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ABSTRACT
The rapid spread of the Coronavirus SARS-2 is a major challenge
that led almost all governments worldwide to take drastic mea-
sures to respond to the tragedy. Chief among those measures is the
massive lockdown of entire countries and cities, which beyond its
global economic impact has created some deep social and psycho-
logical tensions within populations. While the adopted mitigation
measures (including the lockdown) have generally proven useful,
policymakers are now facing a critical question: how and when to
lift the mitigation measures? A carefully-planned exit strategy is in-
deed necessary to recover from the pandemic without risking a new
outbreak. Classically, exit strategies rely on mathematical modeling
to predict the effect of public health interventions. Such models
are unfortunately known to be sensitive to some key parameters,
which are usually set based on rules-of-thumb.

In this paper, we propose to augment epidemiological forecasting
with actual data-driven models that will learn to fine-tune predic-
tions for different contexts (e.g., per country). We have therefore
built a pandemic simulation and forecasting toolkit that combines a
deep learning estimation of the epidemiological parameters of the
disease in order to predict the cases and deaths, and a genetic algo-
rithm component searching for optimal trade-offs/policies between
constraints and objectives set by decision-makers.

Replaying pandemic evolution in various countries, we exper-
imentally show that our approach yields predictions with much
lower error rates than pure epidemiological models in 75% of the
cases and achieves a 95% R2 score when the learning is transferred
and tested on unseen countries. When used for forecasting, this
approach provides actionable insights into the impact of individual
measures and strategies.
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1 INTRODUCTION
Since the outbreak of the COVID-19 pandemic, the world has been
facing a human tragedy with overwhelmed healthcare systems and
fears of economic collapses. In the absence of vaccines to immunize
the population rapidly at scale, governments have implemented
various non-pharmaceutical public health interventions such as
social distancing and lockdowns. Considering that theWorld Health
Organisation (WHO) is foreseeing first clinical trials of vaccine for
the end of the year 2020 [15], decision-makers must carefully plan
their exit strategies: measures that were put in place to contain the
coronavirus spread must be methodically lifted to avoid the risk of
precipitating new outbreaks.

In this context, mathematical modelling offers public health plan-
ners with frameworks to make predictions about the spread of
emerging diseases and assess the impact of possible mitigation
strategies. This is particularly important when dealing with infec-
tious diseases, such as COVID-19, where mass interventions (e.g.,
screening, social distancing, and vaccination) can lead to effects at a
population level, including herd immunity, changes in the infection
rate or even changes in the pathogen ecology as a consequence of
selective pressure.

There are two main types of models: static cohort models and
transmission dynamic models [3]. Static models, typically relying
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on decision trees and Markov processes, assume a force of infec-
tion that is independent of the proportion of the population that
is infected and therefore is of little use in response to highly in-
fectious diseases like COVID-19. Transmission dynamic models,
on the other hand, see a force of infection varying depending on
the proportion of the population which is infected. Compared with
static cohortmodels, transmission dynamicmodels are usuallymore
complex to parameterize requiring epidemiological information on
the infectious disease and demographic and economic information
about the affected population.

Different techniques exist to implement dynamic approaches.
Agent-Based Models (ABM) are simulations composed of agents
that interact with each other and their environment. Because each
agent can make its own rules, this type of approach can capture
aggregate phenomena derived from the behavior of single agents.
These models offer a great explainability of the root causes leading
to the propagation of a disease but are computationally intensive
to run and thus, hardly applicable to large populations. Indeed,
the behaviour and the interaction of each type of agent needs to
be fully defined in order for the model to be useful. These rules
are case-specific and are not transferable from one population to
another.

The most common approach to model the spread of infectious
disease is the Susceptible-Infected-Removed (SIR) model and its
extension i.e SEIR (Susceptible, Exposed, Infectious, and Recovered).
This is a state-based model, every state expresses the degree of expo-
sure of a population to the disease. It is also equation-based where
each equation defines the rate to go from one state to the other.
The SEIR model thus separates the population into four groups and
simulates the evolution over time of each one of the subpopula-
tions. The transition rates are defined by the time scale to which
an individual can transmit the disease, the time to recovery, and
the number of newly infected people due to an infected individual.
The most varying parameter is effective reproduction number (𝑅𝑡 ),
and expresses the number of people that can be contaminated by
an infectious individual over a period of time.

