
Vulnerability Prediction Models: A case study on
the Linux Kernel

Matthieu Jimenez, Mike Papadakis and Yves Le Traon
SnT, University of Luxembourg, Luxembourg

firstname.lastname@uni.lu

Abstract—To assist the vulnerability identification process,

researchers proposed prediction models that highlight (for in-

spection) the most likely to be vulnerable parts of a system.

In this paper we aim at making a reliable replication and

comparison of the main vulnerability prediction models. Thus,

we seek for determining their effectiveness, i.e., their ability to

distinguish between vulnerable and non-vulnerable components,

in the context of the Linux Kernel, under different scenarios.

To achieve the above-mentioned aims, we mined vulnerabilities

reported in the National Vulnerability Database and created a

large dataset with all vulnerable components of Linux from 2005

to 2016. Based on this, we then built and evaluated the prediction

models. We observe that an approach based on the header files

included and on function calls performs best when aiming at

future vulnerabilities, while text mining is the best technique

when aiming at random instances. We also found that models

based on code metrics perform poorly. We show that in the

context of the Linux kernel, vulnerability prediction models can

be superior to random selection and relatively precise. Thus, we

conclude that practitioners have a valuable tool for prioritizing

their security inspection efforts.

I. INTRODUCTION

Developing secure software forms a mandatory require-
ment for almost all software organizations. To ensure secure
development, industrials adopt dedicated security life cycle
processes which aim at identifying and fixing them [1].
Among the several types of vulnerabilities, code-based ones
are responsible for the majority of the exploits [2] (software,
data or commands that can lead to a security policy violation
[3]), which unfortunately increase every year [4].

Vulnerabilities can be seen as a special kind of defects.
Depending on the application, they can be more important than
bugs and require a quite different identification process than
defects. For instance, seeking for vulnerabilities requires an at-
tacker’s mindset [5] to understand and exploit the weaknesses
of a system. Usually, defects are (easily) noticed by users or
developers during the “normal” operation of the system while
vulnerabilities pass unnoticed. There are also many more bugs
than vulnerabilities [6] (at least many more bugs are reported
every year). Furthermore, vulnerabilities are critical [1], [2],
while many bugs are not, i.e., they are never fixed. Finally,
most developers have a better understanding of how to identify
and deal with defects than with vulnerabilities.

Discovering such issues is a hard and costly procedure [1].
To support this process, researchers have developed vulner-
ability prediction models, which guide security inspections,
such as code reviews [2] or security testing [5], by pointing

out components that are likely to be vulnerable [7]. In fact,
there are three main approaches, here named as software
metrics [8], text mining [7] and includes and function calls
[9]. Unfortunately, previous studies do not make a reliable
and comprehensive comparison between them. Also, to the
author’s knowledge there is no replication study as deserved,
given the importance of the problem. Therefore, our objective
is to replicate and compare vulnerability prediction models.

This paper lies in the context of the Linux kernel. We
thoroughly compare the approaches under both “experimental”
and “realistic” cases using a much larger and reliable dataset
of publicly reported vulnerabilities than any other study. We
believe that effective research should be bounded to a partic-
ular context since it is likely that ‘universal’ models fitting on
every domain do not exist. In particular, our models involve
training on data that are project specific. Previous research has
shown that cross project models are generally less effective
than the project specific ones [9].

The majority of previous research, i.e., [7], [9], [8], seeks to
predict the vulnerable source code files. This choice was con-
firmed as actionable by Microsoft Windows developers [10]
and thus, we make our evaluation at the file granularity level.
Another interesting observation from the above-mentioned
study was that the balance of a dataset and the way it is formed
can influence the accuracy of the prediction models. Therefore,
considering this point, we investigate two different settings,
named as “experimental” and “realistic”. The first one aims at
determining whether the studied approaches can discriminate
between vulnerable files and likely to be buggy files, while
the second one at evaluating the practical effectiveness of
the approaches as if they were used by the developers (the
proportion of vulnerable files is approximately equal to the
proportion reported on the Linux releases).

Our study aims at making a comprehensive evaluation of
the studied approaches by reliably setting the training and
evaluation datasets. Thus, our investigation is based on two
scenarios, one that splits the training and evaluation sets at
random and a “practical” one, based on time, where with
respect to given reference time points (release times), we
train on the past vulnerabilities and to predict (evaluate) the
future ones. Overall, the present study involved a set of 1,640
vulnerable files, 54,000 clear files and 870 experiments. To
build a reliable ‘ground truth’, we mined and linked all Linux
kernel vulnerabilities reported in the National Vulnerability
Database (NVD) between 2005 and 2016.



Our results show the importance of the element selection
when building a dataset. Indeed, models can perform better or
similarly in a largely unbalanced dataset, which is closer to
the reality, than in a balanced dataset composed of similar but
distinct elements, i.e., bugs and vulnerability.

Overall, our data suggest that the variations on the studied
application scenario can greatly influence the performance of
the prediction approaches. In our two scenarios, we find that
when aiming at future vulnerabilities, the approach based on
includes and function calls is performing better, while when
aiming at random instances of vulnerabilities irrespective to
time, text mining outperforms the other approaches.

The remainder of the paper is organized as follows. Section
II details the scope of the prediction models and the related
work. Section III motivates and states the studied research
questions. The construction of the used dataset and a descrip-
tion of the replicated methods is given in Sections IV and
V. Sections VI and VII respectively present and discuss our
results. Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Vulnerability Prediction Modeling

Vulnerability prediction modeling is a relatively recent field
of study which aims at automatically classifying software
entities as vulnerable or not. The goal of such an attempt is
to support code reviewers by pinpointing the entities to put
their efforts. A major benefit of these methods is that they
are software agnostic, i.e., they do not require any specific
knowledge of the software under analysis. Thus, they can
easily be adapted to different software projects by using an
appropriate training set.

