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Abstract—Mutation testing is considered as one of the most
powerful testing methods. It operates by asking testers to
design tests that reveal a set of mutants, which are purpose-
made injected defects. Evidently, the strength of the method
strongly depends on the used mutants. However, this dependence
raises concerns regarding the mutation testing practice that
is implemented by existing tools. Thus, it is probable that
implementation inadequacies can lead to incompetent results. In
this paper, we cross-evaluate three popular mutation testing tools
for Java, namely MUJAVA, MAJOR and PIT, with respect to their
effectiveness. We perform an empirical study of 3,324 manually
analysed mutants from real-world projects and we find that there
are large differences between the tools’ effectiveness, ranging
from 76% to 88%, with MUJAVA achieving the best results. We
also demonstrate that no tool is able to subsume the others and
provide practical recommendations on how to strengthen each
one of the studied tools. Finally, our analysis shows that 11%,

12% and 7% of the mutants generated by MUJAVA, MAJOR and
PIT are equivalent, respectively.

I. INTRODUCTION

Undoubtedly, software testing is the most widely used

practice for identifying software defects [1]. A typical testing

scenario involves the generation of test cases based on which

the actual behaviour of the program under analysis is evalu-

ated. To guide the test generation process several techniques

have been proposed. These techniques aim at specifying how

to generate test cases that are either good at revealing faults or

capable of providing confidence in the function of the system.

Among the several testing techniques, mutation analysis has

shown to be quite powerful, capable of subsuming, or probably

subsuming, almost all the structural testing techniques [1], [2].

Mutation asks testers to design test cases that reveal purpose-

made injected defects. The underlying idea of mutation is

that test cases capable of distinguishing the behaviour of

the original program version from that of the versions with

the injected defects are also capable of revealing the faulty

behaviour of the program under test.

The program versions with the injected defects are

called mutants. Clearly, mutation-testing effectiveness depends

strongly on the mutants that are actually used [1]. Therefore,

testers performing mutation testing should be cautious about

the mutants they use. Recent research has shown that different

sets of mutants can lead to different results when judging the

effectiveness of the same test suites [3] and hence pointing

out a threat to validity of the mutation-based testing studies.

Similarly, the use of different mutation testing tools can lead

to different results, for the same test suites, due to the different

implementations and limitations of the tools.

To date, the theory and practice of mutation testing are

mature enough and have led to practical testing tools [4], [5],

which are widely used (mainly in research) [3]. However, a

key question that remains is how well the various mutation-

testing tools’ implementations adhere to the theory of mu-

tation and how well they perform the tasks that they were

developed for. Investigating this issue forms the primary aim

of this paper. Thus, we seek to investigate the effectiveness

differences among popular mutation testing tools with the goal

of identifying their weaknesses and strengths when used for

generating effective test cases. Our aim is threefold: a) to

inform practitioners about the effectiveness and relative cost

of the studied mutation testing tools, b) to provide constructive

feedback to tool developers on how to improve their tools, and

c) to make researchers aware of the tools’ inadequacies.

Our human analysis and comparison of three widely-used

mutation testing tools for Java, namely MUJAVA, MAJOR and

PIT, demonstrates that none of them subsumes the others. This

fact indicates that all the studied tools can be strengthened

by extending the set of mutants they support. Additionally,

our results show that there are large differences between

the effectiveness of the tools. In particular, according to a

reference effectiveness measure we found that MUJAVA scores

best with 88%, followed by MAJOR with 80% and PIT with

76%. These results suggest that existing tools have a much

lower effectiveness than what they should or what researchers

believe they ought to. Therefore, our findings emphasise the

need to build a reference mutation testing tool that will be

strong enough and capable of at least subsuming the existing

mutation testing tools.

Apart from the effectiveness of the tools, another concern,

when using mutation, is its application cost. This is mainly

due to the manual effort involved in constructing test cases and

due to the effort needed for deciding when to stop testing. The

former concern regards the need for generating test cases or

test oracles while the latter pertains to the identification of the

so-called equivalent mutants, i.e., mutants that are functionally

equivalent to the original program. Both these tasks are labour-

intensive and are performed manually. Our study shows that

MUJAVA leads to 138 tests, MAJOR to 97 and PIT to 80. With

respect to the number of equivalent mutants, MUJAVA, MAJOR

and PIT produced 203, 94 and 43, respectively.
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The contributions of the present paper can be summarised

in the following points:

1) An extensive, manual study of more than 3,000 mutants

investigating the strengths and weaknesses of three,

widely-used mutation testing frameworks for the Java

programming language.

2) Insights on the relative cost of the tools’ application in

terms of the number of equivalent mutants that have to

be manually analysed and the number of test cases that

have to be generated.

3) Recommendations on specific mutation operators that

need to be implemented in these frameworks in order to

improve their effectiveness.

4) The public release of all the data of this study with the

aim of enabling replication and future mutation testing

experiments.

The rest of the paper is organised as follows: Section II

presents the necessary background information and Section III

outlines our study’s motivation. In Section IV, we present

the posed research questions and the adopted experimental

procedure and, in Section V, we describe the obtained results.

In Section VI, we discuss potential threats to the validity of

this study, along with mitigating actions and in Section VII,

previous research studies. Finally, Section VIII concludes this

paper, summarising the key findings.

II. BACKGROUND

This section details mutation testing and presents the studied

mutation testing tools.

A. Mutation Testing

Applying mutation testing requires the generation and ex-

ecution of a set of mutants with the candidate test cases.

Mutants are produced using a set of syntactic rules called mu-

tation operators. The process requires practitioners to design

test cases that are able to distinguish the mutants’ behaviour

from that of the program under test, termed original program

in mutation’s terminology. In essence, these test cases should

force the original program and its mutants to result in different

outputs, i.e., they should kill its mutants.

