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ABSTRACT
Software Products Lines (SPLs) are families of products
sharing common assets representing code or functionalities
of a software product. These assets are represented as fea-
tures, usually organized into Feature Models (FMs) from
which the user can configure software products. Gener-
ally, few features are sufficient to allow configuring millions
of software products. As a result, selecting the products
matching given testing objectives is a difficult problem.

The testing process usually involves multiple and poten-
tially conflicting testing objectives to fulfill, e.g. maximizing
the number of optional features to test while at the same
time both minimizing the number of products and minimiz-
ing the cost of testing them. However, most approaches for
generating products usually target a single objective, like
testing the maximum amount of feature interactions. While
focusing on one objective may be sufficient in certain cases,
this practice does not reflect real-life testing situations.

The present paper proposes a genetic algorithm to handle
multiple conflicting objectives in test generation for SPLs.
Experiments conducted on FMs of different sizes demon-
strate the effectiveness, feasibility and practicality of the
introduced approach.
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1. INTRODUCTION
The software industry is increasingly building software

families consisting of similar systems with many variations
[5], called variants. Such families are known as Software
Product Lines (SPLs). A Software Product Line (SPL) has
been defined as a set of software-intensive systems that share
a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that
are developed from a common set of core assets in a pre-
scribed way [3]. Software Product Line Engineering (SPLE)
[27] is a software development paradigm designed to handle
these variants. This approach results in many benefits, like
reducing the maintenance effort, the software development
costs and the time of products to market [7]. The features of
a SPL are usually organized into a Feature Model (FM) [17]
from which the user can configure and derive [28] tailored
software products.

Testing a SPL is a inherent difficult task [21]. Indeed,
only few features are sufficient to enable the configuration
of thousands or millions of variants. For instance, a FM of
a video player with 71 features [22] allows configuring more
than 1.65×1013 different products. Therefore, testing all the
products of a SPL with an acceptable cost is almost unman-
ageable. To overcome this problem, approaches have been
proposed to reduce the number of products to test [8]. For
instance, Combinatorial Interaction Testing (CIT) [4] has
been identified as a relevant approach to sample the config-
uration space. This technique is based on the observation
that most of the faults are due to the interaction between a
small number of features. As a result, only the products ex-
ercising all the interactions between any t features (t-wise)
should be tested. This approach has been adapted to SPL
testing, e.g. [15, 25].

In real-life situations, selecting the products to test is a
multi-dimensional problem. Indeed, the testing process usu-
ally involves multiple and possibly conflicting objectives, like
generating the products to test with respect to t-wise but at
the same time minimizing the number of products to test,
maximizing the number of optional features exercised and
minimizing the cost of testing these products. Such require-
ments necessitate a trade-off between several testing objec-
tives. However, most of the approaches selecting relevant
products to be tested target a single objective at a time.
While this may be sufficient in certain cases, this method
does not reflect real-life testing situations and constraints.
In view of this, this paper proposes a genetic algorithm to



handle multiple test objectives for SPLs. The approach is
validated through a case study conducted on 8 FMs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the concepts and the motivation underlying
the proposed approach. Section 3 details the introduced al-
gorithm to solve multi-objective test generation for SPLs.
Section 4 reports on experiments. Finally, Section 5 dis-
cusses related work and Section 6 concludes the paper.

2. BACKGROUND AND MOTIVATION
This section introduces some notations and concepts used

in this paper and motivates the proposed approach.

2.1 Feature Models and Products
Feature Models (FMs) represent the features and the con-

straints linking the features of a SPL. They are usually rep-
resented through a Feature Diagram (FD) [6]. Figure 1 de-
picts an example of FD of a mobile phone product line of
10 features and the dependencies between the features [2].
For instance, the presence of the Camera feature requires
the High resolution one to be present too.

