
Strong Mutation-Based Test Data Generation using Hill
Climbing

Francisco Carlos M.

Souza

Computer Systems

Department

University of São Paulo

São Carlos, SP, Brazil

fcarlos@icmc.usp.br

Mike Papadakis

Interdisciplinary Centre for

Security, Reliability and Trust

University of Luxembourg

Luxembourg

michail.papadakis@uni.lu

Yves Le Traon

Interdisciplinary Centre for

Security, Reliability and Trust

University of Luxembourg

Luxembourg

yves.letraon@uni.lu

Márcio E. Delamaro

Computer Systems

Department

University of São Paulo

São Carlos, SP, Brazil

delamaro@icmc.usp.br

ABSTRACT
Mutation Testing is an e↵ective test criterion for finding
faults and assessing the quality of a test suite. Every test cri-
terion requires the generation of test cases, which turns to be
a manual and di�cult task. In literature, search-based tech-
niques are e↵ective in generating structural-based test data.
This fact motivates their use for mutation testing. Thus, if
automatic test data generation can achieve an acceptable
level of mutation score, it has the potential to greatly re-
duce the involved manual e↵ort. This paper proposes an
automated test generation approach, using hill climbing, for
strong mutation. It incremental aims at strongly killing mu-
tants, by focusing on mutants’ propagation, i.e., how to kill
mutants that are weakly killed but not strongly. Further-
more, the paper reports empirical results regarding the cost
and e↵ectiveness of the proposed approach on a set of 18 C
programs. Overall, for the majority of the studied programs,
the proposed approach achieved a higher strong mutation
score than random testing, by 19,02% on average, and the
previously proposed test generation techniques that ignore
mutants’ propagation, by 7,2% on average. Our results also
demonstrate the improved e�ciency of the proposed scheme
over the previous methods.

1. INTRODUCTION
Mutation Testing (MT) is a fault-based criterion originally

proposed by Hamlet [10] and DeMillo et al. [6]. It works by
injecting simple faults into the program under test (PUT)
to obtain faulty versions of the program called mutants.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST ’16 May 16–17, 2016, Austin, TX, USA
c� 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Test data are then generated to reveal these faults, i.e.,
distinguishing the outputs of the mutated programs from the
original one. If a mutant produces di↵erent outputs from
the original program for a given test, then, the mutant is
named“dead”, otherwise, it is called“alive”. In practice, some
mutants produce the same output as the original program for
all possible tests. This mutant is termed as equivalent, i.e.,
test data to detect this mutant are non-existent. The test
quality is measured by the mutation score. It is defined as a
ratio of the number of killed mutants to the total number of
nonequivalent mutants, which indicates how adequate a test
data set can be.
Other important aspects of mutation testing are the con-

cepts of strong and weak or firm mutation that refer to the
way that mutants are considered to be dead. Strong muta-
tion (traditional mutation testing) aims at creating test data
that cause the program state to propagate to the output,
where failures are observable [5]. Thus, a test data is said
to strongly kill a mutant when it causes the given mutant
to produce an output that di↵ers from the one generated by
the original program [12].
In weak or firm mutation, the focus is shifted from the

outputs of the internal part of the programs, i.e., in their
components. The idea is that mutants are considered to
be dead when they have di↵erences in the internal program
states. In weak mutation, instead of checking mutants after
the execution of the entire program, mutants are checked
immediately after the execution of the mutated code part. In
firm mutation, they are checked at an arbitrary intermediate
point of the execution, i.e., not directly after the execution
of the mutated statement.
Among several testing activities, test data generation is

one of the most critical and labor-intensive. Most often in
the industry, test data generation is performed manually.
However, this process is time-consuming, expensive and sus-
ceptible to errors. For several years, great e↵ort has been
devoted to studying this issue, but, the existing techniques
are not yet quite satisfactory.

In general, test data generation is an undecidable problem,
meaning that it cannot be completely solved. Nevertheless,

this does not mean there is no algorithm that can find a
plausible but partial solution to satisfy a specific test goal.
In order to come up with an e�cient heuristic, the main chal-
lenge in mutation testing consists of identifying an adequate
test data set that maximizes the number of nonequivalent
mutants killed. In collaterally obtaining a high mutation
score, the manual e↵ort of analyzing equivalent mutants can
be reduced.
Several publications have appeared in recent years docu-

menting di↵erent techniques for mutation testing. Although
some of these studies address mutation testing, little at-
tention has been given to test data generation in the same
context. According to the study performed in 2012 by Souza
et al. [25] only 19 publications use techniques for test data
generation to kill mutants. Among these publications, only
three of them are for C programs and only two studies [9], [13]
employ search-based techniques.
This paper introduces an automated approach for gen-

erating test data by combining weak and strong mutation
approaches via a search-based technique. Our approach ex-
tends the fitness function scheme suggested by Papadakis
and Malevris [23] to strongly kill mutants for java programs.
In our approach, we used the AUgmented Search-based Test-
INg (AUSTIN) tool [16], which is the current state-of-the-art
search-based test generation tool for C. It combines test data
generation based on structural criteria with a search-based
technique.