Normally, the ratio of the killed mutants to the generated

ones is an effectiveness measure that should quantify the

ability of the test cases to reveal the system’s defects. Unfortu-

nately, among the killable mutants, there are some that cannot

be killed, termed equivalent mutants. Equivalent mutants are

syntactically different versions of the program under test,

but semantically equivalent [6], [7]. These mutants must be

discarded in order to have an accurate effectiveness measure,

which is called Mutation score, i.e., the ratio of killed mutants

to the number of killable mutants, and to decide when to stop

testing. The problem of identifying and removing equivalent

mutants is known as the Equivalent Mutant Problem [6], [7].

Regrettably, the Equivalent Mutant Problem has been shown

to be undecidable in its general form [8], thus, no complete,

fully automated solution can be devised to tackle it. This

problem is largely considered an open issue in mutation’s lit-

erature, but recent advances provide promising results towards

practical, automated solutions, albeit partial, e.g., [6], [9].

Another problem of mutation testing is that it produces

many mutants that are redundant, i.e., they are killed when

other mutants are killed. These mutants can inflate the muta-

tion score making it skew. Thus, previous research has shown

that these mutants can have harmful effects on the mutation

score measurement with the effect of leading experiments to

incorrect conclusions [3]. Therefore, when mutation testing

is used as a comparison basis, there is a need to deflate the

mutation score measurement. This can be done by using the

subset of subsuming mutants [3], [10] or disjoint mutants

[11]. Disjoint mutants approximate the minimum “subset of

mutants that need to be killed in order to reciprocally kill the

original set” [11]. We utilise the term disjoint mutation score

for the ratio of the disjoint mutants that are killed by the test

cases under assessment (which in our case are those that were

designed to kill the studied tools’ mutants).

Mutation’s effectiveness depends largely on the mutants that

are used [1]. Thus, the actual implementation of mutation

testing tools can impact the effectiveness of the technique.

Indeed, many different mutation testing tools exist that are

based on different architectural designs and implementations.

As a consequence, it is not possible for researchers, and

practitioners alike, to make an informed decision on which

tool to use and on the strengths and weaknesses of the tools.

This paper addresses the aforementioned issue by analysing

the effectiveness of three widely-used mutation testing tools

for the Java programming language, namely MUJAVA, MAJOR

and PIT, based on the results of an extensive manual study.

Before presenting the conducted empirical study, the consid-

ered tools and their implementation details are introduced.

B. Selected tools

Mutation is popular [3] and, thus, many mutation testing

tools exist. In this study we choose to work in Java since

it is widely used by practitioners and forms the subject of

most of the recent research papers. To select our subject

tools, we performed a mini literature survey on the papers

published during the last two years in the three leading

Software Engineering conferences (ISSTA, (ESEC)FSE and

ICSE) and identified the mutation testing tools that were used.

The analysis resulted in three tools, MUJAVA [12], MAJOR [13]

and PIT [14].

1) MUJAVA – Source Code Manipulation: MUJAVA [12] is

one of the oldest Java mutation testing tools and has been

used in many mutation testing studies. It works by directly

manipulating the source code of the program under test and

supports both method-level and class-level mutation opera-

tors. The former handle primitive features of programming

languages, such as arithmetic operators, whereas the latter

handle object-oriented features, such as inheritance. Note that

MUJAVA adopts the selective mutation approach [15], i.e., it

implements a set of 5 operators whose mutants subsume the

mutants generated by other mutation operators not included in



TABLE I
MUTATION OPERATORS OF MUJAVA.

Mutation Operator Description

AORB: Arithmetic Oper-

ator Replacement Binary

{(op1, op2) | op1, op2 ∈ {+, -,*,/,%} ∧
op1 6= op2}

AORS: Arithmetic Oper-

ator Replacement Short-
Cut

{(op1, op2) | op1, op2 ∈ {++,--} ∧
op1 6= op2}

AOIU: Arithmetic Oper-

ator Insertion Unary

{(v, -v)}

AOIS: Arithmetic Opera-

tor Insertion Short-cut

{(v, --v), (v, v--), (v, ++v), (v, v++)}

AODU: Arithmetic Oper-

ator Deletion Unary

{(+v, v), (-v, v)}

AODS: Arithmetic Oper-

ator Deletion Short-cut

{(--v, v), (v--, v), (++v, v), (v++, v)}

ROR: Relational Opera-

tor Replacement

{((a op b), false), ((a op b), true),
(op1, op2) | op1, op2 ∈ {>,>=,<, <=,
==,!=} ∧ op1 6= op2}

COR: Conditional Oper-
ator Replacement

{(op1, op2) | op1, op2 ∈ {&&,||,∧ } ∧
op1 6= op2}

COD: Conditional Oper-
ator Deletion

{(!cond, cond)}

COI: Conditional Opera-
tor Insertion

{(cond, !cond)}

SOR: Shift Operator Re-

placement

{(op1, op2) | op1, op2 ∈ {>>,>>>,<<}∧
op1 6= op2}

LOR: Logical Operator

Replacement

{(op1, op2) | op1, op2 ∈ {&,|,∧ } ∧
op1 6= op2}

LOI: Logical Operator

Insertion

{(v,∼v)}

LOD: Logical Operator

Deletion

{(∼v, v)}

ASRS: Short-Cut Assign-

ment Operator Replace-

ment

{(op1, op2) | op1, op2 ∈ {+=, -=, *=,
/=,%=,&=,|=,∧ =,>>=,>>>=, <<=} ∧
op1 6= op2}

this set. Table I presents the method-level operators of the tool,

along with a succinct description of the performed changes.