A FM can easily be translated to logic [23]. Doing so
results in a boolean formula where its variables represent
the features of the FM. A satisfiability (SAT) solver can
then be used to generate valid configurations by using this
formula. A configuration of a FM is a set of features that
are proposed by the software product. The variables of the
formula are assigned true for the selected features of the
product and false for the others. The configuration is said
to be valid if the formula is satisfied, i.e. its evaluation is
true. For instance, the following configuration satisfies the
formula of the example FM:

C = {Mobile Phone,Calls,Screen,Basic}.

In this configuration, the Mobile phone, Calls and Basic
screen variables are assigned to true, while the other vari-
ables are assigned to false. Therefore, the configuration is
valid since all the constraints of the FM are fulfilled.

We define as a product the set of selected and unselected
features that characterize this product [12]. Thus, if we
consider a FM of n features, one product P is represented
as {±f1, ...,±fn}, where +fi indicates a feature which is
selected by this product, and −fi an unselected one. Like
for configurations, a product is said to be valid if it satisfies
the constraints of the FM, i.e. its formula. For instance,
the following product P associated to the configuration C is
valid:

Figure 1: A Feature Diagram of a Mobile Phone
Product Line [2].

P = {+Mobile Phone,+Calls,−GPS,+Screen,+Basic,
−Colour,−High Resolution,−Media,−Camera,−MP3}.

2.2 Test Suites, Cost and Pairwise Coverage
In this paper, a product corresponds to a test case of a

SPL and a test suite to a set of m products. To simplify, we
will refer to products as tests.

In an attempt to take into account the testing cost of
products, some assumptions are made. We assume that the
testing effort of each product is related to the number of
features that it contains. Additionally, each feature requires
a different amount of resources in order to be tested. To
this end, a value representing an estimate of its testing cost
is assigned to each feature. Thus, the cost of testing one
product is assumed to be equal to the sum of the cost of the
features that it is composed of. More formally, if ci denotes
the cost of the feature fi, a product Pj = {±f1, ...,±fn} has
a cost Ct equals to:

Ct(Pj) =
∑n

i=1 p(i)c(i), where p(i) =

{
1 if + fi
0 if − fi

.

The cost of a test suite is the sum of the cost of the m
products that it is composed of. Thus, the cost of x =
{P1, ..., Pm} is given by:

cost(x) =
∑m

j=1 Ct(Pj).

Putting a cost to each feature transforms the initial FM
into an attributed FM [24]. A similar way of representing
the cost of features and products can be found in [24].

Finally, pairwise is a testing technique that focuses on the
interactions between any two features of a SPL [26]. Such
an interaction is called a pair of features. Pairwise coverage
denotes the ability of a test suite to cover all the pairs of
features that exist in a SPL. In this paper, pairwise coverage
is measured as the number of pairs covered by the products
of the test suite.

2.3 Motivation
In practice, software development introduces several con-

straints on the actual testing process [7]. Constraints like
occupying a specific amount of resources, meeting a specific
budget or finishing the process on time are such examples.
To meet these needs, it may be necessary to suspend the test-
ing process before testing all the selected products. In such
a case, it is required to minimize the process cost by max-
imizing the level of testing thoroughness at the same time.
This is a difficult task due to the following two problems to
face with: a), in the SPL context, not all the prod-
ucts (as defined in Section 2.1) are necessarily valid.
This fact, makes the test selection a hard problem [25]. The
problem is so hard that most of the existing approaches are
encountering difficulties in selecting products to test [25].
b), among the valid products, the aforementioned
objectives are competitive, i.e. minimizing the cost
reduces the quality of testing and vice versa. This is
analogous to test suite minimization, which is known to be a
hard problem [29] and it is clearly escalated in the presence
of the a) problem.

