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Abstract—The question of which are the valuable mutants has
received little attention in mutation testing literature. Naturally,
the choice of mutants impacts the quality of the performed
analysis and has the potential of changing the conclusions of
empirical studies. To this end, we collect definitions related to
mutant quality indicators and analyses their relations. We iden-
tify two classes of indicators, related to individual mutants (Fault
Revealing, Subsuming, Hard-to-kill and Stubborn) and to mutant
sets (disjoint/dominator and distinguished). We analyse a large set
of mutants from 3,902 (real) faulty program versions, belonging
to 40 fault classes, collected from an on-line programming contest.
Our analysis categorises mutants as valuable, according to the
studied quality indicators, profiles their types and examines the
relations between them. Our results suggest that there is a large
disagreement between the indicators and that the connection
between mutant type, its quality and its ability to reveal faults is
weak. Additionally, our paper reveal that the ability of mutants
to uncover faults differs significantly across the different fault
classes and that some mutant types are well linked (or completely
disconnected) to specific fault classes.

I. INTRODUCTION

The question of what constitutes a good mutant remains
controversial and unknown. Naturally, in mutation testing
the ‘quality’ of mutants plays a central role and can have
major implications on the performed analysis. For instance,
empirical studies may come to biased conclusions if they
use all available mutants [1]. Similarly, the use of restrictive
mutant sets may result in a much lower strength testing [2].

Previous research has investigated this problem by exam-
ining the types of mutants. Mutants of specific types are
considered as more important than others as they encode
test requirements not captured by other mutant types [3].
Apart from the types of mutants, some early studies set
specific ‘quality’ criteria to judge mutants’ quality. Thus, they
suggested that mutants quality should be measured through the
‘easiness’, ratio of valid program inputs that kill the mutant, of
killing them. The underlying idea is that easy to kill mutants
(killed by most of the test inputs) are not of a particular value.

Other studies suggested that quality mutants are those that
are stubborn, i.e., resistant to killing by the test cases that
execute them, [4]. Thus, mutants that are hard to infect or
propagate, i.e., killed by few test cases that execute them are
valuable. The reason is that these mutants go beyond coverage,
i.e., the mutants are not killed by coverage-based test cases [5].

Another way to define mutants’ quality is based their
diversity wrt to the program input domain. This way good
mutants are a subset that is defined wrt to a reference set of
all mutants. Thus, good mutants are those that are killed by

different test cases than other mutants. This means that the
selected set of mutants is as much disjoint, in terms of their
killing condition, as possible [6]. In other words, disjoint mu-
tants have a minimum overlap between the mutants’ killings.
The underlying idea is that a disjoint mutant set should be
representative of all mutants, i.e., their killing must result in
the killing of all mutants, and at the same time they are the set
of the harder to kill than any other alternative set of mutants.

A related, newly suggested indicator is that quality mutants
are those that guide testers towards revealing real faults [7].
The underlying idea is that good mutants should lead to test
cases that reveal frequent real faults. Thus, instead of covering
the whole spectrum of mutants one should cover the mutants
that are most likely to be linked with faults.

Given the plethora of the mutant quality indicators, a natural
question to ask is whether there are important differences
between them and what are the links with fault revelation.
In other words, we are interested to see if the indicators agree
on which are the valuable mutants and whether these mutants
are linked with fault revelation. Answering these questions is
important in order to direct future research and increase the
understanding of the mutation testing foundations.

In this paper we study the relatively differences between the
quality indicators. We investigate the types of mutants that they
involve and explore the link between different mutant types
and different fault classes. We find that all quality indicators
identify only a few,less than 10%, mutants as good. We also
find that there is a large disagreement, between the indicators,
on which are the good mutants. In particular we find that 39%,
42% and 6% of the fault revealing mutants are also subsuming,
hard-to-kill and hard-to-propagate, while 17%, 60% and 4%
of the subsuming mutants are fault revealing, hard-to-kill and
hard-to-propagate.