These methods are dependent on the validity of the input pa-
rameters like transition rates. While SEIR is a very powerful model,
it presents a major limitation, it requires hyper-parameters that
are hard to observe such as the infection rate of an individual. In
practice, SEIR parameters are manually set to fit with the local ob-
servations to the considered population (e.g. country), and are not
learnt from larger-scale observations. To circumvent the limitation
of such epidemiological models, researchers started to take advan-
tage of the advances made in Machine Learning (ML) in order to
create models based on available large datasets [11, 14]. We name
this family of approaches “ML-based”. and our own work falls in it.

Our first contribution is to devise a novel approach, DN-SEIR,
that alleviates manual tuning of the SEIR model, by relying on large
and trustable public datasets (large scale observations) and machine
learning (to learn the parameters’ values for a given population).
Our approach combines SEIR with a machine learning predictor,
based on a deep learning model, to estimate the effective repro-
duction number (𝑅𝑡 ), over time. The machine learning predictor
relies on demography and mobility features to predict an effective
reproduction number. For each time increment, 𝑅𝑡 is updated and
used for the next day computation. We evaluated our approach on

twelve countries from all continents and showed that our approach
that mixes demographics, mobility, and epidemiological data pro-
vides better forecasts for 9 out of 12 of the studied countries than a
purely epidemiological modelling.

Our second contribution is to exploit this online prediction of ef-
fective reproduction number in a simulation tool1 for policymakers
which was recently advertised to the public 2. Policymakers have
to decide when to relax certain parts of society (workplaces, travels,
schools... ) and to what extent it may create a new epidemic wave
that would flood the hospitals with critical cases. The simulator
enables one to make such a strategic exit plan for a certain country
and predict its impact in terms of hospitalization, infected people
and deaths. It is also designed to explore and optimize various exit
strategies and constraints. We evaluate 3 common hand-crafted
exit strategies and show that multi-objective genetic algorithms
can find atypical strategies on the pareto-front that minimize both
the death numbers and the economic impact.

2 RELATEDWORK
Machine Learning approaches have been widely used to model and
forecast former epidemics, especially to handle the large amount of
data it involves and the increasing complexity of the epidemiologi-
cal models underneath. Popular approaches remain regression trees
and forests [8], and neural networks [4]. While there is a plethora of
reports that tackle the COVID-19 forecasting, the peer-reviewed lit-
erature about ML and COVID-19 is rather scarce. Most approaches
in public repositories tackle ML regression in combination with the
SIR epidemiological model [1] or its SEIR extension [9, 12, 16].

Recent research about non-pharmaceutical interventions focused
on mobility data to combine epidemiological models and learning
algorithms. In [13], Vollmer et al. integrate mobility in a stochastic
model. They focused on Italy and suggest that COVID-19 transmis-
sion rate and mobility metrics are closely related as well as mobility
should be closely monitored in the next weeks and months..

Our approach relies on a similar intuition and combines learning
frommultiple countries with country-specific features. The transfer
learning in our approach is able to separate the contribution of
different measures like commuting to work, retail and recreation
activities. We also show that using the output of our ML approach
as a search fitness function leads to optimal exit strategies.

3 APPROACH
Our end goal is to provide policymakers with a tool to easily gen-
erate exit strategies and evaluate their impact. In particular, an
exit strategy can be modeled like as a schedule of measures (pol-
icy schedule) that will impact the way the disease will spread. We
restrict the policy schedule to mobility levels.

As illustrated in Figure 1, we propose to combine a genetic al-
gorithm (to search for policy schedules), a deep learning model
(to predict the evolution of the effective reproduction number in-
duced by a given policy schedule) and an epidemiological model (to
forecast, based on the computed effective reproduction numbers,
the effect of the scheduled policies on public health over time, e.g.
deaths and hospitalization occupancy). Our three components work
within a feedback loop. At each iteration, the genetic algorithm
1Open sourced and available on https://github.com/yamizi/Covid19
2https://t.co/FN5pn1dMOR
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Figure 1: Our approach relies on a feedback loop where the Genetic Algorithm searches for optimal exit strategies using
a fitness function computed from the epidemiological model outputs. The epidemiological model’s parameters are learned
with a Machine Learning algorithm that uses population mobility behaviours and demographics as input features.

builds a population of policy schedules, which the deep learning and
epidemiological models allow to evaluate. In turn, this feedback is
used to generate better schedules, optimizing health-related objec-
tives (e.g. minimize total deaths) while satisfying hard constraints
(e.g. never exceed hospitalization capacity).

