
MIXCODE: Enhancing Code Classification by
Mixup-Based Data Augmentation

Zeming Dong†, Qiang Hu‡∗, Yuejun Guo§, Maxime Cordy‡,
Mike Papadakis‡, Zhenya Zhang†, Yves Le Traon‡, and Jianjun Zhao†

†Kyushu University, Japan, dong.zeming.011@s.kyushu-u.ac.jp, {zhang, zhao}@ait.kyushu-u.ac.jp
‡University of Luxembourg, Luxembourg, {qiang.hu, maxime.cordy, michail.papadakis, Yves.LeTraon}@uni.lu

§Luxembourg Institute of Science and Technology, Luxembourg, yuejun.guo@list.lu

Abstract—Inspired by the great success of Deep Neural Net-
works (DNNs) in natural language processing (NLP), DNNs have
been increasingly applied in source code analysis and attracted
significant attention from the software engineering community.
Due to its data-driven nature, a DNN model requires massive
and high-quality labeled training data to achieve expert-level
performance. Collecting such data is often not hard, but the
labeling process is notoriously laborious. The task of DNN-based
code analysis even worsens the situation because source code
labeling also demands sophisticated expertise. Data augmentation
has been a popular approach to supplement training data in
domains such as computer vision and NLP. However, existing
data augmentation approaches in code analysis adopt simple
methods, such as data transformation and adversarial example
generation, thus bringing limited performance superiority. In this
paper, we propose a data augmentation approach MIXCODE that
aims to effectively supplement valid training data, inspired by
the recent advance named Mixup in computer vision. Specifically,
we first utilize multiple code refactoring methods to generate
transformed code that holds consistent labels with the original
data. Then, we adapt the Mixup technique to mix the original
code with the transformed code to augment the training data. We
evaluate MIXCODE on two programming languages (Java and
Python), two code tasks (problem classification and bug detec-
tion), four benchmark datasets (JAVA250, Python800, CodRep1,
and Refactory), and seven model architectures (including two pre-
trained models CodeBERT and GraphCodeBERT). Experimental
results demonstrate that MIXCODE outperforms the baseline
data augmentation approach by up to 6.24% in accuracy and
26.06% in robustness.

Index Terms—Data augmentation, Mixup, Source code analysis

I. INTRODUCTION

Due to its remarkable performance, deep learning (DL)
has gained widespread adoption in different application do-
mains, such as face recognition [1], language translation [2],
video games [3], and autonomous driving [3]. More recently,
researchers from the software engineering community have
attempted to use DL techniques to automate multiple down-
stream code tasks, e.g., code search [4], problem classifica-
tion [5], and bug detection [6]. Relevant studies [7], [8] reveal
that DL benefits source code analysis.

As the key pillar of DL systems, deep neural networks
(DNNs) automatically gain knowledge from training data and
make inferences for unseen data after deployment. Generally,

*Qiang Hu is the corresponding author.

two important factors could affect the performance of the
trained DNNs, namely, the model architecture and the training
data. In the context of code analysis, for the former factor, a
common practice of building proper model architectures of
DNNs is to directly apply natural language processing (NLP)
models to source code. For example, Feng et al. [7] have
modified BERT to create CodeBERT that solves downstream
tasks effectively. For the latter factor, though adequate labeled
training data are necessary for the training process, producing
high-quality labeled source code data is not yet sufficiently
investigated. The main challenge is that data labeling requires
not only extensive human efforts but also sophisticated domain
knowledge. According to to [9], labeling code from only four
libraries can take up to 600 man-hours. In a nutshell, data
preparation is indispensable but challenging for developing
desirable models, and therefore in this paper, we take a specific
focus on this important issue.

Data augmentation is a technique that tackles the aforemen-
tioned data labeling issue, which produces additional training
data by modifying existing data rather than human efforts.
Generally, the new data sample is semantically consistent with
the source data, i.e., they share the same functionalities and
labels. In this way, the model can learn more information and
gain better generalization, compared to the approach that relies
only on the original training data. In computer vision and
NLP tasks, data augmentation has been widely used and well-
studied [10]–[12] for model training. For example, in computer
vision tasks, many image transformation methods (e.g., image
rotation, shear) are designed to mimic different real-world
situations that the model could face after deployment. In
traditional NLP tasks, the typical augmentation is to perform
synonym substitution, which is also beneficial to cover more
context that might occur in the real world.

Although data augmentation has proved to be effective in
fields such as CV and NLP, the investigation of its application
in code analysis still remains at an early stage. Researchers
have borrowed ideas from other fields and proposed several
data augmentation approaches for code analysis [13]–[17];
usually, these techniques generate more transformed or ad-
versarial data simply via methods such as code refactoring.
However, existing studies [18] already show that these simple
strategies have limited effects. For example, Bielik et al. [19]
show that adversarial training, by simply adding adversarial

1

mailto:dong.zeming.011@s.kyushu-u.ac.jp
mailto:zhang@ait.kyushu-u.ac.jp, zhao@ait.kyushu-u.ac.jp
mailto:qiang.hu@uni.lu, maxime.cordy@uni.lu, michail.papadakis@uni.lu, Yves.LeTraon@uni.lu
mailto:yuejun.guo@list.lu

data in the training set, is not helpful in improving the gener-
alization property of DNN models. Therefore, it still remains
an open problem to design data augmentation approaches that
can effectively enhance DNN training for code analysis.

In this paper, for source code classification tasks, we
propose a novel data augmentation framework named MIX-
CODE that aims to enhance the DNN model training process.
Roughly speaking, MIXCODE follows a similar paradigm to
Mixup [20] but adapts the technique in order to handle the
specific data type of source code. Mixup is a well-known
data augmentation technique originally proposed for image
classification, which linearly mixes training data, including
their labels, to increase the data volume. In our case, MIX-
CODE consists of two steps: first, it generates transformed data
by different code refactoring methods, and then, it linearly
mixes the original code and transformed code to generate
new data. Specifically, we study 18 types of existing code
refactoring methods, such as argument renaming and statement
enhancement. More details are in Section III-B.

We conduct experiments to evaluate the effectiveness of
MIXCODE on two programming languages (Java and Python),
two widely-studied code learning tasks (problem classification
and bug detection), and seven model architectures. Based on
that, we answer three research questions as follows:

RQ1: How effective is MIXCODE for enhancing the ac-
curacy and robustness of DNNs? We compare MIXCODE
to the standard training (without data augmentation) and the
existing simple code data augmentation approach, which relies
on transformed or adversarial data only. The results show
that MIXCODE outperforms the baselines by up to 6.24% in
accuracy and 26.06% in robustness. Here, accuracy is the basic
metric that measures the effectiveness of the trained DNN
models. Moreover, robustness [21] reflects the generalization
ability of the trained model to handle unseen data, which is
also an important metric for the deployment of DNN models
in practice [22].

RQ2: How do different Mixup strategies affect the ef-
fectiveness of MIXCODE? We study the effectiveness of
MIXCODE under different settings of Mixup. First, we study
the effect of using different data mixture strategies, which
involve 1) mixing only original code, 2) mixing original code
and transformed code, and 3) mixing only transformed code.
Moreover, we also study the effect of different hyperparame-
ters in MIXCODE. Our evaluation demonstrates that using the
2) strategy, namely, mixing original code and transformed data,
in Mixup can achieve the best performance, and we also make
the suggestion on the use of the most suitable hyperparameters
of MIXCODE.

RQ3: How does the refactoring method affect the effec-
tiveness of MIXCODE? To investigate the impact of the code
refactoring methods on MIXCODE, we evaluate MIXCODE
using different refactoring methods individually. We find that
there is a trade-off between the original test accuracy and
robustness when choosing different refactoring methods, i.e.,

using the refactoring methods that lead to higher accuracy
could harm the model’s robustness.

In summary, the main contributions of this paper are:
• We propose MIXCODE, the first Mixup-based data aug-

mentation framework for source code analysis. Experi-
mental results demonstrate that MIXCODE outperforms
the baseline data augmentation approach by up to 6.24%
in accuracy and 26.06% in robustness. The implementa-
tion of MIXCODE are available online.1

• We empirically demonstrate that simply mixing the origi-
nal code is not the best strategy in MIXCODE. In addition,
MIXCODE using original code and transformed code can
achieve 9.23% performance superiority in accuracy.

• We empirically show that selection of refactoring meth-
ods is also an important factor affecting the performance
of MIXCODE.

II. PRELIMINARIES

We briefly introduce the preliminaries of this work from the
perspectives of DNNs for source code analysis, DNN model
training methods, and Mixup for data augmentation.

A. DNNs for Source Code Analysis

DNNs have been widely used in NLP and achieved great
success. Similar to the natural language text, source code also
consists of discrete symbols that can be processed as sequential
or structural data fed into DNN models. Thus, researchers
have tried to employ DNNs to help programmers process and
understand source code in recent years. The impressive perfor-
mance of DNNs has been demonstrated in multiple important
code-related tasks, such as automated program repair [23]–
[30], automated program synthesis [31], [32], and automated
code comments generation [33].

