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Abstract—This paper presents intent-based mutation testing, a
testing approach that generates mutations by changing the pro-
gramming intents that are implemented in the programs under
test. In contrast to traditional mutation testing, which changes
(mutates) the way programs are written, intent mutation changes
(mutates) the behavior of the programs by producing mutations
that implement (slightly) different intents than those implemented
in the original program. The mutations of the programming
intents represent possible corner cases and misunderstandings
of the program behavior, i.e., program specifications, and thus
can capture different classes of faults than traditional (syntax-
based) mutation. Moreover, since programming intents can be
implemented in different ways, intent-based mutation testing
can generate diverse and complex mutations that are close
to the original programming intents (specifications) and thus
direct testing towards the intent variants of the program behav-
ior/specifications. We implement intent-based mutation testing
using Large Language Models (LLMs) that mutate programming
intents and transform them into mutants. We evaluate intent-
based mutation on 29 programs and show that it generates
mutations that are syntactically complex, semantically diverse,
and quite different (semantically) from the traditional ones.
We also show that 55% of the intent-based mutations are not
subsumed by traditional mutations. Overall, our analysis shows
that intent-based mutation testing can be a powerful complement
to traditional (syntax-based) mutation testing.

I. INTRODUCTION

Mutation testing has long been recognized as one of the
most powerful testing techniques [1], [2]. It generates program
variants by altering the way programs are written, i.e., by
making simple syntactic changes to the code under test. These
variants are then used as targets for differential program
analysis, that is, test writing (or test selection) with the aim
to distinguish the behavior of the original program from that
of the variants. When a test triggers a difference in the
behavior of the mutant and the original programs, the mutant is
considered as covered, called ’killed’, otherwise is considered
as not covered and called ’live’. The effectiveness of the test
suites is then measured by the mutation score, the proportion
of mutants killed over all considered mutants [2].

Traditional mutation testing operates at the program syntax
level and thus is typically oriented toward errors that are
syntactically small, i.e., the syntactic distance of the variants
to the original program is rather small. For example, a typical
mutation is to replace one operator such as ’>’ with another
’>=’ in a relational expression. This approach allows the

introduction of subtle semantic deviations that make mutation
effective at testing the behavioral boundaries of the programs
under test. At the same time, this approach limits testing to the
program logic that is actually implemented, making mutation
testing less effective in revealing complex behavior-oriented
(falling on the core of business logic) and omission faults [1].

To address these issues, we propose a novel approach to
mutation testing, namely intent-based mutation testing. An
intent is the programmer’s objective for the code, described
informally in natural language and offers a description of
the task that is implemented. For example, if a programmer
intends to create a function that calculates the factorial of
a number, the intent could be formulated as ”a function
that takes an integer as an input and calculates its fac-
torial”. Intent-based mutation aims at testing programs by
formulating alternative implementations of the same intents
(intents implemented in the original program) as well as by
formulating intent variant implementations corresponding to
slightly altered intents (mutated intents). In other words, we
generate mutated intents and contrast their respective imple-
mentations. We consider that intent-based mutation testing can
target potential misunderstandings of the program’s intents or
specifications, which include faults that are hard to capture
with traditional mutation.

By making minor adjustments to the initial intents of the
program under test, it is possible to introduce mutations that
reflect (small) misunderstandings of the actually implemented
programming intents. These adjustments lead to an imple-
mentation that is being interpreted differently from what was
originally done. Additionally, mutated intents can lead to
mutations that include global transformations spanning across
the entire intent implementation, e.g., an entire method. This
approach contrasts with traditional mutation testing, where
small and local changes are made to the programs syntax.

Intent-based mutation testing aims to find a different class
of faults and should complement traditional mutation testing.
When dealing with a programming intent, intention-based
mutation can be seen as a process that mutates the intended
behavior/specifications rather than the program. Previous work
has investigated ways to create mutations considering the code
context of mutation points [3]–[5], but these approaches are
fundamentally limited to traditional syntactic mutations and
therefore share the limitations of traditional mutation testing.
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We release intent-based mutation testing by using auto-
matic programming tools, such as Large Language Models,
to automatically formulate program implementations based on
programming intents written in natural language. We generate
intent variants by asking the tools to directly generate variant
implementations and by mutating the natural language descrip-
tions, which are then turned into actual programs and form our
intent-based mutations.

We evaluate intent-based mutation on 29 HumanEval+
programs and show that it generates syntactically complex
mutations that are semantically different from traditional mu-
tations and diverse. Perhaps more importantly, we also show
that more than 23% of the intent-based subsuming mutations
cannot be detected by any of the traditional mutation-killing
tests. Overall, our analysis corroborates the finding that intent-
based mutations are strong and introduce faults that are not
captured by traditional mutation testing techniques.

This paper makes the following contributions:
• We present intent-based mutation testing, outline its role

in testing, discuss its difference from traditional mutation
testing, and detail how it can be implemented. We also
outline future research directions towards semantic and
specification-driven testing approaches.

• We show the ability of intent-based mutation testing to
generate complex and semantically diverse mutations,
which cannot be detected by traditional mutation-based
tests, i.e., tests generated to kill traditional mutations.

• We show that intent-based mutation has the potential to
expand the fault detection abilities of mutation testing
by revealing 23% more faults than those revealed by
traditional mutation.