3.1 Estimating Impacts on Public Health with
Epidemiological Models

Epidemiological models predict the state of a population struck by
a pandemic over time, based on state transition parameters and the
evolution of the effective reproductive number, 𝑅𝑡 , of the disease.

We use an extension of SEIR model, i.e. the SEI-HCRD compart-
mental model – Susceptible (𝑆) → Exposed (𝐸) → Infectious (𝐼 ) →
Removed (Hospitalized (𝐻 ), Critical (𝐶), Recovered (𝑅𝑒𝑐), Dead (𝐷)).
Such model can be defined by the following system of ordinary
differential equations:

𝑑𝑆

𝑑𝑡
= − 𝑅𝑡

𝑡𝑖𝑛𝑓
· 𝐼 · 𝑆 (1)

𝑑𝐸

𝑑𝑡
=

𝑅𝑡

𝑡𝑖𝑛𝑓
· 𝐼 · 𝑆 − 1

𝑡𝑖𝑛𝑐
· 𝐸 (2)

𝑑𝐼

𝑑𝑡
=

1
𝑡𝑖𝑛𝑐

· 𝐸 − 1
𝑡𝑖𝑛𝑓

· 𝐼 (3)

𝑑𝐻

𝑑𝑡
=

1 −𝑚

𝑡𝑖𝑛𝑓
· 𝐼 + 1 − 𝑓

𝑡𝑐𝑟𝑖𝑡
·𝐶 − 1

𝑡ℎ𝑜𝑠𝑝
· 𝐻 (4)

(5)
𝑑𝐶

𝑑𝑡
=

𝑐

𝑡ℎ𝑜𝑠𝑝
· 𝐻 − 1

𝑡𝑐𝑟𝑖𝑡
·𝐶 (6)

𝑑𝑅𝑒𝑐

𝑑𝑡
=

𝑚

𝑡𝑖𝑛𝑓
· 𝐼 + 1 − 𝑐

𝑡ℎ𝑜𝑠𝑝
· 𝐻 (7)

𝑑𝐷

𝑑𝑡
=

𝑓

𝑡𝑐𝑟𝑖𝑡
·𝐶 (8)

such that 𝑆 + 𝐸 + 𝐼 +𝐻 +𝐶 +𝑅𝑒𝑐 +𝐷 is equal to the total population
and 𝑅𝑡 denotes the effective reproduction number over time.

The SEI-HCRD involves several parameters. 𝑡𝑠𝑢𝑓 𝑓 𝑖𝑥 is the tran-
sition time estimated to transit from one population to the other.
𝑡𝑖𝑛𝑐 is the average incubation period, 𝑡𝑖𝑛𝑓 is the average infectious
period, 𝑡ℎ𝑜𝑠𝑝 is the average hospitalization time in normal state
(i.e. until any patient recovers or enters a critical state). 𝑡𝑐𝑟𝑖𝑡 is the
average hospitalization time in a critical state (i.e. until death or
recovery). The parameters𝑚, 𝑐 , 𝑓 determine the severity of the in-
fection:𝑚 is the percentage of infected individuals with non-severe
symptoms (i.e. they are asymptomatic or have mild symptoms) and
which, therefore, are not hospitalized. 𝑐 is the percentage of hos-
pitalized persons who will eventually enter a critical state. Finally,
𝑓 denotes the percentage of persons in the critical state who will
pass away.

To set these parameters, we lean on Liu et al.’s study [5] and as-
sign them with the constant values reported in Table 1. Then, given
the time series of effective reproduction numbers over time,{𝑅𝑡 },
the SEI-HCRDmodel computes the resulting impacts on the popula-
tion, including the number of deaths. Instead of manually assigning
fitted values to 𝑅𝑡 , we propose to predict them from scheduled exit
strategies using deep learning models.
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Transition time Value Transition ratio Value
𝑡𝑖𝑛𝑐 5.6 days 𝑚 80%
𝑡𝑖𝑛𝑓 2.9 days 𝑐 10%
𝑡ℎ𝑜𝑠𝑝 4 days 𝑓 30%
𝑡𝑐𝑟𝑖𝑡 14 days

Table 1: Parameter values used in the SEI-HCRD model.