To unlock the potential of DNNs for code-related tasks,
properly representing snippets of code that are fed into DNNs
is necessary. Code representation, which transfers the raw
code to machine-readable data, plays an important role in
source code analysis. Existing representation techniques can
be roughly divided into two categories, namely, sequence
representation [34] and graph representation [8], [35], [36].
Sequence representation converts the code into a sequence
of tokens. The input features of classical neural networks in
sequence representation learning are typically embedded or
features that live in Euclidean space. In this way, the original
source code is processed to multiple tokens, e.g., from “def
func(a, b)” to “[def, func, (, a, b,),]”. Se-
quence representation is useful for learning the semantic in-
formation of the source code because it remains the context of
the source code. On the other side, graph representation builds
structural data. In source code, the structure information can be
presented by the abstract syntax tree (AST) and different code
flows (control follow, data flow). By learning these structural
data, the model can perceive functional information of code.
Recently, more researchers have focused on the field that

1https://github.com/zemingd/Mixup4Code

2

https://github.com/zemingd/Mixup4Code

applies graph representation to source code analysis based on
different variants of graph neural networks (GNNs). In our
study, we consider both categories of code representation to
evaluate MIXCODE.

B. DNN Model Training Methods

DNN training consists in, given a set of training data,
searching for the best parameters (e.g., weights, biases) that
enable the model to fit the training data. Here, we introduce
the standard training process and the basic data augmentation
framework for the source code model. Algorithm 1 presents
the pseudocode of these two training strategies. In the standard
manner of training, all the training data are fed into several
epochs of training (See Lines 1-3 in Algorithm 1).

Algorithm 1 Existing model training strategies
Require: M : initialized DNN model
Require: X,Y : original training data and labels
Require: R = {r} : a set of data transformation methods
Ensure: M : trained model

Standard training (without augmentation)
1: for run ∈ {0, . . . ,#epochs} do
2: M.Fit (X,Y)

3: return M

Basic augmentation
4: for run ∈ {0, . . . ,#epochs} do
5: Xref ← ϕ
6: for x ∈ X do
7: r ← RandomSelection (R)
8: Xref ← Xref ∪ r (x)

9: M.Fit (Xref , Y)

10: return M

However, since the prepared training data can only rep-
resent a limited part of data distribution, the training data
volume has been a bottleneck that prevents DNN models
from achieving high performance [37]. Data augmentation is
proposed to automatically increase the volume of the training
set, and thus enhance the quality of training. The basic idea of
data augmentation is to generate new data from the existing
training data by well-designed data transformation methods.
Generally, such data transformation methods modify the data
and do not change their semantic information; for example,
in image data processing, commonly-used methods include
random rotating, padding, and adding brightness [10]. Line 4-
10 in Algorithm 1 shows the process of training with data
augmentation. Specifically, in each epoch, the DNN is trained
by using a transformed version of the data generated by
randomly selected data transformation methods.

C. Mixup: A Data Augmentation Approach in Image Classifi-
cation Tasks

Mixup [20] is an effective data augmentation technique
proposed for image classification tasks. Mixup contains two

steps: first, it randomly selects two data samples from the
training data; then, it mixes both the data features and the
labels of the selected data to generate a new sample as the
training data. In addition to image classification, recently,
researchers have achieved great success in applying Mixup
to text classification [38].

Technically, Mixup is shown as follows: given a pair of sam-
ples (xi,yi) and (xj ,yj), where x represents the input feature
and its corresponding output label y is donated with one-hot
encoding, Mixup produces new data pairs (xij

mix, y
ij
mix):

xij
mix = λxi + (1− λ)xj

yijmix = λyi + (1− λ)yj
(1)

where λ is a mixing policy for the input sample pair, which
is sampled from a Beta distribution with a shape parameter
α (λ ∼ Beta(α,α)). Figure 1 depicts an example of an image
generated by Mixup. By mixing two images into one, a model
can gain knowledge from both sides.

0 5 10 15 20 25

0

5

10

15

20

25

(a) original image 1
0 5 10 15 20 25

0

5

10

15

20

25

(b) original image 2
0 5 10 15 20 25

0

5

10

15

20

25

(c) mixed image

Fig. 1. An example of Mixup for image data. The mixed image is calculated
using Eq. (1). λ = 0.2.

III. MIXCODE—THE PROPOSED APPROACH

A. Methodology of MIXCODE

Inspired by the great success of Mixup and its variants in
image classification tasks, we propose MIXCODE, a simple
yet effective data augmentation framework for source code
classification tasks. Algorithm 2 presents the whole process
of MIXCODE. Essentially, Algorithm 2 is different from the
existing approaches in Algorithm 1 in the way it augments
the training data in each training epoch. Figure 2 presents an

Original
Code(O)

Transformed
Code(T)

Refactoring

Mix-up

O + T

T + T

O + O
Training
Data

Train

DNN

Original
Code

Transformed
Code

Mix-up

Training
Data

Train

DNN

Representation

Rep
rese

nta
tion

Refactoring

Refactoring

Representation

Representation

Fig. 2. Workflow of MIXCODE within one training epoch.

overview of MIXCODE in one epoch. Concretely, this process
consists of the following three phases:

3

Algorithm 2 MIXCODE

Require: M : initialized DNN model
Require: T : code representation technique
Require: X,Y : original training data and labels
Require: R = {r} : a set of refactoring methods
Require: α : Mixup weight
Ensure: M : trained model

1: for run← {0, . . . ,#epochs} do
2: Xref , Xmix, Ymix ← ϕ, ϕ, ϕ ▷ initialization
3: for x ∈ X do
4: r ← RandomSelection (R)
5: Xref ← Xref ∪ r (x) ▷ code refactoring
6: Xs, Ys ← Shuffle (X,Y) ▷ Shuffle the training set
7: for (xs, ys, xref , y) ∈ (Xs, Ys, Xref , Y) do
8: vx ← T (xs) ▷ code representation
9: vref ← T (xref) ▷ code representation

10: λ← Beta (α) ▷ hyperparameter
11: xmix ← λvx + (1− λ) vref ▷ data generation
12: ymix ← λys + (1− λ) y ▷ label generation
13: Xmix ← Xmix ∪ xmix

14: Ymix ← Ymix ∪ ymix

15: M.Fit (Xmix, Ymix) ▷ training with augmented data
16: return M

1) MIXCODE loads the raw data, which consists of the
original code, from the original training set (X,Y). Then,
for each data, it randomly selects one refactoring method
(Line 4) and applies it to the original code to obtain the
transformed code (Line 5). Code refactoring is a technique
that restructures the code without changing its semantic
behaviors [39], [40]. The current version of MIXCODE
supports 18 different refactoring methods, which we elab-
orate on later in Section III-B. As a result, all the training
epochs have different sets of transformed code generated
by different refactoring methods.

2) MIXCODE randomly chooses one data from the original
code and one data from the transformed code, respectively
(Line 8 and 9), and then mixes these two data following
Eq. (1), shown as Lines 7-14 in Algorithm 2. Here, vx
and vref , corresponding to xi and xj in Eq. (1), are
data under proper code representation. Generally, the data
format is a sequence of token values. Moreover, ys and y
in Line 12, corresponding to yi and yj , are the one-hot
values of labels, which are the same as the original Mixup
approach in Section II-C. In this way, we produce new data
(xmix, ymix) in a similar way as the original Mixup does,
and add them into the training set (Xmix, Ymix).

3) Finally, the mixed data set (Xmix, Ymix) is used as the
training data for this epoch. Note that, although evaluated
on image data in [20], the Mixup technique is not limited
to the continuous representation space. The core of Mixup
is to combine sample-target pairs to increase the training
data size. In addition, it has been proven to be applicable to
the discrete representation space for NLP tasks [41]. Simi-

Problem: Write a program which prints
multiplication tables in the following format:
1x1=1 1x2=2 . . 9x8=72 9x9=81

public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int[] heights = new int[10];
for(int i = 0; i < 10; i++){
heights[i] = scan.nextInt();

}

Arrays.sort(heights);
for(int i = 9; i >= 7; i--){
System.out.println(heights[i]);

}
}

Problem: Write a program which prints heights of the
top three mountains in descending order.

public static void main(String[] a) throws IOException{
BufferedReader input = new BufferedReader(new
InputStreamReader(System.in));
String s;
while((s = input.readLine())!=null){

String[] num = s.split(" ",0);
int x = parseInt(num[0]);
int y = parseInt(num[1]);
if(0 <= x && x <=1000000 && 0 <= y && y <= 1000000){

int z = x + y;
System.out.println(Integer.toString(z).length());

}
}

}
(Program A) (Program B)

𝑋": tensor([[-0.0568, 0.0262, -0.2367, ..., 0.1004, -0.4510, 0.6271],
...,
[-0.0656, 0.0323, -0.2346, ..., 0.0892, -0.4559, 0.6335]])

tensor([[0.0734, 0.1239, -0.3143, ..., 0.1549, -0.4469, 0.6513],
...,
[0.1298, 0.0127, 0.3154, ..., -0.6284, -0.7741, 1.0450]])

tensor([[0.0474, 0.1044, -0.2988, ..., 0.1440, -0.4477, 0.6465],
...,
[0.0908, 0.0166, 0.2054, ..., -0.4849, -0.7104, 0.9627]])

tensor([[0.2000, 0.8000, 0.0000, ..., 0.0000, 0.0000, 0.0000]])

𝑋#:

X	:

Y	:

𝑌": 𝑌#:tensor([[1.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]) tensor([[0.0000, 1.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]])

Data A Data B

Data C

Fig. 3. An example of two programs mixed by MIXCODE.

larly, MIXCODE supports both Integer-type and Float-type
input data by simply setting the input type of embedding
layers as float (e.g., x = torch.tensor(dataset,
dtype=torch.float)).

