
Feature location benchmark for extractive software
product line adoption research using realistic and

synthetic Eclipse variants

Jabier Martineza,b,∗, Tewfik Ziadib, Mike Papadakisa,
Tegawendé F. Bissyandéa, Jacques Kleina, Yves le Traona

aSnT, University of Luxembourg, Luxembourg
bLiP6, Sorbonne Universités, UPMC University Paris 6, France

Abstract

It is common belief that high impact research in software reuse requires assess-
ment in non-trivial, comparable, and reproducible settings. However, software
artefacts and common representations are usually unavailable. Also, estab-
lishing a representative ground truth is a challenging and debatable subject.
Feature location in the context of software families is a research field that is
becoming more mature with a high proliferation of techniques. We present
EFLBench, a benchmark and a framework to provide a common ground for this
field. EFLBench leverages the efforts made by the Eclipse Community which
provides feature-based family artefacts and their implementations. Eclipse is an
active and non-trivial project and thus, it establishes an unbiased ground truth
which is realistic and challenging. EFLBench is publicly available and supports
all tasks for feature location techniques integration, benchmark construction
and benchmark usage. We demonstrate its usage and its simplicity and repro-
ducibility by comparing four techniques in Eclipse releases. As an extension of
our previously published work, we also contribute an approach to automatically
generate Eclipse variants to benchmark feature location techniques in tailored
settings. We present and discuss three strategies for this automatic generation
and we present the results using different settings.

Keywords: Feature location, software families, Eclipse, benchmark, software
product lines, static analysis, information retrieval

1. Introduction

Feature location focuses on mapping features to their concrete implementa-
tion elements in the software artefacts. This activity is important during soft-
ware maintenance for determining relevant elements for a modification task [1,

∗Corresponding author: jabimail@gmail.com

Preprint submitted to Journal of Systems and Software October 30, 2018

2]. In the context of this paper, instead of a single artefact, we consider a
family of artefact variants where feature location is an essential activity of ex-
tractive processes towards systematic reuse [3], notably in leveraging a set of
legacy variants for the adoption of a Software Product Line (SPL) [4, 5, 6].
An SPL is formally defined as “a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particu-
lar market segment or mission, and that are developed from a common set of
core assets in a prescribed way” [4]. Feature location is needed to identify
the implementation elements that will be used to create the reusable assets of
each feature. Given the increasing interest by the research community on this
subject [7, 8], feature location benchmarks are required to enable an intensive
experimentation of the techniques. This paper is an extension paper of our
benchmark framework [9] which elaborate further on the need to empirically
evaluate and compare the strengths and weakness of the techniques in different
scenarios. However, comparing and experimenting with feature location
techniques is challenging because of the following reasons:

• Most of the research prototypes are either unavailable or hard to config-
ure. There exists a lack of accessibility to the tools implementing each
technique with its variants abstraction and feature location phases.

• Most of the tools are strongly dependent on specific artefact types that they
were designed for (e.g., a given type of model or programming language).

• Performance comparison requires common settings and environments. There
exist difficulties to reproduce the experimental settings to compare per-
formance.

Given that common case study subjects and frameworks are in need to foster
the research activity [10], we identified two requirements for such frameworks
in feature location:

• A standard case study subject: Subjects that are non-trivial and easy
to use are needed. This includes: 1) A list of existing features, 2) for
each feature, a group of elements implementing it and 3) a set of product
variants accompanied by the information of the included features.

• A benchmarking framework: In addition to the standard subjects, a full
implementation allowing a common, quick and intensive evaluation is
needed. This includes: 1) An available implementation with a common
abstraction for the product variants to be considered by the case studies,
2) easy and extensible mechanisms to integrate feature location techniques
to support the experimentation, and 3) predefined evaluation metrics to
draw comparable results.

The contributions of this paper are:

2

• We present the Eclipse Feature Location Benchmark (EFLBench)
and examples of its usage. We propose a standard case study for fea-
ture location and a benchmark framework using Eclipse variants, their
features and their associated plugins. We implemented EFLBench within
the Bottom-Up Technologies for Reuse framework (BUT4Reuse) which al-
lows a quick integration of feature location techniques [11]. By integrating
a feature location technique in this generic and extensible framework, the
technique could be applied in other artefact types beyond the experimen-
tation with Eclipse variants within EFLBench.

• We present the automatic generation of Eclipse variants as part of
EFLBench capabilities to construct tailored benchmarks. This enables the
evaluation of techniques in different scenarios to show their strengths and
weaknesses. This is the significant increment from our previous work [9].
The new contribution extends the use of the benchmark beyond the offi-
cial Eclipse releases providing three strategies to tailor the settings of the
benchmark. We further present and discuss examples of their usage.

EFLBench, BUT4Reuse and the used feature location techniques are avail-
able at http://github.com/but4reuse/but4reuse/wiki/Benchmarks.

The rest of the paper is structured as follows: In Section 4 we present
Eclipse as a case study subject and in Section 5 we present the EFLBench
framework. Section 6 presents different feature location techniques and the re-
sults of EFLBench usage in the official Eclipse releases. Section 7 presents the
strategies for automatic generation of Eclipse variants and examples of their
usage. Finally, Section 9 concludes and presents future work.

2. Background on feature location in feature-based variants

Features are the entities used to distinguish the variants of an SPL. In this
context, a feature is defined as “a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [12]. This defini-
tion is very general and open to interpretation so one recurrent challenge in
implementing SPLs is deciding the granularity that the features will have at
the implementation level [13]. Coarse granularity (e.g., components or plug-
ins [14, 15, 16]) makes easier the maintenance of the SPL while fine granularity
(e.g., source code classes or code fragments [17, 18]) might complicate the devel-
opment and maintenance of the SPL. This way, there are very diverse scenarios
regarding the granularity of the reusable assets in SPL.

Depending on the granularity, feature location can focus on code fragments
in the case of source code [19, 20, 21, 22], model fragments in the context of mod-
els [23] or software components in software architectures [15, 14, 16]. Therefore,
existing techniques are composed of two phases: An abstraction phase, where
the different artefact variants are abstracted, and the location phase where al-
gorithms analyse or compare the different product variants to obtain the imple-
mentation elements associated to each feature. Despite these two phases, the
existing works differ in:

3

http://github.com/but4reuse/but4reuse/wiki/Benchmarks

• The way the product variants are abstracted and represented. Indeed, each
approach uses a specific formalism to represent product variants. For
example, AST nodes for source code [20], model elements to represent
model variants [7] or plugins in software architectures [15]. Some use fine
granularity using AST nodes that cover all source code statements while
others use purposely a bigger granularity using object-oriented building
elements [22], like Salman et al. that only consider classes [24].

• The proposed algorithms. Each approach proposes its own algorithm to
analyse product variants and identify the groups of elements that are
related to features. Rubin et al. [7] and Wesley et al. [8] conducted
surveys about the state-of-the-art in this domain. They showed the variety
of techniques and application domains. For instance, Fischer et al. used
a static analysis algorithm [20]. Other approaches use techniques from
the field of Information Retrieval (IR). Xue et al. [25] and Salman et
al. [26] proposed the use of Formal Concept Analysis (FCA) [27] to group
implementation elements in blocks and then, in a second step, the IR
technique Latent Semantic Indexing (LSI) [28] to map between these
blocks and the features. Salman et al. used hierarchical clustering to
perform this second step [24].

Figure 1 illustrates the feature location task in feature-based variants. In the
upper half we illustrate the abstraction phase and in the lower half we illustrate
the location phase. We present a set of variants (four circumferences in the
figure) and their implementation elements (rhombuses). For each of the vari-
ants, we also have the information of which features are implemented. Feature
location techniques in software families use to assume that feature presence or
absence in the product variants is known upfront [20]. For example, Variant 1
implements F1, F2 and F3 while Variant 2 implements F1 and F3 as well but
not F2. Despite that we know if a feature is implemented in a variant, we do
not know the implementation elements associated to it. Therefore, the feature
location algorithm takes the information of all the variants (features and im-
plementation elements) and decide, for each feature, which are the associated
implementation elements as shown at the bottom of Figure 1.

Figure 1: Feature location in feature-based variants.

4

3. Related work

Benchmarks: In SPL Engineering (SPLE), several benchmarks and com-
mon test subjects have been proposed. Lopez-Herrejon et al. proposed evaluat-
ing SPL technologies on a common SPL, a Graph Product Line [29], whose vari-
ability features are familiar to any computer engineer. The same authors pro-
posed a benchmark for combinatorial interaction testing techniques for SPLs [30].
Also, automated FM analysis has a long history in SPLE research [31]. FAMA
is a tool for feature model analysis that allows to include new reasoners and new
reasoning operators [32]. Taking as input these reasoners, the BeTTy frame-
work [33], built on top of FAMA, is able to benchmark the reasoners to highlight
the advantages and shortcomings of different analysis approaches.

