
MUTEN: Mutant-Based Ensembles for Boosting
Gradient-Based Adversarial Attack

Qiang Hu∗, Yuejun Guo†, Maxime Cordy∗, Mike Papadakis∗ and Yves Le Traon∗
∗University of Luxembourg, Luxembourg

†Luxembourg Institute of Science and Technology, Luxembourg

Abstract—Mutation testing (MT) for deep learning (DL) has
gained huge attention in the past few years. However, how MT
can really help DL is still unclear. In this paper, we introduce
one promising direction for the usage of mutants. Specifically,
since mutants can be seen as one kind of ensemble model and
ensemble model can be used to boost the adversarial attack, we
propose MUTEN, which applies the attack on mutants to improve
the success rate of well-known attacks against gradient-masking
models. Experimental results on MNIST, SVHN, and CIFAR-
10 show that MUTEN can increase the success rate of four
attacks by up to 45%. Furthermore, experiments on four defense
approaches, bit-depth reduction, JPEG compression, Defensive
distillation, and Label smoothing, demonstrate that MUTEN can
break the defense models effectively by enhancing the attacks
with the success rate of up to 96%.

I. INTRODUCTION

Recently, researchers [1], [2] tried to employ mutation
testing (MT), a famous software testing technique, to help test
deep learning models. To that end, multiple mutation operators
that are specifically designed for DNNs have been proposed.
However, there are always doubts about the meaningfulness
of the existing direction of MT for DNNs [3]. Different from
the conventional software systems whose test oracle is easy
to be defined, DNNs are data-driven and built by complex
polynomial iteration. It is hard to analyze the quality of
test suites and define the bug of DNNs. How to use MT
to ensure the quality of test suites and further reveal the
buggy behavior of DNNs is unclear. As a result, the real
usage of existing proposed mutation operators is unknown. In
this paper, we demonstrate that mutants can boost adversarial
example generation.

Roughly speaking, an adversarial example is typically
crafted by adding a subtle perturbation to a benign input in
a way that misleads a DNN model. Adversarial examples
are useful not only to reveal security threats in DNNs, but
also to improve their robustness, e.g., through adversarial
training [4]. Many adversarial attacks have been investigated.
In general, there are two types of methods according to
accessible information. Black-box attacks have no knowledge
of the model, while white-box ones have full access to model
information such as its architecture, gradient, and weights.
Most white-box adversarial attacks are gradient-based, in the
sense that they utilize the gradient of the loss function with the
hope to compute the perturbation direction that will maximize
the likelihood of misclassification. To ensure the secure usage
of DNNs and defend against gradient-based attacks, gradient

masking [5] has been proposed to obfuscate gradients to
reduce the attack success rate of attacks.

We propose MUTEN, a fast and effective way to attack
models with masked gradients. The effectiveness of our ap-
proach leans on Liu et al.’s work [6], where they show that
adversarial examples crafted from an ensemble of surrogate
models transfer relatively well to the original model. Unlike
their method, though, MUTEN avoids the prohibitive cost of
training multiple models. More precisely, we generate a set
of mutant models, obtained by altering the original one (e.g.,
by introducing random noise into its weights). Working in
white-box settings, we also include the original model in the
ensemble. Thus, the overhead of attacking the ensemble is
limited to applying the attack to each mutant and computing
the average of the perturbations.

Given that there exist many ways to mutate a model [1],
we utilize mutation combinations to increase attack success
rates. Our hypothesis is that an effective ensemble should
contain a diverse set of accurate mutants. On the one hand,
we ensure that the mutants retain the performance (test accu-
racy) of their original model by controlling the proportion of
modified weights, neurons, or layers. On the other hand, we
propose a greedy algorithm to select diverse mutants where the
diversity is measured by the centered kernel alignment (CKA)
metric [7] and PageRank algorithm [8]. To summarize, the
main contributions of this paper are:

1) We introduce a new direction for the usage of mutation
testing on real mML problems and propose MUTEN, a
novel approach to boost the effectiveness of gradient-
based attacks using mutants by up to 45%.