For instance, AORB replaces binary arithmetic operators with

each other and AODS deletes the ++ and -- arithmetic

operators.

2) PIT – Bytecode Manipulation: PIT [14] is a mutation

testing framework that targets primarily the industry but has

also been used in many research studies. PIT works by manip-

ulating the resulting bytecode of the program under test and

employs mutation operators that affect primitive programming

language features, similarly to the method-level operators of

MUJAVA. Table II describes the corresponding operators. By

comparing this table with Table I, it can be seen that PIT

implements differently specific mutation operators of MUJAVA,

for instance, the changes imposed by PIT’s Conditionals

Boundary (CB) operator are a subset of the ones of MU-

JAVA’s Relational Operator Replacement (ROR). Additionally,

it employs mutation operators that are not implemented in

MUJAVA, e.g. the Void Method Calls (VMC) and Constructor

Calls (CC) operators. Finally, it should be mentioned that since

PIT’s changes are performed at the bytecode level, they cannot

always be mapped onto source code ones.

3) MAJOR – AST MANIPULATION: MAJOR [13] is a

mutation testing framework whose architectural design places

it between the aforementioned ones: it manipulates the ab-

TABLE II
MUTATION OPERATORS OF PIT.

Mutation Operator Description

AP: Argument Propaga-

tion

{(nonV oidMethodCall(..., par), par)}

CB: Conditionals Bound-

ary

{(op1, op2) | (op1, op2) ∈ {(<,<=),
(<=,<), (>,>=), (>=,>)}}

CC: Constructor Calls {(new AClass(), null)}
I: Increments {(op1, op2) | op1, op2 ∈ {++,--} ∧

op1 6= op2}
IC: Inline Constant {(c1, c2) | (c1, c2) ∈ {(1, 0),

((int) x, x+1), (1.0, 0.0), (2.0, 0.0),
((float) x, 1.0), (true, false),
(false, true)}}

IN: Invert Negatives {(v, -v)}
M: Math {(op1, op2) | (op1, op2) ∈ {(+, -),

(-,+), (*, /), (/,*), (%,*), (&, |),
(|,&), (∧,&), (<<, >>), (>>, <<),
(>>>,<<)}}

MV: Member Variable {(member_var=...,member_var=b) |
b ∈ {false, 0, 0.0, ’\u0000’, null}}

NC: Negate Conditionals {(op1, op2) | (op1, op2) ∈ {(==,
!=), (!=, ==), (<=, >), (>=, <),
(<,>=), (>,<=)}}

NVMC: Non Void

Method Calls

{(nonV oidMethodCall(), c) | c ∈
{false, 0, 0.0, ’\u0000’, null}}

RC: Remove Condition-

als

Removes or negates a conditional state-
ment to force or prevent the execution
of the guarded statements, e.g. {((a op
b), true) or ((LHS && RHS), RHS)}

RI: Remove Increments {(--v, v), (v--, v), (++v, v), (v++, v)}
RS: Remove Switch Changes all labels of the switch to the

default one

RV: Return Values {(return a, return b) | (a, b) ∈
{(true, false), (false, true), (0, 1),
((int) x, 0), ((long) x,x+1), ((float) x,
-(x+1.0)), (NAN, 0), (non-null, null),
(null, throw RuntimeException)}}

S: Switch Replaces the switch’s labels with the de-
fault one and vice versa (only for the first
label that differs)

VMC: Void Method Calls {(voidMethodCall(),∅)}

stract syntax tree (AST) of the program under test. MAJOR

employs mutation operators that have similar scope to the

previously-described ones, but utilises specialised versions of

specific operators that are supposed to be as effective as

their traditional counterparts [16], cf. MAJOR’s and MUJAVA’s

ROR operators. The implemented mutation operators of the

tool are based on selective mutation, similarly to MUJAVA.

Table III summarises MAJOR’s operators and their imposed

changes. Compared to MUJAVA’s operators, it is evident that

the two tools share many mutation operators, but implement

them differently. Compared to PIT, most operators of MAJOR

impose a superset of changes with respect to the corresponding

ones of PIT and there are operators of PIT that are completely

absent from MAJOR.

III. MOTIVATION

Mutation testing is important since it is considered as one of

the most effective testing techniques. Its fundamental premise,

as coined by Geist et al. [17], is that:

“If the software contains a fault, it is likely that there



TABLE III
MUTATION OPERATORS OF MAJOR.

Mutation Operator Description

AOR: Arithmetic Opera-

tor Replacement

{(op1, op2) | op1, op2 ∈ {+, -,*,/,%} ∧
op1 6= op2}

LOR: Logical Operator

Replacement

{(op1, op2) | op1, op2 ∈ {&,|,∧ } ∧
op1 6= op2}

COR: Conditional Oper-
ator Replacement

{(&&, op1), (||, op2) | op1 ∈
{==,LHS,RHS, false}, op2 ∈ {!=,
LHS, RHS, true}}

ROR: Relational Opera-

tor Replacement

{(>, op1), (<, op2), (>=, op3), (<=, op4),
(==, op5), (!=, op6) | op1 ∈
{>=,!=, false}, op2 ∈ {<=,
!=, false}, op3 ∈ {>,==, true}, op4 ∈
{<,==, true}, op5 ∈ {<=, >=,
false, LHS, RHS}, op6 ∈ {<,>, true,
LHS, RHS}}

SOR: Shift Operator Re-

placement

{(op1, op2) | op1, op2 ∈ {>>,>>>,<<}∧
op1 6= op2}

ORU: Operator Replace-

ment Unary

{(op1, op2) | op1, op2 ∈ {+, -,∼} ∧
op1 6= op2}

STD: Statement Deletion
Operator

{(--v, v), (v--, v), (++v, v), (v++, v),
(aMethodCall(), ∅), (a op1 b, ∅) |
op1 ∈ {+=,-=, *=, /=, %=, &=, |=,

∧ =,
>>=, >>>=, <<=}}

LVR: Literal Value Re-

placement

{(c1, c2) | (c1, c2) ∈ {(0, 1), (0,−1),
(c1,−c1), (c1, 0), (true, false),
(false, true)}

is a mutant that can only be killed by a test case that

also reveals the fault.”