Addressing both these problems at the same time makes
the test selection task challenging. In addition, the practi-
cal need of dealing with these problems simultaneously moti-
vates the suggestion of such an approach. In view of this, the



present paper introduces a novel approach avoiding invalid
products and capable of dealing with multiple objectives at
the same time. Indeed, it makes a combined use of con-
straint solving and multi-objective optimization techniques
to fulfill the test selection goals. The proposed approach is
validated on a set of real feature models dealing with the
following objectives:

1. Maximizing the pairwise coverage,

2. Minimizing the number of products selected,

3. Minimizing the overall test suite cost (as defined in
Section 2.2).

A conducted case study reveals the effectiveness and the
practicality of the proposed approach. In particular, it is ca-
pable of selecting test suites with higher pairwise coverage
than randomly selected ones containing the same number
of products. Additionally, it is able to generate test suites
composed of less products and having a lower cost than ran-
domly selected suites having the same pairwise coverage.

3. A GENETIC ALGORITHM FOR MULTI-
OBJECTIVE TEST GENERATION

Exhaustive SPL testing is difficult to achieve in practice
since it involves the test of thousands, even millions of prod-
ucts. As a result, it is necessary to select the products
matching the testing objectives. Looking over the space of
all the possible products for the optimal solution that sat-
isfies the most these objectives is not feasible due to the
large size of the space. Indeed, it is not possible to evalu-
ate all the solutions. Genetic algorithms form a family of
techniques that have been proven to be quite effective in
finding solutions on large search spaces [11]. The approach
introduced in this paper is a genetic algorithm that uses a
SAT solver to only search the space of valid products, thus
pruning the invalid ones.

3.1 Genetic Algorithms
Genetic algorithms form search-based heuristics mimick-

ing the natural evolution process. They represent a smart
way to randomly search for solutions to optimization prob-
lems. To apply such an approach, several parameters like
the genes, the individuals and the objective function have
to be defined. The individuals correspond to what com-
poses a possible solution to the optimization problem. Each
individual is composed of several units, called genes and
the set of individuals that is handled by the algorithm is
called the population. The objective function quantifies the
individuals’ ability to solve the optimization problem. Gen-
erally, these algorithms operate by repeatedly reproducing,
adjusting and selecting the best individuals of the popula-
tion. Based on the process presented in the following sub-
section, the population is gradually evolved by optimizing
the solutions it encodes.

3.1.1 The Process
Genetic algorithms operate by evolving a population. The

evolution is guided by an objective function. The initial pop-
ulation is usually produced at random and evolved based
on a given set of operations on its individuals. Usually,
three operations are used for the evolution of the popula-
tion. These are the selection, crossover and mutation [11].

Population

Generation i

Population

Generation i+1

1. Selection

2. Crossover

3. Mutation

Gene

Individual 

Figure 2: The process of evolving a population.

1. Selection chooses individuals for performing crossover
and mutation. The selection is made by choosing the
individuals with the best scores according to the ob-
jective function.

2. Crossover selects two individuals and switches some of
their genes. This is usually performed by ordering the
individuals’ genes and switching all the genes after a
randomly selected point. Crossover results into two
new individuals called offsprings.

3. Mutation performs on an offspring by changing the
values of one or more of its genes.

Performing the selection, crossover and mutation opera-
tions on a population results in one evolution cycle of the
population. This cycle is called population generation. An
overview of one generation is presented in Figure 2. The
algorithm terminates after completing a predefined number
of generations.

3.1.2 Search for Multi-Objective Optimization
Searching for optimizing more than one objective at the

same time is usually referred to as multi-objective optimiza-
tion. The aim of these approaches is to search for optimal
(or nearly optimal) solutions requiring trade-offs between
two or more conflicting objectives. In the present paper,
our multi-objective optimization is defined as follows:

Let Xp be the set of all the possible products of a SPL
and let x = {P1, ..., Pm} be a set of m products.
Given: a FM, a given amount of time or iterations, t, and
the vector of k objective functions F(x) = [F1(x), ..., Fk(x)]T

where each objective function Fi is a normalized function to
minimize of the form Fi(x) : P1, ..., Pm → R.
Problem: finding x ∈ Xp with respect to t such as min

x
F(x).

The minimization of F is is the process of optimizing system-
atically and simultaneously the k objective functions [20].