To deal with mutants, we extended AUSTIN to integrate
with Proteum [4], a mutation testing tool for C. To perform
the search, we use hill climbing, in particular, the Alternating
Variable Method (AVM) [16], as implemented by AUSTIN.
AVM was found to be quite e↵ective and e�cient in generat-
ing test cases for branch coverage [14], and hence, we believe
that it is appropriate for mutation testing as well.
The original fitness function of AUSTIN is composed of

two metrics: (i) approach level and (ii) branch distance. In
addition to these metrics, we implemented and evaluated our
fitness function involving three parts, the Reach Distance
(RD), the Mutation Distance (MD) and Impact Distance (ID).
The first part of the fitness, RD, guides the search towards the
mutation point. The second one, MD, towards infecting the
program state at the mutation point, i.e., making a di↵erence
in the execution between the two program versions, and the
third one, ID, to propagate, i.e., manifest, the corrupted
state in the program output.
The proposed approach uses a novel fitness function that

incrementally guides the process to generate test cases that
reach, infect and kill the considered mutants. The di↵er-
ence from the previous work is that it incrementally aims
at strongly killing mutants, by focusing on mutants’ prop-
agation, rather than mutant infection. Thus, the proposed
fitness function measures how close are the candidate test
cases in making a divergence at every executed statement.
Previous work, i.e., [8], [13], [7], measures the number of
predicates that diverge and not the closeness of making the
predicates diverge.
The evaluation of our approach was performed with two

independent experiments in order to verify the e↵ectiveness
and computational cost of the approach for generating test
data using the proposed function fitness. We also evaluated
the contribution of every part of the proposed fitness function,
i.e., RD, MD and ID parts, with respect to its e↵ectiveness
in strongly killing mutants.

Overall, the contributions of the present work can be
summarized into the following points: (i) a fitness function
to support search-based testing for strong mutation, using
a novel ID scheme; (ii) an extension of an existing auto-
mated test data generation tool that uses branch coverage
and search-based technique to produce mutation-based test
data to kill weak and strong mutants; and (iii) an empirical
assessment of the e↵ectiveness and cost of the fitness func-
tion scheme used by our approach. We also compare and
demonstrate that we outperform random testing.

The remainder of this paper is organized as follows: Section
2 details the automated approach proposed. Section 3 reports
research design of experiments conducted. Section 4 presents
the results obtained and discusses the benefits, relevance
and limitations of the proposed approach and threats to
validity. Section 5 shows related work for the present one.
Finally, in Section 6 the conclusions and future directions
are discussed.

2. APPROACH DESCRIPTION
The proposed approach attempts to automate the test

generation process by searching for test data that can kill
mutants. We target C programs and strong mutation. The
idea of the approach is to produce test data sets using a
fitness functions scheme based on weak and firm mutation
for strongly killing mutants. An overview of the approach is
presented in Figure 1.

Figure 1: Approach for Mutation-Based Test Data Genera-
tion

Our approach uses the following metrics in the fitness
function scheme: (i) Reach Distance (RD), (ii) Mutation
Distance (MD), and the (iii) Impact Distance (ID). These
metrics are used to measure the adequacy of test data and
direct the search process to an optimum in the search space.
The main contribution of the present approach is the

handling of the mutants’ propagation condition. Generally
to kill a mutant, test data must: a) reach the mutated
statement, b) infect the program state and c) propagate
the infection to the program output. Our fitness function
aims at guiding the search towards the abovementioned three
conditions. Each one of them is handled by di↵erent parts of
the fitness function: a) by RD, b) by MD and c) by ID. To
kill a mutant it needs to incrementally do RD, MD and ID.

In this paper, the weakly killing mutants activity is handled
as a covering branches problem. Assuming each mutant
as a branch, it is possible to generate test data to cover a
specific mutated statement and employ an existing structural
testing tool for carrying out weak mutation. In the following
subsections, details of the approach are given.

2.1 Generating test data for mutation testing
Test data generation in mutation testing consists of identi-

fying test inputs that maximize the number of mutants killed.
Killing all nonequivalents mutants means that a high-quality
test set has been obtained and an alive mutant indicates
the ine�ciency of a test set. The fundamental problem is
to identify a small test data set (x1, x2, x3,..., xk), so that,
when it is executed over the set of mutants (M1, M2, M3, ...,
Mn) it is obtained the highest number of mutants killed [1].

Nevertheless, finding an adequate test data set is a complex
activity, firstly due to the input domain size of a program
(often, it is huge or even infinite) and after, the required
e↵ort for a mutant be killed. There are mutants Hard to Kill
(HTK) and other Easy to Kill (ETK). For the first, only a
few test cases in the input domain cause the mutant to fail.
For the second, a large number of test cases exist that kill
the mutant, so they are easier to find.
According to May [17] there are three possible scenarios

for the relationship between the test sets that kill easy and
hard mutants, Figure 2. It is important to highlight that
this categorization is based on the di�culty of killing a
mutant, di↵erently of the weak and strong mutation concepts
aforementioned.

Figure 2: The relationship between the test sets that kill
easily and hardly a mutant.

1. The test set Th is a subset of the test set Te (Figure 2
(a)). Where, Th and Te are test sets that kill hardly
and easily mutants, respectively.

2. The test sets Th and Te are intersection (Figure 2 (b)).

3. The test sets are mutually exclusive (Figure 2 (c)).

Usually, test data are generated at random until a particu-
lar test objective has been achieved. However, in practice, in
most of the cases, a random search is poor, time-consuming
and it has no guarantee of finding a test data set to reach
a certain part of the program or killing some specific mu-
tants [11]. The use of the search-based and metaheuristic
techniques guided by a fitness function can provide the sought
high-quality test set, due to its emergent features to explore
di↵erent points in the search space and improve a solution
from the other one.
In this paper, we use the AUSTIN tool for test data gen-

eration. It aims only at covering program statements or
branches by using a Hill Climbing (HC) technique known as
the Alternating Variable Method (AVM). AVM was initially
proposed by Korel [15] and shown to be e↵ective for the
structural testing of programs. AUSTIN combines AVM
with a constraint-based approach that generates symbolic
inputs, i.e., pointer inputs.
AUSTIN handles primitive data types and pointer vari-

ables. Pointer inputs are initially set to NULL and a symbolic
process is performed. AUSTIN uses the CIL (C Intermediate