This premise has been empirically investigated by many

research studies which have shown that mutation adequate

test suites, i.e., test suites that kill all killable mutants, are

more effective than the ones generated to cover various control

and data flow coverage criteria [2]. Therefore, researchers

use mutation testing as a way to either compare other test

techniques or as a target to automate.

Overall, a recent study by Papadakis et al. [3] shows

that mutation testing is popular and widely-used in research

(probably due to its remarkable effectiveness). In view of

this, it is mandatory to ensure that mutation testing tools are

powerful and do not bias (due to implementation inadequacies

or missing mutation operators) the existing research.

To reliably compare the selected tools, it is mandatory

to account for mutant subsumption [3] when performing a

complete testing process, i.e., using mutation-adequate tests.

Accounting for mutant subsumption is necessary in order to

avoid bias from subsumed mutants [3], while complete testing

ensures the accurate estimation of the tools’ effectiveness.

An inaccurate estimation may happen when failing to kill

some killable mutants, which consequently results in failing

to design tests (to kill these mutants) and, thus, underestimate

effectiveness. Even worse, the use of non-adequate test suites

ignores hard to kill mutants which are important [18] and

among those that (probably) contribute to the test process.

Since we know that very few mutants contribute to the test

process [3], the use of non-adequate test suites can result

in major degradation of the measured effectiveness. For all

these reasons, we use mutation adequate test suites specially

designed for each tool that we study.

IV. EMPIRICAL STUDY

This section presents the settings of our study, by detailing

the research questions, the followed procedure and the design

of our experiment.

A. Research Questions

Mutation testing’s aim is to help testers design high quality

test suites. Therefore, the first question to ask is whether there

is a tool that is more effective or at least as effective as the

other tools. In other words, we want to measure how effective

are the designed tests based on one tool in killing the mutants

of the other tools. Hence we ask:

RQ1: Does any mutation testing tool lead to tests that kill

all the killable mutants produced by the other tools?

This comparison enables checking whether there is a tool

that is capable of subsuming the others, i.e., whether the

mutation adequate tests of one tool can kill all the killable

mutants of the others. A positive answer to the above question

indicates that a single tool is superior to the others, in terms

of effectiveness. A negative answer to this question indicates

that the tools are generally incomparable, meaning that there

are mutants not covered by the tools. We view these missed

mutants as weaknesses of the tools.

To further compare mutation testing tools and identify their

weaknesses we need to assess the quality of the test suites that

they lead to. This requires either an independent, to the used

mutants, effectiveness measure or a form of “ground truth”,

i.e., a golden set of mutants. Since both are not known, we

constructed a reference mutant set, the set of disjoint mutants,

from the superset of mutants produced by all the studied

tools together and all generated test cases. We use the disjoint

set of mutants to avoid inflating the reference set from the

duplicated, i.e., mutants equivalent to each other but not to

the original program [6], and redundant mutants, i.e., mutants

subsumed by other mutants of the merged set of mutants [3].

Both duplicated and redundant mutants inflate the mutation

score measurement with the unfortunate result of committing

Type I errors [3]. Since in our case these types of mutants are

expected to be numerous, as the tools support many common

types of mutants, the use of disjoint mutants was imperative.

Therefore we ask:

RQ2: How do the studied tools perform compared to a

reference mutant set?

This comparison enables the ranking of the tools with

respect to their effectiveness. The use of the reference mutant

set also helps aggregate all the data and quantify the relative

strengths and weaknesses of the studied tools in one measure

(the disjoint mutation score). Given the effectiveness ranking

offered by this comparison, a natural question to ask is:

RQ3: Which is the relatively most effective tool to use?

Identifying the most effective mutation testing tool and

quantifying the effectiveness differences between the tools is

important when choosing a tool to use but does not provide



TABLE IV
TEST SUBJECT DETAILS: GENERATED MUTANTS, DISJOINT MUTANTS AND REFERENCE MUTANT SET.

# Generated Mutants # Disjoint Mutants # Mutants
Test Subject LoC Method MAJOR PIT MUJAVA MAJOR PIT MUJAVA Reference Mutant Set

Commons-Math 16,489
gcd 133 79 237 7 9 9 8
orthogonal 120 65 155 11 11 11 11

Commons 17,294

toMap 23 50 32 6 6 5 7
subarray 25 27 64 6 6 3 6
lastIndexOf 29 43 81 11 8 13 13
capitalize 37 42 69 5 4 4 6
wrap 71 70 198 12 7 16 13

Pamvotis 5,505
addNode 89 53 318 16 16 29 29
removeNode 18 29 55 7 6 6 7

Triangle 47 classify 139 94 354 31 16 31 31

XStream 15,048 decodeName 73 81 156 8 7 8 9

Bisect 37 sqrt 51 29 135 7 6 7 10

Total 54,420 - 808 662 1,854 127 102 142 150

any constructive information on the weaknesses of the tools.

Furthermore, this information fails to provide researchers and

tool developers constructive feedback on how to build future

tools or strengthen the existing ones. Therefore, we seek to

analyse the observed weaknesses and ask:

RQ4: Are there any actionable findings on how to improve

the effectiveness of the studied tools?

