GraphCode2Vec: Generic Code Embedding via Lexical and
Program Dependence Analyses

Wei Ma’ Mengjie Zhao' Ezekiel Soremekun
University of Luxembourg LMU Munich University of Luxembourg
Luxembourg Germany Luxembourg

wel.ma@uni.lu

mzhao@cis.Imu.de

ezekiel.soremekun@uni.lu

Qiang Hu Jie M. Zhang Mike Papadakis
University of Luxembourg University College London University of Luxembourg
Luxembourg United Kingdom Luxembourg
giang.hu@uni.lu jie.zhang@ucl.ac.uk michail.papadakis@uni.lu
Maxime Cordy Xiaofei Xie Yves Le Traon
University of Luxembourg Singapore Management University University of Luxembourg
Luxembourg Singapore Luxembourg
maxime.cordy@uni.lu xfxie@smu.edu.sg yves.letraon@uni.lu
ABSTRACT ACM Reference Format:

Code embedding is a keystone in the application of machine learn-
ing on several Software Engineering (SE) tasks. To effectively sup-
port a plethora of SE tasks, the embedding needs to capture pro-
gram syntax and semantics in a way that is generic. To this end,
we propose the first self-supervised pre-training approach (called
GraPHCODE2VEC) which produces task-agnostic embedding of lex-
ical and program dependence features. GRAPHCODE2VEC achieves
this via a synergistic combination of code analysis and Graph Neural
Networks. GRAPHCODE2VEC is generic, it allows pre-training, and
it is applicable to several SE downstream tasks. We evaluate the ef-
fectiveness of GRAPHCODE2VEC on four (4) tasks (method name
prediction, solution classification, mutation testing and overfitted
patch classification), and compare it with four (4) similarly generic
code embedding baselines (Code2Seq, Code2Vec, CodeBERT, Graph-
CodeBERT) and seven (7) task-specific, learning-based methods. In
particular, GRAPHCODE2VEC is more effective than both generic and
task-specific learning-based baselines. It is also complementary and
comparable to GraphCodeBERT (a larger and more complex model).
We also demonstrate through a probing and ablation study that
GRAPHCODE2VEC learns lexical and program dependence features
and that self-supervised pre-training improves effectiveness.

KEYWORDS

code embedding, code representation, code analysis

“Both authors contributed equally.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9303-4/22/05.

https://doi.org/10.1145/3524842.3528456

Wei Ma*, Mengjie Zhao*, Ezekiel Soremekun, Qiang Hu, Jie M. Zhang, Mike
Papadakis, Maxime Cordy, Xiaofei Xie, and Yves Le Traon. 2022. Graph-
Code2Vec: Generic Code Embedding via Lexical and Program Dependence
Analyses. In 19th International Conference on Mining Software Repositories
(MSR °22), May 23-24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3524842.3528456

1 INTRODUCTION

Applying machine learning to address software engineering (SE)
problems often requires a vector representation of the program
code, especially for deep learning systems. A naive representation,
used in many SE applications, is one-hot encoding that represents
every feature with a dedicated binary variable (a vector including
binary values) [55]. However, this type of embedding is usually
a high-dimensional sparse vector because the size of vocabulary
is very large in practice, which results in the notorious curse of
dimensionality problem [4]. Besides, one-hot encoding has out-of-
vocabulary (OOV) problem, which decreases model generalization
capability such that it cannot handle new type of data [59].

To deal with these issues, researchers use dense and reason-
ably concise vectors to encode program features for specific SE
tasks, since they generalise better [30, 64, 66, 74]. More recently,
researchers apply natural language processing (NLP) techniques to
learn the universal code embedding vector for general SE tasks [1-
3,5-7,10,17, 23, 26,33, 49, 51, 62, 65]. The resulting code embedding
represents a mapping from the “program space” to the “latent space”
that captures the different code-used semantics, i.e., the semantic
similarities between program snippets. The aim is that similar pro-
grams should have similar representations in the latent space.

State-of-the-art code embedding approaches focus either on syn-
tactic features (i.e., tokens/AST), or on semantic features (i.e., pro-
gram dependencies) ignoring the importance of combining both
features together. For example, Code2Vec [3] and CodeBERT [17])
focus on syntactic features, while PROGRAML [10] and NCC [5])
focus on program semantics. There are few studies using both pro-
gram semantics and syntax, e.g., GraphCodeBERT [23]. However,

https://doi.org/10.1145/3524842.3528456
https://doi.org/10.1145/3524842.3528456

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Ma and Zhao, et al.

Figure 1: Motivating example showing (a) an original method (LowerBound), and two behaviorally equivalent clones of the
original method, namely (b) a renamed method (findLowerBound), and (c) a refactored method (getLowerBound).

public static int lowerBound(int[] array,

public static int findLowerBound(int[] inputs,

public static int getLowerBound(int v,

int length, int value) {
int low = @;
int high = length;
while (low < high) {
final int mid = (low + high) / 2;
if (value <= array[mid]) {
high = mid;
} else {
low = mid + 1;
}
}

return low;

(a) Original Method

int size, int v) {
int bounder = 0;
int 1 = size;
int mindex = 0;
while (bounder < 1) {
mindex = (bounder + 1) / 2;
if (v <= inputs[mindex]) {
1 = mindex;
} else {
bounder = mindex + 1;
}

}

return bounder;

(b) Renamed Method

int size, int[] inputs) {
int h = size;
int mindex = 0;
int check = @;
while (check < h) {
mindex = (check + h) / 2;
if (v > inputs[mindex]) {
check = mindex + 1;
} else {
h = mindex;
}
}

return check;

(c) Refactored Method

these approaches are not precise, they do not obtain or embed the
entire program dependence graph. Instead, they estimate program
dependence via string matching (instead of static program analysis),
then augment AST trees with sequential data flow edges.