Influence factors. In phase 2, we notice that two factors could
affect the performance of MIXCODE, namely, the candidate
data pairs (namely, Line 7 in Algorithm 2) used for Mixup and
the hyperparameter α. For the candidate data, we have three
optional combinations, 1) mixing the two original codes, 2)
mixing the original code and transformed data, and 3) mixing
two transformed codes. On the other side, the hyperparameter
α controls the percentage (λ) of code content used from two
parts for Mixup. As mentioned in Section II, λ is a value with
the [0, 1] range and is sampled from a Beta distribution [42]
parameterized by α, and α = 0.2 is the recommended setting
for image classification tasks in the original work of Mixup.
In our evaluation, we study the settings of α from 0.05 to 0.5
to try to find a suitable setting for source code classification.

B. Refactoring Methods

As we introduced, code refactoring is a technique that re-
structures the code while keeping its semantic behaviors [39],
[40]. The original purpose of code refactoring is to improve
readability and reduce code complexity. Thus, programmers
can clean up complicated code and reduce technical debt.
Meanwhile, refactoring makes it easier for developers to main-
tain and add new features to the clean code, which is an impor-
tant step in software maintenance. Typically, refactoring makes
a small change in source code that preserves the behavior of
the program based on a series of standardized micro-modifies.
Several refactoring methods have been proposed and studied,
such as replacing a variable, modifying (including adding or
simplifying conditional expressions and method calls), moving
features between objects, and organizing data.

In the first step of MIXCODE, in addition to the orig-
inal code, we utilize multiple code refactoring methods to
generate more diverse code as the candidate training data.
MIXCODE supports 18 types of refactoring methods from

4

TABLE I
DESCRIPTION AND EXAMPLES OF 18 TYPES OF REFACTORING METHODS.

No. Refactoring method Functionality Example

1 API renaming Rename an API by a synonym of its name. Only for token-based
code learning tasks. numpy.add () → numpy.delete ()

2 Arguments adding Add an unused argument to a function definition. def func (a, b) → def func (a, b, c)
3 Arguments renaming Rename an augment by a synonym of its name. def func (number) → def func (size)
4 Dead for adding Add an unreachable for loop at a randomly selected location. add: for i in range (0) : print (0)

5 Dead if adding Add an unreachable if statement at a randomly selected
location in the code. add: if (1 == 0) : print (0)

6 Dead if else adding Add an unreachable if-else statement at a randomly selected
location in the code. add: print (0) if (1 == 0) else print (1)

7 Dead switch adding Add an unreachable switch statement at a randomly selected
location.

int a = 0; switch (a) case 1:
System.out.println (“pass′′); break;
default: System.out.println (“pass′′);

8 Dead while adding Add an unreachable while loop at a randomly selected location. add: while (1 == 0): print (0)

9 Duplication Duplicate a randomly selected assignment and insert it
to its next line. a = 1 → a = 1; a = 1

10 Filed enhancement Enhance the rigor of the code by checking if the input of
each argument is None.

def (a): → def (a):
if a == None: print (“please check your input.′′)

11 For loop enhancement Enhance the for loop conditions by complementing the
lower and upper bound. for i in range (10) → for i in range (0, 10)

12 If enhancement Change an if condition to an equivalent logic. if True: → if (0 == 0)
13 Local variable adding Add an unused local variable. add: a = 1

14 Local variable renaming Rename a local variable by a synonym of its name and
recursively update all related variables. number = 1 → size = 1

15 Method name renaming Rename a method by a synonym of its name. def count (a) → def compute (a)

16 Plus zero Select an numerical assignment of mathematical calculation
and plus zero to its value. a = 1 → a = 1 + 0

17 Print adding Add a print line at a randomly selected location. add: print (1)
18 Return optimal Change the return content to a variant with the same effect. return 1 → return 0 if (1 == 0) else 1

the literature [14], [43]. The functionality of each method
and a corresponding example are listed in Table I. Note
that some transformations may alter code semantics, but
not in a way that can affect model decisions, i.e., all
transformations are label-preserving. Existing code learning
models mainly use two types of code representation: to-
ken sequence and abstract syntax tree (AST) [44]. All the
MIXCODE-supported refactoring methods except API Re-
naming can be applied to these two prepossessing formats,
and therefore, MIXCODE is equipped with strong flexibility.

0 5 10 15 20 25 30 35 40 45 50
Epoch

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Eval ACC-Standard
Eval ACC-Basic DA
Eval ACC-MixCode

Fig. 4. Test accuracy of models trained by
using different methods (dataset: Java250,
model: BagofToken).

C. A Case Study

To better understand
how MIXCODE works,
we use an example to
show its workflow, as de-
picted in Figure 3. We
first transform the source
code (Program A and
B from the JAVA250
dataset with label 0 and
label 1, respectively) into
vectors through CodeBERT [7] and the labels into one-hot
vectors (see Data A and Data B in Figure 3). X is the value
of each token, and Y is the one-hot format label (250 classes
in total). Next, we linearly mix the code and label vectors,
respectively, of these two programs as the final input to train
the model (See Data C in Figure 3). In this example, we set
λ in Eq. (1) as 0.2 and perform the input mixing.

TABLE II
DETAILS OF DATASETS AND DNNS. #TRAINING, #ORI TEST, AND

#ROBUST TEST REPRESENT THE NUMBER OF TRAINING DATA, ORIGINAL
TEST DATA, AND TEST DATA FOR GENERALIZATION EVALUATION,

RESPECTIVELY.

Dataset Language Task #Training #Ori Test #Robust Test Model

JAVA250 Java Problem
classification 48000 15000 75000 BagofToken

SeqofToken
CodeBERT

GraphCodeBERTPython800 Python Problem
classification 153600 48000 240000

CodRep1 Java Bug
detection 6944 772 7716 GCN

GAT
GGNN

CodeBERT
GraphCodeBERTRefactory Python Bug

detection 3380 423 4225

Then, we use one example to show the training process of
using different training methods, as shown in Figure 4. We can
see that MIXCODE leads to faster model convergence than the
other two methods, which draws a similar conclusion to the
usage of Mixup (and its variants) in other fields [45]–[47].

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of MIXCODE, we conduct
experiments on two popular programming languages (Java and
Python), two important downstream tasks (problem classifica-
tion and bug detection), and seven DNN model architectures,
including two pre-trained model CodeBERT and GraphCode-
BERT. Table II presents the details of the datasets and models
used in the evaluation.
Task and Dataset. MIXCODE is suitable for all code classifi-
cation problems. We select two widely studied tasks, problem
classification and bug detection, in our evaluation to demon-
strate the effectiveness of MIXCODE. Problem classification is

5

a basic code learning task for collecting the target code from
code pools with massive source code (e.g., GitHub). Given a
number of problem descriptions and the candidate source code,
the model will predict the problem that this code is trying to
solve. For this task, our experiments use two recently released
datasets, JAVA250 and Python800 [5]. JAVA250 is used for
Java program classification with 250 classification problems,
and each problem includes 300 Java programs. It also provides
two different program representations, which are BagofToken
and SeqofToken. Python800 is a dataset for Python program
classification, including 800 classification problems with 300
Python programs in each problem. BagofToken and SeqofTo-
ken are also available in Python800. Bug detection tries to
identify whether one code has bugs or not. Generally, bug
detection can be seen as a binary classification problem.
Preparing bug detection datasets is difficult since it requires a
pair of codes with and without bugs. Crawling two versions
of code before and after commits from GitHub is the common
way to collect such pairs. However, human effort is required to
check if the commit is to solve a bug manually. For this task,
we use two open datasets, Refactory [48] and CodRep1 [49] in
our study. Refactory includes 2,242 correct and 1,783 buggy
Python programs written by real-world undergraduate stu-
dents. CodRep1 provides 3,858 program pairs (buggy program
and its fixed version) from real bug fixes. We use each dataset’s
originally provided training data for the model training.
Model. To avoid the model-depended issue, we build at
least four model architectures for each dataset. In problem
classification tasks, we follow the recommendation of [5] and
build a bag of token-based FNN (BagofToken) and a sequence
of token-based CNN (SeqofToken) for each dataset. FNN is
a basic DNN type with only dense layers, while CNN is the
advanced model type with convolutional layers and achieves
great success in image classification tasks. To be simplified,
in the remaining part, we use SeqofToken to represent the
sequence of token-based CNN, which represents the code
with its order of tokens, and BagofToken to represent the
bag of token-based FNN, which represents a code sample
with the relative frequencies of operator and keyword token
occurrences, respectively. In the bug detection tasks, we follow
the work [9] and build three types of GNN models, Gated
Graph Sequence Neural Networks (GGNNs) [50], Graph
Convolutional Networks (GCNs) [51], and Graph Attention
Networks (GATs) [52]. GGNN is a graph neural network
that updates the new hidden state with Gated Recurrent Unit
(GRU). GCN is a variant of convolution neural networks that
operate on graph-structured data. GAT mainly applies the
attention mechanism to graph message passing. A code graph
is an inter-procedural graph of program instructions where
edges represent data flow and control flow information. In
graph-based code models, we mix the graph data vectors of
code representation, which are produced by the GNN using
the node and edge embeddings, not code directly. Besides,
we also include CodeBERT [7] and GraphCodeBERT [35] in
both of the code tasks, as they have demonstrated state-of-
the-art performance in a variety of code processing tasks [53],