Our intentions thus far have been concentrated on the

relative effectiveness of the tools. While this is important

when using mutation, another major concern is the cost of

its application. Mutation testing is considered to be expensive

due to the manual effort involved in identifying equivalent

mutants and designing test cases. Since we manually assess

and apply the mutation testing practice of the studied tools we

ask:

RQ5: What is the relative cost, measured by the number of

tests and number of equivalent mutants, of applying

mutation testing with the studied tools?

An answer to this question can provide useful information to

both testers and researchers regarding the trade-offs between

cost and effectiveness. Also, this analysis will better reflect

the differences of the tools from the cost perspective.

B. Manual Study

In order to assess the effectiveness of the studied tools,

we manually applied them to test parts of several real-

world projects. Since manual analysis requires considerable

resources, analysing a complete project is infeasible. Thus, we

picked and analysed 12 methods from 6 Java test subjects for

3 independent times, once per studied tool. Thus, in total, we

manually analysed 36 methods and 3,324 mutants which con-

stitutes one of the largest studies in the literature of mutation

testing, e.g., Yao et al. [19] consider 4,181 mutants, Baker and

Habli [20] consider 2,555. Further, the present study is the only

one in the literature to consider manually analysed mutants

when comparing the effectiveness of different mutation testing

tools (see also Section VII). The rest of this section discusses

the test subjects, tool configuration and the manual procedure

we followed in order to perform mutation testing.

1) Test Subjects: We selected 12 methods to perform

our experiment; 10 of them were randomly picked from

4 real-world projects (Commons-Math, Commons, Pamvotis

and XStream) and another 2 (Triangle and Bisect) from the

mutation testing literature [1]. Details regarding the selected

subjects are presented in Table IV. The table presents the name

of the test subjects, their source code lines as reported by the

cloc tool, the names of the studied methods, the number of

generated and disjoint mutants per tool and the number of the

resulting mutants of the reference mutant set.

2) Tool Configuration: We used the three mutation testing

tools for Java that were mentioned in the papers published

during the last two years in the ISSTA, (ESEC)FSE and ICSE

conferences. Thus, we used version 3 of MUJAVA, version

1.1.8 of MAJOR and version 1.1.10 of PIT [14] and applied all

the provided mutation operators. In the case of MUJAVA, only

the method-level operators were employed, since the other

tools do not provide object-oriented operators.

3) Manual Analysis Procedure: The primary objective of

our experiment is to accurately measure the effectiveness

of the studied tools. Thus, we performed complete manual

analysis (by designing tests that kill all the killable mutants

and manually identified the equivalent mutants) of the mutants

produced by the selected tools. Performing this task is labour-

intensive and error-prone. Thus, to avoid bias from the use of

different tools we asked different users to perform mutation

testing on our subjects. To find this number of qualified

human subjects we turned to third- and fourth-year Computer

Science students of the Department of Informatics at the

Athens University of Economics and Business and adopted

a two-phase manual analysis process:

• The selected methods were given to students attending

the “Software Validation, Verification and Maintenance”

course (Spring 2015 and Fall 2015), taught by Prof.

Malevris, in order to analyse the mutants of the studied

tools, as part of their coursework. The participating

students were selected based on their overall performance

and their grades at the programming courses. Addition-



ally, they all attended an introductory lecture on mutation

testing and appropriate tutorials before the beginning of

their coursework. To facilitate the smooth completion of

their projects and the correct application of mutation,

the students were closely supervised, with regular team

meetings throughout the semester.

• The designed test cases and detected equivalent mutants

were manually analysed and carefully verified by at least

one of the authors.

To generate the mutation adequate test suites, the students

were first instructed to generate branch adequate test suites

and then to randomly pick a live mutant and attempt to kill it

based on the RIP Model [1]. Although the detection of killable

mutants is an objective process, i.e., the produced test case

either kills the corresponding mutant or not, the detection of

equivalent ones is a subjective one. To deal with this issue,

all students were familiarised with the RIP Model [1] and the

sub-categories of equivalent mutants described by Yao et al.

[19]. Also, all detected equivalent mutants were independently

verified. To support replication and wider scrutiny of our study,

we made all its publicly available [21].

C. Methodology

To answer the stated RQs, we applied mutation testing by

independently using each one of the selected tools. Thus,

we generated three different mutation adequate test sets per

analysed method. Next, we minimised these test sets by

checking, for each contained test case, whether its removal

would result in a decreased mutation score [1]. Note that the

removal of the redundant tests is necessary in order to produce

an accurate disjoint mutant set. We used the resulting tests and

computed the set of disjoint mutants produced by each one of

the tools. We then constructed the reference mutant set by

identifying the disjoint mutants (using all the produced tests)

of the mutant set composed of all mutants of all the studied

tools. To compute the disjoint mutant sets we extended PIT

and MUJAVA to produce a matrix that records all test cases

that kill a mutant. The disjoint set of mutants was computed

using the “Subsuming Mutants Identification” process that is

described in the study of Papadakis et al. [3]. Here, we use the

term “disjoint” mutants, instead of “Subsuming” ones, since

this was the original term that was used by the first study

that suggested them. Indeed Kintis et al. [11] coined the term

“disjoint” mutants and advocated that they can be used as a

metric that can accurately measure test effectiveness.

To answer RQ1, for each selected tool we used its mutation

adequate test suite and calculated the mutation score and

disjoint mutation score that it achieves when it is evaluated

with the mutants produced by the other tools. This process

can be viewed as an objective comparison between the tools,

i.e., a comparison that evaluates how the tests designed for

one tool perform when evaluated in terms of the other tool. In

case the tests of one tool can kill all the mutants produced by

the other tool, then this tool subsumes the other. Otherwise,

the two tools are incomparable.

To answer RQ2, we used the tests that were specifically

designed for each one of the studied tools and measured the

score they achieve when evaluated against the reference mutant

set. This score provides the common ground to compare the

tools and rank them with respect to their effectiveness and,

thus, also answer RQ3.