II. BACKGROUND AND RELATED WORK

A. Mutation Testing

Mutation testing typically operates by introducing a few
changes to the program code, thereby creating many different
versions of it (named mutants) [2]. Those changes are usually
obtained by applying predefined patterns called mutation op-
erators [2] on the target code, which can, for example, invert
relational operators (e.g., replacing ≥ with <) or arithmetic
operators (e.g., replacing + with a −), etc. Mutants can be
used to assess the strength of test suites, by measuring their
ability to trigger different behaviors from the original program.
If a test suite fails when executed on a mutant, it is said to be
killed, else, it is said to be live or survived. As some mutants
cannot be killed, i.e., if they are functionally equivalent to the
original program, they are said to be equivalent, otherwise,
they are said to be killable [6]. By computing the ratio of
killed mutants by a test suite (among all the generated ones),
we can measure the test suite adequacy. This ratio is called
the mutation score. The live mutants can serve as testing
objectives and guide developers in writing effective tests [6].
Mutation testing techniques generate redundant mutants that
can be duplicated [7] or equivalent [6], [8] to the original
program.

Much research have focused on improving the efficiency of
mutation testing, aiming at increasing the coverage, diversity
and real-fault coupling while reducing the redundancy among
the generated mutants. This has resulted in the proposal of
several pattern-based mutation techniques [9]–[11] that rely
on syntactic mutation operators. These operators have been de-
signed mainly on the basis of the target programming language
grammar and have been empirically tuned through multiple
studies [2], [6], [12]–[14] to increase their effectiveness.

With the advancement of machine learning, recent research
has focused on generating mutants based on real faults. For
instance, Tufano et al. [5] and Zao et al. [15] proposed neural
machine translation techniques to inject faults, trained on real
bug fixes. Patra et al. [16] proposed also a learning approach,
that adapts then applies pre-learned fault patterns on the target
project. Khanfir et al. [17] proposed the usage of bug reports
together with inverted automated-program-repair operators to
inject faults. Their results are promising, however, may be of
limited usability, depending on the availability of good bug
reports or diverse and untangled fix commits [18].

Degiovanni et al. [19], [20] proposed µBERT a context-
aware mutation testing technique which does not rely on his-
torical bugs or the language grammar but rather on LLM, i.e.
CodeBERT [21], knowledge of developer code. This approach
mutates the target program by replacing its tokens one at once
with inaccurate CodeBERT predictions, producing several
likely-to-occur mutants. Empirical comparative studies [22],
[23] with other learning and pattern-based approaches, give
evidence of its high efficiency and cost efficiency in generating
mutants that couple and reveal real faults, which makes it a
suitable comparison baseline for our approach.

Unlike those approaches, our approach does not apply
changes to the program code, but to its intent, written in natural
language, instead. Hence, it does not depend on any prior
particular knowledge, i.e. historical real bugs or programming
language grammar. In fact, it relies solely on the natural
language comprehension and code generation capability of
LLMs.

B. Large Language Models

Large Language Models (LLMs) [24]–[26], such as GPT
(Generative Pre-trained Transformer), have revolutionized the
field of natural language processing (NLP) with their ability to
understand and generate human-like text. One of the remark-
able capabilities of these models is their efficiency in gener-
ating code from natural language descriptions. GPT models,
in particular, can interpret a user’s intent expressed in plain
language and translate it into executable code across various
programming languages. This is achieved through extensive
training on diverse datasets, including code repositories and
documentation, enabling the model to learn syntax, semantics,
and common programming patterns. As a result, developers
can leverage GPT to automate coding tasks.
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Fig. 1: Intent-based mutation testing workflow.

III. APPROACH

Our approach uses BERT [27] to mutate the natural intent,
by replacing its tokens with the inaccurate predictions of the
model. We invoke its Masked Language Modeling (MLM)
pipeline to predict replacements of masked tokens from the
input intent, based on the context of the remaining intent text.
As the model has been trained on a large corpus, and is able
to write human-like text, even when inaccurate, we expect its
predictions to result into meaningful mutated intents.

We leverage the capability of Large Language Models
(LLMs) to link natural language descriptions (task descrip-
tions) and code to generate mutations based on code intents.
The mutations are the result of the mutated intents and/or LLM
mistakes in generating code for a given intent. A high-level
overview of the functioning of our approach is described in
Figure 1.

This approach operates in 4 distinct steps as follows:
1) It masks tokens from the given input intent, creating

several masked versions of it – one for each token.
2) Then, it passes those intents to a language model, i.e.,

BERT, to predict a value for each masked token.
3) Next, it invokes an LLM, i.e. GPT, to generate an

implementation for each of those generated intents.
4) In addition, our approach generates mutations, by gener-

ating code directly (step 3) using the original intent but
asking for multiple, i.e., 10, alternative implementations.

A. Intent masking

In this step, we mask the intent description tokens, one at
a time, producing one masked intent per token. This means
that every masked version contains the original intent with
one missing token, replaced by the placeholder <mask>.

This way, we can obtain several mutations from the same
intent with small syntactical differences (one token difference).
As we aim at introducing behavioural mutations, we exclude
tokens that are irrelevant to the text context, i.e. the punctua-
tion characters, and mask only alphanumeric tokens.