[54]. CodeBERT is a bimodal pre-trained model that takes
as input natural language text and code data and produces the
general representations of the text and code. GraphCodeBERT
is a pre-trained model that represents the code using data-flow
information to consider the semantic-level structure of code.
Baseline. We compare MIXCODE with two baselines. The first
one is the basic data augmentation method, in which we train
the model while conducting random code refactoring on the
training data at each training epoch. This data augmentation
method is used in existing works [14], [15]. The second
baseline is the standard training process without any data
augmentation.
Evaluation measures. For the model testing, we evaluate the
test accuracy and robustness of DNNs. The test accuracy is
the percentage of correctly classified data over the entire test
data. For the robustness evaluation, we first generate new test
sets by the refactoring methods from the original test set, then
calculate the percentage of correctly classified data from this
new set. The robustness reflects the generalization ability of
the trained model, i.e., the model performance when facing
more diverse unseen data.
Implementation and Environments. The pure Python lan-
guage implements the core code of MIXCODE with only the
Numpy package. That means MIXCODE can be easily reused
in any DL framework for other classification tasks. We provide
two versions of code refactoring methods that support both
Java and Python languages. The models of the classification
tasks are built using TensorFlow2.3 and Keras2.4.3 frame-
works, and the models of the bug detection tasks are built using
PyTorch1.6.0. For the SeqOfToken, BagOfToken, CodeBERT,
and GraphCodeBERT experiments, we set the training epoch
configuration to 50 and the GNNs experiment to 100. We
conduct our experiments on an NVIDIA Tesla V100 16G
SXM2 GPU. We train each model 5 times to reduce the effect
of randomness and report the average results with standard
deviation.

V. RESULTS ANALYSIS

A. RQ1: Effectiveness of MIXCODE

The upper component in Table III presents the test accuracy
of trained models on original test data. The first conclusion to
be drawn from the result is that MIXCODE almost always out-
performs the two baselines regardless of datasets and models,
showing that data augmentation is useful to improve the model
performance compared to standard training. However, simply
adding data into the training set only slightly improves the
basic strategy, especially in bug detection tasks (CodRep1 and
Refactory). For example, in Refactory with GAT, the basic data
augmentation only improves the accuracy by up to 0.29%. This
phenomenon is similar to the findings in [15], which reveal
that traditional adversarial training (simply adding adversarial
examples to the training data) is not sufficient to improve the
robustness of source code models. By contrast, MIXCODE
has a significant improvement (up to 5.69%) compared to
the basic data augmentation. In bug detection (CodRep1 and
Refactory), where the basic data augmentation is not helpful,

6

TABLE III
EFFECTIVENESS OF MIXCODE CONCERNING TEST ACCURACY AND

ROBUSTNESS (AVERAGE± STANDARD DEVIATION, %) ON ORIGINAL TEST
DATA AND TRANSFORMED TEST DATA. STANDARD: STANDARD TRAINING

WITHOUT DATA AUGMENTATION. BASIC: BASIC DATA AUGMENTATION.
THE VALUE WITH A GRAY BACKGROUND INDICATES THE BEST RESULT,

AND THE VALUE HIGHLIGHTED IN RED SHOWS THE ACCURACY
DIFFERENCE BETWEEN THE BEST AND THE SECOND-BEST. THE HIGHER,

THE BETTER.

Dataset DNN Standard Basic MIXCODE
Test Accuracy

BagofToken 71.66±0.03 76.63±0.08 82.32±0.07 (5.69↑)

JAVA250 SeqofToken 86.57±0.06 93.92±0.15 94.52±0.23 (0.60↑)
CodeBERT 96.37±0.02 96.46±0.07 96.98±0.09 (0.52↑)
GraphCodeBERT 96.48±0.03 96.51±0.06 97.16±0.12 (0.65↑)
GGNN 62.69±0.32 63.07±0.35 65.42±0.35 (2.35↑)
GCN 61.38±0.44 62.68±0.56 64.18±0.44 (1.50↑)

CodRep1 GAT 61.27±0.26 62.07±0.33 64.09±0.36 (2.02↑)
CodeBERT 69.12±0.03 71.22±0.02 72.96±0.05 (1.74↑)
GraphCodeBERT 70.05±0.11 71.35±0.09 73.34±0.13 (1.99↑)
BagofToken 67.31±0.05 67.46±0.08 68.27±0.08 (0.81↑)

Python800 SeqofToken 82.65±0.32 83.26±0.41 85.00±0.20 (1.74↑)
CodeBERT 96.05±0.02 96.16±0.01 96.79±0.06 (0.63↑)
GraphCodeBERT 96.27±0.05 96.29±0.03 97.09±0.08 (0.80↑)
GGNN 81.96±0.22 81.98±0.23 88.22±0.18 (6.24↑)
GCN 80.12±0.25 80.23±0.37 84.16±0.25 (3.93↑)

Refactory GAT 79.76±0.19 80.05±0.28 83.38±0.31 (3.33↑)
CodeBERT 95.88±0.42 96.09±0.33 97.57±0.37 (1.48↑)
GraphCodeBERT 96.81±0.17 96.92±0.11 98.16±0.21 (1.24↑)

Robustness
BagofToken 40.21±0.09 52.11±0.06 78.17±0.05 (26.06↑)

JAVA250 SeqofToken 57.83±0.01 84.94±0.02 85.60±0.01 (0.66↑)
CodeBERT 89.71±0.09 92.19±0.05 93.17±0.11 (0.98↑)
GraphCodeBERT 90.56±0.03 92.78±0.07 94.07±0.16 (1.29↑)
GGNN 38.84±0.02 50.76±0.03 55.01±0.01 (4.25↑)
GCN 38.40±0.01 49.97±0.02 54.03±0.03 (4.06↑)

CodRep1 GAT 38.07±0.02 49.46±0.04 53.81±0.03 (4.35↑)
CodeBERT 61.11±0.04 62.28±0.03 66.15±0.09 (3.87↑)
GraphCodeBERT 61.03±0.11 61.86±0.04 65.91±0.13 (4.05↑)
BagofToken 38.76±0.02 39.04±0.02 63.65±0.02 (24.61↑)

Python800 SeqofToken 58.18±0.03 80.81±0.02 82.94±0.02 (2.13↑)
CodeBERT 89.64±0.04 89.97±0.01 92.16±0.08 (2.19↑)
GraphCodeBERT 91.01±0.02 91.85±0.04 94.56±0.07 (2.71↑)
GGNN 66.37±0.02 67.34±0.02 72.81±0.03 (5.47↑)
GCN 64.07±0.01 64.32±0.03 67.73±0.03 (3.41↑)

Refactory GAT 62.03±0.02 62.31±0.01 66.49±0.01 (4.38↑)
CodeBERT 92.14±0.12 92.54±0.09 95.41±0.06 (2.87↑)
GraphCodeBERT 92.02±0.05 92.15±0.03 95.23±0.11 (3.08↑)

MIXCODE can increase the model accuracy with an impressive
improvement by up to 6.24%.

The lower part in Table III presents the robustness of
different trained models on the transformed test data. First of
all, from the test accuracy to the robustness, we observe that
the results of all standard-trained models drop significantly,
e.g., from 71% to 40% for JAVA250-BagofToken. This phe-
nomenon confirms that only using original training data to
train the model will result in a bad generalization property,
i.e., the model can not handle the unseen data even if the
data is functionally the same as the training data. However,
the drop is reduced via data augmentation, especially by
MIXCODE. MIXCODE achieves the best results in all cases,
and the basic data augmentation usually performs similarly to
the standard training. More specifically, the results show that
it outperforms the basic data augmentation by up to 26.06%,
and on average, 5.58%, which is remarkable. Particularly, in
the problem classification task (JAVA250 and Python800), all
the models have more than 20% accuracy improvement. And
perhaps surprisingly, the robustness is already close to the
original test accuracy, e.g., Python800-BagofToken, original
accuracy 68.27% vs. robustness 63.65%. In the bug detection
task (CodRep1 and Refactory), although the improvement
is lower than in the problem classification (JAVA250 and
Python800), it is still promising (from 2.87% to 5.47%).

Answer to RQ1: MIXCODE is effective in enhancing model
performance. It outperforms the basic data augmentation
by up to 6.24% and 26.06% original test accuracy and
robustness improvement, respectively.

B. RQ2: Impact of Mixup Strategies

In the default setting of MIXCODE in step 2, a pair of
randomly selected original code and transformed code is
mixed (Ori+Ref). To investigate the usefulness of this mixing
strategy, we compare (Ori+Ref) to other two types of Mixup
strategies, original code mixing original code (Ori+Ori) and
transformed code mixing transformed code (Ref+Ref).