Perhaps more importantly, we find a weak connection
between fault revelation and quality indicators, suggesting
the need for specialized approaches targeting the particular
class of fault revealing mutants. We also show that the link
between mutants and faults differs significantly across fault
classes. We demonstrate that almost half of the faults related
to missing code are weakly linked with mutants, while 90% of
the faults related to OAAN category are strongly linked with
SCALAR.BINARY mutants. These results suggest that future
studies should consider the particular classes of faults targeted
by the proposed approaches. Overall, our study increases the
understanding on what contributes to the mutants’ quality and
opens several directions for future research.



II. MUTANT QUALITY INDICATORS

We performed an expert literature review by considering the
papers collected in the recent survey of mutation testing [8].
Our analysis revealed the following two classes of indicators:

A. Unit-based MQIs

Fault Revealing (F.R.) are the mutants that are killed only
by test cases that reveal a fault. These mutants are the ones that
are linked with fault revelation. Thus, one should cover only
the mutants that are most likely to be linked with frequently
occuring (real) faults [7].

We consider two classes of fault revealing the mutants,
denoted as “F.R.-1.0” and “F.R.-0.9”. The first class has the
mutants that are killed only by fault revealing test cases, while
the second class involves the mutants that are killed by at least
90% of the fault revealing tests.

Subsumming mutants are defined based on the subsump-
tion relation and the indistinguished mutants. According to
Ammann et al. [9] “one mutant subsumes another if at least
one test kills the first and every test that kills the first also kills
the second”. Indistinguished are two mutants that are always
killed by the same tests.

Subsuming are the mutants that are subsumed only by in-
distinguished mutants. We consider as subsuming, all mutants
that are in the leaf nodes of the mutant subsumption graphs
[10], built based on the employed test suites.

Hard-to-kill (Hard) are the mutants that are killed only by
a small fraction of test cases. We consider two classes of hard-
to-kill mutants. Those that are killed by at most 5% and 2.5%
of the available test suites. We denote these as “Hard-0.050”
and “Hard-0.025”.

Another way to define the hardness to kill is based on the
RIP model [11]. Thus, hardness can be defined as hardness to
reach, infect and propagate. Here, we only consider mutants
that are hard to propagate.

Hard-to-propagate (HardP) are the mutants that are killed
only by a small fraction of test cases that infect them. We
consider two classes of hard-to-propagate, those that are killed
by at most 25% and 10% of the test cases that infect them.
We denote these as “HardP-0.25” and “HardP-0.10”.

B. Set-based MQIs

Non-duplicated is the set of mutants that has no indistin-
guished mutants. We approximate mutant duplication based on
the available test suites.

Disjoint/Surface - Minimal/Dominator. is the subset of
mutants with the minimum number of subsuming mutants.
Conceptually, there are no difference between disjoint/surface
and minimal/dominator mutants. The actual differences are
thin and are due to the selection procedure. Disjoint mu-
tants are a subset with minimum joint killings, approximated
through a greedy heuristic [1], [6]. Surface mutants [12]
are also approximated by a similar heuristic. The mini-
mal/dominator mutants form the actual minimal subset, se-
lected bases on a systematic procedure [10].

TABLE I: Fault Classes

AST Type Fault Class Example

Higher Order

Expression HEXP ⊖ if(C) ⊕ if(C || D)
Non-branch Stmt HDMS ⊖ printf(s); ⊖ x = y + 3;
Combination HCOM ⊖ rep(i, n) ⊕ for(...)
Non-branch Stmt HIMS ⊕ printf(s); ⊕ x = y + 3;
Branch Stmt HBRN ⊕ if(C) {printf(s); }
Others HOTH ⊖ g(0); ⊕ for(...){f(i); }

Statement

Function Call SISF ⊕ scanf(“%d′′,&n);
Type STYP ⊖ int a ⊕ long a
Control Flow SRIF ⊖ if(a > b) ⊕ if(g(a) > b)
Data Flow SISA ⊕ t = 0
Move SMOV ⊖ f(x); g(x); ⊕ f(x);