2) We evaluate MUTEN against four defense approaches
and show that MUTEN can effectively break the de-
fenses with a success rate of up to 96%.

II. BACKGROUND

A. Adversarial Attacks

Adversarial attacks aim at generating adversarial examples
that DNNs can not predict correctly by introducing invisible
perturbation to existing data samples. From the testing per-
spective, adversarial examples are usually used as test samples
to test the robustness of DNNs. How to effectively generate
adversarial examples is an important problem. In this work,
we consider boosting gradient-based attacks which are the
most effective ones. Two powerful attack methods have been

1

studied, Projected Gradient Descent (PGD) [4] and Carlini
and Wagner attack (C&W) [9].

B. Mutation of Deep Learning Models

Post-training mutation of DNNs has been applied mainly
for quality assurance purposes. Due to the unique characters of
DNN models, various mutation operators have been proposed
at the source level (modifying the training data or the training
program) or at model level [1].

In this paper, we apply model-level mutations, where a
mutant is created directly by changing the neurons, weights,
or layers slightly without training. In general, modifying the
layers requires specific architectures of the DNN models and
degrades the performance (accuracy) significantly, and is less
applicable. Both the weight- and neuron-level operators work
efficiently to generate mutants and are more widely used.

Recent studies have shown the utility of mutation in differ-
ent tasks. Ma et al. [1] propose to mutate test data class by
class to figure out the weakness, which is helpful to check for
bias in data. Hu et al. [2] point out that by a defined killing
score metric, the mutants can be used to validate how robust
a DNN model is against input data or its segment. In [10],
Wang et al. assume that the adversarial examples are near the
decision boundary, thus, the data that change the labels by
different mutants are considered as adversarial examples.

III. APPROACH

We aim to improve the success rate of gradient-based
adversarial attacks applied to gradient-masking models. The
main idea of MUTEN is to produce a collection of diverse
mutant models to build an ensemble, and attack the ensemble
instead of the single original model.

A. Diverse Mutant Generation

Previous research has shown that mutating layers always
degrade the performance (test accuracy) significantly [1].
Therefore, we consider 5 operators that only make changes
at the weight- and neuron-level. The Gaussian fuzzing (GF)
operator adds noise to selected weights. The weight shuffling
(WS) rearranges selected weights. The neuron effect blocking
(NEB) resets the connection weight of a selected neuron to
the next layer to zero. The neuron activation inverse (NAI)
operator inverts the activation status of a neuron. The neuron
switch (NS) exchanges two neurons within the same layer.

The centered kernel alignment (CKA) [7] metric and the
PageRank algorithm [8] are used to control mutant diversity.
More precisely, CKA measures the similarity between DNNs.
Given the input data X , let H1 and H2 be two feature matrices
of X by two models, respectively. H1 and H2 are considered
as the DNN representations. The similarity between H1 and
H2 is defined by

CKA (K,L) =
HSIC (K,L)√

HSIC (K,K)HSIC (L,L)
(1)

where K and L are the kernel matrices by passing H1 and H2

through kernels. HSIC is the Hilbert-Schmidt independence

criterion. Like [11], we use the output of the last hidden layer
in a DNN as the feature.

The PageRank algorithm aims at measuring the impor-
tance/rank of website pages where a page linked to many pages
has a high rank. Inspired by this, taking a mutant as a website
page and the similarity as the linking weight, we assume that
the mutant with a low rank is diverse within the mutant set as
it is dissimilar from the others.