Vulnerability prediction can be seen as a subfield of defect
prediction. A comprehensive presentation of these approaches
can be found in a recent survey by Hall et al. [11]. However,
as already stated in section I, there are specific aspects that
make vulnerabilities a particular kind of defects that require a
special treatment.

B. Vulnerable Entity

An entity refers to the piece of code that should be in-
spected. Thus, depending on the context and the needs, we
can choose different entities (or levels of granularity, e.g.,
statements, methods or modules) to work with. Gegick et al.
[12] focused the module level, as it was a goal required by
Cisco. While lower levels of granularity might be useful, there
is always a trade off between this and the accuracy. Currently,
most of the published papers suggest that working at the file
level is a good compromise. Furthermore, a recent study [10],
reports that this level of granularity was reported as acceptable
by developers at Microsoft.

Defining a reliable dataset is not an easy task, since it
strongly depends on the information that can be mined from
software repositories. For example: Neuhaus et al. [7] and
Shin et al. [13] used Mozilla Firefox Security Announcement
(MFSA) to build their vulnerability dataset. Other work tried
to approximate it using a static analysis tools. For example,

Scandariato et al. [9] used Fortify SCA, a static analysis tool to
built their dataset. Thus, previous research labels as vulnerable
a component that was blamed in a security report or flagged
as vulnerable by a tool.

To built our dataset we rely on the Common Vulnerabilities
and Exposures (CVE)-NVD [4] database. Thus, we consider
as vulnerable the components that were modified to fix vulner-
abilities. We use CVE-NVD because it is among the largest
vulnerability databases and it contains vulnerabilities that are
acknowledged by the Linux developers when they are fixed.
Thus, we believe that they form a reliable piece of information.
Zimmermann et al. [14] also followed a similar process in their
study on Windows Vista.

C. Related Work

Neuhaus et al. [7] was among the first vulnerability predic-
tion approaches. The authors discovered a correlation between
import/function calls and vulnerabilities and used it to form
a prediction approach, using the includes and function calls
of the files under analysis. In other words, the includes and
function calls were the features used to train a classifier. Their
results on the Mozilla Firefox project showed that a recall of
45% and a precision of 70% can be achieved.

The use of software metrics to build vulnerability prediction
models has been attempted in several studies. Shin et al. [8]
suggested the use of complexity metrics along with code churn
and developer metrics. The authors validated their approach on
Mozilla Firefox and Linux Kernel and report a recall of up to
86% for Mozilla Firefox and up to 90% for the Linux Kernel.
However, they also reported a low precision.

In a follow up study [13], the same authors tried to figure
out whether a traditional defect prediction models, trained on
complexity, code churn and past fault history is capable to
predict vulnerable components. They also tried to perform
training to distinguish between bugs and vulnerabilities and
found out that it was hard to do so, as their results were similar
for both examined cases.

Chowdhury and Zulkernine [15], [16] proposed another
approach based on software metrics but using complexity,
coupling and cohesion. They evaluated it on Mozilla Firefox
and achieved a means recall of 74.22%.

Zimmerman et al. [14] presented an empirical study on
Windows Vista to evaluate the efficacy of code churn, code
complexity, dependencies and organizational measures to build
a vulnerability prediction model. They obtained good precision
but low recall. Nguyen et al. [17] introduced an approach based
on dependency graph to train the model and evaluated it on
Mozilla Javascript Engine.

In principle, all the above-mentioned approaches are similar.
They differ from the application context and the formed
evaluation datasets. In the present study, we replicate the
approach of Shin et al. [8] because it is well suited for C/C++
programs and it is one of the most popular approaches both
for vulnerability and defect prediction. It also uses a large and
comprehensive set of metrics which is used by almost all the
other complexity-based approaches.



Scandariato et al. [9] suggested using text mining technique
to build the prediction model. This is a commonly used
technique for natural language processing tasks and it was
introduced for defect prediction by Hata et al. [18]. The
approach is simple as it decomposes the source code into a bag
of words which is then used to train a classifier. This approach
was validated on 20 android applications, yielding a precision
and recall of approximately 80%. The dataset was built using
a static analysis tool, which raises concerns regarding the
drawn result since it is widely known that such tools are quite
imprecise, hence they produce a lot of type I errors. Another
issue is that the prediction model predicts what the tool does,
which raises concerns regarding type II errors as well.

Such concerns led to another work, i.e., by Walden et al.
[6], which tried to evaluate the same approach on different
settings. They used three web applications written in PHP.
However, the relatively small size of the datasets they used,
i.e., approximatively 30 vulnerabilities per application, brought
the author to base their evaluation on cross validation as there
was not enough data to create two independent sets. This raise
serious concern regarding the validity of the reported results
since the used evaluation settings have been shown to lead to
generalisation and overfitting problems [19].

By contrast, our study uses a large dataset composed of
743 vulnerabilities that was split into independent training and
evaluation data sets. We also closely replicated the complexity
metrics approach suggested by Shin et al. [8] and we also
compared with the includes and function calls approaches.

The previously introduced approaches are somehow generic
and can work on most of the existing software. However, they
do not specialise on specific types of vulnerabilities. Jimenez
et al. [20] analysed Android vulnerabilities and found that
they are of 13 different types. Good news are that they also
found that they tend to be on the most complex functions,
which suggest that prediction models might be suitable. A
specialised approach is the work of Smith et al. [21] on the
SQL Hotspot, which found a correlation between vulnerability
and the number of SQL statements. Gegick et al. [22] used
the warnings of security tools along with complexity metrics
to build their prediction models. Similarly, Gegick et al. [23]
tried to use non-security failure reports to build their models.
These are two examples of approaches requiring additional
data and/or the help of a tool.