To address these challenges, we propose the first approach (called
GraPHCODE2VEC) to synergistically capture syntactic and seman-
tic program features with Graph Neural Network (GNN) via self-
supervised pretraining. The key idea of our approach is to use static
program analysis and graph neural networks to effectively represent
programs in the latent space. This is achieved by combining lexi-
cal and program dependence analysis embeddings. During lexical
embedding, GRAPHCODE2VEC embeds the syntactic features in the
latent space via tokenization. In addition, it performs dependence
embedding to capture program semantics via static program analy-
sis, it derives the program dependence graph (PDG) and represent
it in the latent space using Graph Neural Networks (GNN). It then
concatenates both lexical embedding and dependence embedding
in the program’s vector space. This allows GRaPHCODE2VEC to be
effective and applicable on several downstream tasks.

To demonstrate the importance of semantic embedding, we com-
pare the similarity of three pairs of programs using our approach,
in comparison to a syntax-only embedding approach — CodeBERT,
and GraphCodeBERT, which embeds both syntax and semantic,
albeit without program dependence analysis. Consider the example
of three program clones in Figure 1. This example includes three
behaviorally or semantically equivalent programs, that have low
syntactic similarity (i.e., different tokens), but with similar semantic
features, i.e., program dependence graphs (PDGs). To measure the
similarity distance in the latent space, in addition to the example
code clones (Figure 1), we randomly select 10 other different code
methods (from GitHub) without any change to establish a baseline
for comparing all approaches. To this end, we compute the aver-
age cosine similarity distance for all 91 program pairs (#) for
reference to show that all approaches report similar scores for all
randomly selected 91 pairs (Table 1).! For all three approaches, the
similarity between the “original program” and a direct copy of the
program with only method name renaming to “searchLowerBound”,

I The purpose of computing the average cosine similarity of all 91 code pairs is to
establish a meaningful reference for comparing embeddings and to serve as a sanity
check. We expect the mean of the cosine similarity of a set of randomly selected pairs
of code clones and non-clones to lie around zero for all approaches (range -1 to 1).

Table 1: Cosine Similarity of three behaviorally/semanti-
cally similar program pairs from our motivating example,
using GraphCodeBERT, CodeBERT and GRAPHCODE2VEC

Program Pairs C(fiir:ll;}lill-{"f CodeBERT | GRAPHCODE2VEC
searchLowerBound & lowerBound 1 0.99 1
findLowerBound & lowerBound 0.70 0.61 0.99
getLowerBound & lowerBound 0.70 0.51 0.99
Average of 91 pairs -0.05 -0.06 -0.03

is well captured with an almost perfect cosine similarity score for all
approaches (1 or 0.99). Likewise, the cosine similarity of the original
program and the “renamed” program (f indLowerBound) is mostly
well captured by all approaches, since they all embed program syn-
tax, albeit with lower cosine similarity scores for CodeBERT (0.61)
and GraphCodeBERT (0.70), in comparison to our approach (0.99).

Meanwhile, CodeBERT fails to capture the semantic similar-
ity between the “original program” and the “refactored program”
(getLowerBound), even though they are behaviorally similar and
share similar program dependence. This is evidenced by the low co-
sine similarity score (0.51), because it does not account for semantic
information in its embedding, especially the similar program de-
pendence graph shared by both programs. Lastly, GraphCodeBERT
performs slightly better than CodeBERT (0.70 vs. 0.51), but lower
than our approach (0.99). This is due to lack of actual static program
analysis in the embedding of GraphCodeBERT, since it only applies
a heuristic (string matching) to estimate program dependence, it is
imprecise. This example demonstrates the importance and necessity
of embedding precise dependence information.

A key ingredient of GRAPHCODE2VEC is self-supervised pretrain-
ing. Even though task-specific learning based approaches (e.g.,
CNNSentence [45]) learn the vector representation of code without
pre-training, they are non-generic and less effective. Applying their
learned vector representation to other (SE) tasks requires re-tuning
model parameters, and the lack of pretraining reflects in their per-
formance. As an example, our evaluation (in RQ1 section 5) showed
that our self-supervised pretraining approach improves effective-
ness when compared to 7 task-specific approaches (i.e., without
pretraining) addressing two (SE) tasks (solution classification and
patch classification). To further demonstrate the importance of

GraphCode2Vec

self-supervised pretraining, we compare the effectiveness of GRAPH-
CobpE2VEC with and without pretraining using two downstream
tasks. Overall, we demonstrate that our self-supervised pretraining
improves effectiveness by 28% (see RQ3).

To evaluate GRAPHCODE2VEC, we compare it to four generic
code embedding approaches, and seven (7) task-specific learning-
based applications. We also investigate the stability and learning
ability of our approach through sensitivity, ablation and probing
analyses. Overall, we make the following contributions:
Task-specific learning-based applications. We introduce the au-
tomatic application of GRAPHCODE2VEC to solve specific down-
stream SE tasks, without extensive human intervention to adapt
model architecture. In comparison to the state-of-the-art task-specific
learning-based approaches (e.g., ODS [72]), our approach does not
require any effort to tune the hyper-parameters to be applicable
to a downstream task (Section 3). Our evaluation on two down-
stream tasks, solution classification and patch classification, showed
that GRAPHCODE2VEC outperforms the state-of-the-art task-specific
learning-based applications: For all tasks it outperforms all task-
specific applications (RQ1 in Section 5).