Algorithm 1 shows our overall generation method. To
increase the diversity of generated mutants, we use 20 pairs of
mutation operators and ratios. Note that the mutation ratio R
controls the percentage of weights or neurons to be selected in
each layer. As applying more mutations has a higher likelihood
to decrease model performance, we randomly set it between
1% and 4% following the previous findings of Ma et al. [1].
The mutant set Mu and a similarity matrix D are initialized
to be empty, and a counting index count is used to control
the termination of the algorithm (Line 1). In each iteration,
a pair of mutation operators and ratios is randomly selected
from all the candidates (Line 3) to generate a mutant (Line 4).
After the first iteration, Mu is updated with a mutant (Lines
5-6). When a new mutant is generated, first, we compute the
linear CKA similarity between this mutant and the ones in
Mu to update the similarity matrix D (Line 8). If the size of
Mu is smaller than n, the procedure continues, otherwise, D
is fed into the pageRank function to compute the diversity
and update Mu (Lines 9-12). The maximum size of Mu is
n. The iteration terminates until it reaches a preset number of
iterations.

Algorithm 1: Greedy mutant generation
Input: M : DNN model

O = {GF, WS, NEB, NAI, NS}: mutation operators
R = {0.01, 0.02, 0.03, 0.04}: mutation ratios
n: required number of mutants
ite: number of iterations

Output: Mu: a set of mutants

1: Initialize Mu, D, count = 0
2: while count < ite do
3: (o, r) = randomSelect (O,R)
4: m = mutantGenerator (M, o, r)
5: if |Mu|==0 then
6: Mu = {m}
7: else
8: D = computeCka (m,Mu)
9: if |Mu| < n then

10: Mu = Mu ∪ {m}
11: else
12: Mu = pageRank (D,Mu,m)
13: end if
14: end if
15: count++
16: end while
17: return Mu

B. Ensemble Model Construction
Fig. 1 illustrates how we construct an ensemble. Given

the training data, a model is trained with a specific archi-

2

tecture and parameters. By the greedy algorithm mentioned
in Algorithm 1, multiple diverse mutants are obtained. In the
example, we show the effect of the mutation operators GF,
NEB, and NS, and the modified weights and neurons are
highlighted in blue. At last, an ensemble model is built by
gathering all the original models and their mutants. When
performing an adversarial attack, we use the simple average
strategy [12]. That is, the attack accesses each base model to
obtain the gradient given an input sample, then the perturbation
is calculated based on the average of all the gradients.

Data

training

DNN model

Mutant n

greedy mutating and selecting

GF NEB NS

Ensemble model

Mutant 1 Mutant 2

Fig. 1: Example of building an ensemble model.

IV. EXPERIMENTS

A. Experimental Setup

a) DNNs and datasets: We conduct the experiments on
three widely used image datasets, MNIST [13], SVHN [14],
and CIFAR-10 [15]. MNIST is a 10-class grayscale handwrit-
ten digit dataset. SVHN is a real-world image dataset including
10 classes of street view house numbers. CIFAR-10 is a 10-
class dataset with color images. For MNIST and SVHN, we
employ the LeNet5 model as [16]. For CIFAR-10, we use
VGG16 and ResNet20V1. Table I summarizes the detailed
information of datasets and models. As we generate weight-
and neuron-level mutants, the number of weights and neurons
are also given in the third and fourth columns, respectively.
For defenses, please refer to Section IV-C.

Dataset Model #Weights #Neurons #Tests Accuracy(%)

MNIST LeNet5 107550 236 10000 98.89
SVHN LeNet5 136650 236 26032 88.93
CIFAR-10 ResNet20V1 270896 794 10000 90.71

VGG16 2851008 1674 10000 91.17

TABLE I: DNNs and datasets

b) Attacks and parameter setting: Two widely used
gradient-based attacks, PGD (l∞-norm) and C&W (l2-norm)
are used for evaluation. Both attacks are implemented using
the IBM ART framework [17]. Multiple perturbation levels
are used for each attack to avoid the influence of parameter
settings. Table II details the perturbation settings of each
attack. Besides, the maximum iteration of PGD is set as 40
and 20 for MNIST/SVHN and CIFAR-10, respectively. The
learning rate of C&W is 0.1, and the maximum iteration is
100 for all datasets. The default setting in ART is applied to
other parameters.

