
Static Analysis of Android Apps: A System-

atic Literature Review

Li Li University of Luxembourg / SnT / SERVAL, Luxembourg
Tegawendé F. Bissyandé University of Luxembourg / SnT / SERVAL, Luxembourg
Mike Papadakis University of Luxembourg / SnT / SERVAL, Luxembourg
Siegfried Rasthofer TU Darmstadt / Fraunhofer SIT, Germany
Alexandre Bartel TU Darmstadt / Fraunhofer SIT, Germany
Damien Octeau University of Wisconsin and Penn. State University, USA
Jacques Klein University of Luxembourg / SnT / SERVAL, Luxembourg
Yves Le Traon University of Luxembourg / SnT / SERVAL, Luxembourg

20 April 2016

ISBN 978-2-87971-150-8 TR-SNT-2016-3

www.securityandtrust.lu

University of Luxembourg • Interdisciplinary Centre for Security, Reliability and Trust • 4, rue Alphonse Weicker • L-2721 Luxembourg-Kirchberg



Static Analysis of Android Apps: A Systematic Literature Review

Li Lia,1, Tegawendé F. Bissyandéa, Mike Papadakisa, Siegfried Rasthoferb, Alexandre Bartelb, Damien Octeauc, Jacques Kleina,
Yves Le Traona

aInterdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
bFraunhofer SIT, Technische Universität Darmstadt, Germany

cUniversity of Wisconsin and Pennsylvania State University

Abstract

Context: Static analysis approaches have been proposed to assess the security of Android apps, by searching for known
vulnerabilities or actual malicious code. The literature thus has proposed a large body of works, each of which attempts to tackle
one or more of the several challenges that program analyzers face when dealing with Android apps.

Objective: We aim to provide a clear view of the state-of-the-art works that statically analyze Android apps, from which we
highlight the trends of static analysis approaches, pinpoint where the focus has been put and enumerate the key aspects where future
researches are still needed.

Method: We have performed a systematic literature review which involves studying around 90 research papers published in
software engineering, programming languages and security venues. This review is performed mainly in five dimensions: problems
targeted by the approach, fundamental techniques used by authors, static analysis sensitivities considered, android characteristics
taken into account and the scale of evaluation performed.

Results: Our in-depth examination have led to several key findings: 1) Static analysis is largely performed to uncover security
and privacy issues; 2) The Soot framework and the Jimple intermediate representation are the most adopted basic support tool and
format, respectively; 3) Taint analysis remains the most applied technique in research approaches; 4) Most approaches support
several analysis sensitivities, but very few approaches consider path-sensitivity; 5) There is no single work that has been proposed
to tackle all challenges of static analysis that are related to Android programming; and 6) Only a small portion of state-of-the-art
works have made their artifacts publicly available.

Conclusion: The research community is still facing a number of challenges for building approaches that are aware altogether
of implicit-Flows, dynamic code loading features, reflective calls, native code and multi-threading, in order to implement sound
and highly precise static analyzers.

1. Introduction

Since its first commercial release in September 2008, the
Android mobile operating system has witnessed a steady adop-
tion by the manufacturing industry, mobile users, and the soft-
ware development community. Just a few years later, in 2015,
there were over one billion monthly active Android users, mean-
while its o�cial market (Google Play) listed more than 1.5 mil-
lion apps. This adoption is further realised at the expense of
traditional mobile systems, such as iPhones, since Android oc-
cupied 83.1% of the mobile device sales in the third quarter of
2014 [1], driving a momentum which has created a shift in the
development community to place Android as a “priority” target
platform [2].

Because Android apps now pervade all user activities, ill-
designed and malicious apps have become big threats that can
lead to damages of varying severity (e.g., app crashes, financial
losses with malware sending premium-rate SMS, reputation is-
sues with private data leaks, etc). Data from anti-virus vendors

Email address: li.li@uni.lu (Li Li)
1Corresponding author.

and security experts regularly report on the rise of malware in
the Android ecosystem. For example, G DATA has reported
that the 560,671 new Android malware samples collected in the
second quarter of 2015 revealed a 27% increase, compared to
the malware distributed in the first quarter of the same year [3].

To deal with the aforementioned threats, the research com-
munity has investigated various aspects of Android develop-
ment, and proposed a wide range of program analyses to iden-
tify syntactical errors and semantic bugs [4], to discover sensi-
tive data leaks [5, 6], to uncover vulnerabilities [7, 8], etc. In
most cases, these analyses are performed statically, i.e., without
actually running the Android app code, in order not only to en-
sure scalability when targeting thousands of apps in stores, but
also to guarantee a traversal of all possible execution paths. Un-
fortunately, static analysis of Android programs is not a trivial
endeavour since one must account for several specific features
of Android, to ensure both soundness and completeness of the
analysis. Common barriers to the design and implementation
of performant tools include the need to support Dalvik byte-
code analysis or translation, the absence of a main entry point
to start the call graph construction and the constraint to account
for event handlers through which the whole Android program

Preprint submitted to Information and Software Technology April 12, 2016



works. Besides these specific challenges, Android carries a
number of challenges for the analysis of Java programs, such
as how to resolve reflective calls and deal with dynamic code
loading. Thus, despite much e↵orts in the community, state-
of-the-art tools are still challenged by their lack of support for
some analysis features. For example, the state-of-the-art Flow-
Droid [5] taint analyzer cannot track data leaks across com-
ponents since it is unaware of the Android Inter-Component
Communication (ICC) scheme. More recent tools which focus
on ICC calls may not account for reflective calls.

Because of the variety of concerns in static analysis of An-
droid apps, it is important for the field, which has already pro-
duced substantial amount of approaches and tools, to reflect on
what has already been done, and on what remains to do. Al-
though a recent survey [9] on securing Android has mentioned
some well-known static analysis approaches, a significant part
of current works has been skipped from the study. Furthermore,
the study only focused on general aspects of Android security
research, neglecting basic characteristics about the static anal-
yses used, and missing an in-depth analysis of the support for
some Android-specific features (e.g., XML Layout, or ICC).

This paper is an attempt to fulfill the need of a compre-
hensive study for static analysis of Android apps. To reach
our goal, we performed a systematic literature review of such
approaches. After identifying thoroughly the set of related re-
search publications, we perform a trend analysis and provide a
detailed overview on key aspects of static analysis of Android
apps such as the characteristics of static analysis, the Android-
specific features, the addressed problems (e.g. security or en-
ergy leaks) and also some evaluation-based empirical results.
Finally, we summarize the current limitations of static analysis
of Android apps and point out potential new research directions.

The main contributions of this paper are:

• We build a comprehensive and searchable repository of
research works dealing with static analysis for Android
apps. These works are categorized following several cri-
teria related to their support of common analysis charac-
teristics as well as Android-specific concerns.

• We analyze in detail key aspects of static analysis to sum-
marize the research e↵orts and the reached results.

• We further enumerate the limitations of current static anal-
ysis approaches (on Android) and provide insights for po-
tential new research directions.

• Finally, we provide a trend analysis on this research field
to report on the latest focus as well as the level of maturity
in key analysis problems.

2. Background Information on Android and Static Analysis

We now provide to the reader the preliminary details which
are necessary to understand the purpose, techniques and key
concerns of the various research work that we have reviewed.
Mainly, we summarize the di↵erent aspects of static analysis
in general in Section 2.1 before revisiting some details of the
Android programming model in Section 2.2.

2.1. Concepts of Static Program Analysis
Static program analysis generally involves an automated tool

that takes as input the source code (or object code in some
cases) of a program, examines this code without executing it,
and yields results by checking the code structure, the sequences
of statements, and how variable values are processed through-
out the di↵erent function calls. The main advantage of static
analysis is that it can reveal errors (or vulnerabilities) that do
not manifest themselves (or are not exploited) until long after
the software is released to the public. A typical static analy-
sis process is run as follows: 1) first, a call graph (CG) is built
from the analyzed program by representing an abstraction of the
calling relationships between the subroutines (e.g., methods in
Java) of the program; 2) then, a Control Flow Graph (CFG) can
be built to include more fine-grained details of the structure of
the whole program, e.g., by making explicit all the paths inside
a subroutine; 3) finally, other information, such as the values
of variables at di↵erent points of the CFG, can be collected to
allow the static analysis to support more in-depth verification,
e.g., through data-flow or alias analysis.

In the following, we detail essential concepts of static anal-
ysis, as we mentioned above, summarizing the main techniques
that are implemented (in Section 2.1.1), and covering the con-
struction of the CG and CFG (in Section 2.1.2) and their enrich-
ment with context information (in Section 2.1.3). This section
only summarizes key aspects about static analysis. For more
details, interested readers are encouraged to refer to the doc-
toral dissertation of Alexandre Bartel [10], a co-author of this
literature review.

2.1.1. Analysis Techniques
Control-flow analysis. A control-flow analysis is a technique
to show how hierarchical flow of control within a given pro-
gram are sequenced, making all possible execution paths of a
program are analyzable. Usually, the control sequences are ex-
pressed as a control-flow graph (CFG), where each node repre-
sents a basic block of code (statement or instruction) while each
directed edge indicates a possible flow of control between two
nodes.

Data-flow analysis. A data-flow analysis [11] is a technique to
compute at every point in a program a set of possible values.
This set of values depends on the kind of problem that has to
be solved using data-flow analysis. For instance, in the reach-
ing definition problem, one wants to know the set of definitions
(e.g., statements such as int x = 3;) reachable at every pro-
gram point. In that particular problem, the set of possible values
at program point P is the set of definitions that reaches P (i.e.,
the variable is not redefined before it reaches P).

Points-to analysis. Points-to analysis consists of computing a
static abstraction of all the data that a pointer expression (or
just a variable) can point to during program run-time.

2.1.2. Call-Graph Construction
Because Android supports the object-oriented programming

scheme with the Java language, in the remainder of this section

2



Code Snippet Sensitive Call-Graph Insensitive Call-Graph

1 public void flowSensitivity () {
2 Animal a = new Human();
3 a.walk();
4 a = new Cat();
5 }

flowSensitivity

Human.walk

flowSensitivity

Human.walk Cat.walk

(a) Flow Sensitivity

1 public void pathSensitivity () {
2 Animal a = null:
3 if (condition) {
4 a = new Human();
5 } else {
6 a = new Cat();
7 }
8 a.walk();
9 }

path1
(condition

is true)

Human.walk

path2
(condition

is false)

Cat.walk

pathSensitivity

Human.walk Cat.walk

(b) Path Sensitivity

1 public void fieldSensitivity ()
{

2 C c1 = new C();
3 C c2 = new C();
4 c1.f1 = new Human ();
5 c2.f1 = new Cat();
6 c1.f1.walk();
7 }
8 public class C {
9 Animal f1;

10 }

fieldSensitivity

Human.walk

fieldSensitivity

Human.walk Cat.walk

(c) Field Sensitivity

1 public void
contextSensitivity () {

2 Human h = new Human ();
3 Cat c = new Cat();
4 Animal a = method(c);
5 a = method(h);
6 a.walk();
7 }
8 public Animal method(Animal a)

{
9 return a;

10 }

contextSensitivity

Human.walk

contextSensitivity

Human.walk Cat.walk

(d) Context Sensitivity

1 public void
objectSensitivity () {

2 Contains c1 = new Contains ();
3 Contains c2 = new Contains ();
4 c1.setAnimal(new Human());
5 c2.setAnimal(new Cat());
6 c1.animal.walk();
7 }
8 public class Contains {
9 Animal animal;

10 public void setAnimal(Animal
a) {

11 this.animal = a;
12 }
13 }

objectSensitivity

Human.walk

objectSensitivity

Human.walk Cat.walk

(e) Object Sensitty

Figure 1: Five Examples of Sensitivity cases in Static Analysis of Object-Oriented Programs.

3



1 public class MyOjbect {
2 public static void main(String []

args) {
3 MyOtherObject o = new

MyOtherObject ();
4 if (args.length == 2) {
5 o.method1 (2);
6 } else {
7 o.method2("hi!");
8 }
9 }

10 }
11
12 public class MyOtherObject {
13 int a = 0;
14 public MyOtherObject () {
15 this.a = 3;
16 }
17 public void method1(int i) {
18 this.a += i;
19 if (i == 55)
20 this.method1 (55)
21 }
22 public void method2(String s) {
23 this.a += s.size();
24 }
25 public void method3(int j) {
26 this.method2(j);
27 this.method2(j);
28 }
29 }

(a) A Java program

main

<init> method1 method2

size

(b) Corresponding Call Graph

Figure 2: Source Code of a two-Classes Java program and its Call
Graph Generated from the main Method

we focus on the analysis of Object-Oriented programs. Such
programs are made of classes, each representing a concept (e.g.
a car) and including a set of fields to represent other objects
(e.g., wheels) and a set of methods containing code to manip-
ulate objects (e.g, drive the car forward). The code in a class
method can call other methods to create instances of objects or
manipulate existing objects.

A program usually starts with a single entry point referred
to in Java as the main method. A quick inspection of the main
method’s code can list the method(s) that it calls. Then, iter-
ating this process on the code of the called methods leads to
the construction of a directed graph (e.g., see Figure 2), com-
monly known as the call graph in program analysis. Although
the concept of a call graph is standard in static analysis ap-
proaches, di↵erent concerns, such as precision requirements,
may impact the algorithms used to construct a program’s call
graph. For Java programs, a number of popular algorithms have
been proposed, including CHA [12], RTA [13], VTA [14], An-
dersen [15], Steensguard [16], etc., each being more or less sen-
sitive to di↵erent properties of program executions. We detail
some of the main properties below to allow a clear di↵erenti-
ation between research works in the literature. These proper-
ties are illustrated in Figure 1 with example code snippets and
the corresponding call graphs extracted in both cases where the
property holds and where it does not.