Feature location on software families is also becoming more mature with a
relevant proliferation of techniques [7, 8]. Therefore, benchmarking frameworks
to support the evolution of this field are in need. Different case studies have
been used for evaluating feature location in software families [8]. For instance,
ArgoUML variants have been extensively used [17]. However, none of the pre-
sented case studies have been proposed as a benchmark except the variants of
the Linux kernel by Xing et al. [18]. This benchmark considers twelve variants
of the Linux kernel from which a ground truth is extracted with the traceability
of more than two thousands features to code parts. The Linux kernel bench-
mark can be considered as complementary to advance feature location research
because EFLBench a) maps to a project that is plugin-based, while Linux con-
siders C code, and b) the characteristics of the natural language terminology is
different from the Linux kernel terminology. This last point is important be-
cause techniques based on information retrieval techniques should be evaluated
in different case studies. EFLBench is integrated with BUT4Reuse which is ex-
tensible for feature location techniques making easier to control and reproduce
the settings of the studied techniques.

Feature location: Liu et al. and Kästner et al. among others proposed
to identify feature information from a single product [34, 35]. There are SPL
adoption scenarios where the SPL wants to be extracted from a single product
by separating its features. However, in this paper we concentrate on the case of
several artefact variants.

Feature location has been investigated in other software engineering fields
such as in maintenance (e.g., determining relevant elements for a modification
task [1, 2]). These techniques have been also used in extractive SPL adoption.
Alves et al., in a case study of commercial mobile game variants [36], instead
of using static comparison techniques, located the implementation elements of
the known features through concern graphs [2]. Kästner et al. proposed a
semi-automatic approach for feature location in single systems where, as input,
the domain expert manually needs to point the system to relevant fragments
of an artefact with respect to a feature [35]. Then, the approach automatically
expands this user selection using information about element dependencies.

Block identification as a previous step to locate features: To dis-
tinguish features and their associated elements, researchers have proposed to

5

analyse and compare artefact variants for the identification of their common
and variable parts [37, 38, 21, 39, 20]. We refer to each of such distinguishable
parts as a block. A block is a set of implementation elements of the artefact
variants that are relevant for the targeted mining task. Examples of existing
techniques to identify blocks are based on static analysis, dynamic analysis or
information retrieval techniques [8]. Independently of the technique or artefact
type, a block is an intermediary abstraction representing a candidate set of el-
ements that might implement a feature. In the literature on feature location
from artefact variants, we can find the same concept of blocks with different
names. Rubin et al. call them parts, regions, or diff-sets alluding to the tech-
nique used to retrieve them [39]. Other example of generic names are modules
by Méndez-Acuña et al. [40] or clusters by Yang et al. [37] and Araar et al.
[41]. Other employed terminology is less generic and they specifically refers to
the concrete artefact types that they are dealing with. Linsbauer et al. [42]
and Salman et al. [26] refer to blocks as potential feature-to-code mappings or
traces. AL-msie’deen et al. call them object-oriented building elements sets [38]
and atomic blocks [43]. Each calculated block cannot be directly considered
the implementation of a feature. In these approaches they propose heuristics
or they consider that the final mapping is a manual process based on domain
expertise.

4. The Eclipse family of integrated development environments

The Eclipse community, with the support of the Eclipse Foundation, pro-
vides integrated development environments (IDEs) targeting different developer
profiles. The IDEs cover the development needs of Java, C/C++, JavaEE,
Scout, Domain-Specific Languages, Modeling, Rich Client Platforms, Remote
Applications Platforms, Testing, Reporting, Parallel Applications or for Mobile
Applications. Following Eclipse terminology, each of the customized Eclipse
IDEs is called an Eclipse package. To avoid confusion with Java packages, we
will refer to Eclipse packages as variants in the rest of the paper.

As the Eclipse project evolves over time, new variants appear and some
other ones disappear depending on the interest and needs of the community.
For instance, in 2012, one variant for Automotive Software developers appeared
and, recently, in 2016, another variant appeared for Android mobile applications
development. The Eclipse Packaging Project (EPP) is the technical responsible
for creating entry level downloads based on defined user profiles.

Continuing with Eclipse terminology, a simultaneous release (release here-
after) is a set of variants which are public under the supervision of the Eclipse
Foundation. Every year, there is one main release, in June, which is followed
by two service releases for maintenance purposes: SR1 and SR2 usually around
September and February. For each release, the platform version changes and
traditionally celestial bodies are used to name the releases, for example Luna
for version 4.4 and Mars for version 4.5.

The variants present variation depending on the included and not-included
features. For example, Eclipse variant for Testers is the only one including

6

the Jubula Functional Testing features. On the contrary, other features like
the Java Development tools are shared by most of the variants. There are also
common features for all the variants, like the Equinox features that implement
the core functionality of the Eclipse architecture. The online documentation of
each release provides high-level information on the features that each variant
provides 1.

It is important to mention that in this work we are not interested in the
variation among the releases (e.g., version 4.4 and 4.5, or version 4.4 SR1 and
4.4 SR2), known as variation in time. We focus on the variation of the different
variants of a given release, known as variation in space, which is expressed in
terms of included and not-included features. Each variant is different in order
to support the needs of the targeted developer profile by including only the
appropriate features.

Eclipse is feature-oriented and based on plugins. Each feature consists of a
set of plugins that are the actual implementation of the feature. Table 1 shows
an example of feature with four plugins as implementation elements that, if in-
cluded in an Eclipse variant, adds support for the Concurrent Versioning System
(CVS). At technical level, the actual features of a variant can be found within
a folder called features containing meta-information regarding the included fea-
tures and the list of plugins associated to each. A feature has an id, a name
and a description as defined by the feature providers of the Eclipse community.
A plugin has an id and a name defined by the plugin providers, but it does not
have a description.

Table 1: Eclipse feature example. The Eclipse CVS Client feature and its associated plugins.

Feature
id: org.eclipse.cvs
name: Eclipse CVS Client
description: Eclipse CVS Client (binary runtime and user documentation).
Plugin id Plugin name

org.eclipse.cvs Eclipse CVS Client
org.eclipse.team.cvs.core CVS Team Provider Core
org.eclipse.team.cvs.ssh2 CVS SSH2
org.eclipse.team.cvs.ui CVS Team Provider UI

Table 2 presents data regarding the evolution of the Eclipse releases over the
years. In particular, it presents the total number of variants, features and plug-
ins per release. To illustrate the distribution of variants and features, Figure 2
depicts a matrix of the different Eclipse Kepler SR2 variants where a black box
denotes the presence of a feature (horizontal axis) in a variant (vertical axis).
We observe that some features are present in all the variants while others are

1High-level comparison of Eclipse variants of the latest release:
https://eclipse.org/downloads/compare.php

7

https://eclipse.org/downloads/compare.php

Table 2: Eclipse releases and their number of variants, features and plugins.

Year Release Variants Features Plugins

2008 Europa Winter 4 91 484
2009 Ganymede SR2 7 291 1,290
2010 Galileo SR2 10 341 1,658
2011 Helios SR2 12 320 1,508
2012 Indigo SR2 12 347 1,725
2013 Juno SR2 13 406 2,008
2014 Kepler SR2 12 437 2,043
2015 Luna SR2 13 533 2,377

specific to only few variants. The 437 features are alphabetically ordered by
their id. For instance, the feature Eclipse CVS Client, tagged in the figure, is
present in all variants except in the Automotive Software variant.

Figure 2: Eclipse Kepler SR2 variants and a mapping to their 437 features. For example,
Eclipse CVS Client is present in all variants except in the automotive variant.

Figure 3: Feature dependencies in the Eclipse Kepler SR2 variants.

Features have dependencies among them: Includes is the Eclipse terminology
to define subfeatures, and Requires means that there is a functional dependency

8

Plugins of the Eclipse CVS Client feature

Figure 4: Plugin dependencies of the four plugins of the Eclipse CVS Client feature.

between the features. Figure 3 shows the dependencies between all the features
of all variants in Eclipse Kepler SR2. We tagged some features and subfeatures
of the Eclipse Modeling Framework to show cases of features that are strongly
related. Functional dependencies are mainly motivated by the existence of de-
pendencies between plugins of different features. In the Eclipse IDE family there
is no excludes constraint between the features. Regarding plugin dependencies,
they are explicitly declared in each plugin meta-data. Figure 4 shows a small
excerpt of the dependency connections of the 2043 plugins of Eclipse Kepler
SR2. Concretely, the excerpt shows the dependencies of the four CVS plugins
presented in Table 1.