Generic Code embedding. We propose a novel and generic code
embedding learning approach (i.e., GRaPHCODE2VEC) that captures
the lexical, control flow and data flow features of programs through
a novel combination of tokenization, static code analysis and graph
neural networks (GNNs). To the best of our knowledge, GrRAPH-
CoDE2VEC is the first code embedding approach to precisely cap-
ture syntactic and semantic program features with GNNs via self-
supervised pretraining. We demonstrate that GRAPHCODE2VEC is
effective (RQ2 in Section 5): It outperforms all syntax-only generic
code embedding baselines. We provide our pre-trained models and
generic embedding for public use and scrutiny.?

Further Analyses. We extensively evaluate the stability and inter-
pretability of our approach by conducting sensitivity, probing and
ablation analyses. We also investigate the impact of configuration
choices (i.e., pre-training strategies and GNN architectures) on the
effectiveness of our approach on downstream tasks. Our evaluation
results show that GRAPHCODE2VEC effectively learns lexical and pro-
gram dependence features, it is stable and insensitive to the choice
of GNN architecture or pre-training strategy (RQ3 in Section 5).3

2 BACKGROUND
2.1 Generic code embedding

We discuss methods that learn general-purpose code representa-
tions to support several downstream tasks. These approaches are
not designed for a specific task. There are three major types of
generic code embedding approaches, namely syntax-based, semantic-
based and combined semantic and syntactic approaches (see Table 2).
Syntax-based Generic Approaches: These approaches encode
program snippets, either by dividing the program into strings, lex-
icalizing them into tokens or parsing the program into a parse
tree or abstract syntax tree (AST). Syntax-only generic embedding

Zhttps://github.com/graphcode2vec/graphcode2vec

3In the rest of this work, we interchangeably use the terms “lexical” and "syntactic”
interchangeably, as well as “(program) dependence” and “semantic”. Such that the terms
“lexical embedding” and “syntactic embedding” refer to the embedding of program
syntax, and the terms “dependency embedding” and “semantic embedding” refer to
the embedding of program dependence information.

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

approaches include Code2Vec [3], Code2Seq [2], CodeBERT [17],
C-BERT [7], InferCode[6], CC2Vec [26], AST-based NN [73] and
ProgHeteroGraph [65] (see Table 2). Notably, these approaches use
neural models for representing code (snippets), e.g., via code vec-
tor (e.g., Code2Vec [3]), machine translation (e.g., Code2Seq [2])
or transformers (e.g., CodeBERT [17]). Code2Vec [3] is an AST-
based code representation learning model that represents code
snippets as single fixed-length code vector. It decomposes a pro-
gram into a collection of paths using an AST and learns the atomic
representation of each path while simultaneously learning how
to aggregate the set of paths. Code2Seq [2] is an alternative code
embedding approach that uses Sequence-to-sequence (seq2seq)
models, adopted from neural machine translation (NMT), to encode
code snippets. CodeBERT [17] is a bimodal pre-trained model for
programming language (PL) and natural language (NL) tasks, which
uses transformer-based neural architecture to encode code snippets.
Besides, CodeBERT [17], C-BERT [7] and Cu-BERT [33] are BERT-
inspired approaches, these methods adopt similar methodologies
to learn code representations as BERT [12].

GRaPHCODE2VEC is similar to the aforementioned generic code

embedding methods, it is also a general-purpose code embedding
approach that captures syntax by lexicalizing the program into
tokens (see Table 2). However, all of the aforementioned generic
approaches are syntax-based, none of these approaches account
for program semantics (i.e., data and control flow). Unlike these
approaches, GRAPHCODE2VEC additionally captures program se-
mantics via static analysis. In this paper, we compare our approach
(GraPHCODE2VEC) to the three (3) most popular and recent syntax-
based generic code embedding approaches, namely Code2Vec [3],
Code2Seq [2] and CodeBERT [17] (see section 5).
Semantic-based Generic Approaches: This refers to code embed-
ding methods that capture only semantic information such as con-
trol and data flow dependencies in the program. Semantic-only
generic approaches include NCC [5] and PROGRAML [10]. On one
hand, NCC [5] extracts the contextual flow graph of a program
by building an LLVM intermediate representation (IR) of the pro-
gram. It then applies word2vec [43] to learn code representations.
On the other hand, PROGRAML [10] is a language-independent,
portable representation of whole-program semantics for deep learn-
ing, which is designed for data flow analysis in compiler optimiza-
tion. It adopts message passing neural networks (MPNN) [22] to
learn LLVM IR representations. In contrast to these approaches,
GraPHCODE2VEC captures both semantics and syntax.
Combined Semantic and Syntactic -based Approaches: There
are generic approaches that capture both syntactic and seman-
tic features such as IR2Vec [5], OSCAR [49], ProgramGraph [1],
ProjectCodeNet [51] and GraphCodeBERT [23]. IR2Vec [5] and
OSCAR [49] use LLVM IR representation of a program to capture
program semantics. Meanwhile, ProgramGraph [1] uses GNN to
learn syntactic and semantic representations of code from ASTs aug-
mented with data and control edges. ProgHeteroGraph leverages
abstract syntax description language (ASDL) grammar to learn code
representations via heterogeneous graphs [65]. Finally, GraphCode-
BERT [23] is built upon CodeBERT [17], but in addition to capturing
syntactic features it also accounts for semantics by employing data
flow information in the pre-training stage.

https://github.com/graphcode2vec/graphcode2vec

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Table 2: Details of the state-of-the-art Code Embedding ap-
proaches. “Semantic” or “Sem” means program dependence,
and “Syntactic” or “Syntax” refers to strings, tokens, parse
tree or AST-tree. Symbol “v” means the approach supports
a feature, and “X” means it does not support the feature.