Flow Sensitivity. A flow-sensitive CG is a CG that is aware of
the order of program statements. In the illustrative example of
Figure 1a, a Human instance is first created and referred to by
the Animal reference a. Then, method walk is called on a. At
execution time, only method Human.walk is called at this point
(line 3). Subsequently, the program associates the variable a to
a new instance of Cat. In the construction of the CG we are in-
terested in the building a directed graphs between method calls,

i.e., flowSensitivity (line 1) and walk (line 3) in our case.
When the CG is flow-sensitive, it contains a single edge since,
at line 3, a can only refer to a Human object . If the CG is flow-
insensitive, then, switching the order of positions of statements
can be switched between lines 3 and 4. Thus, the CG must con-
sider the case where a refers to a Cat object when a.walk is
called. The flow-insensitive CG therefore contains two edges:
one from flowSensitivity to Human.walk and another to
Cat.walk. Obviously, while in some cases a flow-insensitive
CG may be su�cient (e.g., computation of the depth of a CG),
in other cases, it brings imprecision which will necessarily lead
to false positives in the analysis.

Path Sensitivity. A path-sensitive CG takes the execution path
into account. In the illustrative example of Figure 1b, depend-
ing on the value of the condition in line 3, when the execu-
tion reaches line 8, a may refer to a Human object or a Cat
object. Thus, when path-sensitivity is taken into account, two
graphs must be produced, one for each path: in path1, at line 8,
a points to a Human object and thus method Human.walk is the
one included in the CG. On the other hand, in path2, a points
to a Cat object and thus method Cat.walk is in the call graph.
In contrast, when building a path-insensitive CG, at line 8, a
points to both a Human object and a Cat, and the graph would
thus contain both method Human.walk and method Cat.walk.
Overall, path-sensitivity brings a scalability challenge for large
programs where there can be an exponential of execution paths.

Field Sensitivity. A field-sensitive approach models each field
of each object. Take the code snippet of Figure 1c as an ex-
ample. At lines 2 and 3, c1 and c2 are separately assigned to
new C objects, which contain a Animal field. At line 4, the
field of c1, (i.e., c1.f1), points to a new Human object while
at line 5, the field of c2, (i.e., c2.f1), points to a new Cat ob-
ject. As a result of field-sensitive analysis, at line 6, the model
of c1.f1 can only point to a Human object and only method
Human.walk is in the field-sensitive call graph. On the other
hand, a field-insensitive approach, which only models each field
of each class of objects2. This means that in the example field
c1.f1 and c2.f1 have the same model. Thus, at line 5 f1

points to a Human object and a Cat object and both method Hu-
man.walk and Cat.walk are in the field-insensitive call graph.

2.1.3. Graph Enrichment
During, or after, call-graph construction, the static analy-

sis purposes may require supplementary information about the
context in which the di↵erent methods are called. In particular,
this context can be modeled by considering the call site (i.e.,
context sensitivity) or by modeling the allocation site of method
objects (i.e., object sensitivity).

2Theoretically, a field-insensitive analysis may not even take fields into con-
sideration. However, this kind of analysis is unlikely to be used with object-
oriented languages like Java/Android. Thus, in this work, we take all the cases
that are not field-sensitivity as field-insensitivity.

4



Context Sensitivity. In a context-sensitive analysis, when analysing
the target of a function call, one keeps track of the calling con-
text. This information may allow to go back and forth to and
from the original call site with precision, instead of trying out
all possible call sites in the program. In the illustrative example
of Figure 1d, at line 6, method walk is called by object a. Con-
sidering a context-sensitive analysis, each method call is mod-
eled independently. That is, for the first method call (line 4), the
model of the parameter points to c and the return value model
points to c. For the second method call (line 5), the model of
the parameter points to h and the return value model points to h.
Thus, only method Human.walk is added to the call graph. On
the other hand, a context-insensitive analysis has only a single
model of the parameter and a single model of the return value
for a given method. Consequently, in a context-insensitive anal-
ysis the model of the parameter points to c and h and the return
value to c and h. Thus, a context-insensitive approach has both
methods Human.walk and Cat.walk in the call graph.

Object Sensitivity. An object-sensitive approach is a context-
sensitive approach that distinguishes invocations of methods
made on di↵erent objects. Take the code snippet of Figure 1e
as an example. At line two and three, two Contains objects are
instantiated. Variables c1 and c2 refer to these objects. The
class Contains has an instance field animal of type Animal and
an instance method setAnimal to associate a value with field
animal. At line four, method setAnimal is called on c1 with
a Human object as parameter. At line five, method setAni-

mal is called on c2 with a Cat object as parameter. Finally, at
line six, method walk is called on the animal field of object
c1. At lines four and five, an object-insensitive approach would
consider c1 and c2 as the same receiver. The result would be
that the method calls at line four and six cannot distinguish be-
tween the receiver and model c1 and c2 as a unique object of
type Contains. Thus, method walk called at line six is rep-
resented by two methods in the call graph: Human.walk and
Cat.walk. On the other hand, an object-sensitive approach
would have model c1 and c2 separately for each call of se-

tAnimal. Thus, the call at line six would only be represented
by method Human.walk in the call graph.

2.2. Static Analysis of Android Programs
Android apps are made up of components. Figure 3 illus-

trates the four di↵erent types of components and their possible
interacctions:

1. an Activity represents the visible part of Android apps,
the user interfaces;

2. a Service, which is dedicated to execute (time-intensive)
tasks in the background;

3. a Broadcast Receiver waits to receive user-specific events
as well as system events (e.g., the phone is rebooted);

4. a Content Provider acts as a standard interface for other
components/apps to access structured data.

Activity1 Activity2

Service Broadcast
Receiver

Content 
Provider

startActivity(intent) Android App

Component

Explicit ICC

Implicit ICC

Figure 3: Overview of basic concepts of Android apps.

Android components communicate with one another through
specific methods, such as startActivity(), which are used to trig-
ger inter-component communications (ICC). ICC methods take
an Intent object as a parameter which includes information about
the target component that the source component wants to com-
municate with. There are two types of ICC interactions: ex-
plicit ICC where the intent object contains the name of the tar-
get component, and implicit ICC where the intent object speci-
fies instead the capability/action that the target component must
have (e.g., a web browser to open a url). In order for a compo-
nent to be considered as a potential target of an implicit ICC, it
must specify an Intent Filter in its Manifest configuration file,
declaring what kind of Intents it is capable of handling, i.e.,
what kind of actions it can perform.

2.2.1. Android-specific Analysis Challenges
We now enumerate some challenges for static analysis that

are mainly due to Android peculiarities.

Dalvik bytecode. Although Android apps are primarily devel-
oped in Java, they run in a Dalvik virtual machine. Thus, all app
packages (apks) are distributed on markets with Dalvik byte-
code, and only a relatively few are distributed with source code
in open source repositories. Consequently, a static analyzer for
Android must be capable of directly tackling Dalvik bytecode,
or at least of translating it to a supported format. Thus, most
Java and Java bytecode analyzers, which could have been lever-
aged, are actually useless in the Android ecosystem. As an ex-
ample, the mature FindBugs3 tool, which has demonstrated its
capabilities to discover bugs in Java bytecode, can not readily
be exploited for Android programs.

Program entry point. Unlike programs in most general pro-
gramming languages such as Java and C, Android apps do not
have a main method. Instead, each app program contains sev-
eral entry points which are implicitly called by the Android
framework at runtime. Consequently, it is tedious for a static
analyzer to build a global call graph of the app. Instead, the
analyzer must first search for all entry-points and build several
call graphs with no assurance on how these graphs connect to
each other, if ever.

Component Lifecycle. In Android, unlike in Java or C, dif-
ferent components of an application, have their own lifecycle.
Each component indeed implements its lifecyle methods which

3http://findbugs.sourceforge.net

5



are called by the Android system to start/stop/resume the com-
ponent following environment needs. For example, an applica-
tion in background (i.e., invisible lifetime), can first be stopped,
when the system is under memory pressure, and later be restarted
when the user attempts to put it in foreground. Unfortunately,
because these lifecycle methods are not directly connected to
the execution flow, they hinder the soundness of some analysis
scenarios.

Inter-Component Communication (ICC). Android has introduced
a special mechanism for allowing an application’s components
to exchange messages through the system to components of the
same application or of other applications. This communication
is usually triggered by specific methods, hereafter referred to
as ICC methods. ICC methods use a special parameter, con-
taining all necessary information, to specify their target com-
ponents and the action requested. Similarly to the lifecycle
methods, ICC methods are actually processed by the system
who is in charge of resolving and brokering it at runtime. Con-
sequently, static analyzer will find it hazardous to hypothesize
on how components connect to one another unless using ad-
vanced heuristics. As an example, FlowDroid, one of the most-
advanced static analyzers for Android, fails to take into account
ICCs in its analysis.

Libraries. An android apk is a standalone package containing
a Dalvik bytecode consisting of the actual app code and all li-
brary suites, such as advertisement libraries and burdensome
frameworks. These libraries may represent thousands of lines
of code, leading to the size of actual app to be significantly
smaller than the included libraries. This situation causes two
major di�culties: (1) the analysis of an app may spend more
time vetting library code than the real code; (2) the analysis re-
sults may comprise two many false positives due to the analysis
of library “dead code”. As an example, analyzing all method
calls in an apk to discover the set of permissions required may
lead to listing permissions which are not actually necessary for
the actual app code.

2.2.2. Java-inherited Challenges
Since Android apps are mainly written in Java, developers

of static analyzers for such apps are faced with the same chal-
lenges as with Java programs, including the issues of handling
dynamic code loading, reflection, native code integration, mul-
tithreading and the support of polymorphism.

Reflection. In the case of dynamic code loading and reflec-
tive calls, it is currently di�cult to statically handle them. The
classes that are loaded at runtime are often practically impossi-
ble to analyze since they often sit in remote locations, or may
be generated on the fly.

Native Code. Addressing the issue of native code is a di↵erent
research adventure. Most of the time, such code comes in a
compiled binary format, making it di�cult to analyze.

Multi-threading. Analyzing multithreaded programs is challeng-
ing as it is complicated to characterize the e↵ect of the interac-
tions between threads. Besides, to analyze all interleavings of
statements from parallel threads usually result in an exponential
analysis times.

Polymorphism. Finally, polymorphic features also add extra
di�culties for static analysis. As an example, let us assume
that method m1 of class A has been overridden in class B (B
extends A). For statement a.m1(), where a is an instance of A,
a static analyzer in default will consider the body of m1() in A
instead of the actual body of m1() in B, even a was instantiated
from B (e.g., with A a = new B()). This obvious situation is
however tedious to resolve in practice by most static analyzers
and thus leads to unsound results.

3. Methodology for the SLR

The methodology that we followed for this SLR is based
on the guidelines provided by Kitchenham [17]. Figure 4 illus-
trates the protocol that we have designed to conduct the SLR:

• In a first step we define the research questions motivating
this SLR, and subsequently identify the relevant informa-
tion to collect from the publications in the literature. (cf.
Section 3.1)

• Then, we enumerate the di↵erent search keywords that
will allow us to crawl the largest possible set of relevant
publications within the scope of this SLR.

• The search process itself is conducted following two sce-
narios: the first one considers the well-known publication
repositories, while the second one focuses on the lists of
publications from top venues, including both conferences
and journals. (cf. Section 3.2)

• To limit our study to very relevant papers, we apply ex-
clusion criteria on the search results, thus filtering out
papers of likely limited interest. (cf. Section 3.3)

• Then we merge the sets of results from both search sce-
narios to produce the overall list of publications to re-
view.

• Finally, we further consolidate this list by applying an-
other set of exclusion criteria based on the content of
the papers’ abstracts. The final list of papers is here-
after referred to as primary publications/studies. (cf. Sec-
tion 3.4)

Given the high number of publications relevant to the sys-
tematic literature review that we undertake to conduct, we must
devise a strategy of review which guarantees that each publi-
cation is investigated thoroughly and that the extracted infor-
mation is reliable. To that end, we further proceed with the
following steps:

6



Repository 
search

Top 20 
venues
search

Merge

Cross 
checking

Apply 
exclusion 
criterion 3

Data 
Extraction

Primary 
publications

Keywords 
identification

Apply 
exclusion 
criterion 3

RQ
identification

Papers
split

Primary 
publications

(subset)
SLR 

report

Apply 
exclusion 
criteria 4-8

Figure 4: Overview of our SLR process.

• First, we assign the primary publications to the authors
of this SLR who will share the heavy workload of paper
examinations.

• Then, each primary publication is fully reviewed by the
SLR author to whom it was attributed. Based on their re-
views, each SLR author must fill a common spreadsheet
with relevant information in categories that were previ-
ously enumerated.

• To ensure that the review information for a given paper
is reliable, we first cross-check these reviews among re-
viewers. Then, once all information is collected, we en-
gage in a self-checking process where we forward our
findings to the authors of the reviewed papers. These
authors then confirm our investigation results or demon-
strate any inaccuracies in the classifications.

• Eventually, we report on the findings to the research com-
munity.

3.1. Research Questions
This SLR aims to address the following research questions:
RQ1: What are the purposes of the Analyses? With this

research question, we will survey the various issues targeted by
static analysis, i.e., the concerns in the Android ecosystem that
researchers attempt to resolve by statically analyzing app code.

RQ2: How are the analyses designed and implemented?
In this second research question, we study in detail the in-depth
analysis that are developed by researchers. To that end, we in-
vestigate the following sub-questions:

RQ 2.1: What code representations are used in the analysis
process? To facilitate analysis with existing frameworks, anal-
yses often require that the app byte code is translated back to
Java or other intermediate representations.

RQ 2.2: What fundamental techniques are used by the com-
munity of static analysis of Android apps?

RQ 2.3: What sensitivity-related metrics are applied?
RQ 2.4: What Android-specific characteristics are taken

into account?
RQ3: Are the research outputs available and usable?

With this research question, we are interested in investigating
whether the developed tools are readily available to practition-
ers and/or the reported experiments can be reproduced by other
researchers. For each technical contribution, we check that the

data sets used in the validation of approaches are available, and
that the experimental protocol is described in detail.

RQ4: What challenges remain to be addressed? Finally,
with this fourth research question we survey the issues that have
not yet benefited from a significant research e↵ort. To that end,
we investigate the following questions:

RQ 4.1: To what extent are the enumerated analysis chal-
lenges covered? We survey the proportion of research approaches
that account for reflective calls, native code, multithreading, etc.

RQ 4.2: What are the trends in the analyses? We study
how the focus of researchers evolved over time and whether
this correlates with the needs of practitioners.

3.2. Search Strategy
We now detail the search keywords and the datasets that we

leveraged for the search of our relevant publications.