4.1. Reasons to consider Eclipse for benchmarking

We present characteristics of Eclipse variants that make the case study in-
teresting for a feature location benchmark:

Ground truth available: The Eclipse case study fulfils the requirement,
mentioned in Section 1, of providing the needed data to be used as ground
truth. This ground truth can be extracted from features meta-information.
Despite that the granularity of the implementation elements (plugins) is coarse
if we compare it with source code AST nodes, the number of plugins is still
reasonably high. In Eclipse Kepler SR2, the total amount of unique plugins is
2043 with an average of 609 plugins per Eclipse variant and a standard deviation
of 192.

Challenging: The relation between the number of available variants in
the different Eclipse releases (around 12) and the number of different features
(more than 500 in the latest release) is not balanced. This makes the Eclipse
case study challenging for techniques based only in static comparison (e.g., in-
terdependent elements or FCA) because they will probably identify few “big”
blocks containing implementation elements belonging to a lot of features. The
number of available product variants has been shown to be an important factor
for feature location techniques [20].

Friendly for information retrieval and dependency analysis: Eclipse
feature and plugin providers have created their own natural language vocab-
ulary. The feature and plugin names (and the description in the case of the

9

features) can be categorized as meaningful names [7] enabling the use of several
IR techniques. Also, the dependencies between features and dependencies be-
tween implementation elements have been used in feature location techniques.
For example, in source code, program dependence analysis has been used by
exploiting program dependence graphs [44]. Acher et al. also leveraged archi-
tecture and plugin dependencies [15]. As presented in previous section, Eclipse
also has dependencies between features and dependencies between plugins en-
abling their exploitation during feature location.

Noisy: There are properties that can be considered as “noise” that are
common in real scenarios. Some of them can be considered as non-conformities
in feature specification [45]. A case study without “noise” should be considered
as an optimistic case study. In Eclipse Kepler SR2, 8 plugins do not have a name,
and different plugins from the same feature are named exactly the same. There
are also 177 plugins associated to more than one feature. Thereby the features’
plugin sets are not completely disjoint. These plugins are mostly related to
libraries for common functionalities which were not included as required plugins
but as a part of the feature itself. In addition, 40 plugins present in some of the
variants are not declared in any feature. Also, in few cases, feature versions are
different among variants of the same release.

Friendly for customizable benchmark generation: The fact that Eclipse
releases contain few variants can be seen as a limitation for benchmarking in
other desired scenarios with larger amount of variants. For example, it will be
desired to show the relation between the results of the technique and the num-
ber of considered variants. Apart from the official releases, software engineering
practitioners have created their own Eclipse variants. Therefore, researchers
can use their own variants or create variants with specific characteristics. In ad-
dition, the plugin-based architecture of Eclipse allows to implement automatic
generators of Eclipse variants as we present later in Section 7.

Similar experiences exist: Analysing plugin-based or component-based
software system families to leverage their variability has been shown in previ-
ous works [15, 14, 16]. For instance, experiences in an industrial case study
were reported by Grünbacher et al. where they performed manual feature lo-
cation in Eclipse variants to extract an SPL involving more than 20 Eclipse
customizations per year [14].

5. EFLBench: Eclipse Feature Location Benchmarking framework

EFLBench is aimed to be used with any set of Eclipse variants including
variants with features that are not part of any official release. Figure 5 illus-
trates, at the top, the phase for constructing the benchmark and, at the bottom
part, the phase for using it. The following subsections provide more details on
the two phases.

In Section 2 we presented the principles for feature location in feature-based
systems. EFLBench follows these assumptions for a feature location task and
provide the following inputs for the feature location technique:

10

Figure 5: EFLBench: Eclipse variants as benchmark for feature location.

• The feature names and descriptions

• For each feature, the list of variants where it was included

• The dependencies between features

• The plugin names

• The dependencies between plugins

5.1. Benchmark construction

The benchmark construction phase takes as input the Eclipse variants and
automatically produce two outputs, 1) a Feature list with information about
each feature name, description and the list of variants where it was present, and
2) a ground truth with the mapping between the features and the implementa-
tion elements which are the plugins.

We implemented an automatic extractor of features information. The in-
formation is available in the file feature.xml of each feature so it was easy to
automatically get the metadata (name, description, dependencies etc.) corre-
sponding to all features. The implementation elements of a feature are those
plugins that are directly associated to this feature. From the 437 features of the
Eclipse Kepler SR2, each one has an average of 5.23 plugins associated with,
and a standard deviation of 9.67 plugins. There is one outlier with 119 plu-
gins which is the feature BIRT Framework included in the Reporting variant.
From the 437 features, there are 19 features that do not contain any plugin, so
they are considered abstract features which are created just for grouping other
features. For example, the abstract feature UML2 Extender SDK (Software
Development Kit) includes the features UML2 End User Features, Source for
UML2 End User Features, UML2 Documentation and UML2 Examples.

Reproducibility can become easier by using benchmarks and common frame-
works that launch and compare different techniques [10]. This practice, allows a
valid performance comparison with all the implemented and future techniques.
We integrated EFLBench and its automatic extractor in BUT4Reuse.

11

5.2. Benchmark usage

Once the benchmark is constructed, at the bottom of Figure 5 we illustrate
how it can be used through BUT4Reuse where feature location techniques can
be integrated. The Eclipse adapter [11] is responsible for the variant abstraction
phase. During the product abstraction phase, the implemented Eclipse adapter
decomposes any Eclipse installation in a set of plugins by visiting and analysing
the Eclipse variant file structure. The plugin elements contain information about
their id, name as well as their dependency to other plugin elements. This will
be followed by the launch of the targeted feature location techniques which
takes as input the feature list and the Eclipse variants (excluding the features
folder). The feature location technique produces a mapping between features
and plugins that can be evaluated against the ground truth obtained in the
benchmark construction phase. Concretely, EFLBench calculates the precision
and recall which are classical evaluation metrics in IR studies (e.g., [24]).

We explain precision and recall, two metrics that complement each other,
in the context of EFLBench. A feature location technique assigns a set of
plugins to each feature. In this set, there can be some plugins that are actually
correct according to the ground truth. Those are true positives (TP). TPs are
also referred to as hit. On the set of plugins retrieved by the feature location
technique for each feature, there can be other plugins which do not belong to
the feature. Those are false positives (FP) which are also referred to as false
alarms. Precision is the percentage of correctly retrieved plugins relative to
the total of retrieved plugins by the feature location technique. A precision of
100% means that all retrieved plugins are contained in the ground truth set and
that no false alarm plugins were included. The formula of precision is shown in
Equation 1.

precision =
TP

TP + FP
=

plugins hit

plugins hit + plugins false alarm
(1)

According to the ground truth there can be some plugins that are not in-
cluded in the retrieved set, meaning that they are miss. Those plugins are false
negatives (FN). Recall is the percentage of correctly retrieved plugins from the
set of the ground truth. A recall of 100% means that all the plugins of the
ground truth were assigned to the feature. The formula of recall is shown in
Equation 2.

recall =
TP

TP + FN
=

plugins hit

plugins hit + pluginsmiss
(2)

Precision and recall are calculated for each feature. In order to have a global
result of the precision and recall we use the mean of all the features. Finally,
BUT4Reuse reports the time spent for the feature location technique. With this
information, the time performance of different techniques can be compared.

12

6. Examples of EFLBench usage in Eclipse releases

This section aims at presenting the possibilities of EFLBench by bench-
marking four feature location techniques in official Eclipse releases. For the
four techniques we use Formal Concept Analysis (FCA) [27] as a first step for
block identification and the four feature location techniques are Strict Feature
Specific (SFS), SFS+ST, SFS+TF, SFS+TFIDF which we detail in next sub-
section before presenting the results.

6.1. Background on techniques used in the examples

FCA [27] uses a formal context as input and groups elements that share
common attributes. The entities of the formal context are the variants, and
the attributes (binary attributes) are the presence or absence of each of the
elements in each variant. With this input, FCA discovers a set of concepts
and the concepts containing at least one element are considered as a block
for the feature location task. Figure 6 illustrates FCA. The identified blocks
correspond to the different intersections from the input artefact variants. A
detailed explanation about FCA formalism in the same context of extractive
SPL adoption can be found in Al-Msie’deen et al. [22] and Shatnawi et al. [16].
At technical level, we implemented FCA for block identification using Galatea.
2

Formal Concept Analysis
Artefact variants

Identified blocks

Figure 6: Illustration of block identification with Formal Concept Analysis.