III. RESEARCH QUESTIONS

The goal of the present study is to replicate and compare
existing vulnerability prediction models. There are three main
methods in the literature, i.e., software metrics [8], text mining
[9] and includes and function calls [7]. Interestingly, these
have never been replicated or compared; every study has been
evaluated on different contexts and custom datasets. Thus, the
need to deal with their external validity and comparing them
on a large and reliable “ground truth” dataset is evident.

Arguably one of the most important questions in predictive
modeling is the ability of the developed models to identify,
among several elements, the ones that it seeks for. In our

context, vulnerability prediction model should be able to dis-
tinguish between vulnerable and non-vulnerable files. Among
non-vulnerable files some are closer to vulnerabilities, i.e,
buggy files. Indeed, vulnerabilities are often referred as secu-
rity bugs and thus consider as a subgroup of bugs. Hence, it is
interesting to determine if the approaches are able to determine
this subgroup, i.e., vulnerabilities, or are just pointing toward
the upper group.

Thus, our first research question investigates whether the
studied approaches can distinguish the vulnerable from buggy
files.

RQ1. Are the vulnerability prediction models capable of
distinguishing between vulnerable and buggy files?

A positive answer to this question will provide a good
indication of whether the studied methods are of any value
in our context.

Being able to distinguish vulnerable files does not imply
that the model is actually useful for developers. This was
investigated by Morrison et al. [10] who found that when
a tiny proportion of files is vulnerable, the usefulness of
the prediction models is hindered. Therefore, we seek to
investigate the effectiveness of the examined approaches under
cases that are close to reality, i.e., when the proportion of
vulnerable and non-vulnerable files in the studied data set are
close to the ratios that are found in the Linux kernel (3% of
files have a vulnerability history). Thus, we ask:

RQ2. What is the discriminative power of vulnerability pre-
diction models in distinguishing between vulnerable
and non-vulnerable files in a realistic environment?

This question is as an attempt to investigate the actual
prediction power of the studied approaches. Evidently, a high
(respectively low) accuracy indicates a relatively good (respec-
tively bad) prediction. Also, the difference between the results
of RQ2 from those of RQ1 demonstrates the impact of the
datasets (proportion of vulnerable files) on the discriminative
power of the models.

To address these two research questions, we created two
distinct datasets named “experimental” and “realistic”. These
datasets will be presented in section IV-C.

Although in RQ2 we use what we call the “realistic” dataset,
this does not accurately assess the predictability power of
the developed models in identifying future vulnerabilities. In
other words, we need to investigate the extent to which future
vulnerabilities can be captured by the developed prediction
models when trained on past data. Therefore, we investigate
the ability of the models to capture the vulnerabilities of
the different Linux kernel releases using the data of the past
releases.

RQ3. How effective are the vulnerability prediction models
in predicting future vulnerabilities when using past
data?

The answer to this question provides a complete picture
regarding the practicality of the approaches. Additionally, a
relatively good accuracy on the predictions will indicate that



vulnerabilities share the same characteristics over time, since
they are captured by the prediction models.

Up to this point, our discussion is solely based on the
effectiveness perspective. However, we have left aside any
discussion regarding the cost of each method. This information
can be useful for researchers or practitioners dealing with
frequently changed data. Thus, our last research question
evaluates the time and memory needed to train and develop
each of our models.

RQ4. What is the cost in terms of memory and time
consumption of building the studied vulnerability
prediction models?

IV. DATASET

As already mentioned a large and reliable dataset is manda-
tory. As the dataset from previous studies were either outdated,
small, not available or questionable, we choose to create our
own dataset with the latest data available on the Linux kernel.
This section explains our choice of the Linux kernel, the
vulnerability mining process and the overall procedure for
building our datasets.

A. Linux Kernel
Linux kernel is the core of all Linux operating systems.

Initiated in 1991 by Linus Torvalds as a hobby, it is now
embedded in billions of devices (used by all Linux operating
systems and all Android devices). It is also the biggest open-
source project with more than 19.5 million lines of code and
contributions from over 14,000 developers.

While these numbers are impressive and naturally could
ensure the adequacy of the collected data, they are not the only
reason for choosing the Linux kernel, as a source to build our
dataset. As mentioned earlier, one of the most critical points
when building a dataset lies in the choice of the ground truth.
This is where the Linux kernel really becomes interesting.
Linux development community is well organized and works
with strict guidelines1. As a result, it has a long and well-
reported history of vulnerabilities, which makes it easy to
both find many vulnerability reports and map to them with
their corresponding vulnerable files. Indeed, about 75% of the
vulnerability reports for Linux that we studied contained a link
to a patch.

Another point that is worth mentioning is the availability
of valuable information from the software repositories. In the
past few years, many open source projects switched to the git
platform. This makes the links to the previous version control
systems as reported in the vulnerability reports invalid. Thus,
we lost a major part of the history resulting in a strong impact
on both on the size of the datasets and their accuracy. In other
words, we need stability in the version control system in order
to build a reliable and relatively large dataset. We found that
Linux kernel fit this description. Indeed the Linux community
created git in 2005 and was therefore the first to adopt it. This
means that we cannot find a project with a longer history of
using git, i.e., about 10 years.

1https://www.kernel.org/doc/Documentation/CodingStyle

B. Linux Vulnerabilities

To build a dataset suited for our study, we must start by
collecting as many vulnerable files as we can. To do so, we first
have to find a source of vulnerability reports. In this study we
chose the CVE-NVD database as Linux kernel vulnerabilities
are usually all reported in it (as of today more than 1,300
vulnerabilities have been reported for the Linux kernel since
1999). Furthermore, we focus on vulnerabilities that happened
after 2005 (date of adoption of git) as it is no longer possible
to retrieve all necessary information for vulnerabilities before
this date. This leaves us with 1,050 vulnerability reports to
explore. Once all of the reports are gathered, we proceed as
follows:

1) We collect all remote repository git URLs, i.e., in the
case of the Linux kernel, two remote repositories are
available, one at git.kernel and another one available on
GitHub. We then create a regular expression to extract
the commit hash from the git URLs that point to these
repositories.

