 

generated 

Number of paths 

per Mutant 

1 60.62% 83.35% 2900 0.642019 

10 64.93% 89.28% 20319 4.49834 

30 67.72% 93.12% 53991 11.95284 

50 68.74% 94.52% 85687 18.96989 

100 68.74% 94.52% 163864 36.27718 

300 70.78% 97.32% 452869 100.2588 

1.000 71.93% 98.90% 1336153 295.8054 

10.000 72.55% 99.76% 12061983 2670.353 

30.000 72.64% 99.88% 35017392 7752.356 

50.000 72.73% 100.00% 57657457 12764.55 

 

Unfortunately, in practice the number of the required paths is substantially greater due to both equivalent mutants 

and infeasible paths making full coverage unachievable and the theoretical bounds inactive. The number of mutants can 

be easily calculated and as it can be seen in Table 4., a minimum of 2900 paths were needed initially to be generated in 

total i.e. 2.900/4.517 = 0,64 paths per mutant.  This value is between the two bounds referred to above and this is due to 

the presence of both equivalent mutants and infeasible paths.  

Examining the values of Table 4., it can be noted that an actual coverage of approximately 60.62% and a relative 

one of 83.35% were obtained at the entry level for k = 1. In order to increase these coverages to 67.72% and 93.12% (k 

-value 30) respectively, an effort of approximately 18.6 times the initial one, is needed. The effort, in fact, increases 

markedly, at an exponential rate as it can be perceived by the graph of Figure 6. Figure 6. presents a plot of the number 



of paths generated against the actual coverage Ck. Figure 7. presents the first part of (up to k-value 1400) of the relative 

coverage Ck
*

 achieved versus the number of paths generated per mutant.  

The noticeable effects for both Figures 5. and 6., with respect  to the rate of the effort involved is that they both 

follow an exponential model of the form:  

y = a e
bx 

, where a and b are parameters of the model that depend on the data.  

In the case of Figure 6., the R² = 0.6907 provides a weak fit to the data. This can be explained by the large number 

of infeasible paths encountered. However, the plot does undoubtedly indicate an exponential trend. In the case of Figure 

7., the  R² = 0.953 does indicate a good fit to the data providing values for a = 6E-19 and for b = 48.174. Although this 

is specific to the results obtained by using the 30 units, it does provide a basis that suggests the exponential relation 

between the number of paths/mutant and the coverage achieved.  

 

 

Figure 6. Coverage per total paths 

 

From the graph of Figure 7 and Table 4., as can be observed, the 19 paths (attained for k = 50) generated per mutant 

lead to a coverage of almost 95% of the mutants, while doubling the number of paths to 36 per mutant does not provide 

any increase at all, therefore it can be argued that it is not cost-effective to generate more than about 19 paths per live 

mutant in order to achieve a descent mutation coverage level. Also, the 95% of the relative coverage achieved, can be 

interpreted as the 95% of the achievable coverage when all 50,000 are considered. Thus, the k=50 value is adequate in 

assessing the 95% of what would be achieved by employing all the k=50,000 value. This can be also recorded as the 

strength of the strategy proposed.  

It is worth mentioning that the experimental results are consistent with the results obtained in previous studies 

conducted for structural testing [14]. Both the present and previous studies [14] were founded on the same assertion 

about the feasibility of program paths, applied to totally different test samples however resulting in similar conclusions 

concerning not only the testing effort trend, but also the cost effective k-value point for achieving a high level of 

coverage.  

 



 

Figure 7. Coverage per paths/mutants 

 

6. Discussion of the results 

 

This paper considers the practical problems encountered when employing the weak mutation testing criterion and 

eventually suggest using a path selection strategy to tackle them. An experimental assessment on the effort needed 

towards an effective path selection strategy was investigated and results were derived based on a purposely built tool. 

The results were derived from a sample of 30 programs, containing a total of 4517 mutants, by investigating 

approximately over 55 million program paths. The experiment contribution relies on the practical aspects of employing 

mutation, i.e. the path generation method used, its reflected effort and practical approaches to circumvent the equivalent 

mutants problem.  

 

6.1. Effectiveness of the path generation method 

 

In order to generally adopt the practical issues established by the experiment, some points should be addressed. Two 

factors must be considered when setting up such an experiment. These are: the adopted path selection strategy and the 

handling of the equivalent mutants. These factors are outlined in the following questions: “how typical is the 

effectiveness of the path selection strategy?” and  “in case of employing an equivalent mutant detection system that 

could eliminate all or most of the equivalent mutants are the results still sound?”. 