SFS is a feature location technique that follows two assumptions: A feature
is located in a block when 1) the block always appears in the artefacts that
implements this feature and 2) the block never appears in any artefact that does
not implement this feature. The principles of this feature location technique are
similar to locating distinguishing features using diff sets [19].

Natural Language Processing (NLP) techniques: In SFS+ST, SFS+TF,
SFS+TFIDF, where we use IR and NLP, we do not make use of the feature or
plugin ids. In order to extract the meaningful words from both features (name
and description) and elements (plugin names), we used two well established
techniques in the IR field.

2Galatea Formal Concept Analysis library: https://github.com/jrfaller/galatea

13

https://github.com/jrfaller/galatea

• Parts-of-speech tags remover: These techniques analyse and tag words
depending on their role in the text. The objective is to filter and keep only
the potentially relevant words. For example, conjunctions (e.g., “and”),
articles (e.g., “the”) or prepositions (e.g., “in”) are frequent and may
not add relevant information. As an example, we consider the following
feature name and description: “Eclipse Scout Project. Eclipse Scout is
a business application framework that supports desktop, web and mobile
frontends. This feature contains the Scout core runtime components.”. We
apply Part-of-Speech Tagger techniques using OpenNLP [46].

• Stemming: This technique reduces the words to their root. The objec-
tive is to unify words not to consider them as unrelated. For instance,
“playing” will be considered as stemming from “play” and “tools” from
“tool”. Instead of keeping the root, we keep the word with greater num-
ber of occurrences to replace the involved words. As example, in the
Graphiti feature name and description we find “[...]Graphiti supports the
fast and easy creation of unified graphical tools, which can graphically
display[...]” so graphical and graphically is considered the same word as
their shared stem is graphic. Regarding the implementation, we used the
Snowball stemmer [47].

SFS and Shared term: The intuition behind this technique is first to group
features and blocks with SFS and then apply a “search” of the feature’s words
within the elements of the block to discard elements that may be completely
unrelated to the feature. For each association between feature and block, we
keep, for this feature, only the elements of the block that have at least one
meaningful word shared with the feature. That means that we keep the elements
whose term frequency (tf) between feature and element (featureElementTF) is
greater than zero. For clarification, featureElementTF is defined in Equation 3
being f the feature, e the element and tf a method that just counts the number
of times a given term appears in a given list of terms.

featureElementTF (f, e) =
∑

termi∈e.terms
tf(termi, f.terms) (3)

Figure 7 illustrates, on the left side, how for a given feature, we have associ-
ated words and how, from a block obtained with SFS, we discard elements that
do not share any word with the feature.

SFS and Term frequency: After employing SFS, this technique is based
on the idea that all the features assigned to a block compete for the block
elements. The feature (or features in case of drawback) with higher featureEle-
mentTF will keep the elements while the other features will not consider this
element as part of it. Figure 7 illustrates this technique in the center of the
figure. Three features compete for the elements of a block obtained with SFS,
and the assignation is made by calculating the tf between each element and the
features. That means that, for each element, the feature with higher tf with
respect to the element will be the only feature that is mapped to this element.

14

F1

SFS and shared term

block

SFS and tf SFS and tf-idf

F1 F2 F3 F1 F2 F3
words

tf tf-idf

Figure 7: Three different feature location techniques using SFS and term frequency.

SFS and tf-idf: Figure 7, on the right side, illustrates this technique. SFS
is applied and then the features also compete, in this case, for the elements of
the block but a different weight is used for each word of the feature. This weight
(or score) is calculated through the term frequency - inverse document frequency
(tf-idf) value of the set of features that are competing. tf-idf is a well known
technique in IR [48]. tf is a metric consisting in giving more relevance to the
terms appearing with more frequency in a document d. When dealing with a set
D of documents d1, ..., dn, term frequency-inverse document frequency (tf-idf)
is another metric used in IR [48]. For a document d, tf-idf penalizes common
terms that appear across most of the documents in D and emphasizes those
terms that are more specific to d. There are different formulas to calculate
them. In this work, we used the formulas presented in Equation 4, where we
use raw term frequency (tf) which is calculated counting the occurrences of a
given term in a document, inverse document frequency (idf) which measures
how much rare or common a term is across all the documents using a logarithmic
scale and, finally, tf-idf uses tf multiplied by idf to penalize or encourage
a term depending on its occurrence across D. In our context, the idea is that
words appearing more frequently through the features may not be as important
as less frequent words.

tf(termi, d) = ftermi,d

idf(termi, D) = log

(
|D|

|{d ∈ D : termi ∈ d}|

)
tf-idf(termi, d,D) = tf(termi, d.terms)× idf(termi, D)

(4)

Given that tf-idf is used in SFS+TFIDF, we illustrate it in the context of
Eclipse features. For example “Core”, “Client” or “Documentation” are more
frequent words across features but “CVS” or “BIRT”, being less frequent, are
probably more relevant, informative or discriminating.

6.2. Results in Eclipse releases

We used the benchmark created with each of the Eclipse releases presented in
Table 2. The experiments were launched using BUT4Reuse (commit ce3a002)

15

which contains the presented feature location techniques. Detailed instructions
for reproducibility are available 3. We used a laptop Dell Latitude E6330 with
a processor Intel(R) Core(TM) i7-3540M CPU@3.00GHz with 8GB RAM and
Windows 7 64-bit.

After using the benchmark, we obtained the results shown in Table 3. Preci-
sion and Recall are the mean of all the features as discussed at the end of Section
5.2. The results in terms of precision are not satisfactory in the presented feature
location techniques. This suggests that the case study is challenging. Also, we
noticed that there are no relevant differences in the results of these techniques
among the different Eclipse releases. As discussed before, given the small num-
ber of Eclipse variants under consideration, FCA is able to distinguish blocks
which may actually correspond to a high number of features. For example, all
the plugins corresponding specifically to the Eclipse Modeling variant, will be
grouped in one block while many features are involved. Despite that these tech-
niques are used in feature location of feature-based variants we provide these
results to be used as baselines to motivate the search of more accurate feature
location techniques and to show that the benchmark is appropriate to advance
the research in this field.

Another example, in Eclipse Kepler SR2, FCA-based block identification
identifies 60 blocks with an average of 34 plugins per block and a standard
deviation of 54 plugins. In Eclipse Europa Winter, with only 4 variants, only 6
blocks are identified with an average of 80 plugins each and a standard deviation
of 81. Given the low number of Eclipse variants, FCA identifies a low number of
blocks. The number of blocks is specially low if we compare it with the actual
number of features that we aim to locate (e.g., 60 blocks in Kepler SR2 against
its 437 features). The higher the number of Eclipse variants, the more likely
FCA will be able to distinguish different blocks.

Table 3: Precision (Prec) and recall of the different feature location techniques.

SFS SFS+ST SFS+TF SFS+TFIDF

Release Prec Recall Prec Recall Prec Recall Prec Recall

Europa Winter 6.51 99.33 11.11 85.71 12.43 58.69 13.07 53.72
Ganymede SR2 5.13 97.33 10.36 87.72 11.65 64.31 12.80 52.70

Galileo SR2 7.13 93.39 10.92 82.01 11.82 60.50 12.45 53.51
Helios SR2 9.70 91.63 16.04 80.98 25.97 63.70 29.46 58.39
Indigo SR2 9.58 92.80 15.72 82.63 19.79 59.72 22.86 57.57

Juno SR2 10.83 91.41 19.08 81.75 25.97 61.92 24.89 60.82
Kepler SR2 9.53 91.14 16.51 83.82 26.38 62.66 26.86 57.15

Luna SR2 7.72 89.82 13.87 82.72 22.72 56.67 23.73 51.31

Mean 8.26 93.35 14.20 83.41 19.59 61.02 20.76 55.64

The first location technique (FCA+SFS) does not assume meaningful names
given that no IR technique is used. The features are located in the elements

3https://github.com/but4reuse/but4reuse/wiki/Benchmarks

16

https://github.com/but4reuse/but4reuse/wiki/Benchmarks

of a whole block obtaining a high recall (few plugins missing). Eclipse feature
names and descriptions are probably written by the same community of devel-
opers that create the plugins and decide their names. In the approaches using
IR techniques, it was expected a higher increment of precision without a loss
of recall but the results suggest that a certain divergence exists between the
vocabulary used at feature level and at implementation level.

Regarding the time performance, Table 4 shows, in milliseconds, the time
spent for the different releases. The Adapt column corresponds to the time
to decompose the Eclipse variants into a set of plugin elements and get their
information. This adaptation step heavily rely to access the file system and
we obtain better time results after the second adaptation of the same Eclipse
variant. The FCA time corresponds to the time for block identification. We
consider Adapt and FCA as the preparation time. Then, the following columns
show the time of the different feature location techniques. We can observe that
the time performance is not a limitation of these techniques as they take a
maximum of around half a minute.