3.2 Predicting the Effective Reproduction
Number over time with Deep Learning

3.2.1 Feature engineering. We start from Google’s Mobility Re-
ports3, which track the mobility trends over time, for different cate-
gories of places in 97 different countries. Each feature corresponds
to a category of places and its value captures the daily traffic of such
places. More precisely, the value of the feature is the difference be-
tween the daily traffic and the traffic baseline (i.e. the median traffic
for the same weekday during the 5-weeks ranging from January 3
to February 6, 2020). The reports include 6 categories: Grocery &
pharmacy, park, transit stations, retail & recreation, residential and
workplace.

Of course, the values of these features are country-specific and
are largely impacted by the mitigation strategy of each country. For
example, Figure 2 shows the evolution of all features for Luxem-
bourg, Italy and Japan. We observe that Italy and Luxembourg have
drastically reduced their activities whereas Japan does not exhibit
a significant reduction, for the case of schools and international
travels.

Next, we clean the collected data. When some values (for a given
feature) are missing, we fill the gap by interpolating between the
closest days with available information. For each category of places,
we smooth the corresponding feature over the 5, 10, 15, and 30 past
days, resulting in four new features.

We complete our dataset with demographic features and with
the corresponding day of the week to take into account the weekly
fluctuations of the data.

Overall, our feature engineering process yields 4,625 inputs of
32 features each, which are recapitulated in Table 2.

3.2.2 Training & validation. The model can be seen as a supervised
predictor, taking as input the mobility and demographic features to
predict an effective reproduction number, 𝑅𝑡 , for each time index 𝑡 .
Thus, in order to train it, we need to label the dataset with 𝑅𝑡 value
for each day of the training period.

Since the real effective reproduction numbers are not known,
we estimate them by fitting the SEI-HCRD model to the real-world
number of cases and deaths. Since the 𝑅𝑡 are time-dependent, we
represent them as a decaying function and seek the best parameters’
value for this function (which yield the fittest SEI-HCRD model).
We opted for the Hill decay function because it showed good results
in the literature [10]. Thus, 𝑅𝑡 is given by 1

(1+( 𝑡
𝐿
)𝑘 ) ·𝑅0 where 𝑅0, 𝑘

and 𝐿 are parameters. We use the L-BFGS optimization method to
find the values of these parameters that minimize the Mean Square
Error of the number of cases and deaths predicted by the SEI-HCRD
model. Once these parameter values are found, they can be injected

3https://www.google.com/covid19/mobility/

Feature category Feature Values
Mobility Grocery & Pharmacy [-100,50]

Parks [-100,50]
Residential [-100,50]
Retail & Recreation [-100,50]
Transit stations [-100,50]
Workplace [-100,50]

Demographics GDP IN
Population IN
Density IR
Area IN
Proportion of population
under 15yrs [0,1]
Proportion of population
over 64yrs [0,1]
Day of week [0-6]
Region (Continent) [0-10]

Table 2: Features of the Feed Forward Neural Network. Mo-
bility features are augmented by smoothing over 5, 10, 15
and 30 days, hence each mobility feature corresponds to 4
inputs.

back in the Hill decay function to generate a time series for the
past values of 𝑅𝑡 .

The analysis of feature correlations (Figure 3a) shows that when
working on a country-by-country basis, all the mobility features are
highly correlated (over 0.75) for some countries as all the activity
reduction and closure were enacted in most sectors at the same
time. Co-linear features offering little to no information gain to the
learner, we train themodel on all countries to reduce any correlation
between the different features. Thus, the model is trained using all
the countries at once and the train/test split is done randomly.

Once a training set with expected values (𝑅𝑡 values computed
from the estimated Hill decay function) is established, a supervised
model can be trained to predict the future values of 𝑅𝑡 using the
mobility and demographic data as features.

To do so, we rely on a Feed-Forward Neural Network (FFNN).
The architecture of the FFNN and its hyper-parameters are opti-
mized using a grid search to minimize the mean square error with
cross-validation. The search leads to an architecture with 2 fully-
connected hidden layers with, respectively, 1000 and 50 neurons.