Language) [20] to guarantee that the remaining constraints
over memory locations are of the form x = y and x! = y,
where x or y can be the constant null or a symbolic variable in-
dicating a pointer input. Initially, a symbolic path condition
is built, describing the path taken by the concrete execution.
The path condition may contain constraints over arithmetic
and pointer type inputs. Furthermore, it describes the flow
of execution taken by a concrete input vector, which took an
infeasible path regarding the target branch. From this point,
AUSTIN produces an equivalence graph of symbolic variables
(the target of a pointer), which is adopted to solve pointer
constraints. A graph-based process is performed to verify
that the constraints over the pointer variables are feasible,
and finally, the concrete pointer inputs are generated from
the equivalence graph [16]. Pointer constructs, not related
with inputs, are handled as integers. This has a minor in-
fluence on the e↵ectiveness of the approach since they only
depend on the followed paths.
We use the implementation of AUSTIN as the basis to

generate test data and compute our fitness function. Since it
provides a structure and metrics based on branch coverage
and we target strong mutation, we extended it to operate with
Proteum. We also extend it to use a new fitness function that
direct the search towards maximizing the mutants’ impact.
This is described in Section 2.3.

2.2 Search-based Software Testing
Search-based Software Testing (SBST) is the process of

automating a testing activity utilizing di↵erent techniques,
such as local and global searches, metaheuristics and evolu-
tionary algorithms. They o↵er good solutions for complex
problems at a reasonable computational cost compared, for
example, with random techniques. Test data generation is
a classic problem for SBST since it cautiously identifies a
subset of input data from a set that has all possible inputs
to a given program.
Many researchers proposed methods and tools for SBST

by focusing on di↵erent techniques such as mutation testing,
structural testing, and functional testing. Additionally, great
e↵orts have been devoted to the test data generation activity
using search-based techniques. An empirical study performed
by Harman and McMinn [14] indicates that an HC algorithm
can be more e↵ective than other search-based techniques for
this context and, the most widely used in this context AVM
has been employed on branch coverage criteria.
The AVM is a method based on a neighborhood search

that can be quite powerful when combined with an adequate
fitness function. The search is composed by two steps known
as exploratory moves and pattern moves. The first starts by
selecting random values for the input variables of the program.
Then, the first variable is taken and the other variables’ values
are kept until the solution is found. After that, a search
is performed for each input variable in turn until finding a
solution and no further fitness improvement. Exploratory
moves consist in adjustments in the input variables’ values
through small increments and decrements (usually, 1 for
integer and 0.1 for real variables).
When the exploratory moves are able to be identified, a

direction for which there are improved solutions, the pattern
moves begin. This step is performed through large moves,
i.e., increases in the adjustment values to accelerate the
improvement of objective value and to achieve higher search
space coverage.

2.3 Fitness Function
The key ingredient of Search-based approaches are the

fitness function which guides the test generation process
towards the promising areas of the search space. Thus, more
e↵ective functions lead to significantly better results [14], [18].
The fitness function must be defined according to problem
features, i.e., the objective is represented by a particular
feature capable of evaluating candidate solutions, in terms
of their goodness and suitability for solving the problem
at hand. Here, it should be noted that in order to apply
e↵ectively a search-based approach it is required to have a
good fitness function, but it is not always an easy task [3].
In this paper, we utilized a fitness function scheme that

combines four metrics. The first two were proposed by
Wegener [26] called Reach Distance (RD) used for branch
coverage criteria in structural testing and they include ap-
proach level and branch distance. The third one introduced
by Papadakis [23] is called Mutation Distance (MD) and the
fourth one is named Impact Distance (ID) which forms one
of the main contributions of this paper.

In structural testing, one of the most e↵ective fitness func-
tion schemes is the one based on the use of the approach
level and branch distance. We use these features to compose
our fitness function.
The approach level measures how close test data are in

covering the targeted statement. It is computed using the
number of the target mutant’s control dependent nodes that
were not executed by the test data [26]. On the other hand,
the branch distance estimates how close an alternative branch
is to be taken, i.e., switching a true branch to a false one
or the opposite, and it is computed using the values of the
variables or constants in the condition statements at which
the execution flow was diverted from what was the target
branch. This measure is computed following the expressions
presented in the Table 1.

Table 1: Branch fitness

Mutation Distance (MD) measures the branch distances
on mutants. In other words, it measures how close the test
data are in exposing a di↵erence of the mutant statement.
To compute this measure, first, it is necessary to quantify
the distance that makes a change between the mutant and
the original program predicates. This distance is computed
according to the expression (1). This fitness function is
a generalization of the study proposed by Bottaci [2], in

which a genetic algorithm fitness function was described
using the conditions proposed by Demillo [5]. For the cases
of compound statements, it considers making di↵erences
between the whole program statements and not only at the
mutated condition.

(Opred == T&&Mpred == F)||
(Opred == F&&Mpred == T) (1)

where O and M, represent the original and the mutant
predicates fitness calculations.

According to the branch distance fitness calculations shown
in table 1, the fitness related to the expression (1) is called
predicate mutation distance (pmd) and is defined according
to the expression (2). When is not possible to satisfy the
expression (1), the pmd determines how far it is to make the
predicate behave distinctly at the mutation point.

pmd = min[Tfit(O) + Ffit(M), T fit(M) + Ffit(O)] (2)

where Tfit(O) and Ffit(O) are the mutant distance for
the original predicate true and original predicate false and
Tfit(M) and Ffit(M) are the mutation distance for the
mutant predicate true and mutant predicate false. If pmd
is 0, the di↵erence between the original and the mutated
statement can be seen. However, if pmd is not 0, the test
data was not suitable to propagate this di↵erence to the
outcome of the mutant statement.