Table 4: Time performance in milliseconds for feature location.

Preparation Concrete techniques

Release Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

Europa Winter 2,397 75 6 2,581 2,587 4,363
Ganymede SR2 7,568 741 56 11,861 11,657 23,253

Galileo SR2 10,832 1,328 107 17,990 17,726 35,236
Helios SR2 11,844 1,258 86 5,654 5,673 12,742
Indigo SR2 12,942 1,684 100 8,782 8,397 16,753

Juno SR2 16,775 2,757 197 7,365 7,496 14,002
Kepler SR2 16,786 2,793 173 8,586 8,776 16,073

Luna SR2 17,841 3,908 233 15,238 15,363 33,518

Mean 12,123 1,818 120 9,757 9,709 19,493

It is out of the scope of the EFLBench contribution to propose feature lo-
cation techniques that could obtain better results in the presented cases. The
objective is to present the benchmark usage showing that quick feedback from
feature location techniques can be obtained in the Eclipse releases case studies.
In addition, we provide empirical results of four feature location techniques that
can be used as baseline.

7. Automatic and parametrizable generator of Eclipse variants

The main motivation for the generation of variants is that it enables to
evaluate the feature location techniques in controlled settings. As shown in Ta-
ble 2, the number of official variants of an Eclipse release amounts to around
12 Eclipse variants. In order to provide a framework for intensive evaluation
of feature location techniques, cases with larger number of Eclipse variants are
desired. In addition, a parametrizable number of variants could serve to analyse
the results of the same feature location technique under different circumstances.

17

For instance, it is interesting to evaluate the same technique in cases with vari-
ants which are similar, or dissimilar, among them. Using the Jaccard similarity
measure between pairs of variants [49, 50] (calculated as the size of the intersec-
tion of the selected features divided by the size of the union) and considering
the official releases, we observe that the average similarity ranges from the 22%
of Ganymede SR2 to the 27% of Galileo SR2, with an average of 25% for the
eight presented releases. Therefore, these families are homogeneous in terms of
the average similarity between variants. However, it is desired to experiment in
other settings to evaluate this factor in the different techniques.

It is not evident where to find real Eclipse configurations and how to group
them to satisfy certain desired characteristics, therefore we extended our frame-
work with the generation of variants enabling the possibility to create several
settings regarding the number of variants and the similarity among them. We
extended the benchmark construction phase of EFLBench with an automatic
and parametrizable generator of Eclipse variants to construct benchmarks with
tailored characteristics. The approach consists in automatically creating vari-
ants taking as input a user-specified Eclipse variant.

We agree that generated variants are synthetic variants which can be seen as
non representative variants of realistic cases (i.e., we cannot validate if the set of
features makes sense for a real development scenario). For using EFLBench with
realistic variants we should rely on the official Eclipse releases as we presented
in Section 6. For the generated variants we can only guarantee the following
two characteristics.

• Feature constraints are respected (i.e., dependencies of the features)

• The Eclipse variant can be executed.

Figure 8 illustrates the benchmark construction phase using the automatic
generation of Eclipse variants. First, as shown on the upper left side of the
figure, we take as input an Eclipse variant to extract its features and feature
constraints. These features and constraints define a configuration space in the
sense that, by deselecting features, we can still have valid Eclipse configura-
tions (i.e., all the feature constraints are satisfied). Then, we leverage this
configuration space to select a set of configurations. The automatic selection of
configurations is parametrized by a given strategy, thus, this step is extensible
to different implementations. Below, we present three different strategies that
we have implemented. Finally, once the set of configurations are selected, we
implemented an automatic method to construct the variants through the input
Eclipse and the feature configurations. The constructed variants are created
for preparing the benchmark construction but, if desired, given that constraints
are respected, they can be executed in the same way as the variants in Eclipse
releases.

7.1. Strategies for the automatic selection of configurations
We implemented three strategies to select configurations from a set of fea-

tures and constraints with the final objective to construct benchmarks present-
ing different characteristics. Apart from the input Eclipse, the three take as

18

Figure 8: Automatic and parametrizable generation of Eclipse variants to construct a feature
location benchmark. The use of different strategies in the step to select configurations enables
to construct benchmarks exhibiting different characteristics.

input a user-specified number of variants (n) that want to be generated. We
present the three strategies and then discuss their properties:

• Random selection strategy : In this strategy, we randomly select n config-
urations from the configuration space. The configuration space is the set
of all possible valid configurations (those that satisfy all the constraints
among features). Therefore, this strategy can be illustrated as repeating
n times the selection of a random number from one to the size of the con-
figuration space, and then taking the feature configuration associated to
this number. The selection of random valid configurations, taking as input
features and their constraints, is implemented through a functionality of-
fered by the PLEDGE library (Product Line Editor and tests Generation
tool) [51]. We used the PLEDGE tool as a black box library as it fitted
our needs and that had already proven useful in other cases of randomly
selecting configurations in the way we have described. PLEDGE internally
relies on a boolean satisfiability problem solver (SAT solver) [52, 53].

• Random selection strategy trying to maximize dissimilarity : This strat-
egy aims to obtain a set of n configurations that maximize their global
dissimilarity. That means that an optimization algorithm explores the
configuration space trying to find the set of n configurations from the con-
figuration space that are more different among them. For this we use again
the available PLEDGE functionality. First, PLEDGE selects n random
configurations and then, they evolve over time by performing mutations.
Concretely, it applies a search-based approach guided by a fitness func-
tion that tries to identify the most dissimilar configurations based on the
Jaccard distance [49, 50]. The best solution found (the set of n configura-
tions) at time t is returned as result. This strategy demands to select the
time (t) allocated to the search-based algorithm. Once the allowed time

19

is over, the set of configurations are obtained.

• Percentage-based random selection strategy : This strategy consists of two
steps. First, we ignore the constraints and we go through the feature
list deciding if we select or not each feature. This is automated by a
user-specified percentage (p) defining the chances of the features of being
selected. Second, once some features are randomly selected, we need to
guarantee that the feature constraints are satisfied. We may have included
a feature that requires another one that was not included. Therefore, we
repair the configuration including the missing features until obtaining a
valid configuration. This strategy does not use PLEDGE. Since Eclipse
features only provide dependency constraints, satisfying those constraints
using the mentioned repair approach is trivial and no SAT solver is needed.

The three algorithms for the strategies that we have presented have stochas-
tic components. In the following paragraphs we show the characteristics that
we can be expected from each of them based on empirical data of their usage.

 173

 0

 20

 40

 60

 80

 100

 120

 140

 160

Fe
at

ur
es

(a) Random

 173

 0

 20

 40

 60

 80

 100

 120

 140

 160

10 min 1 hour

Fe
at

ur
es

Time

(b) Dissimilarity

Figure 9: Different settings of the first two strategies for selecting configurations taking as
input the features and constraints extracted from the Modeling variant of the Eclipse Kepler
SR2. Each boxplot shows the number of features in the selection of 1000 configurations.

Using as input the Modeling variant of Eclipse Kepler SR2, Figures 9 and
10 show, in the vertical axis, the number of features in 1000 automatically
selected configurations using the presented strategies. The total number of
features of the input Eclipse variant is 173 corresponding to the maximum value.
Considering the feature constraints, the configuration space exceeds one million
configurations. In the case of the random and dissimilarity strategies, as shown
in Figures 9a and 9b, we can observe that only some outlier configurations
reach a large number of selected features. Given that the dissimilarity strategy

20

 173

 0

 20

 40

 60

 80

 100

 120

 140

 160

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fe
at

ur
es

User-specified percentage

Figure 10: Different settings of the Percentage-based random selection strategy for selecting
configurations taking as input the features and constraints extracted from the Modeling variant
of the Eclipse Kepler SR2. Each boxplot shows the number of features in the selection of 1000
configurations.

depends on the number of desired variants to generate, we repeated the process
with different number of configurations (not only 1000) obtaining analogous
results. We also observed that the time allowed for the search-based algorithm
did not affect the number of selected features, at least from 10 minutes to 1
hour as shown in Figure 9b. On the contrary, in Figure 10, we can observe how
the user-specified percentage has an impact in the median of selected features.
For example, using the random strategy, we should expect variants with around
50% of the features selected from the input Eclipse. On the contrary, if we
select percentage-based random selection with 90% of user-specified percentage,
we should expect variants with almost all the features selected from the input
Eclipse.