To answer RQ4, for each tool we manually analysed the

mutants that were not killed by the tests of the other tools

with the intention of identifying inadequacies in the tools’

mutant sets. We then gathered all these instances and identified

how we could complement each one of the tools in order to

improve its effectiveness and reach the level of the reference

mutant set. Finally, to answer RQ5, we measured and report

the number of tests and equivalent mutants that we found. We

also analysed and measured the number of equivalent mutants

that are common (and non-common) between each pair of the

studied tools.

V. EMPIRICAL FINDINGS

This section presents the empirical findings of our study per

posed research question.

A. RQ1: Tool’s Cross-evaluation

This question investigates whether one of the studied tools

subsumes the others. Table V presents the respective results.

The table is divided into three parts (columns MAJOR, PIT,

MUJAVA) and each of these parts is divided into two columns

that correspond to the mutation adequate test sets of the

remaining tools. Finally, each of these columns is split into

two sub-columns that depict the mutation scores achieved by

the corresponding test suites when considering all generated

mutants (column “All”) and the disjoint ones (column “Dis.”).

By examining Table V, it becomes evident that none of

the tools subsumes the others; all generated test suites face

effectiveness losses when evaluated against the mutants of the

other tools. Specifically, PIT’s mutation adequate test suites

perform the worst, with an effectiveness of approximately 95%

with respect to MUJAVA and MAJOR when all mutants are con-

sidered; for the disjoint ones, this score drops to approximately

80% for MAJOR and 75% for MUJAVA. On the contrary,

MUJAVA’s mutation adequate test suites perform the best, with

an effectiveness of 96% and 98% for MAJOR and PIT, when

all mutants are considered and 91% and approximately 93%

for the disjoint ones, respectively. MAJOR’s results place it

in the middle, with an effectiveness of approximately 99%

and 97% for PIT and MUJAVA for all generated mutants; for

the disjoint ones, its effectiveness drops to 96% and 85%,

respectively.

B. RQ2: Comparison with Reference Mutation Tool

This question investigates how the tools’ mutation adequate

test suites fare against a reference mutation testing tool,

simulated by the disjoint mutants of the union of all mutants of

the studied tools. Figure 1 depicts the obtained findings. The

figure presents the percentage of the mutants that can be killed

by the corresponding mutation adequate test suites per method,



TABLE V
TOOLS’ CROSS-EVALUATION RESULTS.

MAJOR PIT MUJAVA

PIT-TS MUJAVA-TS MAJOR-TS MUJAVA-TS MAJOR-TS PIT-TS

Method All Dis. All. Dis. All Dis. All. Dis. All Dis. All Dis.

gcd 97.4% 71.4% 97.4% 71.4% 100.0% 100.0% 97.1% 81.8% 99.5% 88.9% 100.0% 100.0%

orthogonal 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

toMap 88.9% 66.7% 77.8% 83.3% 100.0% 100.0% 91.7% 83.3% 100.0% 100.0% 96.0% 80.0%

subarray 90.0% 66.7% 85.0% 50.0% 100.0% 100.0% 95.8% 83.3% 100.0% 100.0% 91.1% 66.7%

lastIndexOf 100.0% 100.0% 92.6% 91.0% 100.0% 100.0% 97.6% 87.5% 100.0% 100.0% 97.4% 85.0%

capitalize 93.5% 60.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 98.2% 75.0%

wrap 98.4% 91.7% 100.0% 100.0% 98.5% 85.7% 98.5% 85.7% 98.9% 93.8% 96.1% 81.2%

addNode 98.7% 93.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 76.5% 37.9% 78.2% 34.5%

removeNode 93.8% 85.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 91.7% 50.0% 93.8% 66.7%

classify 90.2% 61.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 98.1% 90.3% 94.9% 58.1%

decodeName 98.0% 87.5% 100.0% 100.0% 96.9% 71.4% 100.0% 100.0% 95.3% 62.5% 99.2% 87.5%

sqrt 93.6% 71.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 97.5% 71.4%

Average 95.2% 79.7% 96.1% 91.3% 99.6% 96.4% 98.4% 93.5% 96.7% 85.3% 95.2% 75.5%
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Fig. 1. Comparison of Mutation Adequate Test Suites against Reference
Mutation Set.

along with the average score for all methods. Although, the

performance of the tools varies depending on the considered

method, it can be seen that, on average, MUJAVA realises an

88% effectiveness score, followed by MAJOR and PIT with

80% and 76%, respectively. An interesting observation from

these results is that all tools have important inadequacies that

range from 0-65%. On average, the differences are 12%, 20%

and 24% for MUJAVA, MAJOR and PIT.

C. RQ3: Better Performing Tool

This question regards the identification of the most effective

tool. From the results of the previous research question it

should be evident that on average MUJAVA is the top ranked

tool, followed by MAJOR and PIT. MUJAVA achieves a higher

mutation score (w.r.t. the reference mutant set) than MAJOR in

5 cases, equal in 4 and lower in 3 cases. It is also the tool with

the highest stability. Therefore, we conclude that according to

our sample MUJAVA is the most effective tool.
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D. RQ4: Tools’ Weaknesses & Recommendations

This question is concerned with ways of improving the

mutation testing practice of the studied tools. To this end,

Figure 2 presents the mutants per tool (divided into mutation

operators) that remained alive after the application of the

mutation adequate test suites of the other tools. The figure

is divided into six parts, each one illustrating the live mutants

of a corresponding tool with respect to the mutation adequate

test suite of another tool.