Impact Distance (ID) aims at guiding the search towards
identifying test data capable of exposing di↵erent program
outputs, between the original and mutant programs. This
function attempts to approximate the mutant su�ciency
condition [5] by measuring the impact of the mutant on the
program execution.
We measure the ID using the trace (statementNum) on

both the original and mutant programs and the impact, which
is computed (per statement) as follows: i) if the traces di↵er
then the distance is 1 and ii) if the traces are the same it
considers the branch distances computed by expression (3),
where a and b are the branch distances from original and
mutant programs.
In essence, the ID measures how close the tests are in

making an impact at every predicate that is traversed. This
is achieved by measuring the branch distances all the way
from the mutation point to the output statement. Previous
researchers, i.e., Fraser and Zeller [8], Fraser and Arcuri
[7] and Harman et al. [13], only measure the number of
predicates that diverge ignoring the branch distances on the
predicates that do not have an impact. Hence, the search has
no guidance towards increasing the impact. An analogous
situation is when trying to cover branches without using
branch distances, i.e., counting only the number of branches
covered, as done in the early days of SSBST, i.e., [19], which
is clearly less e↵ective.

Impact = abs(a� b)/(abs(a� b) + 1) (3)

Overall, the proposed approach uses the RD fitness func-
tion, leading the search to reach the mutated statement
(reachability condition); MD, to induce a di↵erent behaviour
at the mutation point compared to the original program in
the same point (necessity condition); and ID to guide the
search towards the program elements that can be impacted

and ultimately expose the mutant’s program (su�ciency
condition), according to the expression (4).

fitness function scheme = RD +MD + ID

RD = 2 ⇤ approachlevel + normalized(branchdistance)

MD = normalized(PMD)

ID = statementNum�
X

Impact (4)

3. EXPERIMENTAL STUDY
We conducted an experiments to analyze and evaluate the

e↵ectiveness and cost of the proposed approach for test data
generation on set of C programs. It is noted that while the
fitness scheme of (RD & MD & ID) has been used before with
genetic algorithms, here we only consider the AVM method
(since it was found to be quite e↵ective and e�cient [14]).
Under the AVM approach, the fitness scheme proposed by
all previous approaches, i.e., [7, 13] is equivalent to (RD &
MD). This because, AVM does hill climbing and hence stops
when the fitness cannot be improved.

We also evaluate the contribution of all the three parts of
the fitness function scheme (RD & MD & ID) in generating
mutation-based test data.

3.1 Goals and Hypotheses
The experiments described in this section empirically in-

vestigates the e↵ectiveness and e�ciency of the proposed
fitness function. We are interested in measuring the contribu-
tion made by each one of the parts composing the proposed
fitness function and the overall e↵ectiveness of the proposed
scheme. Thus, we seek to investigate the following Research
Questions (RQs):

RQ1: How e↵ective is the proposed fitness scheme
(RD & MD & ID) for generating and improving test
data to kill mutants compared to random testing? .
In order to answer RQ1, we compare the fitness scheme

with a random test for generating of the test data. Herein,
the test data generation is twofold. Consider that m contains
all alive mutants and m0 is the set of the remaining mutants,
i.e., a set of mutants not dead from m. First, we generate
and improve test sets using the fitness function scheme to
achieve strong mutation adequacy. In this case, we generate
the test data using RD to kill m; MD to improve the test
data to kill m0 and ID to improve the test data generated
from MD in order to kill the remainder of m0. Second, we
used a random testing employing the mutation score as the
fitness function to assess the test data adequacy for this
method. Finally, the strong mutation score and time (in
seconds) of both cases were compared with each other. We
repeat this experiment 10 times and compute the average of
strong mutation adequacy. This question allows evaluating
the degree of the test data adequacy using the proposed
approach. Note that, the fitness scheme should be capable of
achieving a higher adequacy than random testing. We have
defined the following hypotheses for this research question:
H0: There is no di↵erence on strong mutation score be-

tween the proposed fitness scheme (µF) and random test
data generation (µR), thus (H0: µF = µR).
H1: The proposed fitness scheme will achieves a better

strong mutation score than random test data generation (H1:
µF > µR) or (H2: µF < µR) for the opposite.

RQ2: How e↵ective is the proposed fitness scheme
(RD & MD & ID) compared to the RD fitness func-
tion used in previous studies? .
In order to answer RQ2, we compare the fitness scheme

with RD. In this case, only the RD fitness function is used
and the number of mutants weakly and strongly killed are
computed. We also performed this experiment 10 times and
compute the average of weak and strong mutation score. We
had the following hypotheses for this research question:
H0: There is no di↵erence on strong mutation score be-

tween the proposed fitness scheme (µF) and Reach Distance
(µRD), thus (H0: µF = µRD).

H1: The proposed fitness scheme will achieves a better
score strong mutation score than Reach Distance (H1: µF
> µR) or (H2: µF < µR) for the opposite.

RQ3: How e↵ective is the adopted fitness scheme (RD
& MD & ID) compared to the (RD & MD) fitness
function? .
In order to answer RQ3, we compare the fitness scheme

performed similarly in the RQ1 with RD & MD. In using the
RD & MD fitness function, first we used RD to generate a test
set to try kill the mutants m. Then, we have used the MD to
produce a new test set through the improvement of previous
test data generated by RD, in order to kill the mutants m0.
Herein, we also performed this experiment 10 times and
compute the average of weak and strong mutation score. For
this question, we have defined the following hypotheses:
H0: There is no di↵erence on strong mutation score be-

tween the proposed fitness scheme (µF) and Reach and Mu-
tant Distance (µRD&MD), thus (H0: µF = µRD&MD).
H1: The proposed fitness scheme will achieves a better

score strong mutation score than Reach and Mutant Distance
(H1: µF > µRD&MD) or (H2: µF < µRD&MD) for the
opposite.

RQ4: How e�cient is the proposed approach for test
data generation to mutation testing? .

The e�ciency of the approach was measured using the time
for test data generation and the number of fitness evaluations.
The time includes all times to generate test data and their
improvement. The total time(T) was computed by expression
(5).