Larger percentages using the percentage-based random selection allow to
obtain configurations with a larger number of selected features and, therefore,
there will be fewer chances to obtain dissimilar variants using this strategy
compared to the ones using random selection. Empirical studies of Henard et
al. showed that dissimilar configurations exhibit interesting properties in terms
of pairwise coverage [50]. Pairwise coverage measure the coverage of all possible
discrete combinations of features. The first and second strategy can be used
to evaluate how a feature location technique behaves with dissimilar variants
with high pairwise coverage. They also showed that the strategy of selecting
random configurations from the configuration space, without the search-based
step, already obtained a median of more than 90% of pairwise coverage in 120
FMs of moderate size (i.e., less than one thousand features). The third strategy,
compared to the first two, allows to have more control over the total number of
selected features per configuration.

21

7.2. Results using automatic generation of variants

We show examples of using the EFLBench strategies for automatic gener-
ation of Eclipse variants. We focus on discussing the results of evaluating the
FCA+SFS feature location technique. This technique that first uses FCA and
then SFS was presented in Section 6.1. As input for the random generation
strategies, we use the Modeling variant of Eclipse Kepler SR2 which is the same
used to illustrate the strategies for selecting configurations in Figures 9 and 10.

Using percentage-based random selection of features, we aim to empiri-
cally analyse whether the number of available variants has an impact on the
FCA+SFS technique. First, we generated 100 variants using 40% as percentage
for feature selection. By setting this percentage, the first 10 variants cover the
173 features which is the total number of features of the input Eclipse. This
allows the construction of different benchmarking settings adding 10 variants
each time while keeping the total number of possible features constant.

Table 5: Precision, recall and time measures in milliseconds of the FCA+SFS feature location
technique in sets of randomly generated Eclipse variants using the percentage-based random
strategy.

Percentage-based FCA+SFS Time

random using 40% Precision Recall FCA SFS

10 variants 33.40 96.55 122 84
20 variants 47.91 96.02 415 320
30 variants 55.62 95.41 502 630
40 variants 58.60 95.41 1,268 905
50 variants 61.01 93.10 2,168 1,105
60 variants 62.57 90.73 2,455 1,382
70 variants 64.78 90.63 2,636 1,717
80 variants 65.40 90.02 4,137 4,049
90 variants 66.02 89.57 6,957 7,774

100 variants 66.02 89.57 7,515 7,251

Table 6: Precision, recall and time measures in milliseconds of the FCA+SFS feature location
technique in sets of randomly generated Eclipse variants using the random strategy.

Random FCA+SFS Time

Precision Recall FCA SFS

10 variants 72.83 86.33 328 190
20 variants 90.49 84.97 400 260
30 variants 91.81 84.97 451 394
40 variants 93.13 84.97 802 603
50 variants 93.13 84.97 1,122 905
60 variants 93.13 84.97 1,485 866
70 variants 93.13 84.97 1,878 2,961
80 variants 93.13 84.97 3,692 1,637
90 variants 93.80 84.97 4,539 1,567

100 variants 93.80 84.97 7,967 2,177

22

Table 5 shows the precision and recall obtained for FCA+SFS when consid-
ering different number of variants. We can observe how precision improves with
the number of variants. From 10 to 20 variants, we have a precision improve-
ment of around 15%. Beyond 30 variants, it seems that the included variants,
with their feature combinations, are not adding more information that can be
exploited by the FCA+SFS technique. As an extreme case, we can observe how
we obtain the same precision with 90 and 100 variants even if we are including
10 more different variants. This non-linearity of the precision when we add
more variants might seem counter-intuitive. However, it is related to the fact
that adding more variants do not necessarily means that we are including new
feature combinations that did not exist in the previous variants.

Regarding recall, independently of the number of variants we obtain very
high levels of recall. It slightly decreases 7% from 10 to 100 variants, while pre-
cision increases, mainly because of the “noise” introduced by non-conformities
in feature specification discussed in Section 4.1. Table 5 also presents time mea-
sures of one execution showing that the FCA+SFS technique scales correctly
for 100 variants in this benchmark. Concretely, it took only around 15 seconds
in total for FCA and SFS. If we include, as part of the feature location process,
the time for adapting the variants using the Eclipse adapter (the Adapt time
mentioned in Section 6), in the case of 100 variants it took 35 minutes which is
still acceptable.

We used the same Modeling variant as input to generate 100 variants with the
random selection strategy. As in the previous experiment, we keep the number
of features constant given that 10 variants already cover the 173 features. Then,
we calculate the results by incrementally adding another 10 variants. Table 6
shows the results of the same technique (FCA+SFS) in this new setting where
we can observe that, with only 10 variants, we have 72.83% of precision. The
result with 10 variants generated with this random selection strategy is better
compared with the same number of variants generated through the percentage-
based random selection which was 33.4% as shown in Table 5 (i.e., around 50%
of difference in precision). Also, using 10 variants with the random strategy, the
technique performs better than 100 variants with the percentage-based random
selection (66.02% of precision). Then, starting with 20 variants we reach 90%
precision and then from 40 to 80 variants it stays constant in 93.13%. This fact
suggests again that including variants is not enough to increase the precision.

This result empirically suggests that the FCA+SFS feature location tech-
nique performs better when the variants are more dissimilar. We calculated the
average Jaccard similarity between the variants using the two strategies: The
random strategy creates groups of 10 variants with an average similarity of 41%
while the percentage-based random selection (using 40%) has an average simi-
larity of 73%. It seems that dissimilar configurations cover many more distinct
pairs of features and thus make easier to locate the features.

It is worth to mention that the dissimilarity strategy obtained similar results
as the ones presented in Table 6 which used the random strategy. In several
runs, for 10 variants we obtain around 70% of precision while for 20 variants
we already reach 90%. The average Jaccard similarity using the dissimilarity

23

strategy (with 10 minutes for the search-based step) is 37% which indicates
that they are more dissimilar than the random strategy (41%). In this case, the
marginal difference in terms of similarity (i.e., 4%) explains the small difference
on the feature location results.

The presented examples are intended to show the capabilities of EFLBench
in creating scenarios to compare the results of feature location techniques. Con-
cretely, we have shown how to analyse the result 1) with different number of
variants and 2) with the same number of variants but with different degrees of
similarity. In the presented case of the FCA+SFS feature location technique,
we provided empirical evidences that having more available variants do not nec-
essarily means better results in precision. However, dissimilar variants is an
important factor for obtaining higher levels of precision.

8. Threats to validity

The input for the feature location task presented in Section 5 might be
considered few information if we compare it with concern location in mainte-
nance tasks where it is a common practice to trace bug reports with the names
and comments in the source code. However, in similar cases to our context of
feature-based variants (e.g., the Linux-Kernel benchmark for feature location
[18]), we can see that also feature names and descriptions are used as input. In
this benchmark the feature location task is at a granularity of classes or code
fragments, however in our case, it is at the coarse granularity of plugins where
we only provide the plugin names as input. The description of features in Eclipse
might be shorter than other kind of documents like bug reports, enhancement
requests or other documentation such as requirements, however, this can be also
seen as a challenging scenario to information retrieval techniques that will need
to exploit other information (e.g., dependence graphs) to refine their results.
In addition, EFLBench, being open-source, can be easily extended to integrate
other sources of information to be used as input.

Regarding the granularity of Eclipse features, depending on the Eclipse com-
munity projects we can identify different levels of granularity (from coarse-
grained to less coarse-grained ones). This is related to how they have decided to
group the functionalities. Their separation enables us to create a ground truth
that comes from the Eclipse community instead of manually defining a ground
truth which will be difficult to validate. However, it is worthy to mention that
subfeatures are not part of the ground truth. For example, the feature of the
editor to support C++ development can be separated in several functionalities
such as editor syntax highlighting, code-completion etc. which are not part of
the EFLBench ground truth. The editor support for C++, even if we can con-
sider it a coarse-grained feature, there are still many features related to C++ in
the Eclipse variants. For example, in Eclipse Kepler variants we have “C/C++
Development Tools”,“Autotools support”, “GCC Cross Compiler”, “Berkeley
UPC (Unified Parallel C) Toolchain Support”, “C99 LR Parser”, “UPC (Uni-
fied Parallel C) Support”, “Memory View Enhancements” and more than ten

24

optional features related to C++. We agree that each of them could be inter-
nally separated in more features but the number of optional features, as it is,
it is already large. In industrial cases dealing with Eclipse variants [14] they
discuss that more fine-grained variability might be desired. For example, they
also consider different setting values inside a plugin as a feature. However, in
their case study with the Siemens VAI MSS tool [14] their analysis is only at
the level of plugins as we propose in EFLBench.