3.2 Multi-Objective Test Generation for Soft-
ware Product Lines

The proposed approach is a multi-objective genetic algo-
rithm. Like any genetic algorithm, it requires the definition
of its ingredients (genes, individuals and population), its
operations (selection, crossover and mutation) and the ob-
jective function that evaluates how each individual fits to
the problem.



3.2.1 Modeling Individuals and Population
A solution to our problem is a set of products that gives

the maximum pairwise coverage with the minimum cost and
number of products. To fit the problem with the genetic al-
gorithm, it is needed to model the population, the individu-
als and the genes in terms of the actual problem. Therefore,
since an individual represents a possible solution to the prob-
lem, it can be modeled as a set of products x = {P1, ..., Pm}.
Thus, each valid product represents a gene and the set of
individuals handled by the genetic algorithm represents the
population. This allows forming as a search space all the
possible sets of valid products. This represents a huge space
due to the intractable number of the possible products con-
tained in a SPL.

However, enabling a search approach over this space can-
not be performed directly. Recall that not all the products
of a SPL form valid ones. Therefore, there is a need to
efficiently deal with the invalid products. This is not an
easy task due to the large number of invalid products, es-
pecially for large SPLs [25]. To overcome this difficulty, a
SAT solver is used to provide random valid products. This
is achieved by randomizing the solutions’ enumeration order
of the FM’s formula [19]. To this end, random products,
sets of random products and the initial population can be
produced efficiently [12]. Thus, the search space is reduced
to only include valid products. The importance of this step
is that it prunes the invalid products from the search space.

3.2.2 Modeling Genetic Algorithm Operations
Crossover is an operation defined between two selected

individuals, called the parents and it is performed as de-
picted by Figure 3. This operation is performed by selecting
l products from the smallest in size parent and swapping
them with randomly selected ones from the other (bigger in
size) parent. Our individuals form sets of products and thus
the order of the genes does not matter. Hence, swapping
randomly some products is equivalent to the usual crossover
operation. Additionally, doing so ensures that the individu-
als are having the same sizes during the whole evolution pro-
cess. Crossover operation results in two offsprings. These
are then mutated according to the mutation operation as
depicted by Figure 4. In mutation operation, a product is
randomly selected from the individual and replaced by a
randomly selected product (from the space of all the valid
products).

Besides the above operations, the proposed approach in-
corporates two additional operations. These are the elitism
and diversify operations. Elitism selects the best e individu-
als of one population and includes them directly to the new
one. Diversify operation adds one new individual, randomly
produced directly into the new population. This ensures the

Parents Offsprings
Product (gene)

Individual 

(set of products)

Figure 3: Crossover operation. A random number of
l products are selected in the smallest parent. Each
of them is swapped with a random product selected
from the other parent to produce the two offsprings.

Offspring Mutated offspring
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space

Product (gene)

Individual 

(set of products)

Figure 4: Mutation operation. A random product is
selected from the offspring and replaced by a prod-
uct randomly selected from the space of all the prod-
ucts valid towards the Feature Model.

diversity of the population individuals during the evolution
process.

3.2.3 The Objective Function
The proposed approach is based on an objective function

F(x), specially designed for the SPL testing context. As
introduced in section 3.1.2, F is a vector composed of the
following k = 3 objective functions F1, F2 and F3.

1. Maximization of the pairwise coverage. This objective
aims at ensuring that the selected products have the
highest possible level of pairwise coverage:

F1(x) = cov(x),

where cov is a function that evaluates the number of
pair of features covered by x = {P1, ..., Pm}.

2. Minimization of the number of products. Here, the
objective is to test the minimum number of products:

F2(x) = card(x),

where card is a function that returns the number of
products m of x = {P1, ..., Pm}.

3. Minimization of the testing cost. This objective func-
tion aims at minimizing the cost of testing the prod-
ucts:

F3(x) = cost(x),

where cost is a function returning the cost of testing
these x = {P1, ..., Pm} products.