Operand

Variable DRWV ⊖ b = 0; ⊕ a = 0;
Array DCCA ⊖ int x[2]; ⊕ int x[20];
Variable DRVA ⊖ if(i > 0) ⊕ if(k > 0)
Constant DCCR ⊖ if(x > 4) ⊕ if(x > 3)

Operator

Control Flow ORRN ⊖ if(a > 0) ⊕ if(a >= 0)
Arithmetic OAAN ⊖ v2-= 2 ⊕ v2+= 2
Function Call OFPF ⊖ f(“%d′′, i); ⊕ f(“%ld′′, i);
Control Flow OILN ⊖ if(x) ⊕ if(x&&f(x))
Arithmetic OAIS ⊖ x += y ⊕ x += y / 2

TABLE II: Mutant Types

Mutated Instruction Original Instruction Type Mutated Instruction Type

STATEMENT

WHOLE STMT TRAPSTMT
WHOLE STMT DELSTMT
CALL STATEMENT SHUFFLEARGS
SWITCH STATEMENT SHUFFLECASESDESTS
SWITCH STATEMENT REMOVECASES

EXPRESSION

SCALAR.ATOM UNARY
SCALAR.BINARY BINARY
SCALAR.BINARY UNARY
SCALAR.ATOM BINARY
SCALAR.BINARY TRAPSTMT
POINTER.BINARY BINARY
SCALAR.BINARY DELSTMT
DEREFERENCE.BINARY BINARY
SCALAR.UNARY UNARY
POINTER.BINARY UNARY
DEREFERENCE.BINARY UNARY
POINTER.ATOM UNARY
POINTER.UNARY UNARY

The set-based indicators depend on the individual choice of
the individual mutants and cannot be compared with the unit-
based ones. Their relations are also well understood and thus,
in the rest of the paper we mainly focus on the unit-based.

III. EXPERIMENT SETUP

A. Programs and Faults
We used the Codeflaws benchmark [13] that involves pro-

grams selected from an on-line programming contests1. In
Codeflaws, every faulty program version is unique and has two
instances, the ‘faulty’ and the ‘fixed’ one. The former regards
the rejected, while the later the accepted submission. In total,
Codeflaws contains 3,902 faults of 40 defect classes. These
programs are of 1 to 322 lines of code and are accompanied
by a test suite that was used to test and judge the programs
as faulty and fixed. We choose Codeflaws because it contains
many, diverse, relatively hard to expose faults.

1http://codeforces.com/



To conduct a valid experimentaion, we augment the avail-
able test suites using KLEE [14], a state-of-the-art test gener-
ation tool. Although, these test suites greatly increased the
cost of our experiment, we considered their use of vital
importance as otherwise our results could be subject to “noise
effects” [15]. Overall, our experiment involved 122,261 test
cases, 3,213,543 mutants, whose execution required a total of
8,009 CPU days of computation.

We aim at investigating the link between mutants and faults.
Thus, we consider important to focus at hard faults, i.e., fault
not revealed by every test case. In total, approximately half of
our faults are trivial ones (revealed by a large fraction of test
case). Thus, we restrict our analysis on the 1,629 faults that
are revealed by less than 25% of the test cases involved.

Table I records the main fault classes in the dataset. It
is noted that these 20 classes involve more than 10 fault
instances that are revealed by less than 25% of the tests in our
test suites. Following the classification scheme of Codeflaws
the faults fall into 4 categories. The fault classes are related
to faults in operators of expressions, faults in operands of
expressions, faults in control-flow related statements (e.g.,
missing if conditional) and faults in function call statements or
other statements. The last column of Table I records examples
of the fault classes (taken from [13]). These demonstrate the
way the example faults were patched, i.e., ”−” denotes the
statement(s) deleted/modified and ”+” the statements added
in order to fix the fault.