In Eclipse variants we can find features that are not “conventional” func-
tional features. For example, one feature is “Graphical Modeling Framework
(GMF) Runtime” and another feature is “Graphical Modeling Framework (GMF)
Runtime Source” which contains the source code documentation of the GMF
Runtime. The latter can be certainly seen as a non conventional feature. How-
ever, in Eclipse Kepler, “GMF Runtime” is available in the Automotive and
Modeling variants while “GMF Runtime Source” is only available in Modeling
and not in Automotive. As another example, “Equinox p2 Core Function” is a
feature that exists in all Eclipse variants, however, “Equinox p2 Core Function
Source” is only available in DSL, Modeling, RCP, Scout and Standard, and not
in Automotive, Cpp, Java, JEE, Parallel, Reporting and Testing variants. This
indicates that the inclusion of this non conventional features in an Eclipse vari-
ant is performed in the same way as they do for conventional ones. If a feature is
a distinguishable characteristic of a system that is relevant to some stakeholder
then it seems that they differentiate between the users of the runtime and the
plugin developers.

The use of automatically generated variants can be seen as a limitation to the
validity of evaluating feature location techniques using these inputs. However,
in the feature location literature we find several cases where the variants are
generated from an existing SPL [8]. For example, ArgoUML [17], the most used
case study in feature location [8] was a single product which was reengineered as
an SPL by decomposing its features [17]. The ArgoUML SPL is able to derive
256 variants but only around ten are selected for evaluating feature location
techniques. Our random generation is based on the same principles used in Ar-
goUML. In our case, we take as input an Eclipse variant and we decompose it
also in its features. Then, we select features using a given strategy to create the
variants. Deriving variants from an existing SPL is a common practice in our
research community as it is a way to have a ground truth to compare the results
of the techniques (i.e., the mapping between features and implementation ele-
ments are known). This comes at the price of using “synthetic” variants which
are valid regarding feature constraints but that can represent non realistic vari-
ants (i.e., we cannot validate if they can respond to real customer requirements).
Apart from using realistic variants of the official Eclipse releases, several execu-
tions of the random generation approaches can provide complementary insights
about the feature location techniques.

25

9. Conclusions

We have presented EFLBench, a framework and a benchmark for supporting
research on feature location in artefact variants. Existing and future techniques
dealing with this activity in extractive SPL adoption can find a challenging play-
ground which is directly reproducible. The benchmark can be constructed from
any set of Eclipse variants from which the ground truth is extracted. We have
shown examples of its usage with the Eclipse variants of the official releases for
analysing four different feature location techniques. We also provide automatic
generation of Eclipse variants using three strategies to support the creation of
different benchmarking scenarios. We discussed the evaluation of one of the
feature location techniques using randomly generated sets of Eclipse variants.
We provided evidences that the number of variants and the similarity among
them are important factors for feature location techniques.

We plan to use the benchmark in order to evaluate existing and innovative
feature location techniques while also encouraging the research community on
using it as part of their evaluation. In order to extend our framework, there
is interest in mining software repositories, forums and issue trackers to identify
real configurations of Eclipse from practitioners beyond the official releases.
Also, given the high proliferation of feature location techniques, meta-techniques
can be proposed such as voting systems where the results of several techniques
could provide better results than using each of them independently. Another
interesting open research question is related to the impact in extractive SPL
adoption of the results obtained with feature location techniques. We need
more empirical analysis of what is the actual meaning of precision and recall by
measuring the time and effort required by domain experts to fully locate the
features after applying these techniques (i.e., manually removing false positives
and adding false negatives).

References

[1] M. P. Robillard, Automatic generation of suggestions for program investi-
gation, in: Proceedings of the 10th European Software Engineering Confer-
ence held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal, September
5-9, 2005, ACM, 2005, pp. 11–20. doi:10.1145/1081706.1081711.

[2] M. P. Robillard, G. C. Murphy, Concern graphs: finding and describing
concerns using structural program dependencies, in: Proceedings of the
24th International Conference on Software Engineering, ICSE 2002, 19-
25 May 2002, Orlando, Florida, USA, ACM, 2002, pp. 406–416. doi:

10.1145/581339.581390.

[3] C. W. Krueger, Easing the transition to software mass customization, in:
Software Product-Family Engineering, 4th International Workshop, PFE
2001, Bilbao, Spain, October 3-5, 2001, Revised Papers, Vol. 2290 of

26

http://dx.doi.org/10.1145/1081706.1081711
http://dx.doi.org/10.1145/581339.581390
http://dx.doi.org/10.1145/581339.581390
http://dx.doi.org/10.1007/3-540-47833-7_25

Lecture Notes in Computer Science, Springer, 2001, pp. 282–293. doi:

10.1007/3-540-47833-7_25.
URL http://dx.doi.org/10.1007/3-540-47833-7_25

[4] L. M. Northrop, P. C. Clements, et al., A Framework for Software Product
Line Practice, Version 5.0, www.sei.cmu.edu/productlines/framework.
html (2009).

[5] K. Pohl, G. Böckle, F. Van Der Linden, Software product line engineering:
foundations, principles, and techniques, Springer, 2005.

[6] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Software
Product Lines - Concepts and Implementation, Springer, 2013.

[7] J. Rubin, M. Chechik, A survey of feature location techniques, in: Domain
Engineering, Product Lines, Languages, and Conceptual Models, Springer,
2013, pp. 29–58. doi:10.1007/978-3-642-36654-3_2.

[8] W. K. G. Assunção, S. R. Vergilio, Feature location for software product
line migration: a mapping study, in: 18th International Software Product
Lines Conference - Companion Volume, SPLC ’14, Florence, Italy, Septem-
ber 15-19, 2014, 2014, pp. 52–59.

[9] J. Martinez, T. Ziadi, M. Papadakis, T. F. Bissyandé, J. Klein, Y. L.
Traon, Feature location benchmark for software families using Eclipse com-
munity releases, in: ICSR, Vol. 9679 of Lecture Notes in Computer Science,
Springer, 2016, pp. 267–283.

[10] S. E. Sim, S. M. Easterbrook, R. C. Holt, Using benchmarking to advance
research: A challenge to software engineering, in: Proceedings of the 25th
International Conference on Software Engineering, May 3-10, 2003, Port-
land, Oregon, USA, 2003, pp. 74–83.

[11] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Bottom-
up adoption of software product lines: a generic and extensible approach,
in: Proceedings of the 19th International Conference on Software Product
Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, ACM, 2015, pp.
101–110. doi:10.1145/2791060.2791086.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Tech. rep., Carnegie-
Mellon University Software Engineering Institute (1990).

[13] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines,
in: Proc. of the 30th Inter. Conf. on Soft. Eng. (ICSE), 2008, pp. 311–320.

[14] P. Grünbacher, R. Rabiser, D. Dhungana, M. Lehofer, Model-based cus-
tomization and deployment of eclipse-based tools: Industrial experiences,
in: Intern. Conf. on Aut. Sof. Eng. (ASE), 2009, pp. 247–256.

27

http://dx.doi.org/10.1007/3-540-47833-7_25
http://dx.doi.org/10.1007/3-540-47833-7_25
http://dx.doi.org/10.1007/3-540-47833-7_25
www.sei.cmu.edu/productlines/framework.html
www.sei.cmu.edu/productlines/framework.html
http://dx.doi.org/10.1007/978-3-642-36654-3_2
http://dx.doi.org/10.1145/2791060.2791086

[15] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, P. Lahire, Extraction
and evolution of architectural variability models in plugin-based systems,
Software and System Modeling 13 (4) (2014) 1367–1394.

[16] A. Shatnawi, A. Seriai, H. A. Sahraoui, Recovering architectural variability
of a family of product variants, CoRR abs/1606.00137.

[17] M. V. Couto, M. T. Valente, E. Figueiredo, Extracting software product
lines: A case study using conditional compilation, in: CSMR, 2011.

[18] Z. Xing, Y. Xue, S. Jarzabek, A large scale linux-kernel based benchmark
for feature location research, in: Proced. of Intern. Conf. on Soft. Eng.,
ICSE, 2013, pp. 1311–1314.

[19] J. Rubin, M. Chechik, Locating distinguishing features using diff sets, in:
IEEE/ACM International Conference on Automated Software Engineering,
ASE’12, Essen, Germany, September 3-7, 2012, 2012, pp. 242–245. doi:

10.1145/2351676.2351712.

[20] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Enhancing clone-
and-own with systematic reuse for developing software variants, in: Pro-
ceedings of International Conference on Software Maintenance and Evolu-
tion (ICSME), 2014, 2014, pp. 391–400.