In addition to the FFNN, we also evaluate two other estimators.
Since the problem takes the form of a time series, we investigate
the performances of a Long Short-Term Memory (LSTM) network
which allows sequence to sequence transformation, hence, learning
from the features of the past days to predict the next days. We
use a 15 days window to predict the values for the next 7 days.
Note that in this case, at each step, we use the computed values
of 𝑅𝑡 from the past iterations as input for the model in addition to
the rest of the features. Finally, we investigate one last approach,
Gradient Boosting using 500 estimators. For each of the approaches,
we evaluate the performances using two classical metric, i.e the
coefficient of determination, (𝑅2 score) and the Root Mean Square
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(a) Luxembourg (b) Italy (c) Japan

Figure 2: Evolution of the mobility indicators for Luxembourg, Italy, and Japan. A value of 0 means that the activity is at the
same level as before the confinement, a value of -100% is a total stop of the activity and a positive values shows an increase of
the activity compared to the reference value.

Error (RMSE)4. The train:test splits were performedwith (1) random
split between train and test data (2) split based on the region the
country is located in (i.e testing on unseen countries) (3) split based
on the time, all values before a certain date are considered for the
training set and the ones after are used to build the test set. In all
instances, we keep a ratio train:test around 80:20.

The FFNNprovided a𝑅2 score of 0.95with a random split and 0.97
with a region split, while the gradient boosting could only achieve
a 𝑅2 score of 0.83. The LSTM offered slightly better performances
with a 𝑅2 score of 0.95 when splitting on a region base to over
0.99 when splitting on a time base. We use the FFNN model in our
following experiments. We refer to the combination of FFNN and
SEI-HCRD as DN-SEIR.

3.2.3 Interpretability. Although Machine Learning algorithms pro-
vide increased accuracy in a wide variety of domains, their black-
box nature makes them inherently non-interpretable. Indeed, in
our case, a multi-layer neural network solely contains informa-
tion in the form of numerical weights and connections. The model
reasoning from input to output remains opaque. Nevertheless, in-
terpretability can be reached as a post-hoc analysis through an in-
dependent interpretability framework. We choose Shapley Additive
exPlanations, SHAP [7] as it provides intuitive visualization-based
explanations which can be incorporated in the simulator. The SHAP
framework is based on game theory and Shapley value. In game
theory, Shapley values indicate how to fairly distribute a ‘payout’
among players. A model can be thought of as a game where each
feature value for each instance is a player, while a prediction or
model output is a payout. In practice, the Shapley value of a feature
value is the contribution of this value for this particular exemplar
compared to the average prediction for the specific dataset. SHAP
provides several advantages. First, this framework has different
types of explainers to optimally provide explanations to different
models, whether tree-based or kernel-based. Moreover, SHAP ex-
hibits an Efficiency property through the Shapley values. Indeed
this component guarantees that the difference between prediction

4The closer 𝑅2 score to 1 the better and the closer RMSE to 0 the better

and average prediction is fairly distributed among the values of the
features of this particular prediction.

3.3 Optimization of Policy Schedules with
Genetic Algorithms

Our search method uses NSGA-II [2], an established Genetic Algo-
rithm (GA) for multi-objective optimization that uses non domi-
nated sorting to find pareto-optimal solutions.

Solution space: Any solution generated by NSGA-II is a policy
schedule. A schedule consists of a list of vectors, each of which
is associated with a mobility feature and encodes the value of the
feature for each time index 𝑡 . A value ranges from 0 (no restriction)
to 100 (full lockdown). The indices 𝑡 go from April 30 to September
30, with steps of 2 weeks.

Objectives: We use 2 fitness functions which represent the com-
promising health and societal impacts of policy scheduled. We
quality these impacts with the total number of total deaths between
April 30 and December 30 and the mean of the mobility feature
values over the same period. The first objective must be minimized
while the second is maximized.

Constraints: For a policy schedule to be an acceptable solution,
we require that the number of critical cases never exceeds the
hospitalization capacity (ICU) of the country of interest. This is an
important requirement for policymakers, as critical cases which
may not be correctly hospitalized likely result in additional deaths.

Selector: Current Pareto-front solutions are selected in priority. If
there are more than the population size, they are filtered based on a
crowding distance (here, we useManhattan distance in the objective
space). Otherwise, we fill the populationwith non-optimal solutions,
selected using a binary tournament selection: Pareto-dominant so-
lutions are retained in priority; in case of non-dominance, crowding
distance to the Pareto front is used for tie-breaking.

We rely on Pymoo 5 to implement our NSGA-II search and use the
library’s default values for the remaining parameters like mutation
rate or crossover.
5www.pymoo.org, the most starred python GA library on Github
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(a) Luxembourg

(b) All Countries

Figure 3: Mobility feature correlations.