For example, for the sentence function that takes an integer,
µINTMUT produces the following masked sequences:

• <mask> that takes an integer
• function <mask> takes an integer
• function that <mask> an integer
• function that takes <mask> integer
• function that takes an <mask>

B. BERT-MLM prediction

µINTMUT invokes BERT [27], a pre-trained language
model, to predict replacements for the masked tokens. To do
so, it tokenizes every masked version into a tokens vector then
crops it to a subset one that fits the maximum size allowed
by the model (512). Next, our approach feeds these vectors to
BERT-MLM to predict the most probable replacements of the
masked token. Our intuition is that the larger the text portion
accompanying the mask placeholder, the better BERT would
be able to capture the text context, and consequently, the more
meaningful its predictions would be. This step ends with the
generation of one mutated intent per masked token.

C. LLM code generation

We employ GPT-3.5- with 0.8 temperature, to generate
code from intents written in natural language. We run it
with the intents from the previous step and generate a code
implementation per mutated intent. As those codes have been
generated via different intents, we expect them to be different,
and thus useful as mutants.

The proposed approach produces also mutants by direct
invocation of the LLM with the original code intent. This
means that for a given code intent, it asks the LLM to
generate different implementations of it, i.e. ten alternative
implementations for a given intent.

This way we can generate mutants that represent mistakes
of the intent done by the LLM. We thus, have two approaches:

1) Mutated intents (µINTMUT): Generates mutants by mu-
tating the original intent and then generating their correspond-
ing implementations.

2) Original intents (oINTMUT): Generates mutants by gen-
erating alternative implementations of the original intent.
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IV. EXPERIMENTAL STUDY

A. Research questions
Intent-based mutation testing alters the original program-

ming intents with the intention of producing similar but
different implementations. To this end, we investigate the
extent to which this is possible when using our framework.
We thus check whether the intents lead to mutations that
are syntactically and semantically different from the original
program. An additional aspect we consider is the differences
among the mutations themselves, as it is not useful to produce
variants that are not diverse. Therefore, we ask:

RQ1 (Diversity): Does intent-based mutation testing gen-
erate valid mutations that are syntactically and semantically
diverse?

We answer this question by measuring the syntactic and
semantic similarity of the intent-based mutations with the
original programs. We also check the subsumption relation-
ships among these mutations to study the semantic overlaps
between those mutations, as well as the number of mutations
that are subsuming, i.e., a typical mutation testing diversity
metric [22], [28].

Having answered this question and showed that the intent
mutations are actually valid and diverse, we contrast them with
the mutations generated by other (syntactic-based) approaches
to check whether they actually reflect different types of faults
than the syntactic methods. Hence, we ask:

RQ2 (Overlap with syntactic mutations): Are intent-based
mutations semantically different from those mutants generated
by syntactic-based mutations?

To answer this question, we compare the semantic overlaps
between the intent-based mutations with those produced by
syntactic-based methods. We further strengthen our compar-
ison; we also investigate the extent to which intent-based
mutations subsume (and are subsumed by) syntactic mutations.

The above investigations aim at checking whether intent-
based mutations are actually different from the syntactic ones,
which leaves out the question of which approach is most
effective and to what extent. Thus, we ask:

RQ3 (Effectiveness): How effective is intent-based muta-
tion testing in comparison to syntactic-based one?

To answer this question, we form mutation-based test suites,
with respect to the compared techniques, and check their
ability to kill a reference set of subsuming mutants, i.e., the
subsuming mutants of all the compared techniques together.

B. Experimental setup
HumanEval [29] is a benchmark created to evaluate the

models’ ability to generate code. It contains 164 python
programming problems written by humans, each paired with a
solution and test cases. HumanEval-x [30] is an extension of
HumanEval that contains the same 164 problems but includes
four additional programming languages: C++, Java, JavaScript,
and Go. HumanEval+ [31] is another extension of HumenEval
that uses mutation testing to augment the programs’ test suites.

We use the Java entries from HumanEval-x, specifically,
we use the problem descriptions in natural language (English)

reflecting the intentions to generate the mutants following
the intent-based mutation we introduce above. To ensure the
thoroughness of our analysis, we augment the Java entries
using test cases from HumanEval+. We extract test data and
expected results from the Python test code and translate them
to Java by adapting data types and dropping incompatible test
data. We construct Java test cases, compile, and execute them
against the ground truth solution provided by HumanEval-x,
keeping only the problems for which the entire test suite pass.

Unfortunately, our test subjects are small and result in very
few mutations for many cases. We thus, need to ensure a
reasonable number of mutations for each problem we use, and
set a minimum threshold of five killable mutants. This means
that we select from the dataset the problems for which each
approach produces at least five killable mutants, resulting in
a total of 29 problems. Table I records the summary statistics
of the number of tests and the length of the description in
terms of characters number. It includes the average, median,
maximum, and minimum values for each.

TABLE I: Descriptive statistics of the problems we consider

Statistic Mean Median Max Min
Number of Tests 659.2 865 1025 69

Length of Description 629.55 547 1462 291

C. Experimental procedure

To address RQ1, we generate mutants using µINTMUT
on the dataset problems. We start by mutating the problem
description by tokenizing it, masking one token at a time, and
using BERT to predict a replacement for it. We prompt GPT-
3.5-turbo using each of the mutated descriptions. Additionally,
we generate mutants by directly prompting GPT-3.5-turbo to
produce different implementations based on the same descrip-
tion. Finally, we mutate the original programs in the dataset
using µBERT.