B. Automated Tools
We used KLEE to perform test augmentation with the

following settings: a two hours time limit per program, a
Random Path search strategy, Randomize Fork Enabled, Max
Memory 2048, Symbolic Array Size 4096, Symbolic Standard
input size 20 and Max Instruction Time of 30 seconds. This
resulted in 26,229 test cases. Since the automatically generated
test cases do not include any test oracle, we used the programs’
fixed version as oracle. Thus, we considered as failing, every
test case that resulted in different observable output when
executed in the ‘faulty’ than in the ‘fixed’ program. Similarly,
we identified the killed mutants using the program output.

We built a mutation testing tool that operates on LLVM
bitcode. Actually all our metrics and analysis were performed
on the LLVM bitcode. Our tool implements 18 operators,
composed of 816 transformation rules. These include all those
that are supported by modern mutation testing tools [3]. We
thus, used the 18 operators recorded on Table II.

To reduce the influence of redundant and equivalent mu-
tants, we applied TCE [16]. Since we operate on LLVM
bitcode we compared the mutated optimized llvm codes using
the llvm-diff utility. llvm-diff is a tool like the known Unix
diff utility but for llvm bitcode. TCE Detected 523,097 and
934,415 equivalent and redundant mutants.

C. Experimental Procedure
We start our analysis by forming a pool of all availale

test cases. We then constructed a mutation-fault matrix that

TABLE III: Prevalence of mutant categories.

Category No. Mutants Ratio Program Av.

Fault Revealing (FR-1.0) 44,221 3% 27
Fault Revealing (FR-0.9) 65,809 4% 40
Subsuming 98,709 6% 61
Hard-to-kill (Hard-0.050) 111,442 7% 68
Hard-to-kill (Hard-0.025) 45,286 3% 28
Hard-to-propagate (HardP-0.25) 325,158 21% 200
Hard-to-propagate (HardP-0.10) 137,864 9% 85

Non-Duplicated 321,822 21% 80
Disjoint/Dominator 20,182 1% 12

records the mutants killed and faults revealed by each one of
the available test cases. We then applied mutation on the faulty
program versions so that we are faithful to real settings and
avoid making the Clean Program Assumption [15]. We used
this matrix to categorize the mutants.

In summary, we form the population of all mutants, identify
the mutants’ categores and analyse their relations. We consider
the relations between the indicators wrt to all killable mutants
and to mutants of the same type. For the different fault
classes, we follow the taxonomy adopted by Codeflaws [13].
Details about the considered fault classes and mutant types are
recorded on Tables I and II.

IV. RESULTS

A. Prevalence of mutant quality indicator categories

We start our analysis by measuring the prevalence of the
mutants that are characterized as good by the studied quality
indicators. Table III records the total number of mutants
involved, the ratio and average (per program) number of
them, per considered indicators. Interestingly, we can observe
that only a small fraction of all mutants (less than 10%) is
characterized as good, according to all categories (the only
exception is the HardP-0.25).

This finding suggests that the great majority of the mutants
are not good and may have undesirable effects on the inter-
pretation of the mutation score. Thus, it is likely that one can
achieve a good mutation score by simply killing bad mutants
and not the good ones. Unfortunately, this fact can have serious
implications on the confidence inspired by mutation testing [1].
Therefore, a first finding is that the majority of the mutants
are bad ones according to every quality indicator.

B. Relations between mutant quality indicators

Up to this point, our analysis has shown that few mutants
are characterized as good by every quality indicator. However,
we have seen nothing about the relations between the different
categories of the good mutants. In other words we would like
to see whether the indicators agree between themselves on
which are the good mutants and which are not.