4 RESEARCH QUESTIONS
Our end goal is to provide decision-makers with a tool allowing to
easily generate exit strategies in order to evaluate their impact. To
achieve this, we use a deep neural network as a proxy to evaluate
the hyper-parameters of a SEI-HCRD model based on mobility
and demographic data. However, to be useful, the neural network
needs to be able to capture enough information in the mobility and
demographic data alone to make accurate predictions. Hence, we
formulate the first research question as follow:

RQ1: Can we predict the effective reproduction number based
on mobility and demographic data?

Ultimately the proposed approach is intended to allow policy-
makers to evaluate and select exit strategies by analysing their
impact on multiple aspects such as the number of death, possible
overflow of healthcare capacities or the perturbation of economic

activities. To evaluate the capacity of our approach to model such
strategies, we evaluate it by predicting the impact of various popular
scenarios. Thus, we ask the following question:
RQ2: How does our approach react under different exit strate-
gies?

We conclude our investigation by a comparison of the impact of
the popular scenarios with the impact of the one proposed by the
search algorithm. The algorithm minimizes the number of deaths
and the socio-economical impacts generated by a diminution of
activities (mobility) while avoiding the over-saturation of healthcare
capacities. To evaluate the results, we compared them to the “naive”
scenarios formulated in the previous research question and thus
ask:
RQ3: How do the exit strategies proposed by the search algo-
rithm perform against popular ones?

5 RESULTS
5.1 Predicting the Effective Reproduction

Number
Comparison of a fitted SEIR model and our DN-SEIR model. We

estimate the confidence interval by evaluating the mean and stan-
dard deviation of a Bayesian Ridge Regressor on each element of
the test set (using the same training set as the FFNN). We use a grid
search over 3 values for each of its 2 hyper-parameters 𝛼𝑖𝑛𝑖𝑡 (0.1, 1,
1.9) and 𝜆𝑖𝑛𝑖𝑡 (1, 0.1, 0.01).

We compare in Table 3 the predicted cases of the time-dependant
SEIR (Fitted on past cases/deaths) and the DN-SEIR approach. The
DN-SEIR approach has a lower error to the ground truth values of
cases for 9 over 12 countries in comparison with a time regression
approach. Besides, the ground truth falls within the confidence
interval of the DN-SEIR model for 10 of the 12 countries evaluated.
It is worth noting that while 5 of the 12 countries lie under 5% error,
9 over 12 countries do no exceed 15% error.

In Figure 4, we evaluate the RMSE between the predicted cases
of the SEIR model and the DN-SEIR approach (with its optimistic
and pessimistic boundaries) across all the countries of the dataset.
The simulation spans on 7 days (instead of 12 days for the results
presented in table 3) and we compare the number of cases on April
29th, the last day of available mobility data for all countries. We
use the Wilcoxon signed-rank test to compare if two distributions
are equals. The results show that for all three prediction DN-SEIR,
DN-SEIR max and DN-SEIR min we can reject the hypothesis (p-
values « 0.05) that they are equal to the SEIR prediction. We then
perform a Vargha and Delaney’s 𝐴12 test to analyze the effect size.
We see that our approach generates a lower RMSE with a small
effect size. These results indicate that even in very short term (7
days), relying only on the mobility data yields better results than
applying a regression over the past values.

Model interpretation at the global level. We fit SHAP on the full
dataset and show in Figure 5 the summary of its impact analysis
where the features are ordered in decreasing order of influence.
The distribution of each feature spans horizontally to inform on
the impact of the feature on the final decision (positive on the right
side), while the colour of each point of the distribution provides
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Country SEIR cases DN-SEIR cases True cases 𝜖𝑟 𝜖𝑟𝑆𝐸𝐼𝑅
Belgium 47,219 51,532 [45,130-60,464] 47,859 0.07 0.01
France 213,103 191,188 [166,043-224,554] 128,442 0.33* 0.66
Germany 161,383 181,438 [163,333-207,151] 157,641 0.13 0.02
Greece 2,429 2,478 [2,343-2,666] 2,576 0.03* 0.06
Italy 6 201,802 202,369 [187,205-223,194] 203,591 <0.01* <0.01
Luxembourg 3,668 3,724 [3,578-3,936] 3,769 0.01* 0.03
Spain 209,646 230,794 [211,299-257,782] 240,743 0.04* 0.13
Brazil 60,714 68,271 [55,268-86,164] 78,162 0.14* 0.22
Cameroon 1,432 1,645 [1,375-2,003] 1,832 0.11* 0.22
Canada 77,614 63,520 [51,977-78,913] 51,597 0.19* 0.5
Japan 12,250 11,353 [10,010-13,288] 14,088 0.24 0.13
United Kingdom 201,701 160,442 [134,251-188,088] 165,221 0.03* 0.22