Concerning the effectiveness of the employed path generation strategy, it is again essential to consider the 

fundamental assumption of the method used. Basically, as the number of infeasible paths in a program tends to be rather 

significant, any path generation method should consider their presence upon their generation. Based on the validity of 

this fundamental assumption the method adopted in this study is perhaps the only method that suggests a methodical 

way of generating the paths by trying to avoid the infeasible ones. Therefore, the proposed method establishes a clear 



advantage against any other possible method that ignores the presence of infeasible paths. Consequently, it should be 

anticipated that adopting the proposed strategy will be more efficient than its alternatives.   

In view of the difficulties imposed by the influence of the various equivalent mutants on the soundness of the results 

reported in this paper, by focusing on the results reported in section 5., even in the hypothetical absence of equivalent 

mutants, there should still necessitate a high number of iterations cycles (the k-value) in order to adequately achieve the 

required levels of coverage. It is noted that the k-value is completely independent of the presence of equivalent mutants. 

Thus, the influence of infeasible paths on the overall effort is substantial even in such a hypothetical case. Indeed, a k-

value even higher than 40396 (where full relative coverage was achieved) should be employed which in any case is 

prohibitively high. Despite all these considerations, the present paper targets on practical aspects of employing weak 

mutation testing and thus it is suggested that the remaining live mutants after k tries to be treated as equivalent ones. 

Although this requires settling with less than full coverage, the testing thoroughness will not be greatly affected.  

Following the suggestions made by Offutt and Untch  [5] and Yates and Malevris [7] the application of a coverage 

criterion must be cost-effective. “Software testing is an imperfect science and there is no reason for coverage to be 

exact” as advocated in [5]. Additionally, based on the present experiment and on the above arguments, the proposed 

method will on average outperform the other path selection strategies. Consequently, the extent of the effort (as 

measured by the number of generated paths per mutant) to achieve the various levels of coverage for the sample used, is 

likely to be the minimum possible that can be achieved. The exponential behaviour of the effort has been shown to be in 

direct relation with the number of infeasible paths. This would only be alleviated if there existed a method that could 

avoid and ignore the presence of infeasible paths. As such a method does not exist, all methods considered will be 

subjected to exponential effort, with perhaps the one adopted here which tries to reduce the incidence of infeasible paths 

thus, diminishing the effort involved.  

 

6.2. Issues about weak, strong and higher order mutation 

 

This paper considers the employment of weak mutation as a testing criterion in order to produce high quality test 

cases. The proposed approach relies on the foundations of path feasibility as proposed by Yates and Malevris [14]. 

Generally, the path selection strategy proposed here can be extrapolated to include other mutation based testing criteria 

such as strong mutation or higher order mutation. Although, such an approach should require more effort due to the 

increased length and complexity of the selected paths, this effort is substantial to the increased strengths of the higher 

order and strong (first order) mutation. The question that it is discussed here is how can these approaches be tackled by 

possible extensions of the proposed method?   

Generally, in order to include strong mutation there is a need to handle the sufficiency condition [21]. This is a very 

difficult task [21] and could be achieved by generalising the considered conditions, utilizing the same template “ e != e’ 

” for the data state variables that are influenced by the introduced mutant. Thus, by requiring the various introduced 

branches to be true for every node of the program execution path that is affected by the introduced mutant can lead to 

its propagation (fulfil the sufficiency condition). Finding such a feasible path will probably result in test cases that could 

effectively kill the introduced mutants. A similar approach has been proposed by Santelices et al. [53] in the context of 

regression testing for testing the introduced code changes. In their approach a set of paths is selected based on 

dependence analysis. Santelices et al. [53] used partial symbolic execution on the selected paths in order to identify 

probably feasible testing requirements that are capable of propagating the introduced program changes. The same 

approach has also been proposed for handling multiple changes in the code under test. This approach can be easily 

adopted in order to tackle the mutant killing problem for higher order mutants.  



   

6.3. The influence of infeasible paths on the required effort 

 

Path analysis forms a well established method with many applications on all aspects of software engineering 

activities including various forms such as testing, program analysis [48] and program profiling [54]. All these activities 

are mainly influenced by the existence of infeasible paths. This should be obvious for all the methods that select a set of 

paths prior to their analysis, as the probability of selecting an infeasible one is quite high. Specifically, in our case 

where the aim is to kill a hard to kill mutant, the path selection method must select many alternative paths that reach the 

targeted mutant. Every such candidate path must be checked for its feasibility which is a very costly activity. If that 

path is found to be infeasible, the effort spent on checking the path’ feasibility is wasted. Thus, it is natural to expect 

that the higher the number of the encountered infeasible paths the higher the amount of the wasted effort is. Based on 

the conducted experiment, when aiming at killing the mutants of unit No 1 with a maximum number of tries being 

1,000 paths per live mutant, a number of 23,775 paths were selected in total. From these paths, only 9 where found to 

be feasible thus, resulting in 23,766 useless checks for their feasibility. Put it in another way, consider the required 

adopted k-value for killing the targeted mutants. It must be recalled that the k-value represents the maximum number of 

the selected paths per live mutant. Thus, in our experiment one and only one “hard to kill” mutant required 40,396 paths 

to be considered in order to be killed. This mutant provides a good example that shows the impact of the infeasible 

program paths on the test generation effort.    