To investigate this issue we explore the geography of
the mutants’ population. Thus, we characterize every mutant
according to the studied indicators and measure the number
of them that belong on the same and different categories. We
present these results in a pairwise manner in Figure 1. In these
diagrams the surface represent the number of mutants that



(a) Fault Revealing VS. Subsuming (b) Fault Revealing VS. Hard-to-kill (5%) (c) Fault Revealing VS. Hard-to-killl (2.5%)

(d) Fault Revealing VS. Hard-to-
prop. (25%)

(e) Fault Revealing VS. Hard-to-
prop. (10%)

(f) Hard-to-kill VS. Subsuming (g) Hard-to-prop. VS. Subsuming

Fig. 1: Relations between different mutant quality indicators

(a) Fault Revealing mutants (b) Subsuming mutants (c) Hard-to-kill mutants (5%) (d) Hard-to-prop. mutants (10%)

Fig. 2: Types of mutants involved in the mutant quality indicator categories

belong to each category. The surfaces have been scaled so
that they reflect the actual size relation between the different
categories. Thus, we can see that FR-1.0 are less (in number)
than the subsuming mutants.

A first observation from Figure 1 is that there is a large dis-
agreement, between the indicators, on which are good mutants.
In particular we observe that hard-to-propagate mutants is a
distinct category, i.e., it has a very small overlap with every
other category. We also observe a medium to small overlap of
fault revealing with the subsuming and hard-to-kill mutants.

Interestingly when relaxing the fault revealing probability to
90% (FR-0.9) results in a movement away from the subsuming
or hard-to-kill mutants. These results suggests that not all the
mutants are linked to faults. As subsuming mutants represent
the whole spectrum of mutants they include many that are not
linked with faults. On the contrary fault revealing ones belong
to those parts of the spectrum that are linked with the faults
and overall these two categories are not the same. Thus, future
research should devise techniques to specialize mutants to the
targeted domain or faults.
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(d) Hard-to-prop. mutants (10%)

Fig. 3: Ratio of mutants involved in quality indicator categories per mutant type

Another interesting result is that hard-to-kill mutants have
a large overlap with subsuming mutants. Still they are not
the same, but a large proportion of them is included. We
continue our analysis by presenting the exact relations in terms
of percentages, measured wrt to each category.

Fault Revealing VS. Subsuming: Our results suggests that
39% and 27% of the fault revealing mutants, with probability
equal to 1.0 and 0.9, are also subsuming. Interestingly, 17%
and 18% of the subsuming mutants are also fault revealing
(with probability equal to 1.0 and 0.9). This results suggest
that only a few of the subsuming mutants are linked with the
faults and that more than half of all the mutants that are linked
with the faults are subsumed (not subsuming!).

Fault Revealing VS. Hard-to-kill: We find that 42% and
29% of the fault revealing mutants, with probability equal to
1.0 and 0.9, are also Hard-to-kill (killed with less than 5% of
the tests). On the other side, 16% and 17% of the Hard-to-kill
mutants (killed with less than 5% of the tests) are also fault
revealing (with probability equal to 1.0 and 0.9). This result
suggests that there is a (slightly) stronger link between faults
and hard-to-kill than faults and subsuming mutants.

When consider stronger mutants, killed by less than 2.5%
of the tests, we find that 18% and 12% of the fault revealing
mutants, with probability equal to 1.0 and 0.9, are also Hard-
to-kill (killed with less than 2.5% of the tests). Considering
the inverse relation we find that 18% and 18% of the Hard-to-
kill mutants (killed with less than 2.5% of the tests) are also
fault revealing (with probability equal to 1.0 and 0.9). This
suggests that stronger mutants have a weaken link with the
faults than less strong ones.

Fault Revealing VS. Hard-to-propagate: 6% and 7% of

the fault revealing mutants, with probability equal to 1.0 and
0.9, are also Hard-to-propagate (killed by less than 25% of
the tests that infect the mutant) and 1% and 1% of the Hard-
to-propagate mutants (killed by less than 25% of the tests
that infect the mutant)are also fault revealing (with probability
equal to 1.0 and 0.9). When consider stronger mutants, 1% and
1% of the fault revealing mutants, with probability equal to
1.0 and 0.9, are also Hard-to-propagate (killed by less than
10% of the tests that infect the mutant). The inverse relation
shows that ≈ 0% and 1% of the Hard-to-propagate mutants
(killed by less than 10% of the tests that infect the mutant)
are also fault revealing (with probability equal to 1.0 and 0.9).
These show that a very weak link exists between the faults and
hard-to-propagate mutants.