In order to evaluate F, each objective function is nor-
malized so that they have the same magnitude using the
following formula [20]:

Fi(x)− F ∗
i

Fmax
i − F ∗

i

,

where F ∗
i is the utopia point and Fmax

i the maximum ob-
jective functions values. In addition, the objective max F1

is transformed into a minimization problem min(−F1) in or-
der to deal with minimization problems only. As a result,
each objective function returns a value that holds between
0 and 1, where 0 means that the objective is perfectly ful-
filled. To evaluate F, each function is assigned a weight
wj , where

∑k
j=1 wj = 1. Thus, the fitness of each individ-

ual I = {P1, ..., Pm} is computed using a weighted sum as
follows:

F(I) =
∑k

j=1 wjFj(I).



3.3 Algorithm
The technique is formalized in Algorithm 1. Informally,

this approach starts by creating an initial random popula-
tion (lines 3 to 14). The size of the population is specified by
the user as long as the maximum size of an individual. Each
individual is a set of 1, ...,m products randomly selected
from the space of all the products that are valid towards the
FM (lines 6 to 11). The objective function is then evaluated
for each individual of the initial population (line 12).

The second step of the algorithm is the evolution of the
population into a new one (lines 15 to 46). First, the elitism
operation is performed (lines 17 to 19). Then, one random
individual is created, evaluated and added to the new popu-
lation to ensure having new products (lines 20 to 27). This
is the diversity operation. The next step is crossover and
mutation. To complete the new population until reaching
its size n, individuals are created using crossover and mu-
tation operators. The crossover (lines 29 and 30) aims at
creating two offsprings from their selected parents. The two
parents are selected using a fitness proportionate selection,
also known as roulette wheel selection. The mutation occurs
on the offsprings with a certain probability fixed by the user
(lines 32 to 37). The fitness of these two offsprings is then
evaluated and these two new individuals are added to the
new population (lines 39 to 40).

Finally, the new population is reduced to the initial pop-
ulation size (lines 42 to 44) and the current population is
replaced by the new one (line 45) and it continues to the
next generation (line 46). When the algorithm terminates,
the individual that has the best fitness, i.e. the one with the
minimum F value is returned (line 47).

4. CASE STUDY
In this section, the proposed multi-objective test genera-

tion approach is assessed on a set of FMs. The objective
of this case study is to answer the two following research
questions:

• [RQ1] Is F capable of leading to a fulfillment of the
three objectives? In other words, does the minimiza-
tion of F results in a maximization of F1 (or a minin-
imization of (−F1)), a minimization of F2 and a min-
imization of F3?

• [RQ2] How does the multi-objective generation approach
compares with a random one?

Answering the first question amounts to evaluate whether
the objective function F is capable of improving the stud-
ied objectives. We expect to see a decreasing trend in all
three objectives in relation to population generations. In
practice, this means that a better trade-off can be achieved.
This trade-off leads to a higher pairwise coverage, less prod-
ucts and a lower cost. Since no other approach takes into
account these objectives at the same time, our second ques-
tion aims at comparing the two of them when keeping the
other one set, to enable the comparison with random test
suite generation. Hence, we select random product sets of
a) the same size and b) achieving the same pairwise cover-
age as our approach. If, for the same number of products,
our approach achieves to provide a lower cost and higher
pairwise coverage than the random set, we can consider it
as being a better one. Similarly, it will be successful if it

Algorithm 1 Multi-objective Test Generation

1: input: t, n,m, e < n, Pmutation, w1, .., wk, fm . t is the
time or number of iterations, n is the population size, m is the
maximum individual size, e is the number of individuals involved
in elitism, Pmutation is the probability to mutate one individual,
w1, .., wk are the respective weights of each objective function
F1, .., Fk and fm is the FM.