T = time(RD) +
X

time(MD) +
X

time(ID) (5)

where time(RD) is the time of test data generation for
original program. time(MD) is the sum of time test data im-
provement using MD for each alive mutant selected. Finally,
time(ID) is the sum of time test data improvement using
ID for each alive mutant selected. The time was recorded
through the Linux time utility on a laptop with Intel Core i7
1.8 GHz CPU, 8GB memory in the Ubuntu 14.04 operating
system. We define the following hypotheses for this research
question:
H0: The strong mutation score of Reach and Mutant

Distance (µRD&MD) and Reach Distance (µRD) are higher
than the proposed fitness scheme (µF) in the same time, thus
(H0: µRD > µF and µRD&MD > µF).

H1: The proposed fitness scheme (µF) will achieves higher
strong mutation score than Reach Distance (µRD) and Reach
and Mutant Distance (µRD&MD) in the same time (H1:
µF > µRD and µF > µRD&MD).

3.2 Procedure of Experiment
To answer the RQs, we carried out the experiments, as

follows: (i) generating and improving test data to kill the
mutants using the proposed fitness scheme and to measure
mutation score, time, and cost; and (ii) comparison of the
fitness scheme with the fitness function previously proposed
and random testing. These experiments were performed in
four steps:

1. We chose 18 C programs P = (p1, p2,...,p18) of di↵erent
domains and varying sizes as experimental subjects. These
programs varied in size from 1 to 7 functions, and from 9 to
49 lines of code, totalling 28 functions and 126 lines of code.

2. We used the PROTEUM tool [4] to compute the strong
mutation score and to generate all the mutants M = (m1,
m2,...,mn), where mi is the set of mutants for each program
pi. These mutants were produced by 12 mutation operators
presented in Table 2.

Table 2: Relational and Logical Operators

Operators Description

ORRN Relational Operator by Relational Operator
ORAN Relational Operator by Arithmetic Operator
ORSN Relational Operator by Shift Operator
ORBN Relational Operator by Bitwise Operator
ORLN Relational Operator by Logical Operator

OLSN Logical Operator by Shift Operator
OLRN Logical Operator by Relational Operator
OLLN Logical Operator by Logical Operator
OLAN Logical Operator by Arithmetic Operator
OLBN Logical Operator by Bitwise Operator
OLNG Logical Negation
OCNG Logical Context Negation

3. We used the AUSTIN tool adapted to mutation testing
to generate the test data T = (t1, t2,...,tn), which is guided
by the proposed fitness scheme. The test data are generated
iteratively until a test data gets an appropriate fitness value
for a given function. For each program pi the test generation
process considered up to 1000 fitness evaluations per branch
to select a test data. This step is divided into three sub-steps:

3.1. The test data are generated for the original program
by AVM using the RD fitness function to achieve branch cov-
erage, i.e., every branch in the original program is evaluated
to true and false if it is possible. After that, test data are
applied in the mutants: if an input executes the true branch
for original program and false for the mutant or the opposite
for a statement, the mutant has been weakly killed and then
strong mutation scores are computed and the dead mutants
are removed;

3.2. A mutant is selected from those that are live and an
improvement in the test data is performed by AVM using
the MD fitness function. If the test data achieve a fitness
value equal to zero, it means that the mutant has been
weakly killed, then the improved test data is executed in the
remainder of the live mutants. Otherwise, if the mutant is
alive, another mutant is selected. This step is performed until
the largest number of mutants has been weakly killed. After
this, the weak and strong mutations scored are computed
and dead mutants are removed;

3.3. A mutant is selected from those that are alive and an
improvement in the test data is performed by AVM using the
ID fitness function. The test data with the smallest fitness

value is used and applied in the alive mutants. Then, the
strong mutation score is computed.

4. The total of mutation score is computed by the sum
obtained in the previous sub-steps.

4. RESULTS AND ANALYSIS
In this section we answer the RQs presented in Section 3

from the analysis of results concerning the e↵ectiveness and
e�ciency of the proposed approach.
Figure 3 shows the mutation score for fitness function

scheme and random test against the subject programs. As
the results show, the proposed approach achieved an improve-
ment in the mutation score of 19,02% more than random
testing (RQ1). The results analyzed through the Wilcoxon
test indicated that there was a significant di↵erence in the
strong mutation score between them, since z=-2.766, p<0.05
(the null hypothesis was rejected). Therefore, the results
indicate that the proposed fitness scheme is more e↵ective
than random testing in the most subjects.

Additionally, even if the cost for random test data genera-
tions is lower than an intelligent approach, if the searching
and improvement of an additional test data increase the
mutation score significantly, thereby the cost of generating
and executing can be justifiable. Compared with random
generation, it can be noted (see Figure 3) that test data
generation using AVM and fitness scheme is more e�cient in
the most of the subjects regarding strong mutation scores.
Thus, the proposed approach can be seen as an option to be
used in this context, since weak and firm mutation based test
data generation is a cost-e↵ective alternative for producing
test data to strong mutation. Moreover, the search-based
approach with a worthy fitness function provides a high
potential for reaching these di�cult parts of the PUT.