 

6.4. Scalability issues and Limitations  

 

The automatic generation of test cases constitutes one of the most difficult problems encountered in the software 

testing activity. To address this problem many methods have been proposed by the research community. The present 

paper considers a path based approach. The main challenge faced in this area is the scalability of these methods due to 

the encountered infeasible paths as discussed in section 6.3. The presently proposed approach goes a step forward by 

considering paths in a systematic way with the aim of avoiding the infeasible ones (see section 6.1 for a discussion on 

this matter). Therefore, the proposed method establishes a clear advantage against any other possible method that 

ignores the presence of infeasible paths. Consequently, it should be anticipated that adopting the proposed strategy will 

be more effective at selecting feasible paths than its path selection alternatives. However, scalability issues still remain 

and require further research. These issues are attributed to the following two factors: the use of pure static symbolic 

execution and the use of mutation testing. 

Static symbolic execution has many limitations [48] such as the handling of function calls, calls to external libraries, 

solving of complex non-linear expressions etc which withhold its practical application. However, emergent research in 

this area [55], [13], [49], [48] give answers to those problems making symbolic execution feasible and scalable. Here, it 

must be mentioned that since the proposed approach relies on path selection, it provides an independent to the symbolic 

execution way of producing the sought test cases. Generally, the efficient and effective determination of the feasibility 

of the selected paths is independent to their selection. Thus, no matter how the symbolic execution engine works the 

proposed approach guides the selection of paths for killing mutants. These paths must definitely be explored in order to 

kill the aimed mutants.  

Automatically, producing tests for mutation testing forms a difficult task [5]. Recall from section 2.4.3 that 

mutation-based test cases must adhere to the reachability, necessity and sufficiency conditions. A significant amount of 

resources is needed by any test generation method in order to jointly fulfil these conditions. Further, the incidence of 



equivalent mutants (see section 6.1 for a discussion on this matter) considerably impacts the cost of such a method. This 

problem can be tackled by using various mutation testing alternatives [5], [18] on the one hand and by using effective 

test generation approaches as discussed above on the other. 

The approach proposed in the present paper suggests the use of program paths in order to effectively kill mutants. 

Although, it uses symbolic execution in order to examine the feasibility of the selected paths it bases its characteristics 

for alleviating the problem of infeasibility on the selection of paths rather than their symbolic evaluation, which might 

be performed in different ways. Therefore, by providing an effective heuristic, such as the one proposed in this paper, to 

deal with the undesirable effects caused by the incidence of infeasible paths substantial benefits can be gained. 

 

6.5. Threats to validity 

 

The present paper focuses on effectively automating the test case generation using a path selection strategy for 

mutation testing. One possible threat to the validity of the obtained results is due to the utilized mutants. Thus, the 

strategy’s effectiveness may vary when utilizing other mutant operators. Although this may hold, the utilized operators 

form the current practice in the various experimental studies found in the literature. There are many experimental 

studies concerning mutants’ effectiveness and the majority adopts a similar to the present study, well established set of 

operators [32], [18] not only in theory but also in practice. Although such a set has not been widely used for weak 

mutation, Offutt and Untch [5] suggest that it should be considered. Additionally, this set was formed as a result of an 

experimental study  [32] in which test sets were derived with reference to the Godzilla tool, which generates tests based 

on weak mutation. In any case, the addition or even the elimination of some mutants should not alter the overall 

approach employment pattern or effort assessment, derived by the present study, as their presence will only add or 

remove similar simple additional constraints. Furthermore, the underlying path selection method, makes use of a 

fundamental assertion detailed in section 3, that takes into consideration when choosing the paths (aiming at feasible 

ones), only the total number of constraints contained in a path and not the nature of those constraints. This can be 

regarded as the method’s ability to generate effective results irrespective of the mutants considered.    

Another possible threat is due to the generalization of the utilized sample. This is true for all the experimental 

studies. Therefore, it cannot be claimed that the selected units represent a generalisation of the results produced in this 

study. Further, considering the units’ size another issue also appears, that is the application on larger program units. 