1) Recommendations: PIT: As can be seen from Figure 2,

PIT’s mutation testing practice can be improved by strength-

ening its mutation operators that deal with relational and

conditional expressions, e.g. CB, NC, RC and by incorporating

the changes of the COR and ROR operators of MUJAVA and

MAJOR. Additionally, PIT’s Math operator can be enhanced

by including the changes of MUJAVA’s AORB and MAJOR’s

AOR operators. Finally, from the figure, it is apparent that

PIT’s tests fail to kill mutants generated by MUJAVA’s AOIS



mutation operator, thus, the tool must implement a better

version of its Increments operator to include the addition of the

pre- and post-increment and decrement arithmetic operators.

2) Recommendations: MAJOR: Similarly to PIT, MA-

JOR’s tests fail to cover MUJAVA’s AOIS mutants. Thus,

the tool’s practice can be enhanced by implementing the

AOIS operator. Additionally, MAJOR will benefit by adding

an operator that negates arithmetic variables, analogous to

MUJAVA’s AOIU. Finally, we observed that the tests of

MAJOR failed to kill some mutants generated by MU-

JAVA’s ROR operator. Recall that MAJOR implements a

specialised version of ROR that induces only a subset of

its changes. The live mutants indicate a weakness in this

specialised set that can lead to test effectiveness loss. An

example of such a weakness manifested at line 161 of the

decodeName method where MUJAVA’s ROR changed the

sub-expression c == escapeReplacementFirstChar

to c > escapeReplacementFirstChar. It is noted that

the issue with the ROR mutants is not a defect of MAJOR but

an implementation choice. Indeed MAJOR was built based on

the studies of Kaminski et al. [22] and Just and Schweiggert

[16], which suggest that LOR and ROR operators produce

many redundant mutants, which can be reduced by using

the rules shown in Table III. However, both of the above

studies were based on weak mutation [1]. This practice as

pointed out by Papadakis and Malevris [23] “does not hold for

strong mutation because of the existence of strongly equivalent

mutants” [23]. Along the same lines, the work of Lindström

and Márki [24] provided empirical evidence supporting the

above argument, which also confirm our results.

3) Recommendations: MUJAVA: As can be seen from Fig-

ure 2, MUJAVA’s weaknesses centre around mutation operators

that affect literal values, namely MAJOR’s LVR and PIT’s IC.

Thus, MUJAVA will benefit by implementing such operators.

Furthermore, we found MUJAVA’s implementation of the ROR

mutation operator inconsistent; for example, at line 25 of the

wrap method, the tool did not replace the original statement,

if (newLineStr == null), with if (true), as it

was supposed to, leading to inadequacies in the resulting test

suites. Similar examples are present at line 248 of toMap and

1282 of lastIndexOf. These implementation defects lower

the test effectiveness of the resulting mutation adequate test

suites and addressing them will improve the tool’s test quality.

E. RQ5: Tools’ Application Cost

The answer to this question provides insights on the relative

cost of the studied tools’ application in terms of the number

of equivalent mutants that have to be manually analysed and

the number of needed test cases. Table VI presents the corre-

sponding findings. The table is divided into three parts, each

one for a studied tool, and presents the examined cost metrics

in the sub-columns of these parts (“#Eq.” and “#Tests”).

We can observe that 12% of MAJOR’s mutants are equiv-

alent, 6% of PIT’s and 11% of MUJAVA’s ones. Thus, PIT

requires the least amount of human effort in identifying the

generated equivalent mutants, whereas MUJAVA the highest.

TABLE VI
MANUAL ANALYSIS RESULTS: #EQUIVALENT MUTANTS & #TESTS.

MAJOR PIT MUJAVA

Method #Eq. #Tests #Eq. #Tests #Eq. #Tests

gcd 17 6 9 7 23 7

orthogonal 3 8 0 8 5 9

toMap 5 7 2 5 7 5

subarray 5 6 3 4 8 6

lastIndexOf 2 8 1 7 4 12

capitalize 6 5 1 6 14 9

wrap 8 10 4 6 19 7

addNode 11 8 3 8 33 34

removeNode 2 5 0 3 7 6

classify 7 25 1 16 38 27

decodeName 24 5 16 6 28 10

sqrt 4 4 3 4 17 6

Total 94 97 43 80 203 138

Regarding the number of killing test cases the tools require,

MAJOR requires 97 test cases, PIT 80 and MUJAVA 138.

Again, PIT requires the least amount of effort in generating

mutation adequate test suites.

The previously-described results indicate that PIT is the

most efficient tool and MUJAVA the most expensive one, with

MAJOR standing in the middle. Considering that PIT was

found the least effective tool, it is no surprise that it is the most

efficient one. Analogously, MUJAVA requires the most effort,

a fact justified by its high effectiveness. MAJOR’s practice

is placed in the middle, presenting a compromise between

effectiveness and efficiency.

To better understand the nature of the generated equivalent

mutants, Figure 3 illustrates the contribution of each mutation

operator to the generated killable and equivalent mutants per

tool. In the case of MUJAVA, AOIS and ROR generate most

of the tool’s equivalent mutants. For MAJOR, ROR generates

most of the equivalent mutants, followed by LVR, AOR and

COR. In the case of PIT, RC and CB generate the most

equivalent mutants.

Finally, we also examined the percentage of common equiv-

alent mutants among the studied tools. The corresponding

results are depicted in Table VII. Overall, we observed that

the tools generate different equivalent mutants, with PIT and

MAJOR generating the most common (17%) and PIT and

MUJAVA the least (6.6%). When all tools’ equivalent mutants

are considered, this percentage drops to 4.1%. This observation

indicates that the application of more than one mutation testing

frameworks will not benefit from the already analysed mutants

of the one tool.

VI. THREATS TO VALIDITY

As every empirical study, this one faces specific threats to its

validity. Here we discuss these threats along with the actions

we took to mitigate them.