The goal is to investigate whether the obtained implemen-
tations translate into mutants. To achieve this, we study the
syntactic validity and examine how syntactically different they
are from the original program by computing the syntactic
distance between them. This step includes the computation
of several metrics: BLEU score, the number of distinct to-
kens, cosine similarity, and Jaccard similarity to compute the
distance, which is the difference 1 - similarity.

Furthermore, we address semantic diversity based on test
execution and subsumption relations between mutants. We run
the mutants obtained from µINTMUT against the test cases and
identify the minimal set of mutants that subsume all the others.
To quantify this, we calculate the percentage of subsuming
mutants relative to the total number of killed mutants. A higher
percentage reflects broader differences in mutants behavior,
suggesting a more diverse set.

To answer RQ2, we begin by comparing the different
approaches semantically using the results of test failure (asser-
tions violation) by identifying the mutants killed by identical
sets of tests and illustrate the overlap. We then merge all the
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killable mutants generated from the three approaches into one
large set of mutants. From this set, we identify the minimal
subset of subsuming mutants and compute the contribution
of each approach to this set. This analysis shows the relative
importance of the mutants of one approach against the others.

To answer RQ3 and determine whether µINTMUT is more
effective than the remaining approaches, we gather all the mu-
tants from all approaches and identify their subsuming subset,
which is then used to conduct the comparison. The process
entails randomly selecting the minimal test sets that kill all
mutants generated by µINTMUT, oINTMUT and µBERT one
at a time, then using these test sets to kill the mutants of
the merged subsuming subset. Since the tests are selected
randomly, we repeat this process 100 times to reduce the
randomness impact on our results.

Test selection algorithm: we start with an empty set and
each time, we add a randomly chosen test and check if the
mutation score increases (more mutants are killed). If not, we
drop the test as it is redundant with respect to the already
selected tests. We continue this process until all killable
mutants from an approach are killed.

For comparison, we use an objective score (subsuming mu-
tation score), which corresponds to the number of subsuming
mutants in the merged set killed by the tests selected according
to one approach, divided by the total number of subsuming
mutants, and we compare the three approaches based on it.

V. RESULTS

A. RQ1: Does intent-based mutation testing generate valid
mutations that are syntactically and semantically diverse?

Syntactic validity: The mutant generation results reported in
Table II show that the three compared approaches produce
valid (compilable) mutants. In fact, the majority (over 80%)
of the implementations obtained by intent-based mutation are
valid (91% by µINTMUT and 81% by oINTMUT), which
is about three times the generation validity ratio of µBERT
(27.6%). This relatively high ratio encourages the approach’s
design to rely on instruction-based code generation LLMs, i.e.
GPT-3.5-turbo, to generate mutants as most of the generation
effort results in syntactically valid code.

Moreover, from the last column (total killed) of Table II,
we can see that a large ratio of the generated implementations
by the proposed approach behave differently from the original
code (failing tests that pass on the original code). This con-
firms that the proposed approach can generate programs that
behave differently from the original one and are thereby useful
for mutation testing.

TABLE II: Number of generated, valid, killed and alive
mutants for each approach

Total Generated Total Valid Total Alive Total Killed
µINTMUT 2357 2144 620 1524
oINTMUT 290 235 24 211
µBERT 3608 996 117 879

Syntactic distance: Table III records the mean syntactic
distance of mutants produced by the approaches from the
original code. We observe that the intent-based ones are
significantly more distant than those obtained by µBERT. For
instance, intent-based mutants are about 0.7 bleu distant from
the original code, which is over 23 times the bleu distance of
µBERT mutants that is 0.031. The same difference is observed
when comparing the cosine and jaccard distances; 0.003 and
0.021 for µBERT and 0.2 and 0.3 for intent-based mutants.
This highlights the fact that intent-based mutants are more
complex than those produced by µBERT, introducing several
changes to the original code.

TABLE III: Mean syntactic distance between the mutated
and original code

Metric 1 - BLEU Tokens Diff. 1 - cosine 1 - jaccard
µINTMUT 0.672 68.91 0.185 0.284
oINTMUT 0.724 63 0.218 0.274
µBERT 0.031 1.296 0.003 0.021

Semantic Distance: Table IV lists the average semantic
distances between the mutants and the original code. This
metric reflects the number of tests each mutant fails over the
total number of tests.

The table shows that all approaches produce mutants that
are semantically distant from the original code. From the
first columns, we can see that µBERT scores the highest
average distance of 0.336 compared to the 0.094 and 0.153
scored by respectively µINTMUT and oINTMUT. This can
be explained by the fact that µBERT produces a higher ratio
of killable/valid mutants, as illustrated in Table II). In fact,
when considering only the killed mutants, we see that all
approaches have relatively similar average distance from the
original program, 0.4 and 0.46 for those generated by µBERT
intent-based mutations. This validates our approach ability
to generate mutants; code implementations that are behaving
differently (semantically different) from the original code, and
thus can serve for mutation testing.

So far, our results show that our approach is capable
of producing syntactically valid, complex, and semantically
different mutations from the original code. In the following
part, we investigate how diverse these mutants are, that is,
how different (semantically) each mutant is from the others.