Table IV shows the effectiveness comparison of these three
strategies. First, compared to the results by producing standard
training in Table III, we can see that all three strategies
benefit the model performance. Meanwhile, in most cases (
84 out of 108), the Mixup strategy outperforms the basic
data augmentation. Next, we compare the effectiveness of
different Mixup strategies. Considering the test accuracy, the
results show that for the Java language (JAVA250, CodRep1),
Ori+Ref consistently outperforms the other two combinations
on all the tasks. Ref+Ref, the second-best, is slightly better
than Ori+Ori. However, overall, the difference between these
three strategies is small, e.g., 94.49% vs 94.52%, 93.18%.
For the Python language (Python800, Refactory), we can
find that there is no one can always be the best. But the
Ori+Ref is still in the top-2 places in all cases. And even
if Ori+Ref is in the second place, the gap between it and the
best is slight (e.g., 84.12% vs 84.61%). Unlike Java tasks,
the difference between these three combinations becomes
bigger in Python Tasks, e.g., 82.46% vs 88.22% vs 86.58%.
Thus, if we only consider the test accuracy, Ori+Ref is the
recommended combination for MIXCODE. Considering the ro-
bustness, Ori+Ref consistently and significantly outperforms
the other two combinations with an average of 2.62% better
robustness than the second best. These results recommend that
using original data and transformed data is a better choice for
MIXCODE to train robust models.

Then, we study how the hyperparameter α in Beta dis-
tribution for the determination of λ in Eq. (1) influences
the performance of MIXCODE. The α can be set from 0
to ∞, but it is impractical to traverse all the possibilities.
We follow the original Mixup setting where α = 0.2 is the
recommended setting and study α ranging from 0.05 to 0.5.
Table V shows both the test accuracy and robustness of trained
models. Note that when setting the α as 0.5, the SeqofToken-
based models are always poor (with less than 1% accuracy).
We conjecture that when α and λ become bigger, the mixed
code is meaningless, and the model cannot learn anything from
the data. A deeper analysis of this interesting phenomenon
will be our future work. From the remaining results, we can
see that MIXCODE can beat the standard training and basic
data augmentation in most cases regardless of the setting of
α. The results demonstrate that a smaller α can produce a
better model. In 13 (out of 18) cases, and 15 (out of 18)

7

TABLE IV
COMPARISON OF DIFFERENT MIXUP STRATEGIES ON TEST ACCURACY

AND ROBUSTNESS (AVERAGE± STANDARD DEVIATION, %). REF:
TRANSFORMED CODE, ORI: ORIGINAL CODE. THE VALUE WITH A GRAY

BACKGROUND INDICATES THE BEST RESULT. THE HIGHER, THE BETTER.

Mixup StrategyDataset DNN Ori+Ori Ori+Ref Ref+Ref
Test Accuracy

BagofToken 73.09±0.03 82.32±0.07 82.13±0.03

JAVA250 SeqofToken 94.49±0.08 94.52±0.23 93.18±0.15
CodeBERT 96.54±0.02 96.98±0.09 95.17±0.16
GraphCodeBERT 96.76±0.04 97.16±0.12 95.56±0.19
GGNN 64.37±0.25 65.42±0.35 65.38±0.33
GCN 63.42±0.26 64.18±0.44 63.89±0.27

CodRep1 GAT 63.29±0.47 64.09±0.36 63.78±0.35
CodeBERT 72.77±0.07 72.96±0.05 71.14±0.03
GraphCodeBERT 73.21±0.11 73.34±0.13 71.78±0.16
BagofToken 68.27±0.08 67.88±0.07 65.67±0.09

Python800 SeqofToken 84.68±0.04 85.00±0.20 81.22±0.45
CodeBERT 96.35±0.04 96.79±0.06 95.11±0.18
GraphCodeBERT 96.87±0.05 97.09±0.08 95.16±0.21
GGNN 82.46±0.28 88.22±0.18 86.58±0.22
GCN 81.71±0.24 84.12±0.17 84.61±0.25

Refactory GAT 80.22±0.27 82.68±0.12 83.38±0.31
CodeBERT 96.98±0.41 97.57±0.37 95.39±0.39
GraphCodeBERT 97.78±0.27 98.16±0.21 96.03±0.19

Robustness
BagofToken 43.87±0.03 78.17±0.05 66.62±0.03

JAVA250 SeqofToken 78.27±0.02 85.60±0.01 84.30±0.02
CodeBERT 91.17±0.22 93.17±0.11 93.01±0.13
GraphCodeBERT 92.01±0.19 94.07±0.16 93.56±0.17
GGNN 42.40±0.02 55.01±0.01 49.53±0.02
GCN 42.08±0.02 54.03±0.03 49.42±0.03

CodRep1 GAT 41.66±0.02 53.81±0.03 48.78±0.02
CodeBERT 63.26±0.06 66.15±0.09 65.95±0.03
GraphCodeBERT 63.17±0.08 65.91±0.13 64.76±0.16
BagofToken 40.46±0.01 63.65±0.02 62.35±0.03

Python800 SeqofToken 75.15±0.02 82.94±0.02 78.54±0.01
CodeBERT 90.08±0.05 92.16±0.08 92.08±0.03
GraphCodeBERT 91.87±0.08 94.56±0.07 93.12±0.09
GGNN 68.09±0.03 72.81±0.03 69.69±0.02
GCN 65.68±0.02 67.73±0.03 66.36±0.01

Refactory GAT 62.37±0.02 66.49±0.01 65.09±0.02
CodeBERT 92.67±0.06 95.41±0.06 93.44±0.07
GraphCodeBERT 92.45±0.09 95.23±0.11 93.17±0.13

cases, α = 0.05 or α = 0.1 can produce models with higher
accuracy and better robustness.

Answer to RQ2: Compared to single-type (only original or
transformed) code mixing, using both types (original and
transformed) code is the best strategy for MIXCODE to train
more accurate and robust models. A small α (e.g., 0.05 and
0.1) value is recommended for MIXCODE.

C. RQ3: Impact of Refactoring Methods

The refactoring method that determines the quality of trans-
formed code is an important component in MIXCODE. In
RQ1 and RQ2, we consider randomly selecting refactoring
methods from all the possibilities to prepare the transformed
data. However, it is still unclear how these refactor methods
influence the performance of MIXCODE. Therefore, in this
research question, we train the model by using each refactoring
method separately under the best Mixup strategy Ori+Ref
proved in RQ2 to rank the refactoring methods based on
the performance of the trained model. Then, we evenly split
the 18 refactoring methods based on the ranking into good
(high ranking) and poor (low ranking), two sets. We only
consider two types of combinations because it is hard to
consider all the situations. Afterward, we perform MIXCODE
again using these two sets, respectively. In this manner, we
try to explore if there is a chance to further improve the

MIXCODE by using a better refactoring method combination.
Here, we choose two models for our study, BagofToken for the
problem classification task and GGNN for the bug detection
task. MIXCODE makes the best improvement in these two
models, it is easier to amplify the difference.

Table VI presents the test accuracy of trained models
using different individual program refactoring methods on
the original test data. Surprisingly, MIXCODE using a single
refactoring method can produce more accurate models than
using all the refactoring methods, and the gap can be up
to 4.92% (comparing Arguments Adding to Baseline in Java
language). Then, the refactoring method with accuracy greater
than 86.00%, 65.75%, 68.00%, and 89.00% from JAVA250,
CodRep1, Python800, and Refactory is selected in the Good,
the others are put in the Poor. We observe that considering
only the test accuracy, compared to using Poor, using MIX-
CODE with refactoring methods from Good can train a more
accurate model. On average, Good outperforms Poor with
1.98% test accuracy improvement. These results reveal that
using a smartly selected single refactoring method is enough
for MIXCODE if we only care about the test accuracy of
the trained model. Additionally, combining better-refactoring
methods (which have higher single-test accuracy) can build a
more effective MIXCODE.

Moving to the robustness, table VII presents the results of
trained models. First, compared with the standard training (in
table III), MIXCODE with a single refactoring method can still
produce more robust models. Only one case, Local Variable
Adding - Refactory, has lower robustness than standard train-
ing. Then, we compare single-method and multiple-method
combinations. Different from the pure test accuracy, the results
show that MIXCODE with a single refactoring method can
not outperform using multiple methods, and the difference
gap is huge. For example, in JAVA250, the robustness of
using a single method ranges from 42.42% to 68.34%, but
the robustness of using Poor can be 78.19%, where around
10% robustness difference appeared. It is reasonable since if
we force the model to learn one specific code refactoring,
the generalization of the trained model could be quite low.
Then, we compare Good and Poor. Surprisingly, in half of the
cases (2 out of 4), Poor has higher robustness than Good. It
is not the case that models trained by using better-refactoring
methods (with higher original test accuracy) always have better
robustness. This finding reveals a trade-off between original
test accuracy and robustness when considering the refactoring
methods for MIXCODE.

Answer to RQ3: Using a specific refactoring method
(depending on the dataset and DNN), MIXCODE can pro-
duce models with high test accuracy but has to scarify
the robustness. Utilizing multiple methods to enrich the
diversity in data remains the best solution to adjust the trade-
off between test accuracy and robustness.

VI. DISCUSSION

In this section, we discuss the limitation of our work,
potential future research directions, and the threats to validity.

8

TABLE V
RESULTS OF MIXCODE USING ORI+REF STRATEGY FOR MIXUP WITH DIFFERENT α. THE VALUE WITH A GRAY BACKGROUND INDICATES THE BEST

RESULT. THE HIGHER, THE BETTER.