2: output: x = {P1, ..., Pm} . Solution (an Individual)
3: x← ∅
4: pop← ∅ . Population is a set of individuals
5: while card(pop) < n do
6: s← random integer from 1, ...,m
7: I ← ∅ . An individual is a set of s products
8: while card(I) < s do
9: P ← random product(fm) . Using a SAT solver
10: I ← I ∪ {P}
11: end while
12: Evaluate F(I) =

∑k
j=1 wjFj(I)

13: pop← pop ∪ {I}
14: end while
15: while elapsed time or number of iterations < t do
16: newPop← ∅
17: while card(newPop) < e do
18: newPop ← newPop ∪ {{I} | I ∈ pop ∧ I /∈ newPop ∧

min F(I)}
19: end while
20: s← random integer from 1, ...,m
21: I ← ∅
22: while card(I) < s do
23: P ← random product(fm) . Using a SAT solver
24: I ← I ∪ {P}
25: end while
26: Evaluate F(I) =

∑k
j=1 wjFj(I)

27: newPop← newPop ∪ {I}
28: while card(newPop) < n do
29: Iparent1, Iparent2 ← selection(pop) . Selected according

to a fitness proportionate selection method
30: Ichild1, Ichild2 ← crossover(Iparent1, Iparent2)
31: p1, p2 ← random real number from [1, 2]
32: if p1 ≤ Pmutation then
33: mutate(Ichild1)
34: end if
35: if p2 ≤ Pmutation then
36: mutate(Ichild2)
37: end if
38: Evaluate F(Ichild1) =

∑k
j=1 wjFj(Ichild1)

39: Evaluate F(Ichild2) =
∑k

j=1 wjFj(Ichild2)

40: newPop← newPop ∪ {Ichild1)} ∪ {Ichild2)}
41: end while
42: while card(newPop) > n do
43: newPop← newPop \ {{I} | I ∈ newPop ∧max F(I)}
44: end while
45: pop← newPop
46: end while
47: x← I | I ∈ pop ∧min F(I)
48: return x

provides less products and a lower cost than random for a
certain level of pairwise coverage.

To answer these questions, an experiment composed of 8
FMs of varying sizes was conducted. We applied our ap-
proach on these FMs to evaluate the population evolution
and to compare it with a random approach. All the em-
ployed FMs were taken from the Software Product Line On-
line Tools (SPLOT) repository [22] and have been widely
used in literature. The FMs details are recorded in Table 1.
For each subject FM, the number of features, the number
of products that can be configured and the number of valid
pairs are presented. For each FM, we randomly assigned
a value between 1 and 10 to all non-mandatory features to
represent the cost value of the features, as presented in Sec-
tion 2.2. Further details on the conducted experiment are
given in the following subsections.



Table 1: Feature Models used in the case study. It presents, for each of them, the number of features, the
number of possible valid products that can be configured and the total number of valid pairs.
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Number of features 24 32 41 52 60 71 88 94

Number of products (≈) 18,176 73,728 6,912 331,776 3.87×109 4.5×1013 1.65×1013 2.32×107

Number of pairs 833 1,448 2,592 3,746 6,189 7,528 13,139 11,075

4.1 Algorithm Parameters
Since objective F1 results in selecting a higher number of

products and F2, F3 results in selecting a lower number of
products, we assigned the following weights: w1 = 0.5 for
F1 and w2 = w3 = 0.25 for F2 and F3. This assignment
represents the balanced between the studied objectives as
set for our experiment. It is noted that our approach is not
limited to this balance. Thus, the tester may set a different
balance according to his needs. The population size has been
set to n = 100 and the maximum size of an individual (a
potential solution) has been set to m = 100. The mutation
probability Pmutation has been set up to 0.05 and the elitism
value e to 5. Finally, the approach has been limited to run
for t = 500 generations.

4.2 Evaluation of Objective Function F (RQ1)

4.2.1 Setup
We performed the multi-objective test generation 30 times

per FM using the above-mentioned parameters. For each of
the 30 runs, we measured the initial values (at generation
1) and the final values (at generation 500) of both the 3
sub-objectives and the objective F.

To evaluate whether these differences are statistically sig-
nificant, we followed the guidelines suggested by Arcuri and
Briand in [1] by performing a Mann-Whitney U Test. It
is a non-parametric statistical hypothesis test for assess-
ing whether one of two samples of independent observations
tends to have larger values than the other. We obtain from
this test a probability called p-value which represents the
probability that the two samples are equal. It is conventional
in statistics to consider that the difference is not significant
if the p-value is higher than the 5% level. The experiments
involving this statistical test used two-tailed tests.