Table 3: Total cases as of 29/04 as predicted by a time-regression SEIR, and by DN-SEIRmodel. Both models trained until 11/04.
𝜖𝑟 and 𝜖𝑟𝑆𝐸𝐼𝑅 are the absolute relative error of the DN-SEIR model and time-regression SEIR respectively. (*) indicates that the
DN-SEIR yields less error than the time-regression SEIR.

Figure 4: RMSE between true cases and predicted cases by
our DN-SEIR model and a fitted SEIR model.

information on the range of values of the feature that have an
impact (redder color codes for higher values of the feature). We can
see for instance for the feature transit station that higher values
have a positive impact on prediction, i.e higher values of transit
station translate into higher values of 𝑅𝑡 . This insight is common
across the three countries. The same goes for the features related
to retail and recreation activities.

SHAP shows how the trends in the feature, modelled in our ap-
proach using smoothed features, play a significant role in the final
prediction, and shows an opposing contribution to its associated
daily feature. For transit, retail, and park features, the trends values
over 5, 10 and 15 days counter the impact of their respective daily
values, yet on a lower scale. This indicates an inertia phenomenon
that can be explained by the actual delay between the actual num-
bers (𝑅𝑡 , cases, deaths) and the reported one and also the delay
inherent to the epidemiological model.

The comparison of the three countries also shows that mobility
features have a much higher impact on the prediction in Italy and

Luxembourg than Japan as their SHAP impact is much wider. This
hints that other social distancing features in Japan could reduce
the impact of mobility (masks for instance).

RQ1 Answer: Our approach yields predictions with much
lower errors than pure epidemiological models in 75% of the
cases and achieves a 95% R2 score when the learning is trans-
ferred and tested on unseen countries.

5.2 Mid-term predictions with exit strategies
In this section, we investigate four prediction strategies for an exit
from the lockdowns that were taking place all over the world. The
goal of the exit strategies is to allow a return to normal activities
while minimizing the impact on the number of deaths and avoiding
peaks in hospitalization that would saturate healthcare facilities.
The strategies that we are investigating are the following:

• Hard exit: In this strategy, all mobility activities are resumed
to normal on May 11, 2020.

• Progressive exit: Mobility activities are gradually restored,
with an increase of 15% of the activity every 2 weeks until
the pre-lockdown activity level is reached.

• Cyclic exit: Every two weeks, activity is resumed to normal
then brought back to lock down situation. The process is
repeated for 4 cycles, thus ending on 03/08/2020.

• Status Quo: The current situation (as of April 30th) is main-
tained for the entirety of the period.

Figure 6 shows the evolution of 𝑅𝑡 values for Luxembourg, Italy
and Japan. As expected we see no evolution from the initial value
in the no exit case, a cyclic fluctuation in the case of a cyclic exit,
a soft increase of the 𝑅𝑡 values when applying a progressive exit
and finally, a brutal jump in the case of a hard exit. 𝑅𝑡 reaches
a plateau typically quite rapidly after strategies are applied. The
plateau depends on the mobility condition, therefore, we see two
plateaus in the results, one with all activities remaining closed
(no exit), and one where all the other strategies reach the same
plateau when the mobility levels are restored to their pre-lockdown
baseline.
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(a) Luxembourg (b) Italy (c) Japan

Figure 5: Global interpretation of the model for Luxembourg, Italy and Japan.

(a) Luxembourg (b) Italy (c) Japan

Figure 6: Evolution of the 𝑅𝑡 values for the four exit strategies modelled, i.e a hard exit, a progressive exit, a cyclic exit and
status quo for Luxembourg, Italy and Japan.

We evaluate these strategies for the three countries Luxembourg,
Italy and Japan and obtain the results depicted by Table 4. We
choose those three countries because they present difference with
respect to their demography, mitigation strategies and number of
deaths attributed to COVID-19. Furthermore, they are amongst
the few to provide reliable data about hospitalization capacities,
hence allowing us to incorporate this information when looking
for optimal policy schedules.