[21] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, Y. L. Traon, Towards a
language-independent approach for reverse-engineering of software product
lines, in: Symposium on Applied Computing, SAC 2014, 2014, 2014, pp.
1064–1071.

[22] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. E.
Salman, Feature location in a collection of software product variants using
formal concept analysis, in: Proc. of Intern. Conf. on Soft. Reuse, ICSR
2013, 2013, pp. 302–307.

[23] J. Font, M. Ballarin, O. Haugen, C. Cetina, Automating the variability
formalization of a model family by means of common variability language,
in: SPLC, 2015, pp. 411–418.

[24] H. E. Salman, A. Seriai, C. Dony, Feature location in a collection of product
variants: Combining information retrieval and hierarchical clustering, in:
Intern. Conf. on Sof. Eng. and Know. Eng. SEKE, 2014, pp. 426–430.

[25] Y. Xue, Z. Xing, S. Jarzabek, Feature location in a collection of product
variants, in: Proc. of Working Conf. on Rev. Eng., WCRE 2012, 2012, pp.
145–154.

[26] H. E. Salman, A. Seriai, C. Dony, Feature-to-code traceability in a collec-
tion of software variants: Combining formal concept analysis and informa-
tion retrieval, in: Intern. Conf. on Inform. Reuse and Integr.IRI, 2013, pp.
209–216.

28

http://dx.doi.org/10.1145/2351676.2351712
http://dx.doi.org/10.1145/2351676.2351712

[27] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations,
1st Edition, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[28] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, R. A.
Harshman, Indexing by latent semantic analysis, JASIS 41 (6) (1990) 391–
407. doi:10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.

0.CO;2-9.

[29] R. E. Lopez-Herrejon, D. S. Batory, A standard problem for evaluating
product-line methodologies, in: Generative and Component-Based Soft-
ware Engineering, Third International Conference, GCSE 2001, Erfurt,
Germany, September 9-13, 2001, Proceedings, 2001, pp. 10–24.

[30] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N. Haslinger, A. Egyed,
E. Alba, Towards a benchmark and a comparison framework for combina-
torial interaction testing of software product lines, CoRR abs/1401.5367.

[31] D. Benavides, S. Segura, A. R. Cortés, Automated analysis of feature mod-
els 20 years later: A literature review, Inf. Syst. 35 (6) (2010) 615–636.
doi:10.1016/j.is.2010.01.001.

[32] P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, A. Jimenez, FAMA
framework, in: SPLC 2008, Limerick, Ireland, 2008. doi:10.1109/SPLC.

2008.50.

[33] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, A. R. Cortés, Betty:
benchmarking and testing on the automated analysis of feature models,
in: Sixth International Workshop on Variability Modelling of Software-
Intensive Systems, Leipzig, Germany, January 25-27, 2012. Proceedings,
2012, pp. 63–71.

[34] J. Liu, D. Batory, C. Lengauer, Feature oriented refactoring of legacy appli-
cations, in: Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, ACM, New York, NY, USA, 2006, pp. 112–121.
doi:10.1145/1134285.1134303.

[35] C. Kästner, A. Dreiling, K. Ostermann, Variability mining: Consistent
semi-automatic detection of product-line features, IEEE Trans. Software
Eng. 40 (1) (2014) 67–82. doi:10.1109/TSE.2013.45.

[36] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, G. Ramalho, Ex-
tracting and evolving code in product lines with aspect-oriented program-
ming, Trans. Aspect-Oriented Software Development 4 (2007) 117–142.
doi:10.1007/978-3-540-77042-8_5.

[37] Y. Yang, X. Peng, W. Zhao, Domain feature model recovery from multiple
applications using data access semantics and formal concept analysis, in:
WCRE, 2009.

29

http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/SPLC.2008.50
http://dx.doi.org/10.1109/SPLC.2008.50
http://dx.doi.org/10.1145/1134285.1134303
http://dx.doi.org/10.1109/TSE.2013.45
http://dx.doi.org/10.1007/978-3-540-77042-8_5

[38] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. E.
Salman, Mining features from the object-oriented source code of a collec-
tion of software variants using formal concept analysis and latent semantic
indexing, in: SEKE, 2013.

[39] J. Rubin, M. Chechik, Combining related products into product lines, in:
Fundamental Approaches to Software Engineering, FASE 2012, Tallinn,
Estonia, 2012, 2012. doi:10.1007/978-3-642-28872-2_20.

[40] D. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin, B. Baudry,
G. L. Guernic, Reverse-engineering reusable language modules from legacy
domain-specific languages, in: Software Reuse: Bridging with Social-
Awareness - 15th International Conference, ICSR 2016, Limassol, Cyprus,
June 5-7, 2016, Proceedings, Vol. 9679 of Lecture Notes in Computer Sci-
ence, Springer, 2016, pp. 368–383. doi:10.1007/978-3-319-35122-3_24.

[41] I. E. Araar, H. Seridi, Software features extraction from object-oriented
source code using an overlapping clustering approach, Informatica 40 (2).

[42] L. Linsbauer, F. Angerer, P. Grünbacher, D. Lettner, H. Prähofer, R. E.
Lopez-Herrejon, A. Egyed, Recovering feature-to-code mappings in mixed-
variability software systems, in: 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014, IEEE Computer Society, 2014, pp. 426–430. doi:

10.1109/ICSME.2014.67.

[43] R. Al-Msie’Deen, Mining Feature Models from the Object-Oriented Source
Code of a Collection of Software Product Variants, in: ECOOP: European
Conference on Object-Oriented Programming, Montpellier, France, 2013,
pp. 1–10.

[44] K. Chen, V. Rajlich, Case study of feature location using dependence graph,
after 10 years, in: The 18th IEEE International Conference on Program
Comprehension, ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010,
2010, pp. 1–3. doi:10.1109/ICPC.2010.40.

[45] I. S. Souza, R. Fiaccone, R. P. de Oliveira, E. S. D. Almeida, On the
relationship between features granularity and non-conformities in software
product lines: An exploratory study, in: 27th Brazilian Symposium on
Software Engineering, SBES 2013, Brasilia, Brazil, October 1-4, 2013, 2013,
pp. 147–156. doi:10.1109/SBES.2013.12.

[46] Apache, Opennlp, http://opennlp.apache.org (2010).

[47] M. F. Porter, Snowball: A language for stemming algorithms, http://

snowball.tartarus.org (2001).

[48] G. Salton, A. Wong, C. S. Yang, A vector space model for automatic in-
dexing, Commun. ACM 18 (11) (1975) 613–620. doi:10.1145/361219.

361220.

30

http://dx.doi.org/10.1007/978-3-642-28872-2_20
http://dx.doi.org/10.1007/978-3-319-35122-3_24
http://dx.doi.org/10.1109/ICSME.2014.67
http://dx.doi.org/10.1109/ICSME.2014.67
http://dx.doi.org/10.1109/ICPC.2010.40
http://dx.doi.org/10.1109/SBES.2013.12
http://opennlp.apache.org
http://snowball.tartarus.org
http://snowball.tartarus.org
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1145/361219.361220

[49] P. Jaccard, Étude comparative de la distribution florale dans une portion
des Alpes et des Jura, Bulletin del la Société Vaudoise des Sciences Na-
turelles 37 (1901) 547–579.

[50] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. L. Traon,
Bypassing the combinatorial explosion: Using similarity to generate and
prioritize t-wise test configurations for software product lines, IEEE Trans.
Software Eng. 40 (7) (2014) 650–670.

[51] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. L. Traon, PLEDGE:
a product line editor and test generation tool, in: 17th International Soft-
ware Product Line Conference co-located workshops, SPLC 2013 work-
shops, Tokyo, Japan - August 26 - 30, 2013, ACM, 2013, pp. 126–129.
doi:10.1145/2499777.2499778.

[52] C. Henard, M. Papadakis, M. Harman, Y. Le Traon, Combining multi-
objective search and constraint solving for configuring large software prod-
uct lines, in: Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, 2015, pp. 517–528.

[53] D. L. Berre, A. Parrain, The sat4j library, release 2.2, JSAT 7 (2-3) (2010)
59–6.

31

http://dx.doi.org/10.1145/2499777.2499778

	Introduction
	Background on feature location in feature-based variants
	Related work
	The Eclipse family of integrated development environments
	Reasons to consider Eclipse for benchmarking

	EFLBench: Eclipse Feature Location Benchmarking framework
	Benchmark construction
	Benchmark usage

	Examples of EFLBench usage in Eclipse releases
	Background on techniques used in the examples
	Results in Eclipse releases

	Automatic and parametrizable generator of Eclipse variants
	Strategies for the automatic selection of configurations
	Results using automatic generation of variants

	Threats to validity
	Conclusions