3.2.1. Search keywords
Thanks to the research questions outlined in Section 3.1, we

can summarize our search terms with keywords that are (1) re-
lated to analysis activities, or (2) related to key aspects of static
analysis, and (3) to the target programs. Table 1 depicts the ac-
tual keywords that we used based on a manual investigation of
some relevant publications.

Table 1: Search keywords.

Line Keywords
1 Analysis; Analyz*; Analys*;
2 Data-Flow; ”Data Flow*”; Control-Flow; ”Con-

trol Flow*”; ”Information-Flow*”; ”Information
Flow*”; Static*; Taint;

3 Android; Mobile; Smartphone*; ”Smart Phone*”;

Our search string s is formed as a conjunction of the three
lines of keywords, i.e., s =: l1 AND l2 AND l3, where each
line is represented as a disjunction of its keywords, e.g., l1 =:
{Analysis OR Analyz* OR Analys*}.

3.2.2. Search datasets
As shown in Fig. 4, our data search is conducted in two

scenarios: repository search and top venue search. We now
detail them separately.

7



Repository Search. To find datasets of publications we first
leverage five well-known electronic repositories, namely ACM
Digital Library4, IEEE Xplore Digital Library5, SpringerLink6,
Web of Knowledge7 and ScienceDirect8. Because in some cases
the repository search engine imposes a limit to the amount of
search result meta-data that can be downloaded, we consider,
for such cases, splitting the search string and iterating until
we collect all relevant meta-data of publications. For exam-
ple, SpringerLink only allows to collect information on the first
1,000 items from its search results. Unfortunately, by applying
our predefined search string, we get more than 10,000 results on
this repository. Consequently, we must split our search string to
narrow down the findings and afterwords combine all the find-
ings into a final set. In other cases, such as with ACM Digital
Library, where the repository search engine does not provide
a way to download a batch of search results (meta-data), we
resort to python scripts to scale up the collection of relevant
publications.

Top Venue Search. A few conference and journal venues, such
as the Network and Distributed System Security Symposium,
have policies (e.g., open proceedings) that make their publica-
tions unavailable in the previously listed electronic repositories.
Thus, to ensure that our search results are, to some extent, ex-
haustive, we consider all publications from well-known venues.
For this SLR we have considered the top9 20 venues: 10 venues
are from the field of software engineering and programming
languages while the other 10 venues are from the security and
privacy field. Table 2 lists these venues considered at the time
of review, where some venues on cryptography fields (including
EUROCRYPT, CRYPTO, TCC, CHES and PKC), parallel pro-
gramming (PPoPP), magazines (such as IEEE Software) and
non-o�cial proceedings (e.g., arXiv Cryptography and Secu-
rity) are excluded. Because those venues are mainly not the
focuses of static analysis of Android apps. The H5-index in Ta-
ble 2 is defined by Google Scholar as a special h-index where
only those of its articles published in the last 5 complete cal-
endar years (in our case is from 2010 to 2014) are considered.
The h-index of a publication is the largest number h such that
at least h articles in that publication were cited at least h times
each [18]. Intuitively, the higher H5-index, the better the venue.

Our top 20 venues search is performed on DBLP10. We only
use such keywords that are listed in line 3 in Table 1 for this
search, as DBLP provides papers’ title only, it is not necessary
for us to use the same keywords that we use in the repository
search step. Ideally, all the papers that are related to smart-
phones (including Android, Windows, iOS and so on) are taken
into account. As a result, this coarse-granularity strategy has in-
troduced some irrelevant papers (e.g., papers that analyze iOS

4http://dl.acm.org
5http://ieeexplore.ieee.org
6http://link.springer.com
7http://apps.webofknowledge.com
8http://www.sciencedirect.com
9Following Google Scholar Metrics: https://scholar.google.lu/

citations?view_op=top_venues&hl=en
10http://dblp.uni-trier.de

Table 2: The top 20 venues including both conference proceedings and
journals in SE/PL and S&P fields.

Acronym Full Name H5-index

Software Engineering and Programming Languages (SE/PL)
ICSE International Conference on Software Engineering 57
TSE IEEE Transactions on Software Engineering 47
PLDI SIGPLAN Conference on Programming Language Design and Implementation 46
IST Information and Software Technology 45
POPL ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 45
JSS Journal of Systems and Software 41
FSE Foundations of Software Engineering 38

OOPSLA Conference on Object-Oriented Programming Systems, 34Languages, and Applications
ISSTA International Symposium on Software Testing and Analysis 31

TACAS International Conference on Tools and Algorithms for the Construction 31and Analysis of Systems

Security and Privacy (S&P)
CCS ACM Conference on Computer and Communications Security 65
S&P IEEE Symposium on Security and Privacy 53
SEC USENIX Security Symposium 51
TISSEC IEEE Transactions on Information Forensics and Security 47
NDSS Network and Distributed System Security Symposium 39
TDSC IEEE Transactions on Dependable and Secure Computing 39

ASIACRYPT International Conference on The Theory and Application 34of Cryptology and Information Security
COMPSEC Computers & Security 34
ACSAC Annual Computer Security Applications Conference 29
SOUPS Symposium On Usable Privacy and Security 29

apps). Fortunately, because of the small number of venues, we
are able to manually exclude those irrelevant papers from our
interesting set, more details are given in the next section.

3.3. Exclusion Criteria
The search terms provided above are purposely broad to

allow the collection of a near exhaustive list of publications.
However, this broadness also suggests that many of the search
results may actually be irrelevant and focus on the primary pub-
lications. For our SLR we use the following exclusion criteria:

1. First to account for the common language spoken by the
reviewers, and the fact that most of today’s scientific works
are published in English, we filter out non-English writ-
ten publications.

2. Second, we want to focus on extensive works with de-
tailed publications. Thus, we exclude short papers, i.e.,
heuristically, papers with less than 7 pages in LNCS single-
column format or with less than 5 pages in IEEE/ACM-
like double-column format. Further, it should be noted
that such papers are often preliminary work that are later
published in full format and are thus likely to be included
in the final set.

3. Third, related to the second exclusion criteria, we attempt
to identify duplicate papers for exclusion. Usually, those
are papers published in the context of a conference venue
and extended to a journal venue. We look for such papers
by first comparing systematically the lists of authors, pa-
per titles and abstract texts. Then we manually check that
suspicious pairs of identified papers share a lot of content
or not. When duplication is confirmed we filter out the
less extensive publication.

4. Fourth, because our search terms include “mobile” to col-
lect most papers, the collected set includes papers about
“mobile networking” or iOS/Windows platforms. We ex-
clude such non Android-related papers. This exclusion

8

http://dl.acm.org
http://ieeexplore.ieee.org
http://link.springer.com
http://apps.webofknowledge.com
http://www.sciencedirect.com
https://scholar.google.lu/citations?view_op=top_venues&hl=en
https://scholar.google.lu/citations?view_op=top_venues&hl=en


Android
App

Bytecode
Representation

CG-based
Static Analysis Results

Instrumentation

(1)

Transformation

(2)

(3)

Call Graph (CG)
Construction

(4)

Analysis

Figure 5: Inclusion Criteria. Papers that fall into paths (1) ! [(2) !] (3) ! (4) are selected. Besides, we also take into account such papers
that focus themselves on step (1) or (2). Because these approaches tackle the fundamental part of static analysis, meaning they are essential and
reusable for other static analysis approaches.

Table 3: Summary of the selection of primary publications. The total number of searched publications are given only after the merge step.

Steps IEEE ACM Springer Elsevier Web of Knowledge Top-20-venues Total
Search results (up to May. 2015) 961 327 10,788 2,225 584 137 -
Scripts verification (with same keywords) 328 271 58 11 365 137 -
Scripts exclusion (criterion 3) 238 267 51 11 365 137 -
Merge 997
After reviewing title/abstract (criteria 4! 6) 240
After skimming full paper (criteria 7 and 8) 114
After final discussion 88
Author recommendation +4
Total 92

criterion allows to remove over half of the collected pa-
pers, now creating the opportunity for an acceptable man-
ual e↵ort of assessing the relevancy of remaining papers.

5. Fifth, we quickly skim through the remaining papers and
exclude those that target Android but do not deal with
static analysis techniques. For example, publications about
dynamic analysis/testing of Android apps are excluded.

Since Android has been a hot topic in the latest years, the
set of relevant papers constituted after having applied the above
exclusion criteria is still large. These are all papers that propose
approaches relevant to Android, based on static analysis of the
apps. Figure 5 illustrates the typical, and relevant, workflow
used by di↵erent approaches in the literature. We have noticed
that some of the collected papers do not present this workflow.
Instead, the static operations that they perform do not often re-
quire the construction of a call graph: e.g., some approaches
simply read the manifest file to list permissions requested, or
simply attempt to match specific API names in function calls.
Thus, we devise three more exclusion criteria to filter out such
publications:

1. We exclude papers that statically analyze Android Op-
erating System (OS) rather than Android apps. Because
our main focus in this survey is to survey works related
to static analysis of Android apps. As examples, we have
dismissed PSCout [19] and EdgeMiner [20] in this paper
because they are dedicated to analyze the Android frame-
work.

2. We dismiss papers that do not actually parse the app pro-
gram code and build a call-graph.

3. We also dismiss papers that simply build on static anal-
ysis results to perform empirical studies or to perform

machine learning-based malware detection. Such papers
are indeed irrelevant since they do not contribute to the
research on static analysis of Android apps.

3.4. Primary publications selection
In this section, we give details on our final selection results

of primary publications, which are summarized in Table 3.
The first two lines (search results and scripts verification)

provide statistics on papers found through the keywords defined
previously. In the first line, we focus on the output from the
repositories search (with full paper search, whenever possible,
because we want to collect as many relevant papers as possible
in this phase). Through this repositories search, we collect data
such as paper title or paper abstract. The second line shows the
results of an additional verification step on the collected data.
More specifically, we perform automated keywords search on
the data (with exactly the same keywords as the previous step).
We adopt this second step because of the flaws in “advanced”
search functionality of the five repositories, where the search
results are often inaccurate, resulting in a set noised by some
irrelevant papers. After performing the second step (line 2), the
number of potential relevant papers is significantly reduced.

The third line shows the results of applying our exclusion
criterion 3 (exclude short papers) for the results of line 2. The
only big di↵erence happens in IEEE repository. We further look
into the publications of IEEE found that those short papers are
mostly 4 page conference papers with insu�cient description
of their proposed approaches/tools. Therefore it makes sense
for us to remove those short papers from our interesting set.

Line 4 merges the results of line 3 to one set in order to re-
dundant workload (otherwise, a same paper in two repositories
would be reviewed twice). We have noticed that the redundancy
occurs in three cases:

9



Conference

Workshop

Journal

(a) Type.

SEC

SE/PL

OTHER

(b) Domain.

Figure 6: Statistics of examined publications.

1. The ACM repository may contain papers that originally
published in IEEE or Springer and

2. The Web of Knowledge repository may contain papers
that published in Elsevier.

3. The five repositories may contain papers that appear in
the top-20-venues set.

For the self-checking process, we have collected 343 dis-
tinct email addresses of 419 authors for the 88 primary publi-
cations selected in our search. We then sent the SLR to these
authors and request their help in checking that their publications
were correctly classified. Within a week, we have received 25
feedback messages which we took into account. Authors fur-
ther recommended a total of 19 papers to include in the SLR.
4 of those recommended papers were found to be borderline
with regards to our exclusion criteria (e.g., dynamic approaches
which resort to some limited static analyses). We review them
against our inclusion criteria and decide to include them (Ta-
ble 3, line 8). The 15 remaining papers are outside the window
of this SLR which ends in May 2015. Many of the papers have
even just been accepted but are still unpublished in proceedings.

In total, our SLR checks 92 publications. Fig. 6 illustrates
the distributions of these publications by types(Fig 6a) and pub-
lication domains (Fig. 6b). Over 70% of our collected papers
are published in conferences. Workshops, generally co-located
with top conferences, have also seen a fair share of contribu-
tions on Android static analysis. These findings are not sur-
prising, since the high competition in Android research forces
authors to aim for targets where publication process is fastest.
Presentations in conferences can also stimulate more collabo-
rations as can be seen in most recent papers on Android analy-
sis. We further find that half of the publications were made in
Security venues while another larger proportion was published
in Software Engineering venues. Very few contributions were
published in other types of venues. MIGDroid [21], published
in the Network domain and CloneCloud [22], published in the
Systems domain, are the rare exceptions. This finding conforts
our initial heuristics of considering top venues in SE/PL and
SEC to verify that our repository search was exhaustive.

Fig. 7 shows a word cloud of the conference names where
our primary publications were presented. Most of the reviewed

Figure 7: Word cloud of all the conference names of examined publi-
cations.

publications are from top conference venues (e.g., ICSE, NDSS
and CCS), suggesting that the state-of-the-art research has been
included at a substantial scale.

4. Data Extraction

Once relevant papers have been collected, we build a tax-
onomy of the information that must extracted from each paper
in order (1) to cover the research questions enumerated above,
(2) to be systematic in the assessment of each paper, and (3)
to provide a baseline for classifying and comparing the di↵er-
ent approaches. Fig. 8 overviews the metrics extracted from the
selected publications.

Publications

Targeted Problems

Fundamental Techniques

Static Analysis Metrics

Android Characteristics

Evaluation Metrics

Figure 8: Overview of metrics extracted from a given primary publi-
cation.

Targeted Problems. Approaches are also classified on the
targeted problems. Examples of problems include privacy leak-
age, permission management, energy optimization, etc.

Fundamental Techniques. This dimension focuses on the
fundamental techniques adopted by examined primary publi-
cations. The fundamental techniques in this work include not
only such techniques like taint analysis and program slicing
that solve problems through di↵erent means but also the exist-
ing tools such as Soot or WALA that are leveraged.

Static Analysis Metrics. This dimension includes static
analysis related metrics. Given a primary publications, we would
like to check whether it is context-sensitive, flow-sensitive, path-
sensitive, object-sensitive, field-sensitive, static-aware, implicit-
flow-aware, alias-aware. Besides, in this dimension, the dy-

10



namic code loading, reflection supporting, native code support-
ing are also inspected.

Android Characteristics. This dimension includes such
metrics that are closely related to Android such as ICC, IAC
(Inter-App Communication), Framework and so on. Questions
like “Do they take care of the lifecycle or callback methods?”
or “Are the studied approaches support ICC or IAC?” are be-
longing to this dimension.