Subsuming VS. Hard-to-kill: 60% and 38% of the sub-
suming mutants are also Hard-to-kill (killed with less than
5% and 2.5% of the tests) and 53% and 83% of the Hard-to-
kill mutants (killed with less than 5% and 2.5% of the tests)
are also subsuming. This relation shows the relatively strong
link between the subsuming and hard-to-kill mutants.

Subsuming VS. Hard-to-propagate: 4% and 1% of the
subsuming mutants are also Hard-to-propagate (killed by less
than 25% and 10% of the tests that infect the mutant) and
1% and 1% of the Hard-to-propagate mutants (killed by less
than 25% and 10% of the tests that infect the mutant) are
also subsuming. This relation shows the weak link between
hard-to-propagate mutants and other categories.

Hard-to-kill VS. Hard-to-propagate: 1% and ≈ 0% of the
Hard-to-kill mutants, with probability equal to 1.0 and 0.9, are
also Hard-to-propagate (killed by less than 25% of the tests
that infect the mutant) and ≈ 0% and ≈ 0% of the Hard-to-



propagate mutants (killed by less than 25% of the tests that
infect the mutant) are also Hard-to-kill (with probability equal
to 1.0 and 0.9). When consider stronger mutants, 0% and 0%
of the Hard-to-kill mutants, with probability equal to 1.0 and
0.9, are also Hard-to-propagate (killed by less than 10% of
the tests that infect the mutant). 0% and 0% of the Hard-to-
propagate mutants (killed by less than 10% of the tests that
infect the mutant) are also Hard-to-kill (with probability equal
to 1.0 and 0.9). This relation also shows the weak link between
hard-to-propagate mutants and other categories.

C. Mutant types and quality indicators
We investigate the link between mutant type (characterized

by its syntactic transformation) and quality indicators by
checking whether there are types of mutants that are more
likely to generate good mutants. We thus, check the types of
mutants involved in every category, i.e., the ratio of the good
mutants that are of each type. We also measure the ratio of the
good mutants among those generated per considered mutant
type. The former case shows the types of mutants composing
the good ones, while the later shows whether the type of
mutants relates to the good ones.

Figure 2 presents the types of mutants involved in the
studied categories. For simplicity we have omitted the
results of Hard-to-kill-0.025 and Hard-to-propagate-0.10,
as they are quite similar to those of Hard-to-kill-0.050 and
Hard-to-propagate-0.25. Interestingly, the majority of the
mutants are of the same types (the top 4 most prevalent
types are the same). Thus, the types of SCALAR.BINARY-
SCALAR.BINARY, SCALAR.BINARY-SCALAR.UNARY,
SCALAR.ATOM-SCALAR.UNARY and SCALAR.ATOM-
SCALAR.BINARY cover more than 80% of all the good
mutants. However, this is due to the number of mutants that
are generated by these operators.

The graphs of Figure ?? record the ratios of mutants (of
the same type) involved in the studied categories for every
consider mutant type. Interestingly, the profiles of the four
categories differ significantly. This shows (again) that the
indicators disagree between them and characterize different
mutants (and different types) as good ones. Interestingly, all
types of mutants (with one exception) contributes to all the
categories, indicating that all of them are of a value.

We also observe that with a few exceptions the mutant type
does not seem to mater much on any category. Regarding
the fault revealing mutants, 5 types seems to generate larger
proportions of good mutants than the other 12, but overall all
types have a similar ratio. Subsuming and hard-to-kill mutants
have one type, the SWITCHREMOVECASES, which generates
a significantly higher ratio of good mutants. However, beside
this type all other mutant types generate similar ratios. The
case of hard-to-propagate mutants is a bit different as it
involves 6 types with a rather low contribution, while the rest
12 types have similar ratios. Overall, by comparing the results
of Figures 2 and ?? we see that some (few) mutant types are
more important than others but overall, all mutant types are
important.