Dataset PGD
ϵ

C&W
c

MNIST
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 7, 8, 9, 10, 11, 12, 13SVHN

CIFAR-10 2
255

, 4
255

, 6
255

, 8
255

, 10
255

, 12
255

, 14
255

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

TABLE II: Attack configurations. “ϵ” and c stand for the maximum
perturbation and initial constant, respectively.

B. Performance on Clean Models

Three series of experiments are conducted to evaluate
MUTEN. Each experiment was repeated five times to reduce
the influence of randomness in both the creation of mutants
and the application of attacks. The reported results are the
average of those five runs.

a) Effectiveness: The effectiveness is measured as the
success rate of applied attacks. The success rate of attacking
the original model is taken as the baseline. Since the success
rate converges mostly when the ensemble includes 5 mutants,
we only present the result with this number. As shown
in Fig. 2, overall, MUTEN achieves a higher success rate
than baselines, especially as the maximum perturbation size
increases. For example, in the case of PGD with VGG16,
the success rate by MUTEN reaches 0.97, while the baseline
increases by 0.62 with the maximum perturbation size.

b) Impact of the number of mutants: Here, we investigate
how the number of mutants in the ensemble model impacts
the effectiveness of MUTEN. We use the commonly used
configurations (ϵ = 8

255 , c = 0.3) for the attacks and consider
a number of mutants ranging from 1 to 10. Fig. 3 shows the
results. In general, the success rate of MUTEN increases as
more mutant is integrated but tends to saturate quickly in the
cases of PGD. Concerning the improvement of success rate, it
increases from 0.32 to 0.43 in PGD, and -0.09 to 0.21 in C&W.
In the case of PGD, a very high improvement of success rate
can be reached with only 1 mutant, which is only the double-
time of attacking the original model. Adding more mutants
will increase the success rate but with a slower growth rate. In
the case of the strongest attack, C&W, the success rate is lower
than the baseline when the ensemble includes 1 mutant, which
also happens to the other models. The reason is that for C&W,
when the parameter c is small, the gradient loss has a small
contribution to the loss function used by the attack algorithm.
By contrast, letting the gradient loss be more important by
increasing c, the success rate boosts quickly. Thus, in this case,
to increase the success rate of C&W, one can either adjust c
to be greater or include more mutants.

c) Diversity of mutants: Last, we investigate if the di-
versity contributes to MUTEN. We produce three types of
mutants, diverse, random, and similar. The random mutants
are generated by random selection, and similar mutants are
created by limiting the test accuracy to at least 95% reserved
for the original model. Fig. 4 shows the result. In general, the
diverse ensemble performs the best, and the random ensemble
outperforms the similar one. In the case of PGD, when the
perturbation is small (e.g., < 4

255), the difference between
using three types of mutants is slight. By increasing the

3

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

0.6

0.7

0.8

0.9

1.0
Su

cc
es

s
ra

te

Baseline
MUTEN

(a) MNIST, PGD

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.95

0.96

0.97

0.98

0.99

Su
cc

es
s

ra
te

Baseline
MUTEN

(b) SVHN, PGD

2
255

4
255

6
255

8
255

10
255

12
255

14
255

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s

ra
te

Baseline
MUTEN

(c) ResNet20V1, PGD

2
255

4
255

6
255

8
255

10
255

12
255

14
255

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s

ra
te

Baseline
MUTEN

(d) VGG16, PGD

7 8 9 10 11 12 13
c

0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

Su
cc

es
s

ra
te

Baseline
MUTEN

(e) MNIST, C&W

7 8 9 10 11 12 13
c

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Su
cc

es
s

ra
te

Baseline
MUTEN

(f) SVHN, C&W

0.1 0.15 0.2 0.25 0.3 0.35 0.4
c

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Su
cc

es
s

ra
te

Baseline
MUTEN

(g) ResNet20V1, C&W

0.1 0.15 0.2 0.25 0.3 0.35 0.4
c

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Su
cc

es
s

ra
te

Baseline
MUTEN

(h) VGG16, C&W

Fig. 2: Success rate VS. attack configuration. The shaded area indicates where MUTEN outperforms the baseline.