2) We extract all commit hashes that are present in the URL
of the vulnerability reports using the regular expression.

3) To complete this first set of commits, we browse all the
commit messages of the Linux kernel git, representing
more than 570,000 commits, looking for a reference to
a CVE number. In case of matches, we keep the commit
hashes.

4) Finally, we retrieve all vulnerable files from the above
list. Here, a vulnerable file is a file that is mentioned in
the patch commit and existed before the patch. We focus
on files written in C as they form the great majority of
the collected files. Also, the prediction models studied
are not designed for multi-language programs.

We ended up with 1,640 vulnerable files accounting for 743
vulnerabilities.

C. Dataset Building

Once all vulnerable files have been gathered, the next step
was to select sets of non-vulnerable files. We built two distinct
datasets: one corresponding to RQ1, the experimental dataset,
which is composed of a slightly unbalanced set of vulnerable
and likely to be buggy files, and another one designed for RQ2,
the realistic dataset, which is close to the practical cases (fully
unbalanced instead of slighlty). To answer RQ3, we used the
two datasets.

1) Experimental Dataset: This first dataset was created to
determine whether models were able to distinguish vulnerable
files from closely related ones, i.e., buggy but non-vulnerable
ones. As there is no real set of buggy files existing, we chose
to use as be buggy files for this dataset, files that were present
in a commit mentioning Bugzilla reports. It is noted that even
if the major part of these files are buggy, some might not.
Thus in the following we will refer to those files as ”likely to
be buggy”. To retrieve them, we followed a procedure similar
to the one for vulnerabilities: we browsed all commits in the
Linux kernel repository looking for a mention to a Bugzilla



report reference and collect the corresponding commit hash
(about 3,400). From there we collected all the files present
in these commits that were not related to a vulnerability and
declared them as non-vulnerable (about 4,900). Overall, the
proportion of the vulnerable files of this dataset is 20%.

2) Realistic Dataset: This dataset was designed to in-
vestigate whether the models were able to flag vulnerable
files under a realistic setting, i.e., in an environment where
vulnerable files would be uncommon. This implies the creation
of a largely unbalanced dataset. After some analysis, we found
out that about 3% of the files in Linux have a history of
being vulnerable, 47% of being linked to bug patches and
50% were never impacted by a vulnerability or a bug. Thus to
reproduce these proportions, we randomly selected for every
vulnerability 31 files that were never declared as vulnerable.
These 31 files were mined from the project according to
the time that vulnerability was declared, i.e., we ignore the
changes that made after this point in time. To be as close to
the reality as possible, among these 31 files we randomly select
15 of them from a pool of files that have a history of being
linked to a bug patch and the remaining 16 from a pool of files
that were never implicated in a patch. Thus, we constructed a
set of approximately 52,500 files that reflect the actual ratios
of vulnerable, buggy and non-vulnerable files in Linux, i.e.,
3% vulnerable, 47% of being linked to bug patches and 50%
clear files.

3) Dataset Specificity: Our datasets are automatically gen-
erated without any manual addition or removal of files re-
quired. They are both easy to update and adapt to any other
open source software that has an organized community. They
are created using a commit-based approach since we only
know when the vulnerabilities were fixed. This approach has
the advantage over a release based one of only considering a
vulnerability once which can significantly reduce the noise in
our dataset. Indeed some vulnerabilities might be present in
more than one release, i.e., the time for them to be uncovered.

V. STUDIED METHODS

Replicating a vulnerability prediction study is not always
straightforward since several points have to be considered and
some decisions taken by the initial study might be unknown.
A first point regards the employed measurements as they are
realized by the used tools. The tools used in the original study
might not work in the new environment or might simply be
unavailable. Thus, there is a need for using compatible tools
with the same functionality. A second important point concerns
the machine learning aspects. To avoid bias we should use the
same machine learning techniques and the same filters as those
applied in the original study. Yet, filters used are not always
clearly indicated in all the studies.

In this section, we describe how we replicated the selected
approaches including details on the features extraction and
machine learning techniques that we applied. We believe that
doing so will allow an easy and precise replication of our
results. It will also enable a direct comparison with new, future,
approaches.

A. Include and Function Calls

This approach is based on a simple intuition, which is that
vulnerable files share similar sets of imports and function
calls. Thus, Neuhaus et al. [7] built a model using the profile
of either imports or function calls to discriminate between
vulnerable files and non-vulnerable ones.

1) Features Extraction: To build such models, we first need
to extract for each file under analysis its includes and its
function calls. To do so, we used a simple regular expression
for gathering the includes and used the file Abstract Syntax
Tree (AST) to retrieve the function calls. To generate the AST
of a file, we used the JOERN tool2.

2) Machine Learning Technique: Once all the features have
been extracted, we create a list of all features (either include
or function calls) that are present in all of the files under
analysis of our training set. Machine learning is based on a
feature matrix M that uses the feature elements of the feature
list as columns and the file under analysis as rows:

Mij =

⇢
1 if file i features feature j,
0 otherwise.

We also add to M a column indicating whether the files
are vulnerable or not. We can then use this matrix as training
data for the machine learning algorithms. Neuhaus et al. [7]
decided to use a Support Vector Machine (SVM) algorithm
with a linear kernel for this task. We used the Weka3 core
library and its libSVM module for the replication.

B. Software Metrics

Shin et al. [8] conducted many studies using software
metrics. We replicate their most comprehensive one based on
complexity, code churn and developer activity metrics. These
metrics were used as an indicator of software vulnerabilities
[8], mainly due to their success in defect prediction.

1) Features Extraction: In their work, Shin et al. created
4 models: one for every kind of metrics, and one combining
them. We report results for the combined one since this gave
the best results. To build such models, we first have to make
the metric measurements for the studied files.