External Validity. External validity refers to the ability of a

study’s results to generalise. To mitigate the underlying threats,

we utilised 6 widely-used test subjects and manually analysed

12 methods whose application domain varies. Although we
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TABLE VII
PERCENTAGE OF COMMON EQUIVALENT MUTANTS AMONG THE TOOLS.

Method MAJOR-PIT MUJAVA-MAJOR MUJAVA-PIT All

gcd 19.2% 17.5% 12.5% 8.2%

orthogonal 0.0% 12.5% 0.0% 0.0%

toMap 14.3% 25.0% 11.1% 7.1%

subarray 37.5% 15.4% 18.2% 12.5%

lastIndexOf 33.3% 0.0% 0.0% 0.0%

capitalize 14.3% 15.0% 0.0% 0.0%

wrap 25.0% 18.5% 8.7% 6.5%

addNode 14.3% 18.2% 5.6% 4.3%

removeNode 0.0% 11.1% 0.0% 0.0%

triangle 0.0% 6.7% 0.0% 0.0%

xstream 17.5% 32.7% 13.6% 5.9%

bisect 28.6% 9.5% 10.0% 4.2%

Average 17.0% 15.2% 6.6% 4.1%

cannot claim that our results are completely generalisable, our

findings indicate specific inadequacies in the mutants produced

by the studied tools. These involve incorrect implementation

or not supported mutation operators, evidence that is almost

impossible to be case-specific.

Internal Validity. Internal validity includes potential threats

to the conclusions we drew. Our conclusions are based on the

manual analysis, i.e., on the identified equivalent mutants and

mutation adequate test suites. Thus, our analysis is a potential

source of threats. To control this fact, we ensured that this

analysis was performed by different persons to avoid any bias

in the results and that all results produced by students were

independently checked for correctness by at least one of the

authors. Another potential threat is due to the fact that we did

not control the test suite size. However our study focuses on

investigating the effectiveness of the studied tools when these

used as the means for generating strong tests [23]. Finally, to

cater for wider scrutiny, we made publicly available all the

data of this study [21].

Construct Validity. Construct validity pertains to the ap-

propriateness of the measures utilised in our experiments.

For the effectiveness comparison, we used the mutation score

and disjoint mutation score measurements. These are well-

established measures in mutation testing literature [3]. Another

threat originates from evaluating the tools’ effectiveness based

on the reference mutant set. We deemed this particular measure

appropriate because it constitutes a metric that combines the

overall performance of the tools and enables their ranking.

Finally, the number of equivalent mutants and generated tests

might not reflect the actual cost of applying mutation. We

adopted these metrics because they involve manual analysis

which is a dominant cost factor when testing.

VII. RELATED WORK

Mutation testing is a well-studied technique with a rich

history of publications, as recorded in the surveys of Offutt

[25] and Yia and Harman [2].

Manual analysis has been used extensively in the mutation

testing literature. Yao et al. [19] analysed 4,181 mutants to

provide insights into the nature of equivalent and stubborn

mutants. Nan et al. [26] manually analysed 2,919 mutants to

compare test cases generated for mutation testing with the ones

generated for various control and data flow coverage criteria.

Deng et al. [27] analysed 5,807 mutants generated by MUJAVA

to investigate the effectiveness of the SDL mutation operator.

Previous work on the differences of mutation testing frame-

works for Java is due to Delahaye and Du Bousquet [4].

Delahaye and Du Bousquet compare several tools based on

various criteria, such as the supported mutation operators,

implementation differences and ease of usage. The study

concluded that different mutation testing tools are appropriate

to different scenarios.

A similar study was performed by Rani et al. [28]. This

study compared several Java mutation testing tools based on

a set of manually generated test cases. The authors concluded

that PIT generated the smallest number of mutants, most

of which were killed by the employed test suite (only 2%

survived), whereas, MUJAVA generated the largest number of

mutants, 30% of which survived.

Gopinath et al. [5] investigated the effectiveness of mutation

testing tools by using various metrics, e.g., comparing the



mutation score (obtained by the test subjects’ accompanying

test suites) and number of disjoint/minimal mutants that they

produce. They found that the examined tools exhibit consid-

erable variation of their performance and that no single tool

is consistently better than the others.

The main difference between our study and the aforemen-

tioned ones is that we manually analysed the tools’ mutants

by performing complete analysis. This is a mandatory require-

ment (see Section III) for performing a reliable effectiveness

comparison between the tools. This constitutes the strength

of the present paper as it is the first one in the literature to

perform manual analysis in comparing mutation tools. Further,

we identified specific limitations of the tools and provided

actionable recommendations on how each of the tools can be

improved. Lastly, we analysed and reported the number and

characteristics of equivalent mutants produced by each tool.

VIII. CONCLUSIONS & FUTURE WORK

Researchers largely base their findings on the results pro-

vided by mutation testing tools. This practice increases the

need for reliable, effective and robust tools. While most of

the existing tools have been shown to be robust [4], their

effectiveness remains unexplored.

We manually analysed and investigated the use of three

popular Java mutation testing tools with the intention of

making practitioners and researchers aware of their relative

cost, effectiveness and limitations. Our analysis revealed large

differences among the tools, with respect to both cost and

effectiveness. In particular, it showed that MUJAVA is the

most effective tool with 88% effectiveness score, followed by

MAJOR and PIT with 80% and 76%, respectively. We also

identified several ways of strengthening each of the tools so

that their effectiveness becomes at least as much as each of

the others in turn.

Future work includes the investigation of the effectiveness

of additional tools, e.g., version 4 of MUJAVA, and the recently

proposed improvements to PIT’s practice [29]. We also plan

to conduct further experiments with more test subjects.
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