However, the method does not use the special features and specifications of the units, making its application rather 

indifferent to the specifics of the units. Moreover, typical program units are not of a considerably large size. Thus, the 

selection of another set of programs should not affect the application of the proposed method. Nonetheless, consider 

Figure 8. which is a histogram of depicting the proportion of feasible k
th

 shortest paths for the sample units. From the 

histogram it can be seen that as k increases, the proportion of feasible paths tends to decrease, therefore the proportion 

of infeasible ones increases reciprocally. This is in accordance with the proposition made in Section 3, and the 

statistical evidence provided in [14] that path feasibility tends to decrease with path predicate involvement. Under this 

assumption then, the nature of Figure 8 supports the belief that the sample used in the experiment has a representative 

behaviour with the independent sets used in the previous studies such as in [14]. These results are also verified by 

Vergilio et al. [56] study. In their study the authors repeated an experiment involving the number of predicates and 

feasibility, and they concluded the same findings. 

Finally, another possible threat to the validity of the present experiment maybe based on the use of software 

systems. Thus, possible bugs, program conversions and differences of the test subjects from their language to the 

SymExLan one may have also affected the obtained results.  



Despite all the abovementioned issues, the main objective of the present paper was to present the strategy’s 

feasibility and applicability to a set of programs when performing mutation, rather than comparing the effectiveness of 

the proposed approach with various rival ones. In view of this, the proposed method, does give an answer to the general 

problem of generating test data able to kill mutants and it does so in an effective way. Further, the obtained results also 

suggest practical guidelines for the production of high quality test cases with reasonable resources by using practical 

heuristics for circumventing the equivalent mutants’ problem.   

 

 

Figure 8. Proportion of feasible k
th

 shortest paths 

 

7. Conclusion 

 

This paper addresses application issues of the weak mutation testing method, and in particular, the extent of the 

effort that in practice is entailed by employing it. To assess the effort involved, an experiment with 30 unit programs 

was conducted that uses an effective path selection strategy that alleviates in an a priori basis the unnecessary effort 

spent on infeasible paths. The sample of the 30 units is formed from the ones used in previous studies such as in [21], 

[32], [6] and [43].  The method employed in the present work, has been proved to be effective in an attempt to diminish 

the effort involved in mutation testing by avoiding the presence of infeasible paths. This is achieved by transforming the 

mutation coverage problem into a node coverage one by introducing the Enhanced CFG. Covering all nodes in this 

graph is equivalent to covering all inserted mutants. Based on this, all equivalent mutants signify infeasible nodes in the 

Enhanced CFG. Thus, in view of the above, path based methods can be utilised to support mutation testing. 

As discussed in previous sections the presence of infeasible paths and equivalent mutants, results in a waste of effort 

that gradually dominates the entire process in terms of the total effort spent. The results obtained by analysing the 30 

units with the prototype tool developed, showed a mostly acceptable level of mutation coverage. For 6 of the 30 units 

their mutants were covered completely, and a mean relative mutant coverage of 83.35% was achieved by generating, on 

average, a quite modest number of 0.64 paths per mutant element. The respective actual mutant coverage value 

achieved for the same effort investment was 60.62%. Raising the coverage to an acceptable level of 94.52% for the 

relative mutant coverage was also possible with a reasonable amount of additional effort. Thus a 68.74% and 94.52% of 

actual and relative mutant coverages were obtained with a mean effort of approximately 19 paths per mutant element. 



Beyond that point the trade off between the effort and coverage starts to become unprofitable. Nevertheless, in general, 

the trade relation between coverage and effort is exponential. For small k-values the rate of effort is almost non 

exponential rising exponentially, after the k = 50 value. For 19 of the 30 units full mutant relative coverage was 

achieved and a mean value of 97.32% attained, by generating a total of 452,869 paths which is translated to 100 paths 

per mutant element. Full mutant relative coverage was accomplished by a mean effort of 10,358 per mutant element. It 

is noted that the remaining live mutants, which are treated as equivalent ones, may not in fact be equivalent. This is an 

assumption made for the purposes of the experiment as it is unlikely to kill any mutant beyond the threshold of 50,000 

paths. Past this point all mutants were treated as equivalent. This raises the matter of infeasible paths as mutant 

equivalence and path infeasibility are directly related. In any case, the achievement of a mutant relative coverage at any 

stage and for any k < 50,000, predefines the final actual mutant coverage attainable at the 50,000 point as the ratio 

MS(C,D)/ MS
*
(C,D) at k.  Evidently, not having the precise measures of relative coverage the results indicate that a very 

reasonable level of weak mutation coverage can be achieved with quite an acceptable expenditure of effort. This fact 

attests to the effectiveness of the proposed method’s ability to reduce the incidence of infeasible paths.  

The empirical results presented here indicate the influence of infeasible paths and of infeasible test elements, such as 

equivalent mutants, in applying testing criteria in practice. For all these arguments it is suggested, and this constitutes 

the major conclusion of the present work, to generate up to 19 paths per mutant (achieved for k = 50) as the additional 

paths beyond this value increase the effort rate dramatically.  
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