Granularity

Approaches Method | Class

Syntactic | Semantic

2
=]
o

CNNSentence [45]
OneCNNLayer [50]
Sequential CNN [21]
SimFeatures [63]
Prophet [41]
PatchSim [69]

ODS [72]
CodeBERT [17]
Code2Vec [3]
Code2Seq [2]
C-BERT [7]
InferCode [6]
CC2Vec [26]
AST-based NN [73]
ProgHeteroGraph [65]
NCC [5]
PROGRAML [10]
R2Vec [5]

OSCAR [49]
ProgramGraph [1]
ProjectCodeNet [51]
GraphCodeBERT [23]
GrAPHCODE2VEC

Syntax

Task-specific

Both

Syntax-only

Generic
Sem.

Both

N NN N] AN N NN NENENEN ENENENEN ENENEN
S NN I O I ENENENEN P
Jax Lo uaax LaL X X X x|x x x
N R N N P N N NN) ENENENEN ENENEN

Similar to these approaches, our approach (GRAPHCODE2VEC)
learns both syntactic and semantic features. In this work, we com-
pare GRAPHCODE2VEC to GraphCodeBERT because it is the most
recent state-of-the-art and closely related approach to ours, since it
captures both syntax and semantics (see RQ2 section 5).

2.2 Task-specific learning-based applications

Researchers have proposed specialised learning-based techniques
to tackle specific (SE) downstream tasks, e.g.. patch classification [41,
72] and solution classification [21, 45, 50]. In our experiments, we
consider specialised learning approaches for both tasks. This is
because these tasks have several software engineering applications,
especially during software maintenance and evolution [41, 45, 72].
Table 2 highlights details of our task-specific learning methods.
Solution classification: Let us describe the state-of-the-art learning-
based approaches for solution classification. Most of these ap-
proaches are syntax-based and adopt convolution neural networks
(CNNGs) to classify programming tasks. SequentialCNN [21] applies
a CNN to predict the language/tasks from code snippets using
lexicalized tokens represented as a matrix of word embeddings.
CNNSentence [45] is similar to Sequential CNN since it also uses
CNNess, except that it classifies source code without relying on key-
words, e.g., variable and function names. It instead considers the
structural features of the program in terms of tokens that charac-
terize the process of arithmetic processing, loop processing, and
conditional branch processing. Finally, OneCNNLayer [50] also
uses CNN for solution classification. It firstly pre-processes the pro-
gram to remove unwanted entities (e.g., comments, spaces, tabs and
new lines), then tokenizes the program to generate the code embed-
ding using word2vec. The resulting embedding includes the token
connections and their underlying meaning in the vector space.

Ma and Zhao, et al.

Figure 2: Overview of GRAPHCODE2VEC
Data Preprocess Code Eml

Instruction Sul bwmd Instruction Instructior :
- ’ruke niation | | Embedeing | | Embedding | | Aggrogation —?—’

Lexlcal
Tmmihle

<<O —— GNN | ——

mgq ind Edge Type
g O o g O O Depzndence!mheddln“

class Files Dependence Graph

Patch Classification: These are techniques designed to deter-
mine the correctness of patches (i.e., identify correct, wrong or
over-fitting patches). These learning-based techniques can be static
(e.g., ODS [72]), dynamic (e.g., Prophet [41]), heuristic-based (e.g.,
PatchSim [69]) or hybrid (e.g., SimFeatures [63]). Table 2 provides
details of these approaches. Notably, they all capture both syntactic
information (e.g. via AST) and program dependence information
(e.g., via execution paths or control flow information). For instance,
PatchSim [69] is a heuristic approach that leverages the behavioral
similarity of test case executions to determine patch correctness by
leveraging the complete path spectrum of test executions. Mean-
while, Wang et al. [63] proposed (SimFeatures —) a hybrid strategy
that identifies correct patches by integrating static code features with
dynamic features or (test) heuristics. SimFeatures combines a learned
static code model with dynamic or heuristic-based information
(such as the dependency similarity between a buggy program and
a patch) using majority voting. More recently, Ye et al. [72] pro-
posed a supervised learning approach (called ODS) that employs
static code features of patched and buggy programs to determine
patch correctness, specifically to classify over-fitting patches. It
uses supervised learning on extracted static code at the AST level
to learn a probabilistic model for determining patch correctness.
ODS also tracks program dependencies by tracking control flow
statements. For this task, we compare GRAPHCODE2VEC to ODS,
PatchSim, Prophet and SimFeatures (see Section 5).

In this work, we compare GRAPHCODE2VEC to the aforemen-
tioned seven (7) learning-based methods for solution classifica-
tion and patch classification (see Section 5). While task-specific
learning-based approaches are typically designed for a single task,
GraPHCODE2VEC is amenable to several tasks and learns a generic
code representation beyond the specific task-at-hand, via model
pre-training.