Evaluation Metrics. This dimension focuses on the eval-
uation methods of primary publications, intending to answer
the question how their approaches are evaluated. To this end,
this dimension will count whether their approaches are evalu-
ated through in-the-lab apps (i.e., artificial apps with knowing
the ground truth in advance) or in-the-wild apps (i.e., the real-
world marketing apps). Questions like how many in-the-wild
apps are evaluated are also addressed in this dimension.

5. Summary of Findings

We now report on the findings of this SLR in light of the
research questions enumerated in Section 3.1.

5.1. Purposes of the Analyses
In the literature of Android, static analysis has been ap-

plied to highlight various security issues (such as private data
leaks or permission management concerns), to verify code, or
to assess code e�ciency in terms of energy consumption for
embedded systems). We have identified six recurring purposes
of Android-targeted static analysis approaches in the literature.
We detail these purposes and provide statistiques of approaches
which target them.

Private Data Leaks. Recently, concerns on privacy with
Android apps have led researchers to focus on the private data
leaks. FlowDroid [5], introduced in 2014, is probably the most
advanced approach addressing this issue. It performs static taint
analysis on Android apps with a flow-, context-, field-, object-
sensitive and implicit flow-, lifecycle-, static-, alias-aware anal-
ysis, resulting in a highly precise approach. The associated tool
has been open-sourced and many other approaches [23, 24, 25,
26, 6] have leveraged it to perform more extensive analysis.

Vulnerabilities. Security vulnerabilities are another con-
cern for app users who must be protected against malware ex-
ploiting the data and privileges of benign apps. Many of the
vulnerabilities addressed in the literature are related to the ICC
mechanism and its potential misuses such as for component hi-
jacking (i.e., gain unauthorised access to protected or private
resources through exported components in vulnerable apps) or
intent injection (i.e., manipulate user input data to execute code
through it). For example, CHEX [7] detects potential com-
ponent hijacking-based flows through reachability analysis on
customized system dependence graphs. Epicc [8] and IC3 [27]
are tools that propose static analysis techniques for implement-
ing detection scenarios of inter-component vulnerabilities. Based
on this, PCLeaks [26] goes one step further by performing sen-
sitive data-flow analysis on top of component vulnerabilities,
enabling it to not only know what is the issue but also to know

what sensitive data will leak through that issue. Similarly to
PCLeaks, ContentScope [28] detects sensitive data leaks focus-
ing on Content Provider-based vulnerabilities in Android apps.

Permission Misuse. Permission checking is a pillar in the
security architecture of Android. The Android permission-based
security model associates sensitive resources with a set of per-
missions that must be granted before access. However, as shown
by Bartel et al. [29, 30], this permission model is an intrinsic
risk, since apps can be granted more permissions than they ac-
tually need. Malicious may indeed leverage permissions (which
are unnecessary to the core app functionality) to achieve their
malicious goals. PSCout [19] is currently the most extensive
work that dissects the Android permission specification from
Android OS source code using static analysis.

Energy Consumption. Battery stand-by time has been a
problem for mobile devices for a long time. Larger screens
found in modern smartphones constitute the most energy con-
suming components. As shown by Li et al. [31], modern smart
phones use OLED, which consumes more energy when dis-
playing light colors than dark colors. In their investigation,
the energy consumption could be reduced by 40% if more ef-
ficient web pages are built for mobile systems (e.g., in dark
background color). To reach this conclusion, they performed
extensive program analysis on the structure of web apps, more
specifically, through automatically rewriting web apps so as to
generate more e�cient web pages. Li et al. [32] present a tool
to calculate source line level energy consumption through com-
bining program analysis and statistical modeling.

Other Purposes. Besides the four aforementioned con-
cerns, state-of-the-art works have also targeted less hot top-
ics, often about highly specific issues. More representatively,
works such as CryptoLint [33] and CMA [34] have leveraged
static analysis to identify cryptography implementation prob-
lems in Android apps. Researchers have also extended the Ju-
lia [4] static analyzer to perform formal analyses of Android
programs.

Table 4 enumerates approaches from our primary publica-
tions which fall into the 6 purposes described above. The sum-
mary statistics in Fig. 9 show that Security concerns are the
focus of most static analysis approaches for Android. Energy
e�ciency is also a popular concern ahead of program correct-
ness.

RQ 1: Static analysis is largely performed on Android
programs to uncover security and privacy issues.

Vulnerability Leaks Permission Energy Code_Verify Crypto.

0
5

10
15

20
25

30

Figure 9: Statistics of main concerns addressed by the publications.

11



Table 4: Recurrent analysis Purposes and related Publications.

Tool Le
ak

s

C
ry

pt
og

ra
ph

y

Pe
rm

is
si

on

V
ul

ne
ra

bi
lit

y

C
od

e
ve

rifi
ca

tio
n

En
er

gy

DroidChecker [35] 3 7 7 7 7 7
vLens [32] 7 7 7 7 7 3
Nyx [31] 7 7 7 7 7 3
Anadroid [36] 3 7 3 3 7 7
SADroid [37] 7 7 3 3 7 7
eLens [38] 7 7 7 7 7 3
SAAF [39] 7 7 3 3 7 7
MIGDroid [21] 7 7 7 3 7 7
Redexer [40] 7 7 3 7 7 7
Scandal [41] 3 7 7 7 7 7
DidFail [24] 3 7 7 7 7 7
MalloDroid [42] 7 7 7 3 7 7
Adagio [43] 7 7 7 3 7 7
android-app-analysis-tool [44] 7 7 3 7 7 7
AndroidLeaks [45] 3 7 3 7 7 7
Gible et al. [46] 7 7 7 3 7 7
Graa et al. [47] 7 7 7 3 7 7
AdRisk [48] 7 7 7 3 7 7
Woodpecker [49] 3 7 7 7 7 7
Relda [50] 3 7 7 7 7 7
CHEX [7] 3 7 7 3 7 7
Lu et al. [51] 7 7 7 7 3 7
Brox [52] 3 7 7 7 7 7
Mann et al. [53] 3 7 7 7 7 7
Van et al. [54] 7 7 7 7 3 7
Poeplau et al. [55] 7 7 7 3 7 7
FUSE [56] 3 7 3 3 7 7
PermissionFlow [57] 3 7 3 3 7 7
BlueSeal [58] 3 7 3 7 7 7
CMA [34] 7 3 7 7 7 7
SMV-Hunter [59] 7 7 7 3 7 7
Vekris et al. [60] 7 7 7 7 7 3
A5 [61] 7 7 7 3 7 7
CloneCloud [22] 7 7 7 7 7 3
Androguard [62] 7 7 7 3 7 7
Androguard [63] 7 7 7 3 7 7
CryptoLint [33] 7 3 7 7 7 7
Bartsch et al. [64] 7 7 7 3 7 7
Androlizer [65] 7 7 7 3 7 7
Chen et al. [66] 7 7 7 3 7 7
Pegasus [67] 7 7 7 3 7 7
MobSafe [68] 7 7 7 3 7 7
A3 [69] 7 7 7 3 7 7
DroidSIFT [70] 7 7 7 3 7 7
DPartner [71] 7 7 7 7 7 3
TrustDroid [72] 3 7 7 7 7 7
SmartDroid [73] 3 7 7 7 7 7
DroidAlarm [74] 3 7 7 3 7 7
Covert [75] 3 7 7 3 7 7
IFT [76] 3 7 7 7 7 7
Julia [4] 7 7 7 7 3 7
Capper [77] 3 7 7 7 7 7
AppSealer [78] 3 7 7 7 7 7
AppCaulk [79] 3 7 7 7 7 7
DroidSafe [80] 3 7 3 3 7 7
PaddyFrog [81] 7 7 7 3 7 7
Apposcopy [82] 3 7 7 7 7 7
AppContext [83] 7 7 3 7 7 7
SEFA [84] 3 7 3 3 7 7
Amandroid [85] 3 3 7 3 7 7
ContentScope [86] 3 7 7 3 7 7
Wognsen et al. [87] 7 7 7 3 7 7
Wang et al. [88] 7 7 7 7 7 3
AsDroid [89] 3 7 7 7 7 7
AppIntent [90] 3 7 7 7 7 7
FlowDroid [5] 3 7 7 7 7 7
Bartel et al. [30] 7 7 3 7 7 7
COPES [29] 7 7 3 7 7 7
IccTA [6] 3 7 7 7 7 7
Epicc [8] 7 7 7 3 7 7
Lin et al. [91] 7 7 3 7 7 7
Cassandra [92] 3 7 7 7 3 7
Apparecium [93] 3 7 7 7 7 7
Total 32 3 15 33 4 7

5.2. Form and Extent of Analysis
We now investigate how the analyses described in the lit-

erature are implemented. In particular, we study the support
tools that they leverage (Section 5.2.1), the fundamental anal-
ysis methods that they apply (Section 5.2.2), the sensitivities
supported by their analysis (Section 5.2.3) as well as the An-
droid peculiarities that they deal with (Section 5.2.4).

5.2.1. Code Representations and Support Tools
Table 5 enumerates the recurrent tools that are used by ap-

proaches in the literature to support their analyses. Such tools
often come as o↵-the-shelf components that implements com-
mon analysis processes (e.g., for the translation between byte-
code forms or for the automatic construction of call-graphs).
The table also provides for each tool information on the inter-
mediate representation (IR) that it deals with. The IR is a sim-
plified code format to represent the original Dalvik bytecode
and facilitate processing since Android Dalvik itself is known
to be complex and challenging to manipulate. Finally, the ta-
ble highlights the usage of such tools in specific reviewed ap-
proaches.

Table 6 goes into more details into the adoption of the di↵er-
ent code representations by the examined approaches. Fig. 10
summarizes the frequency of usages, where Jimple, which is
used by the popular Soot tool, appears as the most used IR fol-
lowed by Java bytecode, then the Smali intermediate represen-
tation, which is used by Apktool.

JIMPLE

JAVA_CLASS

SMALI

DEX_ASSEMBLER

WALA_IR

OTHER

0 5 10 15 20 25

Figure 10: Distribution of code representations used by examined pub-
lications.

RQ 2.1: The Soot framework and the Jimple interme-
diate representation are the most adopted basic support
tool and format for static analysis of Android apps.

5.2.2. Fundamental Analysis Methods
While all reviewed approaches build on control-flow or data-

flow analyses, specific techniques are employed to enhance the
results and reached the target purposes. In our study, we have
identified four fundamental techniques which are used, often in
conjunction, in the literature.

Abstract Interpretation. Abstract interpretation is a the-
ory of approximating the semantics of programs, where sound-
ness of the analysis can be guaranteed and thereby to avoid

12



Table 5: List of recurrent support tools for static analysis of Android apps.

TOOL Brief Description IR Example Usages
Soot [94] A Java/Android static analysis and optimization framework Jimple, Jasmin FlowDroid [5], IccTA [6], AppIntent [90]
WALAa A Java/Javascript static analysis framework WALA-IR (SSA-based) AsDroid [89], Asynchronizer [95], ORBIT [96]
Chord [97] A Java program analysis platform Chord-IR (SSA-based) CloneCloud [22]
Androguard [63, 62] Reverse engineering, malware/goodware analysis of Android

apps
Androguard-IR MalloDroid [42], Relda [50]

Ded [98] A DEX to Java bytecode translator Class Enck et al. [99]
Dare [100] A DEX to Java bytecode translator Class Epicc [8], IC3 [27]
Dexpler [101] A DEX to Jimple translator Jimple BlueSeal [58]
Smali/Baksmalib A DEX to Smali translator (and verse visa) Smali Woodpecker [49], SEFA [84]
Apktoolc A tool for reverse engineering Android apps Smali PaddyFrog [81], Androlizer [65]
dex2jard A DEX to Java bytecode translator Class DroidChecker [35], Vekris et al. [60]
dedexere A disassembler for DEX files DEX-assembler Brox [52], AQUA [102]
dexdump A disassembler for DEX files DEX-assembler ScanDal [41]
dx A Java bytecode to DEX translator DEX-assembler EdgeMiner [20]
jd-guif A Java bytecode to source code translator (and also an IDE) Java Wang et al. [88]
ASM [103, 104] A Java manipulation and analysis framework Class COPES [29]
BCELg A library for analyzing and instrumenting Java bytecode Class vLens [32], Julia [4], Nyx [31]
Redexer A reengineering tool that manipulates Android app binaries DEX-assembler Brahmastra [105]

ahttp://wala.sourceforge.net
bhttp://baksmali.com
chttp://ibotpeaches.github.io/Apktool/
dhttps://github.com/pxb1988/dex2jar
ehttp://dedexer.sourceforge.net
fhttps://github.com/java-decompiler/jd-gui
ghttps://commons.apache.org/bcel/

Table 6: A Summary of examined approaches through the code representations that they use.

Code Representation Publications
WALA IR AndroidLeaks [45], AsDroid [89], ORBIT [96], THRESHER [106], Asynchronizer [95], A3E [107], CHEX [7], Poeplau et

al. [55]

JIMPLE A5 [61], ApkCombiner [108], COPES [29], AppContext [83], Vekris et al. [60], Epicc [8], FlowDroid [5], AppIntent [90],
BlueSeal [58], Capper [77], AppSealer [78], Gator2 [109], Covert [75], Apposcopy [82], DidFail [24], Lotrack [110],
IccTA [6], DroidSafe [80], IC3 [27], Van et al. [54], PerfChecker [111], android-app-analysis-tool [44], Gator [112],
ACTEve [113], Bartel et al. [30]

DEX ASSEMBLER Lin et al. [91], StaDynA [114], MalloDroid [42], Relda [50], Redexer [40], CryptoLint [33], Androguard [62], Adagio [43],
Brahmastra [105], Scandal [41], Mann et al. [53], AQUA [102], Androguard [63], Brox [52]

SMALI SMV-Hunter [59], Woodpecker [49], CMA [34], A3 [69], MIGDroid [21], SmartDroid [73], PaddyFrog [81], App-
Caulk [79], Anadroid [36], MobSafe [68], Apparecium [93], SAAF [39], Androlizer [65], Wognsen et al. [87], SADroid [37],
AdRisk [48], ContentScope [86], SEFA [84]

OTHER Amandroid [85], FUSE [56], Nyx [31]

JAVA CLASS Pegasus [67], Bartsch et al. [64], vLens [32], Julia [4], Chen et al. [66], SIF [115], DroidChecker [35], EvoDroid [116],
IFT [76], CloneCloud [22], DroidAlarm [74], Mirzaei et al. [117], TrustDroid [72], eLens [38], Wang et al. [88], Lu et
al. [51], Choi et al. [118], DroidSIFT [70], DPartner [71], PermissionFlow [57]

for yielding false negative results. A concrete implementation
of abstract interpretation is through formal program analysis.
As an example, Julia [4] is a tool that uses abstract interpre-
tation to automatically static analyze Java and Android apps
for the development of high-quality, formally verified products.
SCanDal [41], another sound and automatic static analyzer, also
leverages abstract interpretation to detect privacy leaks in An-
droid apps.