In Figure 4 the lines represent the average of strong muta-
tion score obtained for each fitness function combination. We
observed that the fitness scheme improves strong mutation
score in all programs compared with RD fitness function
(RQ2). More importantly, the mutation score increases from
the addition of a new fitness function for generating and
improving of the test data. We notice in the results from
of Wilcoxon test that there was a significant di↵erence in
the strong mutation score, since z=-3.724, p<0.05 (the null
hypothesis was rejected). Therefore, the results indicate that
the proposed fitness scheme is more e↵ective than RD fitness
function.
Table 3 shows the number of mutants (second column),

number of equivalent mutants (third column), mutation score
of random test (fourth column), weakly and strongly killed
mutants by test data generation using RD and RD & MD
fitness function (fifth and sixth column), the number of
strongly killed mutants by RD & MD & ID fitness scheme in
the seventh column and its strong mutation score in the last
one. Weak mutation score for RD & MD is able to weakly
kill around 76% of the mutants and for the strong score,
around 66% (RQ3). It is natural to expect that the weak
score is greater than or equal to the strong score since a test
data that strongly kills a mutant must be able to weakly kill
it though not necessarily the opposite. The results obtained
and analyzed using the Wilcoxon test shown that there was a
significant di↵erence in the strong mutation score, since z=-
3.267, p<0.05 (the null hypothesis was rejected). Therefore,
the results indicate that the proposed fitness scheme is more
e↵ective than RD & MD fitness function.

0

10

20

30

40

50

60

70

80

90

100

M
ut

at
io

n
S

co
re

RD & MD & ID Random

Figure 3: Fitness function scheme (RD & MD & ID) vs Random testing

0

10

20

30

40

50

60

70

80

90

100

M
ut

at
io

n
Sc

or
e

RD

RD & MD

RD & MD & ID

Figure 4: Strong Mutation Score of the fitness function scheme (RD & MD & ID), RD & MD and RD

Table 4 reports the results from a second experiment based
on time and number of fitness evaluations required for gen-
erating and improving test data. The column two indicates
the time in seconds, columns labeled RD & MD & ID, RD
& MD and RD report the strong mutation score and the last
column reports the number of fitness evaluations required.
To answer RQ4, this second experiment, was performed to
measure whether the score obtained through the fitness func-
tion scheme at a particular time also could be achieved by
RD & MD and only RD in the same time. The idea is to
show that the fitness functions are complementary and they
cannot achieve the best results individually.
We notice in the results from of Wilcoxon test that the

null hypothesis was rejected i.e, RD and RD & MD are
not able to achieve the same scores when executed with the
time obtained by fitness function scheme (see Table 4), since
z=-3.723 and z=-3.725 for p<0.05, respectively. Thus, the
results indicate that the proposed fitness function scheme is
more e↵ective than the others.
It is noted that by the addition of a new fitness function

the search is led to paths not reached by the initial test data.
Furthermore, considering that target branch in the mutant
that has been reached, this branch possibly will be traversed
in the original program. Therefore, is possible to determine
if the mutant has been killed or if the test data has failed.

In terms of cost, we cannot compare it to others approaches
because there are only two approaches to C and with di↵erent
experiment subjects, due to the cost depends mainly on the
size of the program under test.

Also, we can consider that the number of fitness evaluations
obtained is admissible compared with others approaches,
because the fitness function scheme leads to a considerably
higher number of killed mutants compared to the number
of fitness evaluations. In general, the approach spends more
time and fitness evaluations to improve a test data than to
generate it because the di�culty of a new test data to kill
a specific mutant, i.e., the more di�cult the mutant is, the
more fitness evaluation the approach is likely to spend.
Figure 5 indicates that more mutants can be weakly and

strongly killable when the fitness function scheme is utilized.
From this plot, we can see that the test data produced
by di↵erent fitness functions that lead the search towards
reachability, necessity and su�ciency conditions are more
promising for killing mutants.

4.1 Threats to validity
Naturally, there are common threats to validity in ex-

perimental software engineering. This section presents an
overview of the threats to validity and how they have been
addressed. In our approach, we used 18 programs as ex-

Table 3: Mutants killed by fitness scheme (RD & MD & ID) and fitness functions

Programs Mutants Equiv. Random
RD RD & MD RD & MD & ID MS

Weak Strong Weak Strong Strong

Cal 127 19 28.7 49 34 79.6 50.2 64.2 58.9
numZero 36 3 90.9 26 23 33 27.7 30.7 93
lastZero 36 3 48.4 26 23 33 27.7 30.7 93
sum 18 4 85.7 12 9 17 11 13 92.8
checkIt 41 3 33.6 22 22 25 24 25 65.8
findLast 36 1 49.7 13 2 30.4 18 19 54.3
findVal 36 3 54.5 15.4 8.1 31.8 23.7 27.5 83.3
countPositive 36 3 53 17.6 14.6 23.4 19.2 20.5 62.1
DigitReverser 36 16 90 12 11 20.6 16.6 18.6 93
power 36 1 71.1 18.5 18 30 24.5 26.5 75.7
oddOrPos 110 28 41.8 50.4 38 84.4 62 67 81.7
twoPred 51 2 26.7 33 24 48.1 27.3 29.3 59.8
testPad 110 7 37.3 54 49 96 87.4 89.9 88.1
jday-jdate 36 0 50 26 26 32.5 30.9 32 88.9
quicksort 127 9 63.5 38 31 73 48 68.6 58.1
MergeSort 145 10 72.8 39 39 70.4 61 70.7 52.3
trashAndTakeOut 54 3 41.1 29.6 26.6 53.6 34 37 72.5
Heap 166 19 63.9 156 92 166 101 106 72.1

496,76

87,49 57,23

20,69

6,56

115,8

2615,84

60,94 265,26

80,9

217,43

12,21

215,91

14,23

29,5 14,25

12,38

16,11

0

20

40

60

80

100

120

K
ille

d
M

ut
an

ts

RD & MD & ID RD & MD RD

Figure 5: Comparison between fitness function scheme (RD & MD & ID), RD & MD and RD functions in the same time

perimental subjects and we cannot guarantee that they are
representative. We try to solve this problem by selecting
programs from di↵erent domains and with various sizes.