TABLE IV: Mean semantic distance between the mutations
of each approach and the original program

Metric Valid Mutants Killable Mutants
µINTMUT 0.153 0.467
oINTMUT 0.094 0.46
µBERT 0.336 0.4

Semantic diversity: We conduct a subsumption analysis [32]
among the mutations generated by our approach. The plot of
Figure 2 shows the percentage of subsuming and subsumed
mutants generated by µINTMUT. We find that the subsuming
mutants form on average 60.2% and 76.29% of the mutants
killed generated by µINTMUT and oINTMUT, respectively.
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These ratios are relatively high compared to the subsumed
mutants of µBERT that are 42.54%. This endorses the diversity
of the generated mutants by the proposed approach.

When Computing the minimal subsuming mutants set by
removing those that break the same test sets, the average
proportion of minimal subsuming mutants is 11% and 24.74%
of killed mutants generated by µINTMUT and oINTMUT
respectively. This indicates considerable ratio of subsuming
mutants being mutually subsumed, with an average of 71%
and 60.58% of all subsuming mutants for µINTMUT and
oINTMUT respectively.
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Fig. 2: Percentages of subsuming (dark grey) and subsumed
(light grey) mutants produced by µINTMUT

B. RQ2: Are intent-based mutations semantically different
from the syntactic-based ones?

Semantic Overlap: To study the diversity and overlap of
mutants generated by each approach, we consider the differ-
ences of the killing tests between the mutant we study. This
means that a mutation is unique if it is killed by a test set
that is not killing any other mutant. While mutants that are
killed by the same set of tests are considered an overlap. To
illustrate the overlap, we begin by removing all the semantic
duplicates in each approach before computing the overlap.
Figure 3 illustrates a Venn diagram of the unique mutants
generated by each approach.

From the diagram, we observe that oINTMUT has the lowest
rate of semantically unique mutants, with 24.6% of its killable
mutants being detected by a unique set of tests, compared to
64.4% and 83.3% of unique mutants in µINTMUT and µBERT
respectively. This shows that intent-based mutation produces
different types of faults compared to syntax-based mutation.
Subsumption: To study the complementarity and subsumption
between the different approaches, we merge their generated
mutants and compute their subsuming set. Then we compute
the percentage of subsuming mutants provided by each ap-
proach within this set. We plot the obtained results for every
task from our dataset in Figure 4. The boxplots show that the
three approaches contribute to forming the subsuming set with
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Fig. 3: Semantic overlap between the studied approaches.
The majority of Intent-based mutations are not covered by
traditional techniques, showing that it produces different

types of faults compared to syntax-based mutation
approaches.

ratios varying between 0% to 100% for µINTMUT and µBERT,
and between 0% to 20% for oINTMUT. This indicates that
for some tasks, one approach is subsuming the others while
being totally subsumed for other tasks, however no approach
subsumes always the other ones.

The boxplots depict also a large advantage for µINTMUT
and µBERT over oINTMUT contributing on average by 53.3%,
39.5% and 7.2% of the subsuming mutants respectively. This
difference can be explained by the limited number of mutants
generated by oINTMUT, which produced 4 and 9 times less
mutants than µBERT and µINTMUT, as indicated in Table II.
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Fig. 4: Subsuming mutants among the different approaches

C. RQ3: How effective is intent-based mutation testing in
comparison to syntactic-based one?

To have a common base of comparison between the ap-
proaches, we merge all mutants in one set and keep only the
subsuming ones. Then we measure the subsuming mutation
scores achieved by test suites designed to kill all the mutations
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Fig. 5: Distribution of subsuming mutation scores, on the reference set of subsuming mutants, achieved by test suites
selected based on each of the three approaches.

of one approach at a time. Figure 5 presents the objective
comparison scores (subsuming mutation score) scored by each
of the three approaches.

The comparison was conducted 100 times, resulting in 100
distinct scores per case. We illustrate the distributions using
boxplots, from which we observe a variance across problems
in the percentage of mutants killed by the tests selected
from µINTMUT mutants, with some tasks even reaching
100%, and the majority exhibiting higher percentages, unlike
oINTMUT and µBERT where we see higher variance and lower
values.The score of µINTMUT is 0.817 indicating that tests
selected based on µINTMUT kill 81.7% of the subsuming
mutants produced by the three approaches (µINTMUT, µBERT
and oINTMUT together), compared to 0.77 and 0.66 scored
by µBERT and oINTMUT respectively. It is noted that since
the reference set of subsuming mutants includes all the mu-
tations produced by all the approaches it is expected that all
approaches achieve high scores. The important thing though
is that none of the approaches subsumes the others and all are
far from being adequate. For instance, µBERT misses 23% of
the faults that could be captured when considering all three
approaches together. This indicates a large gap, especially by
considering that µBERT is a strong approach, arguably as
strong as (or stronger) traditional mutation testing [20].

Table V records the number of tasks where the scored
subsuming mutation score by each approach is below a certain
threshold, µINTMUT has the least number of cases below
50% with only 2, and 17 tasks above 90%. µBERT has the
highest number above 90% in 19 cases while oINTMUT has
the lowest. These results indicate that a large variance in the
effectiveness of all approaches, with µINTMUT having the

least low performing cases. µBERT on the other hand has the
most cases with the highest scores.

TABLE V: Number of case with reference subsuming
mutation score under various thresholds

Approach 50% 60% 70% 80% 90%

µINTMUT 2 4 6 10 12
oINTMUT 9 11 12 14 17
µBERT 8 9 9 9 10

VI. DISCUSSION

Table VI shows examples of mutants produced by
µINTMUT. The problem is Java/37 from Humaneval-x. The
replaced token and its position within the intent are in blue,
green represents the original part, and red denotes the mutated
one. For example, in Mutated Intent 1, the word even is
replaced with odd and in Mutated Intent 2, a digit is altered
from 6 to 2.