Taint Analysis. Taint analysis is implemented in at first
tainting a data if it is defined to be sensitive, and then tracking
it through data-flow analysis. If a tainted data flows to a point
where it should not be, then specific instructions can be applied,
e.g., to stop this behavior and report it to the administrators.
As an example, AppSealer [78] leverages taint analysis to au-

tomatically generate patches for Android component hijacking
attacks. When a tainted data is going to violate the predefined
polices, AppSealer injects a patch before the violation to alert
the app user though a pop-up dialog box. FlowDroid [5], as an-
other example, performs static taint analysis to detect sensitive
data leaks. Based on a predefined set of source and sink meth-
ods, which are automatically extracted from the Android SDK
(cf. SUSI [119]), sensitive data leaks are reported if and only
if the data are obtained from source methods (i.e., these data
are tainted) and eventually flow to sink methods (i.e., violate
security polices).

Symbolic Execution. Symbolic execution is a promising
approach to generate possible program inputs, which is di↵er-
ent from abstract interpretation. Because it assumes symbolic

13



Table 7: Summary through the adoption of di↵erent fundamental techniques.

Techniques Publications Percentagea

Abstract Interpretation Julia [4], Scandal [41], Rocha et al. [120], Mann et al. [53], Lu et al. [51], Anadroid [36] 6.6%

Taint Analysis AppContext [83], FUSE [56], FlowDroid [5], AppSealer [78], Capper [77], AppCaulk [79], Apposcopy [82],
Brox [52], Anadroid [36], DidFail [24], Amandroid [85], MobSafe [68], DroidChecker [35], Lotrack [110],
IccTA [6], DroidSafe [80], AndroidLeaks [45], Apparecium [93], Mann et al. [53], TrustDroid [72], SEFA [84],
CHEX [7], PermissionFlow [57]

25.3%

Symbolic Execution Mirzaei et al. [117], AppIntent [90], ACTEve [113] 3.3%

Program Slicing CryptoLint [33], Capper [77], AppSealer [78], AppCaulk [79], Brox [52], Poeplau et al. [55], MobSafe [68],
AndroidLeaks [45], Apparecium [93], SAAF [39], eLens [38], Rocha et al. [120], AQUA [102]

14.3%

Code Instrumentation vLens [32], Nyx [31], Brahmastra [105], CMA [34], SmartDroid [73], Capper [77], AppSealer [78], SIF [115],
AppCaulk [79], DidFail [24], IccTA [6], DroidSafe [80], Androguard [62], ORBIT [96], android-app-analysis-
tool [44], Rocha et al. [120], Androguard [63], Cassandra [92], ACTEve [113]

20.9%

Type/Model Checking IFT [76], DroidAlarm [74], Mann et al. [53], Choi et al. [118], Lu et al. [51], SADroid [37], Covert [75] 7.7%

aSome primary papers leverage basic data-flow analysis only and thus are not categorized, making the sum of percentages less than 100%.

values for inputs rather than obtains actual inputs as abstract
interpretation does.

As an example, AppIntent [90] uses symbolic execution to
generate a sequence of GUI manipulations that lead to data
transmission. As the basic straightforward symbolic execution
is too time-consuming for Android apps, AppIntent thus lever-
ages the unique Android execution model to reduce the search
space without sacrificing code coverage.

Program Slicing. Program slicing has been used as a com-
mon means in program analysis field to reduce the set of pro-
gram behaviors, meanwhile keep the interested program behav-
ior unchanged. Given a variable v in program p that we are
interested in, a possible slice would consists of all statements
in p that may a↵ect the value of v. As an example, Ho↵mann
et al. [39] present a framework called SAAF to create program
slices so as to perform backward data-flow analysis to track pa-
rameter values for a given Android method. CryptoLint [33]
computes static program slices that terminate in calls to crypto-
graphic API methods, and then extract the necessary informa-
tion from these slices.

Code Instrumentation. In static analysis, code instrumen-
tation is usually used to tackle some complicated problems (e.g.,
inter-component communication, reflection, etc.). In Android
community, Arzt et al. [121] have introduced several means to
instrument Android apps, in which they have illustrated Soot
is a good tool to support the instrumentation of Android apps.
As an example, IccTA [122] instruments Android apps to re-
duce an inter-component taint propagation problem to an intra-
component problem. Nyx [31] instruments android web app
to modify the background of web pages, so as to reduce the
display power consumption and thereby letting web app be-
come more energy e�cient. Except Soot, other tools/frame-
works such as WALA and ASM are also capable to support the
instrumentation of Android apps.

Type/Model Checking. Type and model checking are two
prevalent approaches to program verification. The main di↵er-
ence between them is that type checking is usually based on

syntactic and modular style whereas model checking is usually
defined in a semantic and whole-program style. Actually, this
di↵erence makes these two approaches complementary to one
another: type checking is good at explaining why a program
was accepted while model checking is good at explaining why a
program was rejected [123]. As an example, COVERT [75] first
extracts relevant security specifications from a given app and
then applies a formal model checking engine to verify whether
the analyzed app is safe or not. For type checking, Cassan-
dra [92] is presented to enable users of mobile devices to check
whether Android apps comply with their personal privacy re-
quirements even before installing these apps. Ernst et al. [76]
also present a type checking system for Android apps, which
checks the information flow type qualifiers and ensures that
only such flows defined beforehand can occur at run time.

Table 7 provides information on the works that use the dif-
ferent techniques. The summary statistiques show that taint
analysis, which is used for tracking data, is the most applied
technique (25.3% of primary publications), while 20.9% pri-
mary publications involve code instrumentation and 14.3% pri-
mary publications have applied program slicing technique in
their approaches. 7.7% approaches are dealing with Type/-
Model checking and 6.6% of primary publications use abstract
interpretation to perform their static analysis. Symbolic execu-
tion however is applied in only 3 (3.3%) primary publications.

RQ 2.2: Taint analysis remains the most applied tech-
nique in static analysis of Android apps. This is inline
with the finding in RQ1 which shows that the most re-
current purpose of state-of-the-art approaches is on se-
curity and privacy.

5.2.3. Static Analysis Sensitivities
We now investigate the depth of the analyses presented in

the primary publications. To that end we assess the sensitivities
(cf. Sections 2.1.2 and 2.1.3). Table 8 classifies the di↵erent
approaches according to the the sensitivities that their analy-
ses take into account. Field-sensitivity appears to be the most

14



considered with 36 primary publications taking it into account.
This finding is understandable since Android apps are gener-
ally written in Java, an Object-Oriented language where object
fields are pervasively used to hold data. Context-sensitivity and
Flow-sensitivity are also largely taken into account (with 30 and
31 publications respectively). The least considered sensitivity
is Path-sensitivity (only 5 publications), probability due to the
scalability issues that it raises.

Table 8: Classification of Approaches according to the Sensitivities
considered in Call-Graph Construction.

Tool Co
nt

ex
t-S

en
sit

iv
e

Fl
ow

-S
en

sit
iv

e

Fi
el

d-
Se

ns
iti

ve

O
bj

ec
t-S

en
sit

iv
e

Pa
th

-S
en

sit
iv

e
Anadroid [36] 3 7 3 3 3
Lotrack [110] 3 3 3 3 7
AQUA [102] 7 3 7 7 7
Scandal [41] 3 3 7 7 7
DidFail [24] 3 3 3 3 7
AndroidLeaks [45] 3 7 7 7 7
Woodpecker [49] 7 7 3 7 3
CHEX [7] 3 3 3 3 7
Brox [52] 3 3 7 7 7
Mann et al. [53] 7 7 3 7 7
Van et al. [54] 7 7 3 7 7
FUSE [56] 3 7 3 7 7
Rocha et al. [120] 7 3 7 7 7
PermissionFlow [57] 3 3 3 7 7
Vekris et al. [60] 3 3 7 7 7
Choi et al. [118] 7 7 7 3 7
CloneCloud [22] 7 7 3 7 7
CryptoLint [33] 7 7 3 7 7
A3E [107] 7 3 7 7 7
Bartsch et al. [64] 3 3 7 7 7
THRESHER [106] 3 3 3 3 3
Chen et al. [66] 7 3 7 7 7
Pegasus [67] 3 3 3 7 7
DroidSIFT [70] 3 3 7 7 7
DPartner [71] 7 7 3 7 7
TrustDroid [72] 7 7 3 7 7
Covert [75] 3 7 3 7 7
IFT [76] 3 3 3 7 7
Julia [4] 7 3 7 7 7
Capper [77] 3 3 3 7 7
AppSealer [78] 3 3 3 7 7
AppCaulk [79] 3 7 3 7 7
Gator [112] 3 7 7 3 7
Gator2 [109] 3 7 7 3 7
IC3 [27] 3 3 3 7 7
DroidSafe [80] 3 3 3 3 7
Apposcopy [82] 3 7 3 3 7
AppContext [83] 3 3 3 3 7
SEFA [84] 7 7 3 7 7
Amandroid [85] 3 3 3 3 7
ContentScope [86] 7 7 7 7 3
Wognsen et al. [87] 7 3 3 7 7
AsDroid [89] 7 3 3 3 7
FlowDroid [5] 3 3 3 3 7
Bartel et al. [30] 7 3 3 7 7
COPES [29] 7 3 3 7 7
IccTA [6] 3 3 3 3 7
Epicc [8] 3 3 3 7 7
Asynchronizer [95] 3 7 3 7 7
Cassandra [92] 7 7 3 7 7
Apparecium [93] 7 3 3 7 3
Total 30 31 36 15 5

In theory, the more sensitivities considered, the more pre-
cise the analysis is. It is thus reasonable to state that only one
approach, namely TRESHER [106], achieves high precision by
taking into account all sensitivities. However, given the rel-
atively high performance of existing state-of-the-art works, it

seems unnecessary to support all sensitivities to be useful in
practice.

RQ 2.3: Most approaches support up to 3 of the 5 sen-
sitivities in Call-Graph construction for static analysis.
Path-sensitivity is the least taken into account by the An-
droid research community.

Table 9: Classification of Approaches according to their support for
Android specificities.

Tool Li
fe

cy
cl

e

Ca
llb

ac
k-

M
et

ho
ds

En
try

-P
oi

nt
s

IC
C

IA
C

X
M

L
La

yo
ut

DroidChecker [35] 3 3 3 7 7 7
Anadroid [36] 3 3 3 7 7 3
Lotrack [110] 3 3 3 7 7 3
Scandal [41] 7 3 3 7 7 7
DidFail [24] 3 3 3 3 3 3
AndroidLeaks [45] 7 3 3 7 7 7
AdRisk [48] 7 7 3 7 7 7
Woodpecker [49] 3 3 3 7 7 7
Relda [50] 3 3 3 7 7 7
CHEX [7] 3 3 3 7 7 7
Brox [52] 7 7 3 7 7 7
EvoDroid [116] 3 3 3 7 7 3
Mann et al. [53] 3 3 3 7 7 7
Van et al. [54] 3 3 3 7 7 7
Mirzaei et al. [117] 3 3 3 7 7 3
Poeplau et al. [55] 3 7 3 7 7 7
FUSE [56] 3 3 3 3 3 3
PermissionFlow [57] 3 3 3 7 7 7
BlueSeal [58] 7 3 3 3 3 3
CMA [34] 7 7 3 7 7 7
SMV-Hunter [59] 7 7 3 7 7 3
Vekris et al. [60] 3 3 3 3 7 7
A5 [61] 7 3 3 7 7 7
Choi et al. [118] 3 3 7 3 7 7
CloneCloud [22] 7 7 3 7 7 7
CryptoLint [33] 7 7 3 7 7 7
A3E [107] 3 3 3 7 7 3
Bartsch et al. [64] 3 3 3 3 7 7
THRESHER [106] 7 7 3 7 7 7
Pegasus [67] 3 3 3 3 7 7
ORBIT [96] 7 7 3 7 7 7
DroidSIFT [70] 7 3 3 7 7 7
DPartner [71] 7 3 3 7 7 7
SmartDroid [73] 7 7 3 7 7 3
DroidAlarm [74] 7 7 3 3 7 7
Covert [75] 3 3 3 3 3 7
IFT [76] 7 7 7 3 7 7
Julia [4] 7 7 3 7 7 3
Capper [77] 3 7 3 7 7 7
AppSealer [78] 3 7 3 7 7 7
Gator [112] 3 3 3 7 7 3
Gator2 [109] 3 3 3 3 7 3
IC3 [27] 3 3 3 7 7 7
DroidSafe [80] 3 3 3 3 3 3
PaddyFrog [81] 7 7 3 3 7 7
Apposcopy [82] 3 7 3 3 7 7
AppContext [83] 3 3 3 3 7 7
SEFA [84] 7 7 3 3 3 7
Amandroid [85] 3 3 3 3 7 3
ContentScope [86] 7 3 3 7 7 7
Wognsen et al. [87] 3 3 3 7 7 7
AsDroid [89] 3 3 3 3 7 3
AppIntent [90] 3 3 3 3 7 7
FlowDroid [5] 3 3 3 7 7 3
IccTA [6] 3 3 3 3 7 3
Epicc [8] 3 3 3 7 7 7
Asynchronizer [95] 3 3 3 7 7 7
PerfChecker [111] 3 3 3 7 7 3
Cassandra [92] 7 7 3 7 7 7
Apparecium [93] 3 3 7 7 7 7
ACTEve [113] 3 3 7 7 7 3
Brahmastra [105] 3 3 7 3 7 3
Total 40 43 57 21 6 21

15



5.2.4. Android Specificities
Although Android apps are written in Java, they present

specific characteristics in their functioning. Typically, they ex-
tensively make use of a set of lifecycle event-based methods
that the system requires to interact with apps, and rely on the
inter-component communication mechanism to make applica-
tion parts interact. These characteristics however may consti-
tute challenges for a static analysis approach.