Another issue is the number of fitness evaluations because
a low number can influence the quality of test data. In
general, search-based techniques with low fitness evaluations
have a premature convergence risk or impediments for the
search to make substantial progress. It means that in some
cases the adequate test set cannot even be found. On the
other hand, a high number of fitness evaluations leads the
approach to high time and computational costs.
In the last threat of this paper, the test data generated

through AVM may have been found by luck when we utilized
the fitness function scheme and its combinations since search-
based techniques have no assurance of finding test data that
kills the same quantity of mutants in di↵erent executions.
We mitigated this issue by performing of a second experiment
that aimed at generating test data to make sure that the

incomplete fitness function RD and RD & MD have not
obtained the same score than the complete fitness function
scheme in a specific time.

5. RELATED WORK
Few studies have investigated techniques for test data

generation attempting to reduce cost in mutation testing.
Despite around 25 years of research from the first study, was
identified only 19 studies in this context [25], that shows
there is still a research gap in this area.
The first study addresses the Constraint Based Testing

(CBT) proposed by Demillo and O↵ut [5], which introduced
conditions that must be satisfied to kill a given mutant.
From this study, these conditions referred to as reachabil-
ity, necessity and su�ciency have became fundamental for
mutation-based test data-generation approaches. The first
condition, reachability, states that a test must achieve the
mutated statement for a mutant to be dead. The second

Table 4: Time and Fitness evaluation

Programs Time RD & MD & ID RD & MD RD Fitness Evaluation

Cal 496.7 64.4 50.4 34 550
numZero 87.5 30.5 28 23 1948.5
lastZero 57.2 31 27.5 23 1816.2
sum 20.7 13 11 9 4.5
checkIt 6.5 25.2 24 22 422.5
findLast 115.8 18.8 17.8 2 1565.6
findVal 2615.8 27.7 23.9 8 823
countPositive 60.9 20.6 19 14.2 664.7
DigitReverser 265.2 18.4 16.3 11 16.3
power 80.9 26.3 24.2 18 579.4
oddOrPos 217.4 67.1 62 38 57.4
twoPred 12.2 29.5 27 23 44.8
testPad 215.9 89.9 87.6 49 96.8
jday-jdate 14.2 32.2 31 25.8 75.3
quicksort 29.5 68.8 48.1 30 23.2
MergeSort 14.2 70.5 61.2 39.1 59.7
trashAndTakeOut 12.3 37.2 33.9 26.5 13.4
Heap 16.1 106.3 101.3 92.1 26.1

condition, necessity, requires that the execution state of the
mutant program di↵ers from of the original program after
execution of the mutated statement. The third condition,
su�ciency, requires that the incorrect state must be propa-
gated to an output of the program. In addition, some studies
such as [1], [24], [8], [13], [23], [7] proposed approaches using
search-based techniques employing these conditions.

Ayari et al. [1] developed a approach using meta-heuristic,
more precisely ACO, for automatic test input data generation
that kills mutants in the context of mutation testing. This
approach is guided by a fitness function that guides test
to reach mutants with the hope that this will infect and
kill them as well. Zhan and Clark [27] applied the same
principles to kill mutants of Simulink Models. In [24], [22], a
testability transformation that transforms the weakly killing
mutant problem into a covering branches ones is used and
demonstrates that existing tools can easily be adapted to
kill mutants. Thus, search aims at reaching and infecting
the mutants, handling reachability and necessity conditions.
Along the same lines, in [7,8], an evolutionary approach that
automatically generates unit tests for object-oriented classes
based on mutation analysis is proposed. As already explained
in section 2.3, these aim at handling all three mutatnt killing
conditions.
Papadakis and Malevris [21] proposed an approach that

generates test inputs to kill weak and strong mutants using
Dynamic Symbolic Execution (DSE). This tool transforms
the original program under test into a meta-program, con-
taining all the weak-mutant-killing constraints, and then the
test inputs to cover all the branches the meta-program are
generated through DSE. Thus, the DSE produces test data to
kill the mutants automatically based on weak-mutant-killing
constraints. To strongly kill mutants, the approach search the
path space from the mutation point to the program output.
More recently, Harman et al. [13] present a hybrid approach
that combines DSE with HC for strongly killing both first
order and higher order mutants. This approach uses DSE to
generate weakly killing constraints and test data that satisfy
them. Furthermore, HC is used to search test inputs that
propagate infection to the output from the infection point.

As stated before, contrary to our approach, Harman et al.
counts the number of statements that have been impacted
and hence, it fails to provide guidance towards increasing
the mutants’ impact.
This paper was based on the work of Papadakis and

Malevris [23], which proposed a search-based technique for
Java. The approach introduced here, uses a novel fitness
function scheme to strongly kill mutants of C programs,
by aiming at mutants propagation, ID. The new ID fitness
scheme, contrary to [23], guides the search by measuring the
closeness of making an impact at every traversed predicate,
from the mutation point to the program output. Therefore,
the proposed approach extends a previous study carried out
by Papadakis [23] for a new language, new fitness scheme,
ID in particular, and by examining the exact contribution of
every part of the fitness, i.e., RD, MD and ID.

6. CONCLUSIONS
This paper presents an automated approach for generating

test data for mutation testing. Our approach employs a Hill
Climbing technique known as Alternative Variable Method
guided by a fitness scheme to generate a test data set based
on weak and firm mutation and in order to strongly kill
mutants. Inspired by previous studies, we defined a fitness
function scheme that generates and improves the test data
generation process by measuring how close the candidate
test data are to kill a targeted mutant.
Mutation testing is a powerful and e↵ective technique

that detects faults and measures the adequacy of the test
suite. However, mutation testing is also computationally
expensive, mainly because it has a high computational cost
for generating test data and executing them against a large
number of mutants. In this context, an adequate test data
generation approach must be able to produce a high-quality
test data set to kill all nonequivalent mutants and provide a
cost reduction to mutation testing. Therefore, to be e�cient,
it needs to have a trade-o↵ between the time of generation
and mutation score.
Based on our experimental results, we find that the pro-