We notice that in mutant 1 the solution begins by adding
the values at even indices to the result list, and the values at
odd indices in another list, it sorts this list, and then adds its
elements to the result list at odd indices. This behavior is the
exact opposite of the original intent, which retains the values
of odd indices and sorts the ones of even indices.

A. Threats to validity

The generalization of our results forms a threat to the
validity of our work. A first concern may be attributed to the
ability of Language Models to generatlize to other unseen data.
Meaning, that performance may be different on other tasks and
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TABLE VI: Mutated intents and related mutations.

This function takes a list l and returns
a list l’ such that l’ is identical
to l in the odd indices, while its values
at the even indices are equal to the values
of the even indices of l, but sorted.

>>> sortEven(Arrays.asList(1, 2, 3))
[1, 2, 3]
>>> sortEven(Arrays.asList(5, 6, 3, 4))
[3, 6, 5, 4]

Resulting Implementation:

L i s t<I n t e g e r > r e s u l t = new A r r a y L i s t <>( l ) ;
L i s t<I n t e g e r > e v e n I n d i c e s = new A r r a y L i s t <>();
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i ++) {

i f ( i % 2 == 0) {
e v e n I n d i c e s . add ( l . g e t ( i ) ) ;

}
} C o l l e c t i o n s . s o r t ( e v e n I n d i c e s ) ;
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i += 2) {

r e s u l t . s e t ( i , e v e n I n d i c e s . remove ( 0 ) ) ;
} r e t u r n r e s u l t ;

Mutated Intent 1

@@ even : 135 − 138 @@
+ v a l u e s a t t h e even i n d i c e s a r e e q u a l t o t h e
− v a l u e s a t t h e odd i n d i c e s a r e e q u a l t o t h e

Resulting Mutant 1:

L i s t<I n t e g e r > r e s u l t = new A r r a y L i s t <>();
L i s t<I n t e g e r > evenVa lues = new A r r a y L i s t <>();
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i ++) {

i f ( i % 2 == 0) { r e s u l t . add ( l . g e t ( i ) ) ; }
e l s e { evenVa lues . add ( l . g e t ( i ) ) ; }

} C o l l e c t i o n s . s o r t ( evenVa lues ) ;
i n t even Index = 0 ;
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i ++) {

i f ( i % 2 != 0) {
r e s u l t . add ( evenVa lues . g e t ( even Index ) ) ;
even Index ++;

}
} r e t u r n r e s u l t ;

Mutated Intent 2

@@ 6 : 305 − 305 @@
+ >>> s o r t E v e n ( A r r a ys . a s L i s t ( 5 , 6 , 3 , 4 ) )
− >>> s o r t E v e n ( A r r a ys . a s L i s t ( 5 , 2 , 3 , 4 ) )

Resulting Mutant 2:

L i s t<I n t e g e r > r e s u l t = new A r r a y L i s t <>( l ) ;
L i s t<I n t e g e r > evenVa lues = new A r r a y L i s t <>();
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i ++) {

i f ( i % 2 == 0)
evenVa lues . add ( l . g e t ( i ) ) ;

} C o l l e c t i o n s . s o r t ( evenVa lues ) ;
i n t even Index = 0 ;
f o r ( i n t i = 0 ; i < l . s i z e ( ) ; i ++) {

i f ( i % 2 == 1) {
r e s u l t . s e t ( i , evenVa lues . g e t ( even Index ) ) ;
even Index ++;

}
} r e t u r n r e s u l t ;

programs. To mitigate those threats we have conducted our ex-
perimental study on an independent dataset, specifically built
to mitigate this threat in evaluating the performance of Large
Language Models on code related tasks. The dataset counts
tupples of human written code, description and tests that have
not been included in the LLMs training sets. Nevertheless, we
acknowledge that the obtained results may not generalise to
other cases.

Other threats may arise from the non-deterministic nature of
LLMs. This threat does not concern BERT, however concerns
our employed code generation LLM. For instance, GPT-3.5-
turbo tends to produce different answers for the same question.
Although, this may reduce the reproducibility of our study, in
a sense where we may obtain other mutants, we do not expect
it to have an impact on our general results. Particularely, as we
generate multiple mutants for different programs, we believe
that the overall outcomes of the study will remain unchanged.

Some threats may arise from our semantic comparison of
mutants based on their failing tests. We assume that the tests
provided by HumanEval+ are complete and exhaustive, allow-
ing us to capture behavioural differences between different
programs. Although this may not be always the case, we
believe that these test suites are sufficiently strong for our
study. Moreover, we use the same setup, running the same test
cases for all mutants generated by the compared approaches,
giving a same base of comparison for all approaches.