Dataset DNN α =0.05 α =0.1 α =0.2 α =0.3 α =0.4 α =0.5 α =0.05 α =0.1 α =0.2 α =0.3 α =0.4 α =0.5
Test Accuracy Robustness

BagofToken 82.08±0.09 82.32±0.07 82.19±0.05 81.76±0.05 81.15±0.03 80.92±0.05 77.63±0.06 78.17±0.05 78.15±0.03 77.94±0.04 77.90±0.04 77.28±0.03
SeqofToken 95.23±0.28 94.52±0.02 93.20±0.26 90.84±0.65 90.55±0.61 - 86.66±0.25 85.60±0.01 82.96±0.03 81.43±0.01 81.18±0.02 -
CodeBERT 96.39±0.04 96.98±0.09 97.02±0.06 95.46±0.19 95.02±0.21 94.11±0.24 93.31±0.08 93.17±0.11 93.08±0.05 92.68±0.04 92.53±0.08 91.97±0.03JAVA

GraphCodeBERT 97.03±0.14 97.16±0.12 97.14±0.16 96.03±0.21 96.32±0.24 95.81±0.29 94.28±0.11 94.07±0.16 93.87±0.12 93.13±0.17 94.01±0.11 92.83±0.09
GGNN 65.44±0.29 65.42±0.35 65.31±0.26 65.19±0.33 64.78±0.46 64.65±0.25 55.61±0.03 55.01±0.01 54.88±0.04 54.32±0.03 54.08±0.02 53.97±0.03
GCN 64.12±0.31 64.18±0.44 64.03±0.34 63.89±0.28 63.76±0.38 63.56±0.24 54.81±0.01 54.03±0.03 53.97±0.04 53.42±0.05 53.08±0.02 52.78±0.03
GAT 64.03±0.28 64.09±0.36 63.78±0.27 63.58±0.31 63.23±0.29 63.07±0.22 53.92±0.01 53.81±0.03 53.26±0.02 52.97±0.01 52.69±0.02 52.35±0.04
CodeBERT 72.98±0.03 72.96±0.05 72.51±0.16 71.84±0.25 71.37±0.15 70.26±0.27 66.12±0.04 66.15±0.09 65.87±0.06 65.41±0.04 65.87±0.08 65.03±0.08

CodReq1

GraphCodeBERT 73.11±0.14 73.34±0.13 72.67±0.19 72.19±0.22 71.62±0.25 70.34±0.29 66.23±0.11 65.91±0.13 65.36±0.18 64.78±0.21 64.85±0.17 64.21±0.21
BagofToken 67.14±0.09 67.88±0.07 68.22±0.06 68.61±0.05 68.53±0.08 68.72±0.06 63.31±0.05 63.65±0.02 64.58±0.01 64.74±0.03 64.82±0.02 64.73±0.01
SeqofToken 84.47±0.26 85.00±0.20 84.31±0.05 83.50±0.05 82.89±0.34 - 83.53±0.16 82.94±0.02 82.17±0.01 81.24±0.02 80.81±0.03 -
CodeBERT 96.82±0.11 96.79±0.06 96.04±0.11 95.22±0.18 94.87±0.31 94.08±0.23 92.11±0.07 92.16±0.08 92.09±0.09 91.87±0.07 91.44±0.09 91.01±0.03Python800

GraphCodeBERT 97.10±0.06 97.09±0.08 97.01±0.14 97.13±0.09 96.27±0.24 95.67±0.13 94.87±0.03 94.56±0.07 94.95±0.11 94.02±0.13 93.24±0.19 92.67±0.13
GGNN 88.01±0.21 88.22±0.18 86.52±0.19 86.89±0.23 87.85±0.35 87.35±0.32 72.49±0.04 72.81±0.03 71.07±0.02 71.16±0.02 71.89±0.01 71.60±0.04
GCN 84.10±0.16 84.12±0.17 84.08±0.26 84.06±0.33 83.63±0.25 82.98±0.29 67.91±0.01 67.73±0.03 67.38±0.02 67.32±0.04 66.93±0.03 66.04±0.01
GAT 82.76±0.22 81.30±0.12 80.95±0.25 81.28±0.37 81.12±0.28 81.18±0.25 67.17±0.02 66.49±0.01 65.61±0.03 66.39±0.02 66.02±0.01 66.04±0.03
CodeBERT 95.78±0.12 97.57±0.37 96.69±0.19 95.94±0.22 97.85±0.24 95.59±0.33 95.52±0.06 95.41±0.06 95.01±0.05 95.37±0.03 94.86±0.03 94.16±0.04

Refactory

GraphCodeBERT 98.03±0.24 98.16±0.21 98.47±0.25 98.23±0.27 97.92±0.21 97.44±0.23 95.31±0.13 95.23±0.11 95.17±0.17 94.21±0.27 95.53±0.31 94.07±0.29

TABLE VI
REFACTORING METHODS SELECTION (TEST ACCURACY). GOOD/POOR:

MIXCODE USING THE BEST/WORST 9 REFACTORING METHODS,
RESPECTIVELY. BASELINE: MIXCODE USING ALL 18 METHODS. THE

BEST METHOD OF 18 FOR EACH DATASET IS HIGHLIGHTED WITH A GRAY
BACKGROUND.

Refactoring Method JAVA250 CodRep1 Python800 Refactory
BagofToken GGNN BagofToken GGNN

API Renaming 86.91±0.04 65.54±0.22 68.23±0.08 88.43±0.22
Arguments Adding 87.24±0.04 65.72±0.25 68.15±0.07 88.81±0.22
Argument Renaming 86.74±0.06 65.62±0.25 68.08±0.07 88.52±0.32
Dead For Adding 82.61±0.04 65.70±0.31 67.23±0.06 89.35±0.44
Dead If Adding 83.91±0.05 65.82±0.32 67.58±0.09 89.34±0.33
Dead If Else Adding 83.42±0.06 65.76±0.34 67.24±0.07 90.02±0.23
Dead Switch Adding 83.46±0.03 65.75±0.22 - -
Dead While Adding 83.91±0.05 65.77±0.21 67.57±0.07 89.05±0.34
Duplication 85.61±0.06 65.44±0.33 67.32±0.06 88.36±0.21
Filed Enhancement 86.55±0.06 66.06±0.32 68.26±0.06 89.54±0.32
For Loop Enhancement 86.71±0.07 65.98±0.25 68.47±0.07 89.89±0.33
If Enhancement 86.35±0.03 66.35±0.23 68.26±0.05 91.04±0.33
Local Variable Adding 85.70±0.04 65.73±0.21 67.17±0.09 88.33±0.23
Local Variable Renaming 85.82±0.04 65.60±0.21 67.26±0.09 88.34±0.24
Method Name Renaming 87.02±0.05 65.04±0.43 68.59±0.06 88.32±0.22
Plus Zero 86.93±0.06 65.83±0.43 67.96±0.06 89.06±0.33
Print Adding 86.36±0.03 66.01±0.21 67.89±0.07 88.86±0.24
Return Optimal 85.85±0.06 65.53±0.34 67.28±0.08 88.33±0.22
Good (9) 86.34±0.06 65.72±0.24 68.03±0.06 89.97±0.17
Poor (9) 82.63±0.05 63.32±0.19 67.92±0.08 88.29±0.11
Baseline (18) 82.32±0.07 65.42±0.35 68.27±0.08 88.22±0.18

TABLE VII
REFACTORING METHODS SELECTION (ROBUSTNESS). GOOD/POOR:

MIXCODE USING THE BEST/WORST 9 REFACTORING METHODS,
RESPECTIVELY. BASELINE: MIXCODE USING ALL 18 METHODS. THE

BEST METHOD OF 18 FOR EACH DATASET IS HIGHLIGHTED WITH A GRAY
BACKGROUND.

Refactoring Method JAVA250 CodRep1 Python800 Refactory
BagofToken GGNN BagofToken GGNN

API Renaming 43.61±0.02 55.06±0.02 40.11±0.02 66.65±0.02
Arguments Adding 42.72±0.03 55.09±0.01 39.05±0.01 66.68±0.02
Argument Renaming 43.27±0.04 55.04±0.01 40.08 ±0.01 66.58±0.01
Dead For Adding 45.45±0.02 55.15±0.02 45.43±0.04 68.10±0.01
Dead If Adding 68.34±0.03 55.16±0.03 56.74±0.01 68.20±0.03
Dead If Else Adding 68.27±0.01 55.19±0.02 56.34±0.02 68.34±0.02
Dead Switch Adding 48.71±0.03 55.11±0.01 - -
Dead While Adding 65.33±0.02 55.17±0.03 55.44±0.02 68.09±0.02
Duplication 43.29±0.03 55.03±0.03 40.88±0.02 66.67±0.01
Filed Enhancement 44.11±0.01 55.10±0.04 42.14 ±0.02 66.59±0.02
For Loop Enhancement 42.42±0.03 55.09±0.02 41.29±0.02 66.64±0.02
If Enhancement 42.46±0.04 55.05±0.02 41.03±0.02 66.39±0.03
Local Variable Adding 43.34±0.02 55.08±0.02 40.78±0.03 66.32±0.02
Local Variable Renaming 44.44±0.04 55.09±0.03 40.67±0.02 66.34±0.01
Method Name Renaming 44.31±0.01 55.06±0.02 41.13±0.02 66.64±0.02
Plus Zero 43.16±0.01 55.06±0.02 40.65±0.02 66.43±0.02
Print Adding 44.27±0.02 55.03±0.04 41.08±0.03 66.67±0.02
Return Optimal 42.63±0.03 55.08±0.02 39.87±0.02 66.47±0.01
Good (9) 43.50±0.03 55.21±0.03 56.47±0.02 72.91±0.02
Poor (9) 78.19±0.02 52.09±0.02 63.55±0.01 71.47±0.01
Baseline (18) 78.17±0.05 55.01±0.01 63.65±0.02 72.81±0.03