4.2.2 Results
Table 2 presents per FM the average values on the 30

runs for each of the objective and for F. F1 is the number of
pairs covered by the generated products (to maximize), F2

is the number of products (to minimize) and F3 is the cost
of testing the generated products (to minimize). F is the
compromised between the 3 objectives. From this table, one
may observe that final values of both the 3 objectives and the
objective function are better than initial one, i.e. decreasing
for F2, F3 and F and increasing for F1 since it’s a maximiza-
tion. This underlines that a decreasing in F leads to a better
fulfillment of each objective. These difference are most of the
time statistically significant with p-values lower than 0.05 or
highly significant with p-values lower than 0.001, fact which

demonstrates the appropriateness of the objective function
with only 500 generations of the algorithm.

Besides, Figure 5 depicts the evolution of the objective
function F and the normalized objective function over the
generations of the algorithm. Since all the three objectives
are transformed into minimization problems, i.e. lower val-
ues of the objective functions represent better solutions to
the problem, this figure clearly shows the decreasing trend
of each objective function. It therefore demonstrates that F
leads to a better solution regarding all the examined objec-
tives.

4.2.3 Answering RQ1
The results presented in the previous section clearly show

the ability of the objective function to fulfill the three stud-
ied objectives. In particular, F is capable of finding better
solutions for all the objectives under investigation. While
some differences may not be statistically significant, recall
that the approach is a compromise between the conflicting
objectives. It therefore tends to compromise the 3 objec-
tives according the w1, w2 and w3 parameters. The overall

(a) F (b) −F1

(c) F2 (d) F3

Figure 5: Evolution of the objective function F and
each normalized sub-objectives (to be minimized)
during the 500 generations of the multi-objective
test generation approach.



Table 2: Evolution of the objective function F and the sub-objectives from the initial generation of the multi-
objective approach to the final one (500 generations). The final and initial values are the average between
the 30 runs. The p-value is the results of the Mann-Whitney U Test between the 30 first initial values and
the 30 final ones.

F F1: pairwise coverage (to maximize) F2: # products (to minimize) F3: cost (to minimize)

Initial Final p-value Initial Final p-value Initial Final p-value Initial Final p-value

Counter Strike Simple FM 0.163 0.115 <0.001 819.7 819.63 0.79 15.46 14.466 0.176 658.13 369.90 <0.001

SPL SimulES, PnP 0.163 0.136 <0.001 1431.4 1439.03 0.003 14.33 12.8 <0.001 906.73 680.66 <0.001

DS Sample 0.189 0.172 <0.001 2364.2 2382.9 0.07 31.866 27.7 <0.001 1040.2 887.96 <0.001

Electronic Drum 0.146 0.132 <0.001 3633.6 3665.06 <0.001 18.7 17.4 0.04 1221.96 1079.6 0.001

Smart Home v2.2 0.177 0.138 <0.001 6041.46 6056.66 0.60 17.7 17.03 0.33 2282.86 1537.46 <0.001

Video Player 0.162 0.135 <0.001 7430.66 7428.76 0.20 15.13 13.86 0.011 2000.63 1443.86 <0.001

Model Transformation 0.175 0.153 <0.001 12733.73 12788.1 0.387 17.96 17.16 0.48 3522.5 2829.36 <0.001

Coche Ecologic 0.169 0.154 <0.001 10560.26 10618.06 0.039 21.13 19.66 0.19 2083.1 1761.63 <0.001

objective F has always highly statistically significance dif-
ference, showing that F clearly guides the population gen-
eration. Finally, it must be mentioned that the proposed
approach achieves the above results using only a small num-
ber of generations (500 generations). This can be viewed
as an achievement of the approach since search-based ap-
proaches do require thousands of executions in order to be
effective [11].