We compute for each strategy the Area Under Curve (AUC)
of each mobility metric and provide the mean across all mobility
values, and compare these hand-crafted strategies with the ones
found by our Genetic Algorithm search. The search is run on 100
generations with a size of population of 100 and the hard constraint
that critical hospitalizations should not exceed the country’s ICU
capacity (2,054 for Italy, 1,822 for Japan and 42 for Luxembourg,
[6]). All strategies are evaluated between April 30th and September
30th.

We report 2 metrics, the total deaths on September 30th and
the mean Area Under Curve across all the mobility features over
the 5 months. The later reflects an economic objective that we

need to maximize while the former is a healthcare objective. We
state in the table three strategies found on the pareto. S1 is the
pareto solution with the lowest death toll, S3 is the strategy with
the highest mobility activity (and hence highest death toll) and S2
is the median death toll.

Our study shows that progressive lift strategies yield a similar
economic footprint as 2-weeks cyclic strategies with fewer casual-
ties (7% fewer deaths for Italy and 10 times less for Luxembourg).

RQ2 Answer: Our approach allows to see drastic changes
based on different exit strategies. The progressive strategy
offers in our experiments a better outcome than a hard or
a cyclic strategy.

The search-based strategies (S1, S2, S3) perform better than man-
ual strategies on the death metric for Italy and Japan, and for Lux-
embourg. For Luxembourg, S1 performs as good as the progressive
strategy. S1 in particular performs on a par with the Progressive
lift strategy.
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Overall, our results show that the search for exit strategies can
be guided and restricted to the policy-makers constraints (i.e. hos-
pital capacity) and yields actionable strategies within constrained
computation time. We ran the experiments 100 times (x100 genera-
tions each) and the hypervolume of the pareto-solutions converges
within 80 generations.

RQ3 Answer: The search algorithm yields better strategies
than the popular ones both in term of impact on the activity and
number of deaths while ensuring that the healthcare facilities
are not overwhelmed.

Country Strategy Mobility AUC Deaths
Luxembourg Status Quo -10,721.6 108

Hard -91.9 2,763
Progressive -2,774.43 114
Cyclic -2,487.02 2,002
Pareto-S1 -2,381.45 165
Pareto-S2 -2,370.7 635
Pareto-S3 -2,289.7 697

Italy Status Quo -6,006.13 32,015
Hard -57.53 37,377
Progressive -4,124.93 31,987
Cyclic -3,689.13 34,427
Pareto-S1 -8,412.125 29,449
Pareto-S2 -7,570.0 29,450
Pareto-S3 -7,275.38 29,452

Japan Status Quo -3,431.7 709
Hard 14.52 710
Progressive - 1,005.3 708
Cyclic -896.03 709
Pareto-S1 -2,106.21 654
Pareto-S2 -1,170.33 660
Pareto-S3 -1,106.33 671

Table 4: Exit strategies comparison. Higher AUC and lower
deaths are better.

6 CONCLUSION
In this paper, we studied DN-SEIR, a data-driven approach to evalu-
ate the effective reproduction number of the COVID-19 epidemic. In
particular, we considered both manual and search-based mitigation
strategies, with the aim to help decision-makers in the evalua-
tion and selection of exit strategies. To this end, we evaluated the
state-of-the-art compartment model (i.e. SEIR) and shew that our
approach yields predictions closer to the ground truth. We also
demonstrated that learning can transfer across different countries
and a simple FFNN provides accurate and interpretable predictions.
Finally, we proposed a search-based approach to evaluate and find
optimal strategies that satisfy the constraints of the health facilities
and achieve a quick economic recovery with limited casualties.

Our approach paves the ways to automated strategy simulation
and search and provides a simple, yet, powerful tool for policy
makers to tailor exit strategies to their context and priorities. We
can go further than our approach with better feature engineering
or neural architecture search (with CNN or RNN). We can also
extend the data-driven prediction of hyper-parameters not only

to the effective reproduction number but also to all the epidemi-
ological parameters like hospitalization rate. This would require
having access to accurate hospitalization data across a large pool of
countries and can be achieved in the close future as more countries
are sharing such data. Finally, we could extend our technique to
a more-grained approach that takes into account age-specific or
location-specific epidemiological models.
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