D. Fault classes with no fault revealing mutants
Having investigated the link between mutant type and

quality indicators, we turn our analysis on the different fault
classes. We thus, investigate which types of faults have no
fault revealing mutants. This is important as these cases are
faults that are likely to be missed by mutation testing. Overall,
in our dataset, we have 462 faulty program versions without
any fault revealing mutant. This number accounts for 12% of
the faults in our dataset, which is in line with the 13% reported
by the literature [15]. To investigate whether there is any link
between fault class and absence of fault revealing mutants we
report the percentage of faults (per class of faults) without
fault revealing mutants. In order to avoid coincidental results
we removed from our dataset every faulty class that includes
less than 10 fault instances. This resulted in 20 faulty classes,
out of the 40 faulty classes included in the dataset.

Figure 5 reports the percentages of the faulty program
versions (of the same fault class) with no fault revealing
mutants. From these results we observe that 5 classes have
a relatively low ratio (with less than 15%) of cases with
no fault revealing mutants. 12 classes have ratios between
15%-35%, while 3 classes have a relatively large number
of faults (without fault revealing mutants). Thus, we can
conclude that mutation is not particularly good at detecting
faults of these three classes, (Operator-ControlFlow-OILN,
Operand-Array-DCCA and HigherOrder-Expression-HEXP).
Interestingly, the OILN and HEXP classes are faults belonging
to the general category of omission faults, i.e., faults due to
missing code. Omission faults form a known weaknes of code-
based techniques [17] and thus, having a strong link with more
than half of them is important. The other problematic category
is the DCCA class that regards the size of arrays indicating
the need for mutation operators related to these faults.

E. Links between mutant types and fault classes
To investigate the link between mutant types and fault

classes, we measure, for every considered class, the ratio of
faulty programs with fault revealing mutants. Thus, we expect
a high ratio when there is a strong link, and a low ratio when
there is a weak link. Since every type of mutants involve
different number of mutant instances, we also normalize our
results with respect to the number of mutants involved. This
way we can see whether there are significant differences
between the pairs of mutant types and fault classes.

Figure 4 presents the ratios of faulty versions with fault
revealing mutants for all pairs of mutant type and fault
classes. From these plots we can see that some mutant
types (SCALAR.BINARY SCALAR.BINARY) are linked with
specific fault classes (OAAN), while some mutant types
(POINTER.ATOM POINTER.UNARY) are linked with many
fault classes. This suggests that for specific cases there is a
strong link between mutant type and revealed class of fault.
When normalizing with respect to the number of mutants the
link is less clear, but strong for specific pairs, such as the
mutant types CALL SHUFFLEARGS and SCALAR.BINARY
DELSTMT with fault class OAAN.
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(a) Ratio of faults for every fault class
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Fig. 4: Ratio of faulty versions with fault revealing mutants (among all faults of the same type) per fault class and mutant type
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Fig. 5: Faulty versions without fault revealing mutants (ratios)

In conclusion, our results suggests that considering fault
classes is important as every class is linked with different
mutant types. The differences between mutant types and fault
classes provide further evidence that all types of mutants are
needed and that there is no dominant type of mutants. Perhaps
more importantly, our results reveal that experimental results
need to be validated with a diverse class of faults, each one
of which should be separately be considered.

V. CONCLUSION

In this paper we studied the relatively differences between
the mutant quality indicators. We found that all indicators
identify only a few (less than 10%) mutants as good and that
there is no consensus on which mutants should be considered
as good. We also found that all mutant types generate valuable
mutants, fact indicating that all types of mutant should be used.
Overall, we find that some isolated mutant types contribute
more on the good mutants, the general trend is that the
discriminative power of the mutant type is limited. Perhaps
more importantly, we find a weak connection between the
fault revelation and quality indicators, suggesting the need for
specialized approaches targeting the particular class of fault
revealing mutants. Finally, our results demonstrate that the
fault revelation ability of mutants differs significantly across
the studied classes of faults, indicating that future studies

should consider the particular fault classes they target and are
involved in the experimental datasets.
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