Complexity. In the original study, 14 complexity metrics
were suggested. These were broken down into three categories,
i.e., intra file complexity, coupling and comments density.
These metrics were computed using the Understand tool4. In
our study, we tried to use the same tool, but unfortunately this
tool only works through its graphical user interface. This is
impractical for the case of the commit-base analysis we per-
formed since it would require a manual collection of thousands
of data. We also had technical issues, such as problematic
handling of some code parts and crashes, which prohibit its
use. Thus, we developed and reimplemented the suggested
metrics in a prototype tool, manually tested and automatically
compared our results with those of the Understand tool for
some cases.

2https://github.com/fabsx00/joern
3http://www.cs.waikato.ac.nz/ml/weka/
4http://www.scitools.com



Code Churn. The original work was suggesting the use of
3 metrics, number of changes, number of changed lines and
number of added lines. The way to retrieve these metrics is
not described in the original work but was easy to assume.
Indeed, we generated our dataset based on commit and thus,
we computed these metrics by browsing the git history of the
selected files.

Developer Activity Metrics. The initial study used a tool
developed by its authors which was not available. Thus, we
had to reimplement it. However, in their study Shin et al.
discovered that the only interesting metric of this category for
vulnerability prediction was the ”number of developers who
have worked on every component”. To minimize the risk of
bugs in the implementation as well as the computation cost, we
only focused on this one as it can be easily retrieved from the
git history. Indeed, the cost of computing a whole developer
network for the remaining metrics are important given the size
of the Linux kernel.

2) Machine Learning Technique: In their work, Shin et al.
hypothesized that a subset of either complexity, code churn
and developer activity metrics or a combination of them could
predict vulnerable files. To select the right subset for each case,
we, as suggested, only keep the three best metrics to build the
model using Information Gain as ranking. Regarding machine
learning, we used as in the original study logistic regression
with Weka.

C. Text Mining

Text mining was suggested for vulnerability prediction by
Scandariato et al. [9]. The underlying idea of their study was
to suggest a method capable of choosing features without any
human intuition. This is in contrast to the other two approaches
we replicate. As we stated, this approach creates a bag of
words from the source code of the training files under and
builds a model based on them.

1) Features Extraction: The feature extraction of this ap-
proach is quite simple. The file’s source code is split into
tokens which are imported to a vector of unigrams. Then,
the frequency of each unigram in the file is computed. The
delimiters for the tokens are based on the language punctuation
characters and the frequency is not normalized. In this repli-
cation, we reimplemented the proposed tokenizer by adapting
it for the C punctuation.

2) Machine Learning Technique: Once all the features have
been extracted, we proceed in a similar manner as the include
and function calls by creating a list of all unigrams that are
present in all the files of the training set. Then, we built the
feature matrix based on it.

To improve the performance of the predictions, Scandariato
et al. suggested discretizing the count of each word and
making it binary using the method of Kononenko [24]. The
discretization would first be computed on the training set and
then apply on the testing set. The features rendered useless
by the discretization (all binary values are the same in the
training set) would then be removed. This part required search
to retrieve the right filters with the right options in Weka,

similarly to what was used by the authors. In the end, we
figured out that the first filter to use was “Discretize” with
the options “Kononeko”, makes binary and use bin number
activated and the second one was “RemoveUseless”. The need
for these two filters is to reduce the number of features which
are exploding (up to 2 million in our dataset). Thus, we found
out that these filters were indeed able to divide the number
of features by 10. Finally, we used Random Forest with 100
trees for the machine learning part as the authors found that
this algorithm was performing better than the other algorithms.

VI. EVALUATION

A. Methodology

1) Experiments: For RQ1, we used the experimental dataset
and two evaluation methods; stratified 10 fold cross validation
and random splitting. We used cross validation since this is
the main evaluation method used by the previous studies,
i.e., [6], [7], [8], [9]. However, the use of two independent
datasets, one for training and one for evaluation is important
to get reliable results. Therefore, we randomly split the dataset
into two sets of the same size and the same spread between
vulnerable and non-vulnerable files. To avoid any bias from the
random splitting, we repeated the process 50 times to create
50 distinct experiment settings. The random split forms an
attempt to evaluate based on a “fresh” set of data, as required
by the machine learning guidelines and differs from the cross
validation since it does not systematically learn and evaluate.

To answer RQ2, we used the realistic dataset and random
splitting repeated 50 times.

For RQ3, we split our datasets according to 20 reference
points. Each reference point corresponds to the release dates
of the Linux kernel releases, from the 2.6.28 (released 25
December 2008) to the 3.7 (released 10 December 2012). For
every reference point, we train on the selected files retrieved
before the reference date and evaluate (test) on the files that
were retrieved after it.

2) Effectiveness Measurements: All the approaches repli-
cated used binary classification of their results. Thus, they
have 4 outcomes: false positives (FPs), false negatives (FNs),
true positives (TPs) and true negatives (TNs). In our case, a
FP denotes a file incorrectly classified as vulnerable, while a
FN is a file incorrectly classified as non-vulnerable. A TP and
a TN is a file that is correctly classified as vulnerable and
non-vulnerable, respectively.

To evaluate the effectiveness of the studied classifiers, we
rely on the so-called precision and recall metrics. Precision (P )

Realistic

Experimental

RQ1

RQ2

RQ3

Evaluation Method

Random

Random 
Time

Time

RQs Dataset

10-fold

Fig. 1. Evaluation methods and datasets that were used to answer our RQs.



represents the probability that a random file that is classified
as vulnerable is indeed a vulnerable one. Recall (R) is the
probability that a vulnerable file will be classified as vulnerable
by our classifier. They are calculated as follows:

P = TP/(TP + FP )
R = TP/(TP + FN)

However, these two metrics are not enough to evaluate the
models more generally, especially against random classifica-
tion. Hence we also compute the Matthews Correlation Coef-
ficient (MCC)[25] that is largely used in machine learning to
measure the quality of binary classifiers.