Component Lifecycle. Because lifecycle callback meth-
ods (i.e., onStop(), onStart(), onRestart(), onPause() and onRe-
sume()) have neither connection among them nor directly with
app code, static analysis are challenged by completing control-
flow graphs (e.g., to continuously keep track of sensitive data
flows). We found that 40 of the reviewed publications pro-
pose static analysis approaches that take into account compo-
nent lifecyle.

UI Callbacks. Besides lifecycle methods, a number of call-
backs are used in Android to handle various events. In particu-
lar, UI events are detected by the system and notified to devel-
oper apps through callback methods (e.g., to react when a user
clicks on a button). There are several such callbacks defined
by in various Android classes. Similarly to lifecycle methods,
taking into account such callback methods leads to a more com-
plete control-flow graph. Our review reveals that 43 of publica-
tions are considering specific analysis processes that take into
account callback methods.

EntryPoint. Most static approaches for Android apps must
build an entry point, in the form of a dummy main, to allow the
construction of call-graph by state-of-the-art tools such as Soot
and WALA. 57 publications from our set explicitely discussed
their handling of the single entry-point issue.

ICC. The inter-component communication (ICC) is well-
know to challenge static analysis of Android programs. Re-
cently, several works have focused on its inner-working to high-
light vulnerabilities and malicious activities in Android apps.
Among the set of collected primary publications, 21 research
papers explicitely deal with ICC. As examples, Epicc [8] and
IC3 [27] attempts to extract the necessary information of ICC
in Android apps which can support other approaches, including
IccTA [6], and DidFail [24] , in performing ICC-aware analyses
across components. AmanDroid [85] also resolves ICC infor-
mation for supporting inter-component data-flow analysis, for
the purpose of vetting the security of Android apps.

IAC. The inter-app communication (IAC) mechanism ex-
tends the ICC mechanism for components across di↵erent apps.
Because, most approaches focus on analysing single apps, IAC-
supported analyses are scarce in the literature. We found only
6 publications that deal with such scenarios of interactions. A
main challenge of tackling IAC-aware analyses is the support
of scalability for market-scale analyses.

XML-Layout. The structure of user interfaces of Android
apps are defined by layouts, which can be declared in either
XML configurations or Java code. The XML layout mechanism
provides a well-defined vocabulary corresponding to the View
classes, sub-classes and also their possible event handlers. We
found that 21 publications, from our set, take into account XML

Table 10: List of approaches with publicly available tool support, and
information on evaluation settings from the publications. With lab
() in-the-lab experiments; wild() in-the-wild experiments; and #
of apps() the number of apps that are evaluated in their in-the-wild
experiments. Note that in the last column, ”-” means that the number
of apps is not mentioned in the studied paper.

Approach Open-source Evaluation
tool-support lab wild # of apps

Anadroid [36] 3 7 7 0
Lotrack [110] 3 7 3 100
SAAF [39] 3 7 3 142100
Redexer [40] 3 7 3 14
DidFail [24] 3 3 7 0
MalloDroid [42] 3 7 3 13500
Adagio [43] 3 7 3 147950
android-app-analysis-tool [44] 3 7 3 265
Poeplau et al. [55] 3 7 3 1632
FUSE [56] 7 3 3 2573
BlueSeal [58] 3 3 7 0
A5 [61] 3 7 3 0
Choi et al. [118] 3 3 7 0
Androguard [62] 3 3 7 0
Androguard [63] 3 3 7 0
A3E [107] 3 7 3 25
THRESHER [106] 3 7 3 7
Covert [75] 7 7 3 200
IFT [76] 7 7 3 72
Gator [112] 3 7 3 20
Gator2 [109] 3 7 3 20
IC3 [27] 3 7 3 460
DroidSafe [80] 3 3 3 24
StaDynA [114] 3 7 3 10
Amandroid [85] 3 3 3 853
Wognsen et al. [87] 3 7 3 1700
FlowDroid [5] 3 3 3 1500
ApkCombiner [108] 7 3 3 0
IccTA [6] 3 3 3 15000
Epicc [8] 7 7 3 1200
Asynchronizer [95] 7 7 3 13
PerfChecker [111] 3 7 3 29
Cassandra [92] 3 7 7 0
Apparecium [93] 3 7 3 100

layouts to support more complete analysis scenarios.
Overall, Table 9 summarizes the support for addressing the

enumerated challenges by approaches from the literature. We
list in this table only those publications from our collected set
that are explicitly addressing at least one of the challenges.

RQ 2.4: No single work in the literature has proposed
to tackle at once all challenges due to Android speci-
ficities. Instead, most approaches select to deal par-
tially with those challenges directly within their im-
plementation with little opportunity for reuse by other
approaches.

5.3. Usability of Research Output
We now investigate whether the works behind our primary

publications have produced usable tools and whether their eval-
uations are extensive enough to make their conclusions reliable
or meaningful.

Among the 92 reviewed papers, 33 (i.e., only 36%) have
provided a publicly available tool support. This finding sug-
gests that, currently, the majority of researchers in the field of
static analysis of Android apps, do not share their research ef-
forts. Table 10 summarizes the publicly available approaches,
among which 27 of them are further open-sourced.

16



We now consider how researchers in the field of static anal-
ysis of Android apps evaluate their approaches. We di↵erentiate
in-the-lab experiments, which are mainly performed with a few
hand-crafted test cases to highlight e�cacy and/or correctness,
from in-the-wild experiments, which consider a large number of
real-world apps to demonstrate e�ciency and/or scalability. In-
the-lab experiments help to quantify an approach through stan-
dard metrics (e.g., precision and recall), which is very di�cult
to obtain through in-the-wild experiments, because of missing
of ground truth. In-the-wild experiments are however also es-
sential for static approaches. They are dedicated for finding
real and possibly solve problems of real-word apps, which may
have already been used by thousands of users. In our review,
26 out of the 33 approaches in Table 10 have evaluated their ap-
proaches through in-the-wild experiments. We also found that
on average, the number of apps that those in-the-wild exper-
iments consider are 362.5 (median) and 13,480 (mean). The
maximum number of evaluated apps is 147,950, which is con-
sidered for Adagio [43].

Unfortunately, as shown in Table 10, only 7 approaches
have taken into account in-the-lab and in-the-wild experiments
at the same time.

RQ3: Only a small portion of state-of-the-art works
that perform static analysis on Android apps have
made their contributions available in public (e.g., tool
support). Among those approaches, only a few have
fully evaluated their approaches.

5.4. Trends and Overlooked Challenges
Although Android is a recent ecosystem, research on analysing

its programs have flourished. We investigate the general trends
in the research and make an overview of the challenges that
are/are not dealt with.

5.4.1. Trend Analysis
Fig. 11 shows the distribution of publications from our set

in according to their year of publication. Research papers ap-
pear to have started in 2011, about two years and a half after
its commercial release in September 2008. Then, a rush of pa-
pers ensued with a peak in 2014 for both Security and Software
engineering communities.

Fig. 12 shows that, as time goes by, research works are con-
sidering more sensitivities and addressing more challenges to
produce precise analyzers which are aware of more and more
analysis specificities. We further look into the ICC challenge
for static analyzers to show the rapid increase of publications
which deal with it.

RQ 4.1: Research on static analysis for Android is ma-
turing, yielding more analysis approaches which con-
sider more analysis sensitivities and are aware of more
specificities of Android.

5.4.2. Dealing with Analysis Challenges
We now discuss our findings on the di↵erent challenges ad-

dressed in analyses to make them static-, implicit-flow, alias-

1 SmsManager sms = SmsManager.getDefault ();
2 //sms.sendTextMessage ("+49 1234" , null ,

"123" , null , null);
3 for (int i = 0; i < 123; i++)
4 sms.sendTextMessage("+49 1234", null ,

"count", null , null);

Listing 1: Example of an implicit flow.

, dynamic-code-loading-, reflection-, native-code-, and multi-
threading-aware.

We consider an approach to be static-aware when it takes
into account static object values in Java program to improve
analysis precision. 24 approaches explicitly taking this into
account. 18 primary publications consider aliases. Both chal-
lenges are the most considered in approaches from the literature
as they are essential for performing precise static analysis.

We found 18 primary publications which take into account
multi-threading. We further investigate these supports since
multi-threading is well-known to be challenging even in Java
ecosystem. We note that those approaches partially solve multi-
threading issues in very simply manner, based on a predefined
whitelist of multi-threading mechanisms. For example, when
Thread.start() is launched, they simply bridge the gap between
method start() and run() through an explicit call graph edge.
However, other complex multi-threading processes (e.g., those
unknown in advance) or the synchronization among di↵erent
threads are not yet addressed by the community of static analy-
sis researchers for Android apps.

Another challenge is on considering implicit flows, i.e., flow
information inferred from control-flow dependencies. Let us
take Listing 1 as an example, if an Android app does not send
out message 123 directly, but sends 123 times the word “count”,
the attacker can actually gains the same information as if the
app had directly sent the 123 value directly.

The remaining challenges include reflection, native code
and dynamic code loading (DCL) which are taken into account
by 10, 3 and 3 publications respectively.

Table 11 provides information on which challenges are ad-
dressed by the studied papers.

RQ 4.2: There are a number of analysis challenges
that remain to be addressed more largely by the com-
munity to build approaches that are aware of implicit-
Flows, dynamic code loading features, reflective calls,
native code and multi-threading, so as to implement
sound and highly precise static analyzers.

6. Threats To Validity

Although we have attempted to collect relevant papers as
much as possible by combining both repository search and top-
venue search, our results may have still missed some relevant
publications. In particular, we have observed that currently the
state-of-the-art repository search engine (e.g., the one provided
by Springer) are not so accurate. Besides, we have only checked

17



2011 2012 2013 2014 2015

0
5

10
15

20
25

30

(a) Published years (total).

2011 2012 2013 2014 2015

0
2

4
6

8
10

12
14

(b) Published years (SEC).

2011 2012 2013 2014 2015

0
2

4
6

8
10

12
14

(c) Published years (SE/PL).

Figure 11: Distribution of examined publications through published year.

2011 2012 2013 2014 2015

0
10

20
30

40

(a) Trend of sensitivity.

2011 2012 2013 2014 2015

0
20

40
60

(b) Trend of awareness.

2011 2012 2013 2014 2015

0
2

4
6

8

(c) Trend of ICC.

Figure 12: Trend analysis.

the 20 top venues for potential missed publications (i.e., the top-
venue search), which may not be enough. However, the attempt
of searching on top ranked venues has guaranteed that the influ-
ential11 papers have been taken into account. As future work,
we plan to mitigate this by performing a snowballing based on
the current primary publications.

Given our interest in systematic literature reviews, we are
likely to have made some errors on the side of including or ex-
cluding primary publications, although each ”borderline” pub-
lication has been cross-checked by the authors of this SLR.

In order to share the heavy workload of data extraction, we
have split the collected primary publications into di↵erent au-
thors to perform the detailed examination. As suggested by Br-
ereton et al. [124], we have applied a cross-checking mecha-
nism: for the data extracted by a researcher, we have assigned
it to another researcher to validate. However, some of the data
we extracted may be erroneous as well, as founded by Turner
et al. [125], the extractor/checker mode of working can lead
to data extraction and aggregation problems when there are a
large number of primary studies or the data is complex. To fur-
ther mitigate the inevitable erroneous, we plan to validate our
extracted data through their original authors.

The rank of the top 20 venues we select are based on their
h5-index, which may change from time to time. Besides, we
have heuristically removed some potentially irrelevant venues
(e.g., cryptography-related venues), even it is rare, it is still pos-

11Although it may not be always the case, we still believe that papers pub-
lished in better venues can consequently acquire more impacts.

sible that we may miss publications from those venues.

7. Related Work

To the best of our knowledge, there is no systematic liter-
ature review in the research area of static analysis of Android
apps. There is also no surveys that specifically focus on this re-
search area. However, several Android security related surveys
have been proposed in the literature. Unlike our approach, these
approaches are actually not done systematically (not SLRs). As
a result, there are always some well-known approaches miss-
ing. Indeed, our review in this report has shown better coverage
than those surveys in terms of publications in the area of static
analysis of Android apps.

Tan et al. [9] presents a survey on general Android secu-
rity, including both static and dynamic approaches. This survey
first introduces a taxonomy with five main categories based on
the existing security solutions on Android. Then, it classifies
existing works into those five categories and thereby compara-
tively examines them. In the end, this survey has highlighted
the limitation of existing works and also discussed potential fu-
ture research directions.

Faruki et al. [126] present another survey mainly focus-
ing on Android malware, e.g., the growth of malware, the ex-
istence of anti-analysis techniques. This survey has revealed
that the traditional signature-based and static analysis-based ap-
proaches are potentially vulnerable. Remarkably, this survey
has proposed a platform, to the researchers and practitioners,

18



Table 11: Summary through di↵erent aspects of static analysis.