3 APPROACH

3.1 Overview

Figure 2 illustrates the steps and components of our approach.
First, GRAPHCODE2VEC takes as input a Java program (i.e. a set of
class files) that is converted to a Jimple intermediate representation
(IR) [15]. Jimple is typed, based on a three-address code and provides
15 different operations; hence, it is easier to analyse and optimize
than Java bytecode (with over 200 operations). Secondly, GRAPH-
CopE2VEC employs Soot [60] to obtain the program dependence
graph (PDG) by feeding the class files as input. From the resulting
Jimple representation and PDG, GRAPHCODE2VEC learns two pro-
gram embeddings, namely a lexical embedding and a dependence

GraphCode2Vec

embedding. These two embeddings are ultimately concatenated to
form the final code embedding.

To achieve lexical embedding, our approach first tokenizes the
Jimple instructions obtained from our pre-processing step into sub-
words. Next, given the sub-words, our approach learns sub-word
embedding using word2vec [42]. Then, it learns the instruction
embedding by representing every Jimple instruction as a sequence
of subwords embeddings using a bi-directional LSTM (BiLSTM,
Section 3.2). The forward and backward hidden states of this BiL-
STM allows to build the instruction embeddings. GRaPHCODE2VEC
employs a BiLSTM since it learns context better: BILSTM can learn
both past and future information while LSTM only learns past in-
formation. Finally, it aggregates multiple instruction embeddings
using element-wise addition, in order to obtain the overall lexical
program embedding.

To learn the dependence embedding, GRAPHCODE2VEC applies a
Graph Neural Network (GNN) [54] to embed Jimple instructions
and their dependencies. Each node in the graph corresponds to a
Jimple instruction and contains the (dependence) embedding of
this instruction. Node attributes are from lexical embeddings. The
edges of the graph represent the dependencies between instructions.
Our approach considers the following program dependencies: data
flow, control flow and method call graphs. GRAPHCODE2VEC uses
intra-procedural analysis [18] to extract data-flow and control-flow
dependencies by invoking Soot [60]. Then, it builds method call
graphs via class hierarchy analysis [11].

The training of GNNs is an iterative process where, at each
iteration, the embedding of each node n is updated based on the
embedding of the neighboring nodes (i.e., nodes connected to n)
and the type of n’s edges [70, 77]. The message passing function
determines how to combine the embedding of the neighbors - also
based on the edge types — and how to update the embedding n based
on its current embedding and the combined neighbors’ embedding.
The dependence embedding of an instruction is the embedding of
the corresponding node at the end of the training process.

Finally, after obtaining lexical embedding and dependence em-
bedding, our approach concatenates both embeddings to obtain the
overall program representation.

3.2 Lexical embedding

Step 1 - Jimple code tokenization: The first crucial step of GRAPH-
CoDE2VEC is to properly tokenize Jimple code into meaningful
“tokens”, to learn the vector representations. The traditional way to
tokenize code is to split it on whitespaces. However, this manner
is inappropriate for two reasons. First, whitespace-based tokeniza-
tion often results in long tokens such as long method names (e.g.,
“getFunctionallnterfaceMethodSignature”). Long sequences often
have a low frequency in a given corpus, which subsequently leads
to an embedding of inferior quality. Second, whitespace-based tok-
enization is not able to process new words that do not occur in the
training data — these out-of-vocabulary words are typically replaced
by a dedicated “unknown” token. This is an obvious disadvantage
for our approach, whose goal is to support practitioners to analyze
diverse programs — which may then include words that did not
occur in the programs used to learn the embedding.

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

To address this challenge, we tokenize the Jimple code into sub-
words [37, 56, 67], which are units shorter than words, e.g., mor-
phemes. Subwords have been widely adopted in representation
learning systems for texts [13, 25, 52, 76] as they solve the prob-
lem of overly long tokens and out-of-vocabulary words. New code
programs can be smoothly handled using short tokens represen-
tation, by limiting the amount of long, but different tokens. Sub-
words get rid of the almost-infinite character combinations that are
common in many program codes. For example, this is the reason
why BERT uses wordpiece subwords [67], and XLNet [71] and T5
[52] use sentence-piece subwords. Similarly, GRAPHCODE2VEC uses
sentence-piece subwords. When using subwords, the long token
“getFunctionallnterfaceMethodSignature” is split into “get”, “Func-
tional”, “Interface”, “Method” and “Signature”. It is worth noting
that most of the subwords are in fact words, e.g., “get” [31]. In
this step, punctuation (e.g., semi-colon ") is treated as a common
character.

Step 2 - Subword embedding with word2vec: Given a subword-
tokenized Jimple code corpus C with vocabulary size |C|, our ap-
proach learns a subword embedding matrix E € RICd where d
is a hyperparameter referring to the embedding dimension (d is
usually set to 100). It uses the popular Skip-gram with negative
sampling (SGNS) method in word2vec [42] to produce E. And E is
utilized as the subword embedding matrix [42].

Step 3 - Instruction embedding: After forming the subword em-
beddings, GRAPHCODE2VEC represents every Jimple instruction
as a sequence of subword embeddings (wg, wi, ..., Wy,), by using a
bidirectional LSTM (BiLSTM). The role of BiLSTM is to learn the
embedding of the instruction from the subword sequence of the

instruction. Let H; and 1; be the forward hidden state and backward
hidden state of LSTM after feeding the final subword. Then, it forms
the instruction embedding by concatenating Ht) and }: denoted as
x = (hy,).

Step 4 - Instruction embedding aggregation: The last step in
the process of forming lexical embedding is the aggregation of
the instruction embeddings in order to form the overall program
lexical embedding. The reason why we aggregate instruction-level
embedding as opposed to learning an embedding for the whole
program is that LSTMs work with sequences of limited length and
thus, truncate the instructions into small sequences (not exceed-
ing the maximal length). After tokenization, a program can have
many subwords and if one directly consider all subwords in the
program, one needs to cut these subwords into the limited sequence
length for LSTM and result in information loss. GRAPHCODE2VEC
uses element-wise addition as the instruction aggregation function.
This operation allows for the aggregation of multiple instruction
embeddings while keeping a limited vector length.