MCC = TP⇥TN�FP⇥FNp
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

This metric returns a coefficient between -1 and +1, a score
of 1 indicates a perfect prediction whereas a score of -1
indicates that all data were wrongly predicted. A coefficient
of 0 indicates that the classifier performed as well as a model
that classify randomly the data.

B. Results

1) Answering RQ1: Experimental Dataset: Table I records
the average precision and recall values, when running 10
times a stratified 10 fold cross validation on the experimental
dataset. It should be noted that median values are very close
to the average ones. From these data we can observe that
two methods are performing reasonably well with an MCC
close or equal to 0.6: the includes and function calls and the
text mining. These two approaches have precision above 70%
which is often mentioned as a “practical threshold”. Recall
values for these two methods are approximately 60%. The
model of software metrics performed worse, with relatively
low recall and MCC.

Figure 2(a) shows the precision and recall values of all
the studied approaches. We present them under the form of
a bag plot to visualise the variation between the performed
repetitions of the random splits and ease the comparison.
Evidently, the text mining approach is performing best for both
precision and recall. It even manages to be above the “practical
threshold” with respect to precision; with an average value

(a) Experimental (RQ1) (b) Realistic (RQ2)

Fig. 2. Bagplot of precision over recall when using random split for the
experimental and realistic datasets

TABLE I
PRECISION AND RECALL WITH RESPECT TO CROSS VALIDATION, IN THE

EXPERIMENTAL DATASET. (RQ1)

Software Metrics Includes Function Calls Text Mining

Precision 65% 70% 67% 76.5%
Recall 22% 63% 64% 58%
MCC 0.28 0.59 0.58 0.60

of 76.3%, while its average recall is 53%. This impression is
further confirm by the result of the MCC presented in Fig. 3(b)
where the text mining approach outperform by far the other
approaches. The include & function calls and software metrics
while achieving similar MCC score around 0.15, performs
differently in regards of precision and recall. The includes and
function calls achieves in average 30% of both precision and
recall. The software metrics approach provides an interesting
precision ranging from 35% to 55% but at the price of a low
recall, which is less than 10%.

2) Answering RQ2: Realistic Dataset: RQ2 regards evalu-
ating based on the random split of the realistic dataset. Figure
3(b) displays the MCC results. Evidently, the text mining
outperforms the other approach with an average MCC of 0.65.
While observing the result of precision and recall (Fig. 2(b)),
we can see that this is mostly driven by a great precision close
to 100%. The software metrics model is the second best with
an average MCC of 0.27 and an average precision of 60%.
Include and Function calls are both performing poorly with
MCC close to 0.1, meaning that these kinds of approaches in
this context perform barely better than random classification.

3) Answering RQ3: Evaluation wrt Time: RQ3 regards the
evaluation of the studied methods when using past data to
predict future vulnerabilities. Figure 4 depicts the results of
the experimental dataset. From these data we can observe that
the most precise approach is the text mining. Its best precision,
of approximately 78%, is achieved in the first studied release.
The includes and function calls are following closely with
a precision ranging from 60% on the last release to the
maximum 71%, on the 8th studied release. Precision of the

●

Function Calls Includes Software Metrics Text Mining

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
C

C

(a) Experimental (RQ1)

●

●

●●

●

Function Calls Includes Software Metrics Text Mining

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
C

C

(b) Realistic (RQ2)

Fig. 3. MCC box plots when using random split for the experimental and
realistic datasets.



●
●

● ●
●

●
●

●

●
●

● ●
● ● ● ●

●
● ● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

pre
cis
ion

(a) Precision

●
● ●

● ● ●
● ● ● ● ● ●

● ● ● ●

●

● ●
●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

rec
all

(b) Recall

●

●
●

●
● ●

● ●

●
●

● ● ● ● ● ●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

mc
c

● Function Calls
Includes
Software Metrics
Text Mining

(c) MCC

Fig. 4. Time split for the experimental dataset (RQ3)

● ●
●

● ●
●

●
●

● ● ●
●

●

●
● ●

● ●

●
●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

pre
cis
ion

(a) Precision

●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

rec
all

(b) Recall

●
● ●

● ● ●
● ●

● ● ●
●

●
●

● ●

●
●

● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

mc
c

● Function Calls
Includes
Software Metrics
Text Mining

(c) MCC

Fig. 5. Time split for the realistic dataset (RQ3)

software metrics is slowly decreasing from 48% to 40%. All
the recall values having an opposing trend, i.e., they improve
over time. Surprisingly, the best recall value is obtained by the
includes and function calls, with results ranging from 32% to
62%. Text mining is slightly worse, with results from 22% to
50%. Regarding MCC, we observe that Include & Function
calls and Text Mining are performing similarly.

Figure 5 presents our results with respect to the realistic
dataset. Interestingly, these are not so different from those
we got for the experimental dataset. The text mining is still
the more precise, but regarding the recall Function calls is
performing better managing to get more than half of the
vulnerabilities for the latest releases. This can be observed on
the MCC graph where Function calls is the best approach for
all releases, while Include and Text mining perform similarly.

4) Answering RQ4: Memory and Time Cost: In the pre-
vious RQs, we focused on measuring the effectiveness with
different settings. It seems that the text mining approach is
the one that performs best in most of the cases, but with a
price to pay; the time and in memory consumption.

The most important problem here is the cost with respect to
the needed memory. Thus, 200 GB of memory was required
to run Text Mining, 80 GB and 120 GB for the includes and
function calls, respectively, and 4 GB for software metrics.
Arguably, these numbers are due to the Weka library, which
might not be the best choice for large datasets. Yet, we believe
that it provides a good indication of the cost of the studied
methods which explodes in the case of text mining.