Tool St
at

ic
-A

w
ar

e

Im
pl

ic
it-

Fl
ow

A
lia

s
an

al
ys

is

D
yn

am
ic

C
od

e
Lo

ad
in

g

R
efl

ec
tio

n

N
at

iv
e

M
ul

ti-
Th

re
ad

in
g

Anadroid [36] 7 7 7 7 7 7 3
Lotrack [110] 3 3 3 7 7 7 7
eLens [38] 7 7 7 7 7 7 3
SAAF [39] 7 7 3 7 7 7 7
Scandal [41] 7 7 7 7 3 7 7
DidFail [24] 3 3 3 7 7 7 7
Gible et al. [46] 7 3 7 7 7 7 7
Graa et al. [47] 7 3 7 7 7 7 7
Woodpecker [49] 7 7 7 7 7 7 3
Relda [50] 7 7 7 7 7 7 3
Brox [52] 7 7 7 7 7 7 3
Mann et al. [53] 3 7 7 7 7 7 7
Poeplau et al. [55] 7 7 7 3 7 7 7
FUSE [56] 3 7 3 7 3 7 3
Rocha et al. [120] 3 3 7 7 7 7 7
PermissionFlow [57] 3 7 3 7 7 7 7
BlueSeal [58] 7 7 7 7 3 7 3
SMV-Hunter [59] 7 3 7 7 7 7 7
Vekris et al. [60] 7 7 3 7 7 7 7
CloneCloud [22] 3 7 7 7 7 7 7
CryptoLint [33] 3 7 7 7 7 7 7
THRESHER [106] 3 7 3 7 7 7 7
Pegasus [67] 7 7 7 3 3 7 7
MobSafe [68] 7 7 3 7 7 7 7
DroidSIFT [70] 7 7 7 7 3 7 3
DPartner [71] 7 7 7 7 3 7 7
TrustDroid [72] 3 7 7 7 7 7 3
Covert [75] 7 7 3 7 7 7 7
IFT [76] 7 3 7 7 3 7 7
Capper [77] 3 7 7 7 7 7 3
AppSealer [78] 3 7 7 7 7 7 3
AppCaulk [79] 3 7 7 7 7 3 7
IC3 [27] 3 7 3 7 7 7 7
DroidSafe [80] 3 3 3 7 3 3 3
Apposcopy [82] 3 7 3 7 7 7 7
StaDynA [114] 7 7 7 3 3 7 3
AppContext [83] 3 3 3 7 7 7 7
Amandroid [85] 3 7 3 7 7 7 7
ContentScope [86] 7 7 7 7 7 7 3
Wognsen et al. [87] 3 7 3 7 3 7 7
AsDroid [89] 7 7 7 7 7 7 3
FlowDroid [5] 3 3 3 7 7 7 7
IccTA [6] 3 3 3 7 7 7 7
Epicc [8] 3 7 3 7 7 7 7
Asynchronizer [95] 7 7 7 7 7 7 3
PerfChecker [111] 7 7 7 7 7 7 3
Cassandra [92] 7 3 7 7 7 3 7
Apparecium [93] 3 7 7 7 7 7 7
SIF [115] 3 7 7 7 7 7 3
Total 24 12 18 3 10 3 18

for further techniques that focus on Android malware analysis
and detection.

Rashidi et al. [127] present a survey on existing Android se-
curity threats and security enforcement solutions. This survey
classifies Android security mechanism into three aspects: An-
droid permission, app sandbox and inter-component communi-
cation (ICC) and categorizes existing solutions into three folds:
Prevention-based, Analysis-based and Runtime monitoring-based
approaches.

Haris et al. [128] present a survey especially focusing on
privacy leaks and their associated risks in mobile computing.
This survey has studied privacy in the area of mobile connectiv-
ity (e.g., cellular and surveillance technology) and in the area of
mobile sensing (e.g., users prospects on sensor data). Besides,

the authors have studied not only Android-specific leakages but
also other mobile platforms including iOS and Windows. Simi-
larly, [129] and [130] present state-of-the-art reviews with con-
sidering multiple mobile platforms.

8. Conclusions

Research on static analysis of Android apps is quickly ma-
turing, producing more and more advanced approaches for stat-
ically uncovering security issues in app code. To summarize
the state-f-the-art and enumerate the challenges to be addressed
by the research community we have conducted a systematic lit-
erature review of publications on approaches involving the use
of static analysis on Android apps. In the process of this re-
view, we have collected around 90 research papers published
in Software engineering, programming languages and security
conference and journal venues.

Our review has consisted of investigating the categories of
issues targeted by static analysis, the fundamental techniques
leveraged in the approaches, the implementation of the analy-
sis itself (i.e., which analysis sensitivities are considered, and
what android characteristics are taken into account?), how the
evaluation was performed, and whether the research output is
available for use by the community.

We have found that, (1) most analyses are performed to un-
cover security flaws in Android apps; (2) many approaches are
built on top of a single analysis framework, namely Soot; (3)
taint analysis is the most applied fundamental analysis tech-
nique in the publications; (4) although most approaches support
multiple sensitivities, path sensitivity appears overlooked; (5)
all approaches are missing to consider at least 1 characteristic
of Android programming in their analysis; (6), finally, research
contributions artefacts, such as tools and datasets, are often un-
published.

Acknowledgment

We thank all authors of Android static analysis who have
provided useful feedback to the initial draft of this SLR, dur-
ing the self-checking process. This work was supported by the
Fonds National de la Recherche (FNR), Luxembourg, under the
project AndroMap C13/IS/5921289.

References

[1] Gartner, gartner says sales of smartphones grew 20 percent in third quar-
ter of 2014. https://www.gartner.com/newsroom/id/2944819/.
Accessed: 2015-08-22.

[2] Developer economics q1 2015: State of the developer na-
tion. https://www.developereconomics.com/reports/
developer-economics-q1-2015/. Accessed: 2015-08-22.

[3] G data: Mobile malware report. https://public.gdatasoftware.
com/Presse/Publikationen/Malware_Reports/G_DATA_
MobileMWR_Q2_2015_EN.pdf. Accessed: 2015-08-22.

[4] Étienne Payet and Fausto Spoto. Static analysis of android programs.
Information and Software Technology, 54(11):1192–1201, 2012.

19

https://www.gartner.com/newsroom/id/2944819/
https://www.developereconomics.com/reports/developer-economics-q1-2015/
https://www.developereconomics.com/reports/developer-economics-q1-2015/
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q2_2015_EN.pdf


[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In Proceedings of the
35th annual ACM SIGPLAN conference on Programming Language De-
sign and Implementation (PLDI 2014), 2014.

[6] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-Component Pri-
vacy Leaks in Android Apps. In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), 2015.

[7] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
statically vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pages 229–240. ACM, 2012.

[8] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric
Bodden, Jacques Klein, and Yves Le Traon. E↵ective inter-component
communication mapping in android with epicc: An essential step to-
wards holistic security analysis. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[9] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. Securing an-
droid: A survey, taxonomy, and challenges. ACM Computing Surveys
(CSUR), 47(4):58, 2015.

[10] Alexandre Bartel. Security Analysis of Permission-Based Systems us-
ing Static Analysis: An Application to the Android Stack. PhD thesis,
University of Luxembourg, 2014.

[11] Alfred V Aho, Ravi Sethi, and Je↵rey D Ullman. Compilers, Principles,
Techniques. Addison wesley, 1986.

[12] Je↵rey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
ECOOP95Object-Oriented Programming, 9th European Conference,
Åarhus, Denmark, August 7–11, 1995, pages 77–101. Springer, 1995.

[13] David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual
function calls. ACM Sigplan Notices, 31(10):324–341, 1996.

[14] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practi-
cal virtual method call resolution for java. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’00), pages 264–280, 2000.

[15] Lars Ole Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.

[16] Bjarne Steensgaard. Points-to analysis in almost linear time. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 32–41. ACM, 1996.

[17] Barbara Kitchenham. Procedures for performing systematic reviews.
2004.

[18] Google scholar metrics: Available metrics. https://scholar.
google.com.sg/intl/en/scholar/metrics.html#metrics. Ac-
cessed: 2015-08-22.

[19] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:
analyzing the android permission specification. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 217–228. ACM, 2012.

[20] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen. Edgeminer: Auto-
matically detecting implicit control flow transitions through the android
framework. In Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS), 2015.

[21] Wenjun Hu, Jing Tao, Xiaobo Ma, Wenyu Zhou, Shuang Zhao, and Ting
Han. Migdroid: Detecting app-repackaging android malware via method
invocation graph. In Computer Communication and Networks (ICCCN),
2014 23rd International Conference on, pages 1–7. IEEE, 2014.

[22] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: elastic execution between mobile device and
cloud. In Proceedings of the sixth conference on Computer systems,
pages 301–314. ACM, 2011.

[23] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. Droid-
force: enforcing complex, data-centric, system-wide policies in android.
In Availability, Reliability and Security (ARES), 2014 Ninth Interna-
tional Conference on, pages 40–49. IEEE, 2014.

[24] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer.
Android taint flow analysis for app sets. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java Pro-
gram Analysis, pages 1–6. ACM, 2014.

[25] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas
Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps
for abnormal usage of sensitive data.

[26] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Automat-
ically exploiting potential component leaks in android applications. In
Proceedings of the 13th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom 2014), 2014.

[27] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and
Patrick McDaniel. Composite constant propagation: Application to an-
droid inter-component communication analysis. In Proceedings of the
37th International Conference on Software Engineering (ICSE), 2015.

[28] Yajin Zhou and Xuxian Jiang. Detecting passive content leaks and pol-
lution in android applications. In Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

[29] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monper-
rus. Automatically securing permission-based software by reducing the
attack surface: An application to android. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 274–277. ACM, 2012.

[30] Alexandre Bartel, John Klein, Martin Monperrus, and Yves Le Traon.
Static analysis for extracting permission checks of a large scale frame-
work: The challenges and solutions for analyzing android. Software
Engineering, IEEE Transactions on, 40(6):617–632, 2014.

[31] Ding Li, Angelica Huyen Tran, and William GJ Halfond. Making web
applications more energy e�cient for oled smartphones. In Proceedings
of the 36th International Conference on Software Engineering, pages
527–538. ACM, 2014.

[32] Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. Cal-
culating source line level energy information for android applications. In
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, pages 78–89. ACM, 2013.

[33] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android applica-
tions. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 73–84. ACM, 2013.

[34] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chen-
jie. Modelling analysis and auto-detection of cryptographic misuse in
android applications. In Dependable, Autonomic and Secure Comput-
ing (DASC), 2014 IEEE 12th International Conference on, pages 75–80.
IEEE, 2014.

[35] Patrick PF Chan, Lucas CK Hui, and Siu-Ming Yiu. Droidchecker: an-
alyzing android applications for capability leak. In Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks, pages 125–136. ACM, 2012.

[36] Shuying Liang, Andrew W Keep, Matthew Might, Steven Lyde, Thomas
Gilray, Petey Aldous, and David Van Horn. Sound and precise malware
analysis for android via pushdown reachability and entry-point satura-
tion. In Proceedings of the Third ACM workshop on Security and pri-
vacy in smartphones & mobile devices, pages 21–32. ACM, 2013.

[37] Zhihui Han, Liang Cheng, Yang Zhang, Shuke Zeng, Yi Deng, and Xi-
aoshan Sun. Systematic analysis and detection of misconfiguration vul-
nerabilities in android smartphones. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2014 IEEE 13th Interna-
tional Conference on, pages 432–439. IEEE, 2014.

[38] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Esti-
mating mobile application energy consumption using program analysis.
In Software Engineering (ICSE), 2013 35th International Conference
on, pages 92–101. IEEE, 2013.

[39] Johannes Ho↵mann, Martin Ussath, Thorsten Holz, and Michael Spre-
itzenbarth. Slicing droids: program slicing for smali code. In Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, pages
1844–1851. ACM, 2013.

[40] Jinseong Jeon, Kristopher K Micinski, Je↵rey A Vaughan, Ari Fogel,
Nikhilesh Reddy, Je↵rey S Foster, and Todd Millstein. Dr. android and
mr. hide: fine-grained permissions in android applications. In Proceed-
ings of the second ACM workshop on Security and privacy in smart-
phones and mobile devices, pages 3–14. ACM, 2012.

20

https://scholar.google.com.sg/intl/en/scholar/metrics.html#metrics
https://scholar.google.com.sg/intl/en/scholar/metrics.html#metrics


[41] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD
Center. Scandal: Static analyzer for detecting privacy leaks in android
applications. MoST, 2012.

[42] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 50–61. ACM, 2012.

[43] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Struc-
tural detection of android malware using embedded call graphs. In Pro-
ceedings of the 2013 ACM workshop on Artificial intelligence and secu-
rity, pages 45–54. ACM, 2013.

[44] Dimitris Geneiatakis, Igor Nai Fovino, Ioannis Kounelis, and Paquale
Stirparo. A permission verification approach for android mobile appli-
cations. Computers & Security, 49:192–205, 2015.

[45] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-
droidLeaks: automatically detecting potential privacy leaks in android
applications on a large scale. Springer, 2012.

[46] Mariem Graa, Nora Cuppens Boulahia, Frédéric Cuppens, and Ana Cav-
alliy. Protection against code obfuscation attacks based on control de-
pendencies in android systems. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference on,
pages 149–157. IEEE, 2014.

[47] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana
Cavalli. Detecting control flow in smarphones: Combining static and
dynamic analyses. In Cyberspace Safety and Security, pages 33–47.
Springer, 2012.

[48] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe exposure analysis of mobile in-app advertisements. In Proceed-
ings of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pages 101–112. ACM, 2012.

[49] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic
detection of capability leaks in stock android smartphones. In NDSS,
2012.

[50] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang.
Characterizing and detecting resource leaks in android applications. In
Automated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, pages 389–398. IEEE, 2013.

[51] Zheng Lu and Supratik Mukhopadhyay. Model-based static source code
analysis of java programs with applications to android security. In Com-
puter Software and Applications Conference (COMPSAC), 2012 IEEE
36th Annual, pages 322–327. IEEE, 2012.

[52] Siyuan Ma, Zhushou Tang, Qiuyu Xiao, Jiafa Liu, Tran Triet Duong,
Xiaodong Lin, and Haojin Zhu. Detecting gps information leakage in
android applications. In Global Communications Conference (GLOBE-
COM), 2013 IEEE, pages 826–831. IEEE, 2013.

[53] Christopher Mann and Artem Starostin. A framework for static detection
of privacy leaks in android applications. In Proceedings of the 27th An-
nual ACM Symposium on Applied Computing, pages 1457–1462. ACM,
2012.

[54] Heila van der Merwe, Oksana Tkachuk, Brink van der Merwe, and
Willem Visser. Generation of library models for verification of android
applications. ACM SIGSOFT Software Engineering Notes, 40(1):1–5,
2015.

[55] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher
Kruegel, and Giovanni Vigna. Execute this! analyzing unsafe and ma-
licious dynamic code loading in android applications. In Proceedings
of the 20th Annual Network & Distributed System Security Symposium
(NDSS), 2014.

[56] Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor
Elliott, and Ledah Casburn. Multi-app security analysis with fuse: Stati-
cally detecting android app collusion. In Proceedings of the 4th Program
Protection and Reverse Engineering Workshop, page 4. ACM, 2014.