VII. CONCLUSION AND FUTURE WORK

We presented µINTMUT, a mutation testing approach that
generates mutants based on the program’s intent. We pro-
posed two ways to achieve this, by mutating the intent, and
by generating different implementations of the intents. Our
results revealed that µINTMUT produces a set of complex and
semantically diverse mutants, which are semantically unique
when compared to µBERT, a syntax-based approach, reflecting
our approach’s ability to capture different types of faults than
those generated by traditional approaches.
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APPENDIX
SUBJECT USED

Java/1 : Input to this function is a string containing multiple groups of nested
parentheses. Your goal is to separate those group into separate strings and return
the list of those. Separate groups are balanced (each open brace is properly closed)
and not nested within each other. Ignore any spaces in the input string.
>>> separateParenGroups(””( ) (( )) (( )( ))””) [””()””, ””(())””, ””(()())””]

Java/2: Given a positive floating point number, it can be decomposed into an
integer part (largest integer smaller than the given number) and decimals (leftover
part always smaller than 1).
Return the decimal part of the number.
>>> truncateNumber(3.5) 0.5

Java/6 Input to this function is a string represented multiple groups for nested
parentheses separated by spaces.For each of the group, output the deepest level
of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parseNestedParens(””(()()) ((())) () ((())()())””) [2, 3, 1, 3]

Java/9 From a given list of integers, generate a list of rolling maximum element
found until the given moment in the sequence.
>>> rollingMax(Arrays.asList(1, 2, 3, 2, 3, 4, 2))
[1, 2, 3, 3, 3, 4, 4]

Java/26 From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> removeDuplicates(Array.asList(1, 2, 3, 2, 4))
[1, 3, 4]

Java/33 This function takes a list l and returns a list l’ such that l’ is identical
to l in the indicies that are not divisible by three, while its values at the indicies
that are divisible by three are equal to the values of the corresponding indicies of
l, but sorted.
>>> sortThird(Arrays.asList(1, 2, 3)) 1em[1, 2, 3]
>>> sortThird(Arrays.asList(5, 6, 3, 4, 8, 9, 2)) [2, 6, 3, 4, 8, 9, 5]

Java/37 This function takes a list l and returns a list l’ such that l’ is identical to
l in the odd indicies, while its values at the even indicies are equal to the values
of the even indicies of l, but sorted.
>>> sortEven(Arrays.asList(1, 2, 3))
[1, 2, 3]
>>> sortEven(Arrays.asList(5, 6, 3, 4))
[3, 6, 5, 4]

Java/41 Imagine a road that’s a perfectly straight infinitely long line. n cars are
driving left to right; simultaneously, a different set of n cars are driving right to
left. The two sets of cars start out being very far from each other. All cars move
at the same speed. Two cars are said to collide when a car that’s moving left to
right hits a car that’s moving right to left. However, the cars are infinitely sturdy
and strong; as a result, they continue moving in their trajectory as if they did not
collide. This function outputs the number of such collisions.

Java/69 You are given a non-empty list of positive integers. Return the greatest
integer that is greater than zero, and has a frequency greater than or equal to the
value of the integer itself. The frequency of an integer is the number of times it
appears in the list. If no such a value exists, return -1.

Examples: search(Arrays.asList(4, 1, 2, 2, 3, 1)) == 2
search(Arrays.asList(1, 2, 2, 3, 3, 3, 4, 4, 4)) == 3
search(Arrays.asList(5, 5, 4, 4, 4)) == -1

Java/74 Write a function that accepts two lists of strings and returns the list that
has total number of chars in all strings of the list less than the other list. if the
two lists have the same number of chars, return the first list.

Examples:
totalMatch(Arrays.asList(), Arrays.asList()) -¿ []
totalMatch(Arrays.asList(”hi”, ”admin”), Arrays.asList(”hI”, ”Hi”))->[”hI”, ”Hi”]
totalMatch(Arrays.asList(”4”), Arrays.asList(”1”, ”2”, ”3”, ”4”, ”5”))->[”4”]

Java/75 Write a function that returns true if the given number is the multiplication
of 3 prime numbers and false otherwise. Knowing that (a) is less than 100.

Example:
isMultiplyPrime(30) == true
30 = 2 * 3 * 5

Java/76 Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases. x is a simple power of n if n**int=x

For example:
isSimplePower(1, 4) => true
isSimplePower(5, 3) => false

Java/84 Given a positive integer N, return the total sum of its digits in binary.
Example:

For N = 1000, the sum of digits will be 1 the output should be ””1””.
For N = 150, the sum of digits will be 6 the output should be ””110””.
For N = 147, the sum of digits will be 12 the output should be ””1100””.

Variables: @N integer
Constraints: 0 <= <= 10000.

Output: a string of binary number

Java/93 Write a function that takes a message, and encodes in such a way that
it swaps case of all letters, replaces all vowels in the message with the letter that
appears 2 places ahead of that vowel in the english alphabet. Assume only letters.
Examples:
>>> encode(””test””)
””TGST””
>>> encode(””This is a message””)
””tHKS KS C MGSSCGG””

Java/108 Write a function countNums which takes an array of integers and returns
the number of elements which has a sum of digits ¿ 0. If a number is negative,
then its first signed digit will be negative:

e.g. -123 has signed digits -1, 2, and 3.
>>> countNums(Arrays.asList()) == 0
>>> countNums(Arrays.asList(-1, 11, -11)) == 1
>>> countNums(Arrays.asList(1, 1, 2)) == 3

Java/109 We have an array ’arr’ of N integers arr[1], arr[2], ..., arr[N].The numbers
in the array will be randomly ordered. Your task is to determine if it is possible to
get an array sorted in non-decreasing order by performing the following operation
on the given array:

You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one position
in the right direction. The last element of the array will be moved to the starting
position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation then
return true else return False. If the given array is empty then return true.