1 2 3 4 5 6 7 8 9 10
#mutant

0.6

0.7

0.8

0.9

Su
cc

es
s

ra
te

Baseline
MUTEN

(a) PGD

1 2 3 4 5 6 7 8 9 10
#mutant

0.15

0.20

0.25

0.30

0.35

0.40

Su
cc

es
s

ra
te

Baseline
MUTEN

(b) C&W

Fig. 3: Impact of the number of mutants. Dataset: CIFAR-10. DNN:
VGG16.

number of iterations of the greedy algorithm, the mutants
can be more diverse, and the difference between random and
diverse ensembles becomes greater.

2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

Su
cc

es
s

ra
te

Diverse
Random
similar

(a) PGD

0.1 0.15 0.2 0.25 0.3 0.35 0.4
c

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Su
cc

es
s

ra
te

Diverse
Random
similar

(b) C&W

Fig. 4: Success rate VS. type of mutants. Each ensemble model
includes 5 mutants. Dataset: CIFAR-10. DNN: VGG16.

C. Performance on Gradient Masking-Based Defenses

Additionally, we evaluate the effectiveness of MUTEN
against four gradient masking-based defense approaches, Bit-
depth reduction [18], JPEG compression [18], Defensive dis-

tillation [19], and Label smoothing [20]. Table III summarizes
the defenses and the result of the attack success rate. The
results demonstrate that MUTEN can bypass these defenses
with a high attack success rate.

Defense Accuracy Attack Baseline MUTEN

Bit-depth reduction 90.98%
PGD

ϵ : 8
255

0.51 0.95
JPEG compression 90.54% 0.50 0.94
Defensive distillation 91.85% 0.61 0.96
Label smoothing 91.43% 0.67 0.82

TABLE III: Effectiveness of MUTEN against defenses. “Baseline” is
DNNs without defense. Dataset: CIFAR-10. DNN: VGG16.

V. CONCLUSION AND FUTURE WORK

We introduced a new direction of the usage of mutation
testing for machine learning problems - using mutants to boost
adversarial attacks. We proposed MUTEN, a novel method to
build an ensemble by using diverse mutants to modify the
gradient for the attacks to easier figure out the perturbation
direction. The experiments on different datasets and models
have demonstrated that MUTEN performs promisingly to
increase the success rate of state-of-the-art gradient-based
adversarial attacks with only a few mutants.

In the future, we plan to 1) evaluate MUTEN on larger
datasets (e.g., ImageNet) and models (e.g., DenseNet121) to
show its effectiveness, and 2) explore the direction of using
mutants to build adversarial attack defense methods.

ACKNOWLEDGMENTS

This work is supported by the Luxembourg Na-
tional Research Funds (FNR) through CORE project
C18/IS/12669767/STELLAR/LeTraon. Yuejun Guo is sup-
ported by the European Union’s Horizon Research and In-
novation Programme under Grant Agreement n◦ 101070303.

4

REFERENCES

[1] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: mutation testing of
deep learning systems,” in 29th International Symposium on Software
Reliability Engineering (ISSRE). Los Alamitos, CA, USA: IEEE
Computer Society, October 2018, pp. 100–111. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ISSRE.2018.00021

[2] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
a mutation testing framework for deep learning systems,” in 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), San Diego, CA, USA, December 2019, pp. 1158–1161.

[3] A. Panichella and C. C. Liem, “What are we really testing in
mutation testing for machine learning? a critical reflection,” ser.
ICSE-NIER ’21. IEEE Press, 2021, pp. 66–70. [Online]. Available:
https://doi-org.proxy.bnl.lu/10.1109/ICSE-NIER52604.2021.00022

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” in
6th International Conference on Learning Representations (ICLR),
Vancouver Convention Center, Vancouver, BC, Canada, April 2018.
[Online]. Available: https://openreview.net/forum?id=rJzIBfZAb

[5] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, April 2017, pp. 506–519.