[57] Dragos Sbı̂rlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia,
and Vivek Sarkar. Automatic detection of inter-application permission
leaks in android applications. IBM Journal of Research and Develop-
ment, 57(6):10–1, 2013.

[58] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu
Dhandapani, Eric John Lehner, Steven Y Ko, and Lukasz Ziarek. Infor-

mation flows as a permission mechanism. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing, pages 515–526. ACM, 2014.

[59] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and
Latifur Khan. Smv-hunter: Large scale, automated detection of ssl/tls
man-in-the-middle vulnerabilities in android apps. In Proceedings of the
19th Network and Distributed System Security Symposium, 2014.

[60] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. To-
wards verifying android apps for the absence of no-sleep energy bugs.
In Proceedings of the 2012 USENIX conference on Power-Aware Com-
puting and Systems, pages 3–3. USENIX Association, 2012.

[61] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin,
and Patrick Tague. A5: Automated analysis of adversarial android ap-
plications. In Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, pages 39–50. ACM, 2014.

[62] Anthony Desnos. Android: Static analysis using similarity distance. In
System Science (HICSS), 2012 45th Hawaii International Conference
on, pages 5394–5403. IEEE, 2012.

[63] Anthony Desnos and Geo↵roy Gueguen. Android: From reversing to
decompilation. Proc. of Black Hat Abu Dhabi, pages 77–101, 2011.

[64] Ste↵en Bartsch, Bernhard Berger, Michaela Bunke, and Karsten Sohr.
The transitivity-of-trust problem in android application interaction. In
Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pages 291–296. IEEE, 2013.

[65] Leonid Batyuk, Markus Herpich, Seyit Ahmet Camtepe, Karsten Rad-
datz, Aubrey-Derrick Schmidt, and Sahin Albayrak. Using static analy-
sis for automatic assessment and mitigation of unwanted and malicious
activities within android applications. In Malicious and Unwanted Soft-
ware (MALWARE), 2011 6th International Conference on, pages 66–72.
IEEE, 2011.

[66] Chia-Mei Chen, Je-Ming Lin, and Gu-Hsin Lai. Detecting mobile ap-
plication malicious behaviors based on data flow of source code. In
Trustworthy Systems and their Applications (TSA), 2014 International
Conference on, pages 1–6. IEEE, 2014.

[67] Kevin Zhijie Chen, Noah M Johnson, Vijay D’Silva, Shuaifu Dai, Kyle
MacNamara, Thomas R Magrino, Edward XueJun Wu, Martin Rinard,
and Dawn Xiaodong Song. Contextual policy enforcement in android
applications with permission event graphs. In NDSS, 2013.

[68] Jianlin Xu, Yifan Yu, Zhen Chen, Bin Cao, Wenyu Dong, Yu Guo, and
Junwei Cao. Mobsafe: cloud computing based forensic analysis for
massive mobile applications using data mining. Tsinghua Science and
Technology, 18(4), 2013.

[69] Zhang Luoshi, Niu Yan, Wu Xiao, Wang Zhaoguo, and Xue Yibo. A3:
Automatic analysis of android malware. In 1st International Workshop
on Cloud Computing and Information Security. Atlantis Press, 2013.

[70] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware an-
droid malware classification using weighted contextual api dependency
graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1105–1116. ACM, 2014.

[71] Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei, and
Shunxiang Yang. Refactoring android java code for on-demand compu-
tation o✏oading. In ACM SIGPLAN Notices, volume 47, pages 233–
248. ACM, 2012.

[72] Zhibo Zhao and Fernando C Colon Osono. trustdroid¢: Preventing
the use of smartphones for information leaking in corporate networks
through the used of static analysis taint tracking. In Malicious and Un-
wanted Software (MALWARE), 2012 7th International Conference on,
pages 135–143. IEEE, 2012.

[73] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong,
Xinhui Han, and Wei Zou. Smartdroid: an automatic system for reveal-
ing ui-based trigger conditions in android applications. In Proceedings
of the second ACM workshop on Security and privacy in smartphones
and mobile devices, pages 93–104. ACM, 2012.

[74] Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. Droidalarm: an all-
sided static analysis tool for android privilege-escalation malware. In
Proceedings of the 8th ACM SIGSAC symposium on Information, com-
puter and communications security, pages 353–358. ACM, 2013.

[75] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek.
Covert: Compositional analysis of android inter-app permission leak-
age. 2015.

21



[76] Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart
Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi
Bhoraskar, Seungyeop Han, et al. Collaborative verification of informa-
tion flow for a high-assurance app store. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 1092–1104. ACM, 2014.

[77] Mu Zhang and Heng Yin. E�cient, context-aware privacy leakage con-
finement for android applications without firmware modding. In Pro-
ceedings of the 9th ACM symposium on Information, computer and com-
munications security, pages 259–270. ACM, 2014.

[78] Mu Zhang and Heng Yin. Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking at-
tacks in android applications. In Proceedings of the 21th Annual Net-
work and Distributed System Security Symposium (NDSS 2014), 2014.

[79] Julian Schutte, Dennis Titze, and JM De Fuentes. Appcaulk: Data leak
prevention by injecting targeted taint tracking into android apps. In
Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2014 IEEE 13th International Conference on, pages 370–379.
IEEE, 2014.

[80] Michael I Gordon, Deokhwan Kim, Je↵ Perkins, Limei Gilham, Nguyen
Nguyen, and Martin Rinard. Information-flow analysis of android appli-
cations in droidsafe. In Proc. of the Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2015.

[81] Jianliang Wu, Tingting Cui, Tao Ban, Shanqing Guo, and Lizhen Cui.
Paddyfrog: systematically detecting confused deputy vulnerability in
android applications. Security and Communication Networks, 2015.

[82] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 576–587. ACM, 2014.

[83] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and
William Enck. Appcontext: Di↵erentiating malicious and benign mobile
app behaviors using context. In Proc. of the International Conference on
Software Engineering (ICSE), 2015.

[84] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang.
The impact of vendor customizations on android security. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communica-
tions security, pages 623–634. ACM, 2013.

[85] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid:
A precise and general inter-component data flow analysis framework
for security vetting of android apps. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages
1329–1341. ACM, 2014.

[86] Zhou Yajin and Jiang Xuxian. Detecting passive content leaks and pol-
lution in android applications. In Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

[87] Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Mads Chr Olesen,
and René Rydhof Hansen. Formalisation and analysis of dalvik byte-
code. Science of Computer Programming, 92:25–55, 2014.

[88] Jingtian Wang, Xiaoquan Wu, Jun Wei, et al. Detect and optimize the
energy consumption of mobile app through static analysis: an initial
research. In Proceedings of the Fourth Asia-Pacific Symposium on In-
ternetware, page 22. ACM, 2012.

[89] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang.
Asdroid: Detecting stealthy behaviors in android applications by user
interface and program behavior contradiction. In Proceedings of the
36th International Conference on Software Engineering, pages 1036–
1046. ACM, 2014.

[90] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X Sean Wang. Appintent: Analyzing sensitive data transmission in an-
droid for privacy leakage detection. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1043–1054. ACM, 2013.

[91] Jialiu Lin, Bin Lin, Norman Sadeh, and Jason Hong. Modeling users
mobile app privacy preferences: Restoring usability in a sea of permis-
sion settings. In Symposium on Usable Privacy and Security (SOUPS),
2014.

[92] Ste↵en Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schnei-
der, and Alexandra Weber. Cassandra: Towards a certifying app store
for android. In Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, pages 93–104. ACM, 2014.

[93] Dennis Titze and Julian Schütte. Apparecium: Revealing data flows
in android applications. In Proceedings of the 29th International Con-
ference on Advanced Information Networking and Applications (AINA),
2015.

[94] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), 2011.

[95] Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for
android applications through refactoring. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 341–352. ACM, 2014.

[96] Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for au-
tomated gui-model generation of mobile applications. In Fundamental
Approaches to Software Engineering, pages 250–265. Springer, 2013.

[97] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications.

[98] Damien Octeau, William Enck, and Patrick McDaniel. The ded de-
compiler. Network and Security Research Center, Department of Com-
puter Science and Engineering, Pennsylvania State University, Univer-
sity Park, PA, USA, Tech. Rep. NAS-TR-0140-2010, 2010.

[99] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A study of android application security. In USENIX security sym-
posium, volume 2, page 2, 2011.

[100] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting an-
droid applications to java bytecode. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering, page 6. ACM, 2012.

[101] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Dexpler: Converting Android Dalvik Bytecode to Jimple for Static
Analysis with Soot. In ACM Sigplan International Workshop on the
State Of The Art in Java Program Analysis, 2012.

[102] Chon Ju Kim and Phyllis Frankl. Aqua: Android query analyzer. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages
395–404. IEEE, 2012.

[103] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code
manipulation tool to implement adaptable systems. Adaptable and ex-
tensible component systems, 30, 2002.

[104] Eugene Kuleshov. Using the asm framework to implement common
java bytecode transformation patterns. Aspect-Oriented Software Devel-
opment, 2007.

[105] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo
Chen, Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall.
Brahmastra: Driving apps to test the security of third-party components.
In 23rd USENIX Security Symposium (USENIX Security 14), 2014.

[106] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher:
Precise refutations for heap reachability. In ACM SIGPLAN Notices,
volume 48, pages 275–286. ACM, 2013.

[107] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first explo-
ration for systematic testing of android apps. ACM SIGPLAN Notices,
48(10):641–660, 2013.

[108] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. ApkCombiner: Combining Multiple Android Apps to
Support Inter-App Analysis. In Proceedings of the 30th IFIP Interna-
tional Conference on ICT Systems Security and Privacy Protection (SEC
2015), year=2015.

[109] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas
Rountev. Static control-flow analysis of user-driven callbacks in an-
droid applications. In International Conference on Software Engineer-
ing (ICSE), 2015.

[110] Max Lillack, Christian Kästner, and Eric Bodden. Tracking load-time
configuration options. In Proceedings of the 29th ACM/IEEE interna-
tional conference on Automated software engineering, pages 445–456.
ACM, 2014.

[111] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and de-
tecting performance bugs for smartphone applications. In Proceedings
of the 36th International Conference on Software Engineering, pages
1013–1024. ACM, 2014.

[112] Atanas Rountev and Dacong Yan. Static reference analysis for gui ob-
jects in android software. In Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, page 143.
ACM, 2014.

22



[113] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering (FSE), page 59. ACM, 2012.

[114] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno
Crispo, and Fabio Massacci. Stadyna: Addressing the problem of dy-
namic code updates in the security analysis of android applications. In
Proceedings of the 5th ACM Conference on Data and Application Secu-
rity and Privacy, pages 37–48. ACM, 2015.

[115] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Sif:
a selective instrumentation framework for mobile applications. In Pro-
ceeding of the 11th annual international conference on Mobile systems,
applications, and services (MobiSys), pages 167–180. ACM, 2013.

[116] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: seg-
mented evolutionary testing of android apps. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 599–609. ACM, 2014.

[117] Nariman Mirzaei, Sam Malek, Corina S Păsăreanu, Naeem Esfahani,
and Riyadh Mahmood. Testing android apps through symbolic execu-
tion. ACM SIGSOFT Software Engineering Notes, 37(6):1–5, 2012.

[118] Kwanghoon Choi and Byeong-Mo Chang. A type and e↵ect system
for activation flow of components in android programs. Information
Processing Letters, 114(11):620–627, 2014.

[119] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks. In
Proceedings of the ISOC Network and Distributed System Security Sym-
posium (NDSS), 2014.

[120] Bruno PS Rocha, Marco Conti, Sandro Etalle, and Bruno Crispo. Hybrid
static-runtime information flow and declassification enforcement. Infor-
mation Forensics and Security, IEEE Transactions on, 8(8):1294–1305,
2013.

[121] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting an-
droid and java applications as easy as abc. In Runtime Verification, pages
364–381. Springer, 2013.

[122] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt,
Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
daniel. I know what leaked in your pocket: uncovering privacy leaks
on Android Apps with Static Taint Analysis. Technical Report 978-2-
87971-129-4 TR-SNT-2014-9, April 2014.

[123] Mayur Naik and Jens Palsberg. A type system equivalent to a model
checker. In Programming Languages and Systems, pages 374–388.
Springer, 2005.

[124] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. Journal of sys-
tems and software, 80(4):571–583, 2007.

[125] Mark Turner, Barbara Kitchenham, David Budgen, and OP Brereton.
Lessons learnt undertaking a large-scale systematic literature review. In
Proceedings of the International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), 2008.

[126] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj
Gaur, Marco Conti, and Raj Muttukrishnan. Android security: A survey
of issues, malware penetration and defenses. IEEE Communications
Surveys & Tutorials, 17:998–1022, 2015.

[127] Bahman Rashidi and Carol Fung. A survey of android security threats
and defenses. Journal of Wireless Mobile Networks, Ubiquitous Com-
puting, and Dependable Applications, 6, 2015.

[128] Muhammad Haris, Hamed Haddadi, and Pan Hui. Privacy leakage in
mobile computing: Tools, methods, and characteristics. arXiv preprint
arXiv:1410.4978, 2014.

[129] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A
survey on security for mobile devices. Communications Surveys & Tu-
torials, IEEE, 15(1):446–471, 2013.

[130] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Ar-
turo Ribagorda. Evolution, detection and analysis of malware for smart
devices. Communications Surveys & Tutorials, IEEE, 16(2):961–987,
2014.

23


	Introduction
	Background Information on Android and Static Analysis
	Concepts of Static Program Analysis
	Analysis Techniques
	Call-Graph Construction
	Graph Enrichment

	Static Analysis of Android Programs
	Android-specific Analysis Challenges
	Java-inherited Challenges


	Methodology for the SLR
	Research Questions
	Search Strategy
	Search keywords
	Search datasets

	Exclusion Criteria
	Primary publications selection

	Data Extraction
	Summary of Findings
	Purposes of the Analyses
	Form and Extent of Analysis
	Code Representations and Support Tools
	Fundamental Analysis Methods
	Static Analysis Sensitivities
	Android Specificities

	Usability of Research Output
	Trends and Overlooked Challenges
	Trend Analysis
	Dealing with Analysis Challenges


	Threats To Validity
	Related Work
	Conclusions