3.3 Dependence embedding

Step 1 - Building method graphs: A method graph is a tuple G =
(V,E, X,K), where V is the set of nodes (i.e. Jimple instructions), E is
the set of edges (dependence relations between the instructions), X
is the node embedding matrix (which contains the embedding of the
instructions) and K is the edge attribute matrix (which encodes the
dependencies that exist between instructions). For each node n there

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

— o«
is a column vector x, in X such that x, = (hy, h;) (instruction

embedding).

To define E and K, our approach extracts data-flow and control-
flow dependencies by invoking Soot [18, 60]. Then, GRAPHCODE2VEC
introduces an edge between two nodes if and only if the two corre-
sponding instructions share some dependence.

Step 2 - Building program graphs: A program graph consists of
a pair P = (G, R) where G = {Gy, Gy, ..., Gy } is a set of method
graphs and where R C G? is the call relation between the methods,
that is, (Gi, Gj) € R if and only if the method that G; represents
calls the method that G; represents. To represent this relation in
the GNN, GRaPHCODE2VEC introduces an entry node and an exit
node for each method and edges linking those nodes with caller
instructions.

Step 3 - Message passing function: The exact definition of the
message passing function depends on the used GNN architecture.
We choose the widely-used GNN architectures with linear com-
plexity [68] that has been successfully applied in various applica-
tion domains. GRAPHCODE2VEC employs four GNN architectures,
namely Graph Convolutional Network (GCN; Kipf and Welling
[35]), GraphSAGE [24], Graph Attention Network (GAT; Velickovié
et al. [61]), Graph Isomorphism Network (GIN; Xu et al. [70]).
Step 4 - Learning the dependence embedding: The dependence
embedding of each instruction is obtained by running the message
passing function on all nodes for a pre-defined number of itera-
tions, i.e., the number of GNN layers. Once these instruction em-
beddings have been produced, GRAPHCODE2VEC aggregates them
using the global attention pool operation [39] in order to produce
the program-level dependence embedding. Attention mechanism
can make program-level dependence embedding consider more
important nodes (instructions).

The dependence embeddings that GNN produces depend on
the learnable parameters of (a) the message passing function and
(b) bidirectional LSTM from Section 3.2. These parameters can be
automatically set to optimize the effectiveness of GRAPHCODE2VEC
either directly on the downstream task or on some pre-training
objectives, as described hereafter.

In the end, to obtain the program embedding vector, our approach
uses feature fusion as the concatenation operator that combines
both lexical embedding and dependency embedding. Specifically,
GraphCode2Vec combines the tensors of both features as one tensor
via feature fusion to reduce information loss. Concatenation has
been shown to be an effective method to fuse features without in-
formation loss when using DNN [20, 28, 38, 46], e.g., DenseNet [57]
and U-Net [58]. Although the dependence embedding inherently
encodes the lexical embedding, the importance of lexical inherently
fades away as the semantic representation is learnt. Our ablation
study (see RQ3 in Section 5) later reveals the benefits of concatenat-
ing an explicit lexical embedding with the dependence embedding.

3.4 Pre-training

Self-supervised learning has been applied with success for pre-
training deep learning models [16, 40, 53]. It allows a model to
learn how to perform tasks without human supervision [44, 78]
by learning a universal embedding that can be fine-tuned to solve

Ma and Zhao, et al.

multiple downstream tasks. In this work, we employed three (3) self-
supervised learning strategies to pre-train the BILSTM and GNN in
GraPHCODE2VEC, namely node classification, context prediction [27],
and variational graph encoding (VGAE) [36]. Node (or instruction)
classification trains the model to infer the type of Jimple instruction,
given its embedding. Context prediction requires the model to
predict a masked node representation, given its surrounding context.
Variational graph encoding (VGAE) learns to encode and decode
the code dependence graph structure. Note that these pre-training
procedures do not require any human-labeled datasets. The model
learns from the raw datasets without any human supervision.

4 EXPERIMENTAL SETUP

Research Questions: Our research questions (RQs) are designed
to evaluate the effectiveness of GRAPHCODE2VEC. In particular, we
compare the effectiveness of GRAPHCODE2VEC to the state-of-the-
art in task-specific and generic code embedding methods (see RQ1
and RQ2). This is to demonstrate the utility of GRaPHCODE2VEC in
solving downstream tasks, in comparison to specialised learning-
based approaches tailored towards solving specific SE tasks (RQ1)
and other general-purpose code embedding approaches (RQ1). We
also examine if GRAPHCODE2VEC effectively embeds lexical and
program dependence features in the latent space, and how this im-
pacts its effectiveness on downstream tasks (see RQ3). The first goal
of RQ3 is to demonstrate the validity of our approach, i.e., analyse
that it indeed embeds lexical and dependence features as intended
via probing analysis. In addition, we analyse the contribution of
lexical embedding and dependence embedding to its effectiveness
on downstream tasks by conducting an ablation study. We also
investigate the sensitivity of our approach to the choices in GrRaPH-
CoDE2VEC’s framework, e.g., model pre-training (strategy) and GNN
configuration. These experiments allow to evaluate the influence of
these choices on the effectiveness of GRAPHCODE2VEC.
Specifically, we ask the following research questions (RQs):
RQ1 Task-specific learning-based applications: Is our approach
(GrarHCODE2VEC) effective in comparison to the state-of-the-art
task-specific learning-based applications? What is the benefit of
capturing semantic features in our code embedding?
RQ2 Generic Code embedding: How effective is our approach
(GraPHCODE2VEC), in comparison to the state-of-the-art syntax-
only generic code embedding approaches? What is the impact of
capturing both syntactic and semantic features (i.e., program depen-
dencies) in code embedding? How does GRAPHCODE2VEC compare
to GraphCodeBERT, a larger and more complex model?
RQ3 Further Analyses: What is the impact of model pre-training
on the effectiveness of GRAPHCODE2VEC? Does our approach effec-
tively capture lexical and program dependence features? What is
the contribution of lexical embedding or dependence embedding
to the effectiveness of our approach on downstream tasks? Is our
approach sensitive to the choice of GNN?