posed approach produces e↵ective test data able to strongly

kill the majority of mutants on C programs in a small amount
of time. Thus, our results indicate that the proposed ap-
proach is promising, it increases the mutation score and this
in only a small number of iterations. Also, it is noted that
the mutated programs contain equivalent mutants, i.e, those
mutants semantically identical, and they cannot be detected
by a test data. Nevertheless, it is believed that they can
assist the generation of high-quality test data, as well as
those mutants di�cult to kill.
Conclusively, a search-based technique is an excellent al-

ternative to finding test data. However, it requires an appro-
priate fitness function to guide the search for di↵erent points
in the search space as has been focused in this study. An
appropriate fitness function can lead to the greatest oppor-
tunities to create an adequate test data set ensuring a good
mutation score and cost reduction for mutation testing.
Future work is directed towards the following topics: (i)

improvement of the fitness functions, ID part in particular,
to generate test data towards exposing a mutant in an ob-
servable output; (ii) new large-scale experiments that can
further establish our finding and demonstrate the importance
of mutant propagation; and (iii) extend the approach to use
additional types of mutants.

7. REFERENCES
[1] K. Ayari, S. Bouktif, and G. Antoniol. Automatic

mutation test input data generation via ant colony. In
Proceedings of the 9th GECCO, pages 1074–1081. ACM,
2007.

[2] L. Bottaci. A genetic algorithm fitness function for
mutation testing. In Proceedings of the ICSE, pages
3–7, 2001.

[3] K. P. Dahal, S. Remde, P. Cowling, and N. Colledge.
Improving metaheuristic performance by evolving a
variable fitness function. In Proceedings of the 8th
EvoCOP, pages 170–181. Springer, 2008.

[4] M. E. Delamaro, J. C. Maldonado, and A. M. R.
Vincenzi. Mutation testing for the new century. chapter
Proteum/IM 2.0: An integrated mutation testing
environment, pages 91–101. Kluwer Academic
Publishers, 2001.

[5] R. A. DeMillo and A. J. O↵utt. Constraint-based
automatic test data generation. IEEE Trans. Softw.
Eng., 17:900–910, 1991.

[6] R. A. DeMillo, F. G. Sayward, and R. J. Lipton. Hints
on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, 1978.

[7] G. Fraser and A. Arcuri. Achieving scalable
mutation-based generation of whole test suites.
Empirical Software Engineering, 20(3):783–812, 2014.

[8] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. In Proceedings of the 19th
IISSTA, pages 147–158, 2010.

[9] H. Haga and A. Suehiro. Automatic test case
generation based on genetic algorithm and mutation
analysis. In Proceedings of the ICCSCE, pages 119–123,
2012.

[10] R. G. Hamlet. Testing programs with the aid of a
compiler. IEEE Trans. Softw. Eng., 3(4):279–290, 1977.

[11] M. Harman. A theoretical & empirical analysis of
evolutionary testing and hill climbing for structural test
data generation. In Proceedings of the ISSTA, pages

73–83, 2007.
[12] M. Harman and Y. Jia. Analysis and survey of the

development of mutation testing. IEEE Trans. Softw.
Eng., 37:649–678, 2009.

[13] M. Harman, Y. Jia, and W. B. Langdon. Strong higher
order mutation-based test data generation. In
Proceedings of the 19th SIGSOFT, pages 212–222.
ACM, 2011.

[14] M. Harman and P. McMinn. A theoretical and
empirical study of search-based testing: Local, global,
and hybrid search. IEEE Trans. Softw. Eng.,
36(2):226–247, 2010.

[15] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8):870–879, 1990.

[16] K. Lakhotia, M. Harman, and H. Gross. Austin: A tool
for search based software testing for the c language and
its evaluation on deployed automotive systems. In
Proceedings of the 2th SSBSE, pages 101–110, 2010.

[17] P. S. May. Test data generation: two evolutionary
approaches to mutation testing. PhD thesis, University
of Kent, 2007.

[18] P. McMinn. Search-based software testing: Past,
present and future. In International Workshop on
Search-Based Software Testing (SBST), pages 153–163.
IEEE, 2011.

[19] C. C. Michael, G. McGraw, and M. Schatz. Generating
software test data by evolution. IEEE Trans. Software
Eng., 27(12):1085–1110, 2001.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
Cil: Intermediate language and tools for analysis and
transformation of c programs. Lecture Notes in
Computer Science, 2304:213–228, 2002.

[21] M. Papadakis and N. Malevris. Automatic mutation
test case generation via dynamic symbolic execution. In
Proceedings of the 21st International Symposium on
Software Reliability Engineering (ISSRE’10), pages
121–130, 2010.

[22] M. Papadakis and N. Malevris. Automatically
performing weak mutation with the aid of symbolic
execution, concolic testing and search-based testing.
Software Quality Control, 19(4):691–723, 2011.

[23] M. Papadakis and N. Malevris. Searching and
generating test inputs for mutation testing. Springer
Plus, 2(1):1–12, 2013.

[24] M. Papadakis, N. Malevris, and M. Kallia. Towards
automating the generation of mutation tests. In
Proceedings of the 5th Workshop on Automation of
Software Test, pages 111–118, 2010.

[25] F. C. Souza, M. Papadakis, V. H. S. Durelli, and M. E.
Delamaro. Test data generation techniques for
mutation testing: A systematic mapping. In
Proceedings of the 11th ESELAW, pages 1–14, 2014.

[26] J. Wegener, A. Baresel, and S. Harmen. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43(14):841–854,
2001.

[27] Y. Zhan and J. A. Clark. Search-based mutation
testing for Simulink models. In Genetic and
Evolutionary Computation Conference, GECCO 2005,
Proceedings, Washington DC, USA, June 25-29, 2005,
pages 1061–1068, 2005.