A. Limitation & Future Directions

Limitation. In Section V-B, we observed that the setting of
hyperparameter α could affect the performance of MIXCODE.
And in the worst case, e.g., α = 0.5, some models can learn
nothing from the mixed data. The potential reason is still
unclear, raising concerns about using MIXCODE. However, it
is possible to bypass this limitation by using MIXCODE with
a smaller α.
Future directions. Existing works for source code analy-
sis mainly focus on proposing new code representation and
code embedding approaches [8], [35] or studying how to
utilize large pre-trained language models for downstream code
tasks [55]. Only limited works consider the importance of
the quality of training data [56] or the importance of training
strategies. There are still many opportunities in source code
analysis for better program coding. We highlight two potential
research directions for future exploration.

1) In terms of MIXCODE, we investigate the impact of dif-
ferent refactoring methods and combinations on both the test
accuracy and robustness of FNN, CNN, GGNN, GCN, GAT,
CodeBERT, and GraphCodeBERT. Despite that MIXCODE
brings better performance, there is still room to improve. The
straightforward research direction is to design an adaptive
method to find the best combination of refactoring methods.

2) In terms of Mixup, a series of works propose different
variants of the original Mixup. Therefore, in addition to using
raw code vectors to do code mixing, other options, such as
the raw source code and the embedding vectors, can also be
used as the input of the Mixup approach.

B. Threats to Validity

The internal threat to validity comes from the implemen-
tation of standard training, basic data augmentation, and
MIXCODE. The training for the classification tasks (JAVA250,
Python800) is taken from the project CodeNet [5], and the
defect detection tasks (CodRep1, Refactory) adopt from [48],
[49], [57]. The implementation of Mixup comes from its
original release [20]. The 18 refactoring methods for the Java
language are from [14], [43], and we adapt the implementation
to the Python language.

9

The external threats to validity lie in the selected source
code tasks, datasets, DNNs, and refactoring methods. We
consider two different tasks (problem classification and bug
detection) in the study and include two datasets for each task.
Particularly, we include two popular programming languages
(Java and Python) for software developers. Remarkably, we
utilize seven types of deep neural networks, including the
most famous pre-trained programming language models. For
the refactoring methods, we cover the most common ones from
the literature.

The construct threats to validity mainly come from the pa-
rameters of MIXCODE, randomness, and evaluation measures.
MIXCODE only contains the parameter λ that controls the
weight of mixing two input instances. We follow the recom-
mendation of the original Mixup algorithm and investigate the
impact of this parameter. We observe that regardless of the
parameter setting, MIXCODE still outperforms the standard
training and basic data augmentation. To reduce the impact
of randomness, we repeat each experiment five times and
report the average and standard deviation results. Finally, for
evaluation measures, we consider both the accuracy of the
original test data and the robustness of transformed test data.
The latter one is specific for evaluating the generalization
ability of DNNs.

VII. RELATED WORK

We consider related works from three aspects, source code
learning enhancement, data augmentation for source code
analysis, and Mixup for image and text classification.

A. Source Code Learning Enhancement

The goal of our work is to improve the performance of
source code-related models. Existing works targeting the same
goal try to challenge this problem in different ways.
Self-supervised learning. Although the code model has
significantly succeeded in software engineering applications,
there are still some limitations. For example, some code mod-
els are built for solving a particular problem, thus, the related
code representation is difficult to extend to other problems. To
enhance the flexibility of code models, Bui et al. [58] proposed
to utilize a self-supervised learning mechanism for code rep-
resentation preparation. Specifically, it utilizes the identified
sub-trees prediction as the self-supervised task to train the
code representation. As a result, the code representation can
be used in different downstream tasks.
Pre-trained models fine-tuning. Reusing pre-trained models
to solve code analysis problems is another straightforward
method. Multiple models have been proposed. Kanade et
al. [59] introduced CuBERT, the same model architecture as
BERT [60], trained on Python source code. Buratti et al. [61]
used a transformer-based model that was trained on C lan-
guage to build the pre-trained model C-BERT. Here, CuBERT
and C-BERT were both trained by using a single programming
language. More recently, some multi-programming language
pre-trained models were proposed. Lu et al. [53] provided
CodeGPT, which was trained on Python and Java corpora.

Feng et al. [7] presented CodeBERT, a pre-trained model
that learns information from six programming languages and
natural language text. To further capture the semantic structure
of code, Guo et al. [35] proposed GraphCodeBERT, which
uses data flow information of code in the pre-training stage.
Different from these works, MIXCODE mainly focuses on
improving the model training process from the perspective of
data augmentation. As a result, MIXCODE can be generalized
to any code classification task regardless of pre-trained models.

B. Data Augmentation for Source Code Analysis

Data augmentation has achieved tremendous success in the
CV and NLP fields [10], [11]. Recently, due to the similar
processing workflow of NLP data and source code, researchers
devoted considerable effort to applying this technique to im-
prove the performance of the code model. The widely studied
data augmentation method, adversarial training [62], has been
studied in code learning. Simply, adversarial training generates
a set of adversarial examples and combines them with the
original training data to increase the data volume. For instance,
Zhang et al. [63] generated adversarial examples based on the
Metropolis-Hastings modifier (MHM) algorithm [64]. Mi et
al. [65] generated the synthetic data from Auxiliary Classifier
generative adversarial networks (GANs) to increase the data
size. Unlike the above works, we generate new data by
refactoring the programs and then apply Mixup to enrich the
volume and diversity of the training dataset.

C. Mixup for CV and NLP

Compared to the above-mentioned data augmentation meth-
ods that increase the data volume by combining adversarial
examples and the original training data, Mixup [20] linearly
mixes existing training data to increase the diversity of learned
information by the model. Recently, multiple variants of
Mixup have been proposed [41], [66]–[74]. Yun et al. [75]
applied Dropout [76] into Mixup, and proposed a mixing
strategy based on the patch of the image. Besides, Liu et
al. [77] introduced the Automatic Mixup (AutoMix) strategy
to balance the mixing policies and optimization complexity.
Although the original Mixup is proposed for image data,
researchers have extended the Mixup to support other types of
data. For text data, Yoon et al. [78] synthesized the new text
data from two raw input data by replacing the hidden vectors
based on span-based mixing. Wang et al. [79] provided a two-
stage Mixup framework for graph data. One is mixing the
feature of node neighbors, and another is mixing the feature
of the entire graph. Like Mixup for text and graph data clas-
sification, we augment the input code data in the vector space
for source code classification. However, the difference is that
we consider the code with sequence and graph representation,
and we mix the data with their transformed version.

VIII. CONCLUSION

This paper presented MIXCODE, the first data augmenta-
tion framework for source code analysis, to enhance model

10

performance without collecting or labeling new code. Specif-
ically, MIXCODE supports 18 types of refactoring methods
(extensible with new ones) that generate transformed code.
To evaluate the effectiveness of MIXCODE, we conducted
extensive experiments on two important code tasks (problem
classification and bug detection) and seven DNN architectures.
Experimental results demonstrated MIXCODE outperforms the
basic data augmentation baseline by up to 6.24% accuracy
and 26.06% robustness improvement. The configuration study
proved that linearly mixing the original and transformed code
achieves the best performance of MIXCODE.

IX. ACKNOWLEDGEMENT

This research is supported in part by JSPS KAKENHI Grant
No. JP19H04086, Japan. Qiang Hu is also supported by the
Luxembourg National Research Funds (FNR) through CORE
project C18/IS/12669767/STELLAR/LeTraon.

REFERENCES

[1] M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocom-
puting, vol. 429, pp. 215–244, 2021.

[2] D. Dong, H. Wu, W. He, D. Yu, and H. Wang, “Multi-task learning
for multiple language translation,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2015, pp. 1723–1732.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[4] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[5] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker et al., “Codenet: A large-
scale ai for code dataset for learning a diversity of coding tasks,” arXiv
preprint arXiv:2105.12655, 2021.

[6] Y. Shi, T. Mao, T. Barnes, M. Chi, and T. W. Price, “More with
less: Exploring how to use deep learning effectively through semi-
supervised learning for automatic bug detection in student code.” in In
Proceedings of the 14th International Conference on Educational Data
Mining (EDM) 2021, 2021.

[7] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[8] W. Ma, M. Zhao, E. Soremekun, Q. Hu, J. Zhang, M. Papadakis,
M. Cordy, X. Xie, and Y. L. Traon, “Graphcode2vec: Generic code
embedding via lexical and program dependence analyses,” arXiv preprint
arXiv:2112.01218, 2021.

[9] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[10] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48,
2019.