Baselines: We compare the effectiveness of GRAPHCODE2VEC to
several state-of-the-art code embedding approaches (aka generic
baselines), and specialised or task-specific learning-based applica-
tions. On one hand, generic baselines refers to code embedding ap-
proaches that are designed to be general-purpose, i.e., they provide

GraphCode2Vec

a code embedding that is amenable to address several downstream
tasks. On the other hand, task-specific baselines refers to learning-
based approaches that address a specific downstream SE task, e.g.,
patch classification. Table 2 provides details about these baselines
for solution classification and patch classification. Specifically, we
evaluated GRAPHCODE2VEC in comparison to four (4) generic code
embedding approaches, namely Code2Seq [2], Code2Vec [3], Code-
BERT [17] and GraphCodeBERT [23] (see RQ2 in section 5). We
have selected these generic baselines because they have been eval-
uated against several well-known state-of-the-art code embedding
methods and demonstrated considerable improvement over them.
Besides, these approaches are recent, popularly used and have been
applied on many downstream (SE) tasks.

For task-specific learning-based approaches, we consider solu-
tion classification, and patch classification. These are popular SE
downstream tasks that have been studied using learning-based
approaches. We utilised three (3) specialised learning-based base-
line for the solution classification task, namely CNNSentence [45],
OneCNNLayer [50] and Sequential CNN [21]. We also used all four
patch classifiers (Prophet [41], PatchSim [69], SimFeatures [63] and
ODS [72]). These task-specific baselines have been selected because
they have been shown to outperform other proposed learning-based
approaches for these tasks. For instance, Sequential CNN [21] has
been evaluated against five other learning-based approaches and
demonstrated to be more effective. ODS [72] has also been shown to
be more effective and efficient than the three other patch classifiers.

Subject Programs: In our experiments, we employed eight (8) sub-
ject programs written in Java. Table 3 provides details about each
of our subject programs and their experimental usage. Notably, we
employ four (4) publicly available programs for the downstream
tasks, namely Defects4] [32], Java-Small [3], and Java250 [51]. Since
we need the bytecode representation of each program, we extract
only programs which are compilable. These datasets were em-
ployed for our comparative evaluation (see RQ1 and RQ2). We
chose these datasets because they are popular and have been em-
ployed in the evaluation of our downstream tasks in previous stud-
ies [2, 51, 72, 74]. Besides, we employed Java-Small and Java250 in
our ablation study where we evaluate the contribution of lexical and
dependence embedding to the effectiveness of GRaAPHCODE2VEC
(RQ3). We chose these two datasets for this task because they cor-
respond to tasks that require lexical and semantic information to
be effectively addressed. To further analyze GRAPHCODE2VEC (see
RQ3), we employed the Concurrency dataset [14, 19] and collected
two (2) subject programs (named LeetCode-10 and M-LeetCode)
from LeetCode*. We use these programs to investigate the dif-
ference between capturing lexical and dependence information.
In particular, the Concurrency dataset contains different concur-
rent code types, which have similar syntactic/lexical features but
different structure information. We mutated LeetCode-10 to cre-
ate M-LeetCode dataset. Our mutation preserves lexical features,
but modifies semantic or program dependence features such that
LeetCode-10 and M-LeetCode have the same lexical features, but
different semantics. For example, a simple dependence mutant in-
volves switching outer and inner loops. We utilize LeetCode-10,

“https://leetcode.com/

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

Table 3: Details of Subject Programs

Subject
Program #Progs. | Tasks/Analyses
Java-Small 11 | Method Name Prediction and Ablation Studies

Java250 75000 | Solution Classification and Ablation Studies

Defects4] 15 &5 | Mutant Prediction and Patch Classification
LeetCode-10 100 | Probing Analysis

M-LeetCode 100 | Probing Analysis

Concurrency 46 | Probing Analysis

Jimple-Graph 1976 | Model Pre-training

M-LeetCode and Concurrency for the probing analysis of our ap-
proach (GRAPHCODE2VEC).

Downstream Tasks: In our evaluation, we considered four (4) ma-
jor software engineering tasks, namely, mutant prediction, patch
classification, method name prediction, and solution classification.
These are popular downstream SE tasks that have been inves-
tigated in the community for decades. For these four tasks, we
evaluated GRAPHCODE2VEC in comparison to four generic baselines,
namely Code2Seq [2], Code2Vec [3], CodeBERT [17] and Graph-
CodeBERT [23]. Table 3 provides details on the subject programs
employed for each downstream tasks. In the following, we provide
further details about the experimental setup for each task evaluated
in this paper.
Method Name Prediction: This refers to the task of predicting the
method name of a function in a program, given a set of method
names and the body of the function as inputs [6]. This task is
useful for automatic code completion during programming. In our
experiment, all four generic baselines were evaluated for this task.
We evaluated this task using the Java-Small dataset, since it was
designed for this task in previous studies [3] (see Table 3).