[6] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in 5th International
Conference on Learning Representations (ICLR), Toulon, France, April
2017. [Online]. Available: https://openreview.net/forum?id=Sys6GJqxl

[7] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity
of neural network representations revisited,” in 36 th International
Conference on Machine Learning (ICML). Long Beach, California:
PMLR, 2019. [Online]. Available: https://proceedings.mlr.press/v97/
kornblith19a/kornblith19a.pdf

[8] C. B. Moler, Experiments with MATLAB. Society for Industrial and
Applied Mathematics, 2011.

[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, May 2017. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP.2017.49

[10] J. Wang, G. Dong, J. Sun, X. Wang, and P. Zhang, “Adversarial sample
detection for deep neural network through model mutation testing,”
in ICSE, ser. ICSE ’19. IEEE Press, May, p. 1245–1256. [Online].
Available: https://doi-org.proxy.bnl.lu/10.1109/ICSE.2019.00126

[11] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Transactions on Software Engineering and Methodology, vol. 29, no. 4,
October 2020. [Online]. Available: https://doi-org.proxy.bnl.lu/10.1145/
3394112

[12] N. Demir, “Ensemble methods: elegant techniques to produce improved
machine learning results,” https://www.kdnuggets.com/2016/02/
ensemble-methods-techniques-produce-improved-machine-learning.
html/2, 2016.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278 – 2324, November 1998.

[14] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsupervised
feature learning,” in NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011. [Online]. Available: http:
//ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[15] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Tech. Rep., 2009.

[16] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: circumventing defenses to adversarial examples,”
in ICML, vol. 80. Stockholmsmässan, Stockholm Sweden: PMLR, July
2018, pp. 274–283.

[17] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wis-
tuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy,
and B. Edwards, “Adversarial robustness toolbox v1.2.0,” CoRR, vol.
1807.01069, 2018.

[18] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering
adversarial images using input transformations,” in 6th International
Conference on Learning Representations (ICLR), Vancouver Convention

Center, Vancouver, BC, Canada, April 2018. [Online]. Available:
https://openreview.net/pdf?id=SyJ7ClWCb

[19] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in IEEE Symposium on Security and Privacy (SP). Los Alamitos,
CA, USA: IEEE Computer Society, May 2016, pp. 582–597. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP.2016.41

[20] D. Warde-Farley, “1 adversarial perturbations of deep neural networks,”
2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
28912221

5

https://doi.ieeecomputersociety.org/10.1109/ISSRE.2018.00021
https://doi-org.proxy.bnl.lu/10.1109/ICSE-NIER52604.2021.00022
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=Sys6GJqxl
https://proceedings.mlr.press/v97/kornblith19a/kornblith19a.pdf
https://proceedings.mlr.press/v97/kornblith19a/kornblith19a.pdf
https://doi.ieeecomputersociety.org/10.1109/SP.2017.49
https://doi-org.proxy.bnl.lu/10.1109/ICSE.2019.00126
https://doi-org.proxy.bnl.lu/10.1145/3394112
https://doi-org.proxy.bnl.lu/10.1145/3394112
https://www.kdnuggets.com/2016/02/ensemble-methods-techniques-produce-improved-machine-learning.html/2
https://www.kdnuggets.com/2016/02/ensemble-methods-techniques-produce-improved-machine-learning.html/2
https://www.kdnuggets.com/2016/02/ensemble-methods-techniques-produce-improved-machine-learning.html/2
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://openreview.net/pdf?id=SyJ7ClWCb
https://doi.ieeecomputersociety.org/10.1109/SP.2016.41
https://api.semanticscholar.org/CorpusID:28912221
https://api.semanticscholar.org/CorpusID:28912221

	Introduction
	Background
	Adversarial Attacks
	Mutation of Deep Learning Models

	Approach
	Diverse Mutant Generation
	Ensemble Model Construction

	Experiments
	Experimental Setup
	Performance on Clean Models
	Performance on Gradient Masking-Based Defenses

	Conclusion and Future Work
	References