Note: The given list is guaranteed to have unique elements.
For Example:

moveOneBall(Arrays.asList(3, 4, 5, 1, 2)) ==>true
Explanation: By performin 2 right shift operations, non-decreasing order can

be achieved for the given array.
moveOneBall(Arrays.asList(3, 5, 4, 1, 2)) ==>False
Explanation:It is not possible to get non-decreasing order for the given array

by performing any number of right shift operations.”

Java/115 You are given a rectangular grid of wells. Each row represents a single
well, and each 1 in a row represents a single unit of water. Each well has a
corresponding bucket that can be used to extract water from it, and all buckets
have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.

Example 1:
Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]], bucket capacity : 1
Output: 6

Example 2:
Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], bucket capacity

: 2
Output: 5

Example 3:
Input: grid : [[0,0,0], [0,0,0]], bucket capacity : 5
Output: 0

Constraints:
* all wells have the same length * 1 <= grid.length <= 102

* 1 <= grid[:,1].length <= 102 * grid[i][j] -> 0 — 1
* 1 <= capacity <= 10
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Java/118 You are given a word. Your task is to find the closest vowel that stands
between two consonants from the right side of the word (case sensitive). Vowels
in the beginning and ending doesn’t count. Return empty string if you didn’t find
any vowel met the above condition. You may assume that the given string contains
English letter only.

Example:
getClosestVowel(””yogurt””) ==> ””u””
getClosestVowel(””FULL””) ==> ””U””
getClosestVowel(””quick””) ==> ””””
getClosestVowel(””ab””) ==> ””””

Java/119 You are given a list of two strings, both strings consist of open
parentheses ””(”” or close parentheses ””)”” only. Your job is to check if it is
possible to concatenate the two strings in some order, that the resulting string will
be good. A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string ””(())()”” is good, while the string ””())”” is
not. Return ””Yes”” if there””s a way to make a good string, and return ””No””
otherwise.

Examples:
matchParens(Arrays.asList(””()(””, ””)””)) == ””Yes””
matchParens(Arrays.asList(””)””, ””)””)) == ””No””

Java/120 Given an array arr of integers and a positive integer k, return a sorted
list of length k with the maximum k numbers in arr.

Example 1: Input:arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]

Example 2: Input: arr = [4, -4, 4], k = 2
Output: [4, 4]

Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]

Note: * 0 <= k <= len(arr)
* The length of the array will be in the range of [1, 1000].
* The elements in the array will be in the range of [-1000, 1000].

Java/122 Given a non-empty array of integers arr and an integer k, return the
sum of the elements with at most two digits from the first k elements of arr.

Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3

Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)

Java/127
You are given two intervals, where each interval is a pair of integers. For example,
interval = (start, end) = (1, 2). The given intervals are closed which means that
the interval (start, end) includes both start and end. For each given interval, it is
assumed that its start is less or equal its end. Your task is to determine whether
the length of intersection of these two intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is
1, which not a prime number. If the length of the intersection is a prime number,
return ””YES””, otherwise, return ””NO””. If the two intervals don’t intersect,
return ””NO””.
[input/output] samples:

intersection((1, 2), (2, 3)) ==> ””NO””
intersection((-1, 1), (0, 4)) ==> ””NO””
intersection((-3, -1), (-5, 5)) ==> ””YES””

Java/129 Given a grid with N rows and N columns (N >= 2) and a positive
integer k, each cell of the grid contains a value. Every integer in the range [1, N
* N] inclusive appears exactly once on the cells of the grid. You have to find the
minimum path of length k in the grid. You can start from any cell, and in each
step you can move to any of the neighbor cells, in other words, you can go to
cells which share an edge with you current cell. Please note that a path of length
k means visiting exactly k cells (not necessarily distinct). You CANNOT go off
the grid. A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go through
(let’s call them lst A and lst B), lst A is lexicographically less than lst B, in
other words, there exist an integer index i (1 <= i <= k) such that lst A[i] <
lst B[i] and for any j (1 <= j < i) we have lst A[j] = lst B[j]. It is guaranteed
that the answer is unique. Return an ordered list of the values on the cells that
the minimum path go through.
Examples:

Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]

Java/131 Given a positive integer n, return the product of the odd digits. Return
0 if all digits are even.
For example:

digits(1) == 1 digits(4) == 0 digits(235) == 15

Java/138 Evaluate whether the given number n can be written as the sum of
exactly 4 positive even numbers
Example : isEqualToSumEven(4) == false isEqualToSumEven(6) == false

isEqualToSumEven(8) == true

Java/142 This function will take a list of integers. For all entries in the list, the
function shall square the integer entry if its index is a multiple of 3 and will
cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The
function will not change the entries in the list whose indexes are not a multiple
of 3 or 4. The function shall then return the sum of all entries.
Examples:

For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126

Java/147 You are given positive integer n. You have to create integer array a of
length n.

For each i (1 <= i <= n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,

and a[i] + a[j] + a[k] is a multiple of 3.
Example :

Input: n = 5 Output: 1
Explanation: a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).

Java/154 You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(””abcd””,””abd””) => false
cycpatternCheck(””hello””,””ell””) => true
cycpatternCheck(””whassup””,””psus””) => false
cycpatternCheck(””abab””,””baa””) => true
cycpatternCheck(””efef””,””eeff””) => false
cycpatternCheck(””himenss””,””simen””) => true
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