Solution Classification: This refers to the classification of source
code into a predefined number of classes, e.g., based on the task
it solves [50], or programming languages [21]. This is useful to
assist or assess programming tasks and manage code warehouse.
We evaluated all four generic baselines on this task, as well as
three specialised learning-based approaches for this task, namely
CNNSentence [45], OneCNNLayer [50], Sequential CNN [21] (Ta-
ble 2). We evaluated this task using the Java250 dataset, which was
designed for this task in previous studies [51] (see Table 3).

Patch Classification: For this task, the aim is to identify the cor-
rectness of patches, i.e., if a patch is (in)correct, wrong or over-
fitting [69, 72]. In our experiment, we compare the performance of
GRAPHCODE2VEC to the four generic baselines, as well as the current
state-of-the-art learning-based approach for patch classification,
i.e, ODS [72]. We employed the Defects4] [32] dataset (see Table 3)
which has also been used by previous studies for this task [69, 72].
The goal of this task is to identify over-fitting APR patches. We used
five (5) programs and 890 APR patches® containing 643 over-fitting
patches and 247 correct patches.

Mutant Prediction: The goal of this task is to predict different types
of mutants employed during mutation testing. Mutation testing is
an important SE task that is typically deployed to determine the
adequacy of a test suite to expose injected faults in a program [47].

SWe exempted 12 patches out of the 902 patched programs used by ODS, since they
deleted complete functions, and there is no code representation for deleted functions.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

In this work, we predict if a mutant is killable or live [8]. To this
end, we employ the Defects4] [32] dataset (see Table 3) which has
been popularly employed for several SE tasks, including mutation
testing [48]. We curated a mutant prediction dataset containing 15
Java programs, and 16,216 mutants.

Pre-training Setup: For model pre-training, we curated the Jimp-
le-Graph dataset from the Maven repository®, it contains 1,976
Java libraries with about 3.5 millions methods in total. We randomly
sample around 10% data for the pre-traning purpose. These Java
libraries are from 42 application domains, this ensures a reasonable
program diversity, these domains include math and image process-
ing libraries. For the BiLSTM component (Section 3.2), we use one
layer with hidden dimension size 150. We pre-train sub-tokens us-
ing the Jimple text for each program, the sub-token embedding
dimension is set to 100 (see Section 3). We fine-tune the downstream
tasks using the obtained pre-trained weights after one epoch. All
GNNs use five (5) layers with dropout ratio 0.2. We use Adam [34]
optimizer with 0.001 learning rate. In our experiment, we evaluated
all three (3) pre-training strategies (Section 3.4).

Metrics and Measures: For all tasks, we report F1-score, precision
and recall. We discuss most of our results using F1-score since it
is the harmonic mean of precision and recall. Besides, it is a better
measurement metric than accuracy, especially when the dataset is
imbalanced (e.g., Java-Small). Hence, we do not report the accuracy
for imbalanced datasets, e.g., mutant data is imbalanced with about
30% live mutants and 70% killable mutants. We provide the code
details in the Github repository”.

Probing Analysis: The goal of our probing analysis is to ensure
that lexical and dependence features are indeed learned by Graru-
CopE2VEC’s code embedding. Probing is a widely used technique to
examine an embedding for desired properties [9, 53, 75]. To this end,
we trained diagnostic classifiers to probe GRAPHCODE2VEC’s code
embedding for our desired properties (i.e., lexical and/or program
dependence features). Concretely, we train a simple classifier with
one MLP layer fed with the learned code embedding (e.g. lexical)
to examine if our code embedding encodes the desired property. To
achieve this, we curated a dedicated dataset for training and evalu-
ating our probing classifiers. Specifically, we employ three probing
datasets, namely LeetCode-10, M-LeetCode and Concurrency (Ta-
ble 3). We have employed these datasets because they require lexical
or dependence embedding to address their corresponding tasks.

Probing Task Design: We design four probing tasks. The first
three (Task-1, Task-2 and Task-3) use LeetCode-10 and M-LeetCode,
and the last one (Task-4) uses Concurrency. Task-1 classifies what
problem the solution code solves on LeetCode-10. LeetCode-10
shares lexical token similarities within one problem group, and
some solutions from the different problem groups may have the
same semantic structure, e.g., using one for-loop. Therefore, we
hypothesize that the lexical embedding is more informative than
the semantic embedding for Task-1. Task-2 mixes LeetCode-10 and
M-LeetCode, and then judges which dataset the input code is from
(binary classification). LeetCode-10 and M-LeetCode share lots of
similar lexical tokens but the code semantic structures are different.
Hence, the semantic embedding should be more informative than

Shttps://mvnrepository.com/
"https://github.com/graphcode2vec/graphcode2vec

Ma and Zhao, et al.

the code lexical syntactic embedding. Task-3 also mixes the two
datasets but uses all the 20 labels instead of a binary classification.
Task-3 integrates Task-1 and Task-2, requiring both lexical and
semantic information. Task-4 is a concurrency bug classification
task. The code with same label can have the high lexical similarity
but the code semantic structure should be different.

GRAPHCODE2VEC’s Configuration: We employ three (3) pre-
training strategies, namely node classification, context prediction
and VGAE. Our approach supports four (4) GNN architectures for
dependence embedding (see Section 3), namely GCN [35], Graph-
SAGE [24], GAT [61] and GIN [70]. In total, we h