[11] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura,
and E. Hovy, “A survey of data augmentation approaches for nlp,” arXiv
preprint arXiv:2105.03075, 2021.

[12] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, “Data
augmentation for graph neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 11 015–
11 023.

[13] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-supervised
bug detection and repair,” Advances in Neural Information Processing
Systems, vol. 34, pp. 27 865–27 876, 2021.

[14] M. V. Pour, Z. Li, L. Ma, and H. Hemmati, “A search-based testing
framework for deep neural networks of source code embedding,” in 2021
14th IEEE Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2021, pp. 36–46.

[15] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, pp. 1–30, 2020.

[16] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2021, pp. 511–
521.

[17] D. Wang, Z. Jia, S. Li, Y. Yu, Y. Xiong, W. Dong, and X. Liao,
“Bridging pre-trained models and downstream tasks for source code
understanding,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 287–298.

[18] S. Yu, T. Wang, and J. Wang, “Data augmentation by program transfor-
mation,” Journal of Systems and Software, vol. 190, p. 111304, 2022.

[19] P. Bielik and M. Vechev, “Adversarial robustness for code,” in
Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 896–907.
[Online]. Available: https://proceedings.mlr.press/v119/bielik20a.html

[20] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[21] H. Xu and S. Mannor, “Robustness and generalization,” Machine learn-
ing, vol. 86, no. 3, pp. 391–423, 2012.

[22] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generalization in deep
learning,” arXiv preprint arXiv:1710.05468, 2017.

[23] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614.

[24] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[25] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector
for introductory programming assignments,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 60–70.

[26] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk p: a neural
program corrector for moocs,” in Companion Proceedings of the 2016
ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, 2016, pp. 39–40.

[27] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943–1959, 2019.

[28] M. Yasunaga and P. Liang, “Graph-based, self-supervised program repair
from diagnostic feedback,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 799–10 808.

[29] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations (ICLR), 2020.

[30] Z. Chen, V. Hellendoorn, P. Lamblin, P. Maniatis, P.-A. Manzagol,
D. Tarlow, and S. Moitra, “Plur: A unifying, graph-based view of
program learning, understanding, and repair,” Advances in Neural In-
formation Processing Systems, vol. 34, 2021.

[31] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo,
C. Burns, S. Puranik, H. He, D. Song et al., “Measuring coding challenge
competence with apps,” arXiv preprint arXiv:2105.09938, 2021.

[32] L. Zhang, G. Rosenblatt, E. Fetaya, R. Liao, W. Byrd, M. Might,
R. Urtasun, and R. Zemel, “Neural guided constraint logic programming
for program synthesis,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[33] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[34] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[35] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

11

https://proceedings.mlr.press/v119/bielik20a.html

[36] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[37] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsub-
ramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao et al., “Wilds: A
benchmark of in-the-wild distribution shifts,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 5637–5664.

[38] Y. Zhu, T. Ko, and B. Mak, “Mixup learning strategies for text-
independent speaker verification.” in Interspeech, 2019, pp. 4345–4349.

[39] A. Kaur and M. Kaur, “Analysis of code refactoring impact on software
quality,” in MATEC Web of Conferences, vol. 57. EDP Sciences, 2016,
p. 02012.

[40] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” Journal of Systems and Software, vol. 167, p. 110610,
2020.

[41] H. Guo, Y. Mao, and R. Zhang, “Augmenting data with mixup
for sentence classification: An empirical study,” arXiv preprint
arXiv:1905.08941, 2019.

[42] J. B. McDonald and Y. J. Xu, “A generalization of the beta distribution
with applications,” Journal of Econometrics, vol. 66, no. 1-2, pp. 133–
152, 1995.

[43] M. Wei, Y. Huang, J. Yang, J. Wang, and S. Wang, “Cocofuzzing: Test-
ing neural code models with coverage-guided fuzzing,” arXiv preprint
arXiv:2106.09242, 2021.

[44] T. H. M. Le, H. Chen, and M. A. Babar, “Deep learning for source
code modeling and generation: models, applications, and challenges,”
ACM Comput. Surv., vol. 53, no. 3, jun 2020. [Online]. Available:
https://doi-org.proxy.bnl.lu/10.1145/3383458

[45] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019.

[46] D. Hendrycks, A. Zou, M. Mazeika, L. Tang, B. Li, D. Song, and
J. Steinhardt, “Pixmix: Dreamlike pictures comprehensively improve
safety measures,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 16 783–16 792.

[47] L. Zhang, Z. Deng, K. Kawaguchi, A. Ghorbani, and J. Zou, “How
does mixup help with robustness and generalization?” arXiv preprint
arXiv:2010.04819, 2020.

[48] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury, “Re-
factoring based program repair applied to programming assignments,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 388–398.

[49] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 913–923.

[50] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[51] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[52] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

[53] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[54] X. Zhou, D. Han, and D. Lo, “Assessing generalizability of codebert,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2021, pp. 425–436.

[55] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 336–347.

[56] Z. Sun, L. Li, Y. Liu, and X. Du, “On the importance of building
high-quality training datasets for neural code search,” arXiv preprint
arXiv:2202.06649, 2022.

[57] Z. Chen and M. Monperrus, “The codrep machine learning on source
code competition,” arXiv preprint arXiv:1807.03200, 2018.

[58] N. D. Bui, Y. Yu, and L. Jiang, “Infercode: Self-supervised learning of
code representations by predicting subtrees,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1186–1197.

[59] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5110–5121.

[60] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[61] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang et al., “Exploring soft-
ware naturalness through neural language models,” arXiv preprint
arXiv:2006.12641, 2020.

[62] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[63] X. Zhang, Y. Zhou, T. Han, and T. Chen, “Training deep code com-
ment generation models via data augmentation,” in 12th Asia-Pacific
Symposium on Internetware, 2020, pp. 185–188.

[64] H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, and Z. Jin, “Generating adversarial
examples for holding robustness of source code processing models,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, 2020, pp. 1169–1176.

[65] Q. Mi, Y. Xiao, Z. Cai, and X. Jia, “The effectiveness of data aug-
mentation in code readability classification,” Information and Software
Technology, vol. 129, p. 106378, 2021.

[66] L. Sun, C. Xia, W. Yin, T. Liang, P. S. Yu, and L. He, “Mixup-
transformer: dynamic data augmentation for nlp tasks,” arXiv preprint
arXiv:2010.02394, 2020.

[67] J. Chen, Z. Yang, and D. Yang, “Mixtext: Linguistically-informed
interpolation of hidden space for semi-supervised text classification,”
arXiv preprint arXiv:2004.12239, 2020.

[68] R. Zhang, Y. Yu, and C. Zhang, “Seqmix: Augmenting active sequence
labeling via sequence mixup,” arXiv preprint arXiv:2010.02322, 2020.

[69] D. Walawalkar, Z. Shen, Z. Liu, and M. Savvides, “Attentive cutmix:
An enhanced data augmentation approach for deep learning based image
classification,” arXiv preprint arXiv:2003.13048, 2020.

[70] A. Uddin, M. Monira, W. Shin, T. Chung, S.-H. Bae et al., “Saliencymix:
A saliency guided data augmentation strategy for better regularization,”
arXiv preprint arXiv:2006.01791, 2020.

[71] J. Qin, J. Fang, Q. Zhang, W. Liu, X. Wang, and X. Wang, “Resizemix:
Mixing data with preserved object information and true labels,” arXiv
preprint arXiv:2012.11101, 2020.

[72] J.-H. Kim, W. Choo, and H. O. Song, “Puzzle mix: Exploiting saliency
and local statistics for optimal mixup,” in International Conference on
Machine Learning. PMLR, 2020, pp. 5275–5285.

[73] J.-H. Kim, W. Choo, H. Jeong, and H. O. Song, “Co-mixup: Saliency
guided joint mixup with supermodular diversity,” arXiv preprint
arXiv:2102.03065, 2021.

[74] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz,
and Y. Bengio, “Manifold mixup: Better representations by interpolat-
ing hidden states,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6438–6447.

[75] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 6023–6032.

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[77] Z. Liu, S. Li, D. Wu, Z. Chen, L. Wu, J. Guo, and S. Z. Li,
“Unveiling the power of mixup for stronger classifiers,” arXiv preprint
arXiv:2103.13027, 2021.

[78] S. Yoon, G. Kim, and K. Park, “Ssmix: Saliency-based span mixup for
text classification,” arXiv preprint arXiv:2106.08062, 2021.

[79] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node
and graph classification,” in Proceedings of the Web Conference 2021,
2021, pp. 3663–3674.

12

https://doi-org.proxy.bnl.lu/10.1145/3383458

	Introduction
	Preliminaries
	DNNs for Source Code Analysis
	DNN Model Training Methods
	Mixup: A Data Augmentation Approach in Image Classification Tasks

	MixCode—The Proposed Approach
	Methodology of MixCode
	Refactoring Methods
	A Case Study

	Experimental Setup
	Results Analysis
	RQ1: Effectiveness of MixCode
	RQ2: Impact of Mixup Strategies
	RQ3: Impact of Refactoring Methods

	Discussion
	Limitation & Future Directions
	Threats to Validity

	Related work
	Source Code Learning Enhancement
	Data Augmentation for Source Code Analysis
	Mixup for CV and NLP

	Conclusion
	Acknowledgement
	References