Regarding the time required to run the different parts of our
study, we observed the following: Text mining is extremely
fast for the extraction of features but requires quite some time
to both train and test up to 3h in the case of the realistic dataset.
This is due to the explosion of features caused by the use of
bag of words and due to the use of several filters. The software
metrics, due to its small number of features, is really fast with
respect to training and test (less than 10s). However, the feature
extraction phase is really time consuming especially for the git
browsing part. Indeed, the Linux kernel has a long history and
retrieving the git history of every file is rather time-consuming.
The includes and function calls model seems to offer a nice
trade-off with a fast time to extract the needed features, a
shorter time than text mining to build, learn and evaluate. It
is noted that function calls have a higher number of features
than includes and require more preprocessing.

VII. DISCUSSION

A. Implications

Our study concerns two scenarios: one that corresponds to
the random split of the datasets (referring to the case of that we
can distinguish between vulnerable and non-vulnerable files)
and one corresponding to the time split, which refers to the
more practical case of whether past information is adequate
for predicting future vulnerabilities.

A direct implication of our results is that in our context,
historical data are good in supporting relatively accurate
predictions on future vulnerabilities. This is quite encouraging



TABLE II
COMPARISON WITH RELATED WORK. TIME-BASED RESULTS RECORDED AS (Y / Z) REFER TO (EXPERIMENTAL DATASET / REALISTIC DATASET). THE

MARK ‘X’ DENOTES THE ABSENCE OF REPORTED RESULTS BY THE PREVIOUS STUDY.

Includes and Function calls Software Metrics Text Mining

Neuhaus et al.[7] This paper Shin et al.[8] Shin et al.[13] Walden et al.[6] This paper Scandariato et al.[9] Walden et al.[6] This paper

Cross validation Precision 70 70 3 - 5 9 2-52 65 90* 2-57 76
Recall 45 64 87 - 90 91 66-79 22 77* 74-81 58

Time Precision X 64 / 73 3 X X 42 / 39 86* X 74 / 93
Recall X 48 / 46 79 - 85 X X 16 / 24 77* X 37 / 27

*Estimated from the graphs and reported data of the paper.

since it suggests that vulnerability prediction models can
be useful and practical. As shown in Figures 4 and 5 the
top performing prediction models achieve precision values of
approximately 75% with recall of approximately 50%, which
are judged by the studies of Morrison et al. [10] and Shin
et al. [13] to be satisfactory. Interestingly we found a small
influence of the imbalanced data (as shown by the differences
between Figures 4 and 5) on our results. This is in contrast
with the results reported by Morrison et al. [10] indicating the
need for further research on the impact of data imbalance on
the prediction models.

Other important findings highlighted by our results regard
the MCC values we found. The MCC coefficient quantifies
the quality of the predictions when compared to a random
one. Thus, an MCC value equal to 1 represents a perfect
prediction, while 0 a random prediction one. Therefore, all
of our predictions (under all studied settings) are far better
than the random ones (since we get MCC values in the range
of 0.25 - 0.6) indicating that the built models do manage to
learn relatively well.

Interestingly, the results of the practical case (time split)
are closer to those of cross validation (Table I). This can be
explained by the fact that Linux kernel vulnerabilities can be
well predicted by the historical data (as discussed in the be-
ginning of this section). Thus, most of these data are probably
selected by the 9 training folds that are used in every of the
10-fold cross validation iterations. Therefore, we get similar
results with. Of course if historical data were not enough,
cross validation would probably provide an overestimation of
the models’ performance.

Overall, our data suggest that in the practical case (time
split) the most effective approaches are the one based on the
includes and the function calls. This is somehow surprising
since this method was proposed long time before the other
ones which use much more sophisticated methods. By con-
trast, the text mining technique is by far the best one when
considering the general scenario or favouring precision over
recall. This could be seen as an ability of text mining to easily
learn what the training data have to offer, whereas include and
function calls require a more representative training dataset.

B. Differences with Previous Studies

In this study, we replicated all the existing vulnerability
prediction methods. A natural question to ask is how our
results compared with the ones reported. Table II summaries

this data. Interestingly, there are some differences especially
regarding the recall values. Regarding the includes and func-
tion calls approach [7], our data are in line with those reported
in literature (case of cross validation), i.e., same precision
values with slightly better recall ones.

With respect to the software metrics approach, we found
different results from all the other studies [8], [13], [6], i.e.,
better precision and significantly lower recall. This difference
could be explained by the way we construct our datasets
and/or by the fact that undersampling is used in these studies
to balance the datasets which may have impacted the drawn
result.

Finally, with respect to the text mining approach we ob-
served comparable result in terms of precision with the study
of Scandariato et al. [9]. The recall found was, however, lower
than the one claimed, up to 50% in the case of time splits.
In the study of Walden et al. [6] there was a large variation
on the reported results, i.e, 2% of precision in a case while,
57% on another one. This makes a comparison with our study
difficult and probably irrelevant. Nevertheless, the same study
only used cross validation where we found a better precision
and worse recall than them.

C. Threats to Validity

1) Construct Validity: We automatically created our dataset
based on the available data within the git commit messages
and the CVE-NVD database. However, this process ensures the
retrieval of known and fixed vulnerabilities and thus, undiscov-
ered or non-fixed vulnerabilities might be false negatives with
a potential impact on our measurements. However, given the
size of the Linux kernel and the long history of vulnerability
reports, we believe that it is unlikely to have many such cases.

In a similar manner, we used bugzilla links to retrieve bugs.
Yet developers might not report there all bugs with the effect
of restricting our data to a subset of bugs. This could impact
the result of RQ1 as some bugs might not been considered.
However, our aim is to distinguish between vulnerable and
other, likely to be buggy, files, which are those we collected.
Additionally, in RQ3 we used the whole past and future data
so that when time evolves the training set becomes larger,
while the test set becomes smaller. While, this is an intuitional
choice, it is possible that by constraining the training and
evaluation sets to specific time limits might improve our
results.



2) Internal Validity: This work only considers source code
files written in C, but these are not the only files that can be
linked to vulnerabilities. For instance, there are parts of the
Linux kernel which are written using assembly code. However,
since the great majority of the Linux kernel is written in C, it
limits the impact of this threat.

Additionally, potential bugs in our implementation may also
influence our results. Also we might unintentionally not re-
implement exactly the original approaches. To reduce these
threats we carefully inspected all of our code, parameters and
experiment decisions with respect to the exact replication of
the previous approaches. We also manually tested and verified
our implementation. Since our results are in line with the
previously published ones, we believe that these threats are
not of particular importance.

Furthermore, following the suggestion of Shin et al.[8], we
used the three best metrics according to Information Gain to
build the software metrics model. Still there is a possibility
that additional metrics could provide different results.

3) External Validity: The study is limited to the Linux
Kernel and thus, our results might not be generalizable to
other projects or contexts. However, we studied a real, large
and widely used project; the Linux kernel. Also, we studied
a large number, much larger than any previous study, of real
vulnerabilities (actually all reported vulnerabilities in NVD).
As a result, we are confident that our results are accurate at
least for the specific context. Unfortunately, additional studies
are required to adequately deal with the generalization threat.

D. Future Work

The present study forms a first step towards building
security-related prediction models. It can be extended in the
following directions:

• Investigate the generalisation of our results on other
security sensitive projects.

• Investigate the creation of a composite model that can
combine the strengths of the all the approaches.

• Specialise the prediction models on specific types of
vulnerabilites

• Built models that can work and characterise commits.

VIII. CONCLUSIONS

Researchers have proposed prediction models that highlight
likely vulnerable parts of the systems under analysis. In this
paper, we presented a large-scale study that aimed at reliably
comparing the main prediction models in the context of the
Linux kernel. We showed that several parameters like the
evaluation method, application scenario and the composition
of the dataset, often ignored in literature, can have a major
impact on the reported results. We also demonstrated that when
aiming at predicting future vulnerabilities, the includes and
function calls are the best performing approaches, while when
aiming at random instances of vulnerabilities, the best one is
text mining. Good news are that the prediction models show
a great precision and an interesting recall, hence could be of
great help in the prioritization of code reviews.

ACKNOWLEDGEMENT

All experiments presented in this paper were carried out us-
ing the HPC facilities of the University of Luxembourg [26].

REFERENCES

[1] M. Howard and S. Lipner, The Security Development Lifecycle. Red-
mond, WA, USA: Microsoft Press, 2006.

[2] G. McGraw, “Automated code review tools for security,” IEEE Com-
puter, vol. 41, no. 12, pp. 108–111, 2008.

[3] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation, West
Lafayette, IN, USA, 1998.

[4] National vulnerability database:. [Online]. Available: https://nvd.nist.gov
[5] G. McGraw and B. Potter, “Software security testing,” IEEE Security &

Privacy, vol. 2, no. 5, pp. 81–85, 2004.
[6] J. Walden, J. Stuckman, and R. Scandariato, “Predicting Vulnerable

Components: Software Metrics vs Text Mining,” in ISSRE’14, pp. 23–
33.

[7] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in CCS’07, p. 529.

[8] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
Complexity, Code Churn, and Developer Activity Metrics as Indicators
of Software Vulnerabilities,” IEEE TSE, vol. 37, no. 6, pp. 772–787,
Nov. 2011.

[9] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
Vulnerable Software Components via Text Mining,” IEEE TSE, vol. 40,
no. 10, pp. 993–1006, Oct. 2014.

[10] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in HotSoS’15, 2015, pp. 4:1–
4:9.

[11] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Trans. Software Eng., vol. 38, no. 6, pp. 1276–1304, 2012.

[12] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing software
security fortification throughcode-level metrics,” in QoP’08, p. 31.

[13] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, Feb. 2013.

[14] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,” in
ICST’10, pp. 421–428.

[15] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and
cohesion metrics be used as early indicators of vulnerabilities?” in
SAC’10, p. 1963.

[16] ——, “Using complexity, coupling, and cohesion metrics as early
indicators of vulnerabilities,” Journal of Systems Architecture, vol. 57,
no. 3, pp. 294 – 313, 2011, special Issue on Security and Dependability
Assurance of Software Architectures.

[17] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software
components with dependency graphs,” in MetriSec’10, pp. 3:1–3:8.

[18] H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module detection using
large-scale text features based on spam filtering,” Empirical Softw. Engg.,
vol. 15, no. 2, pp. 147–165, Apr. 2010.

[19] P. M. Domingos, “A few useful things to know about machine learning,”
Commun. ACM, vol. 55, no. 10, pp. 78–87, 2012.

[20] M. Jimenez, M. Papadakis, T. F. Bissyande, and J. Klein, “Profiling
android vulnerabilities,” in QRS’16. IEEE, 2016.

[21] B. Smith and L. Williams, “Using SQL hotspots in a prioritization
heuristic for detecting all types of web application vulnerabilities,” in
ICST’11.

[22] M. Gegick, P. Rotella, and L. Williams, “Predicting Attack-prone
Components,” in ICST’09. IEEE, pp. 181–190.

[23] ——, ESSoS’09, ch. Toward Non-security Failures as a Predictor of
Security Faults and Failures, pp. 135–149.

[24] I. Kononenko, “On biases in estimating multi-valued attributes,” in
IJCAI’95, pp. 1034–1040.

[25] B. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)
- Protein Structure, vol. 405, no. 2, pp. 442 – 451, 1975.

[26] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of
an academic hpc cluster: The ul experience,” in Proc. of the 2014 Intl.
Conf. on High Performance Computing & Simulation (HPCS 2014).
Bologna, Italy: IEEE, July 2014, pp. 959–967.