4.3 Comparison with Random (RQ2)

4.3.1 Setup
To assess our approach, we compared it with a baseline.

To do so, we used two baseline comparison basis. In the first
one, we selected random sets of products having the same
F1 value as our approach. In the second one we selected ran-
dom product sets having the same F2 value as our approach.
The F1 comparison basis aims at evaluating how many prod-
ucts for which cost are provided by the examined approaches
(baseline and proposed) to achieve the same level of pairwise
coverage. The F2 comparison basis evaluates the pairwise
coverage and the cost induced by the generated products for
the same number of products. In the end, for each run of our
approach, two random runs have been performed: the first
one by setting F1 as the comparison basis and the second
one using F2. The conducted experiment (including both
the baseline and the proposed approach) was independently
repeated 30 times.

To evaluate whether the differences are significant, we per-
formed a Mann-Whitney U Test, as presented in Section
4.2.1. For each comparison (F, F2 and F3 on F1 comparison
basis and F, F1 and F3 on F2 comparison basis), we got one
p-value per FM, i.e. 8 in the total. Each p-value results
from the comparison between the 30 values obtained on the
30 runs by the proposed approach with those obtained at
random.

4.3.2 Results
Table 3 records the comparison between our test genera-

tion approach and the baseline one based on the F1 and the
F2 comparison basis. For each FM and each comparison ba-
sis, the average, minimum and maximum values of F and the
three objectives F1, F2 and F3 one the 30 runs are presented.
F1 represents the number of pairs covered by the generated
products (to be maximized), F2 represents the number of
products (to be minimized) and F3 represents the cost of

testing the generated products (to be minimized). From
this table, it is clear that the proposed approach performs
better than a random one. For instance, for the Smart Home
v2.2 FM on the F1 comparison basis (i.e. for achieving the
same pairwise coverage), the proposed approach proposes on
average around 17 products with a cost of ≈ 1,537 where a
random technique requires around 22 products with a cost
of ≈ 3,016.

Figure 6 depicts the achieved values for each objective
for both basis of comparison. The values are the average
on all the FMs for the 30 runs. Here, the smallest triangle
signifies a better solution since each normalized objective is
a function to be minimized. An objective value equals to 0
means that this objective is perfectly fulfilled. The length
of the axis of each objective is 1. This figure shows that
a) for the same pairwise coverage, the proposed approach
requires less products with a lower cost and b) for the same
number of products, our approach provides a higher pairwise
coverage and a lower cost compared to random products.

Finally, the results of the statistical test are depicted by
Figure 7. It presents, for each comparison, the distribution
of the 8 p-values (one per FM). Each p-value is the result
of the comparison between the 30 values obtained for each
objective during each run of the proposed and random ap-
proaches. From this figure, one may observe that all the
p-values are lower to 0.001, fact which denotes the a high
statistical difference between the results achieved by our ap-
proach compared to the results of the random one.
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b
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b
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0

(a) Same pairwise coverage
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−F1 F2
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b

b

b

b

b

b Random
Multi-objective

0

(b) Same number of prod-
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Figure 6: Normalized sub-objectives (to be min-
imized) according to F1 and F2 comparison basis.
Values closer to 0 represent better solutions. These
values are the average on all the FMs for all the 30
runs of each approach. The length of each axis is 1.



Table 3: Comparison between the multi-objective test generation approach and the random one. For each
Feature Model, the values of the objective functions studied and F are represented. F1 is the number of pairs
(to be maximized), F2 is the number of products (to be minimized) and F3 is the cost (to be minimized).
The comparison with random has been made by fixing either F1 or F2 on 30 runs per approach.

Multi-objective test generation Random test generation

avg min max avg min max

F (to min.) 0.115 0.107 0.122 0.173 0.154 0.2

Same pairwise coverage (F1 basis) F2 (to min.) 14.466 11 17 18.833 12 28

Counter Strike Simple FM
F3 (to min.) 369.9 276 440 832.433 512 1,218

F (to min.) 0.115 0.107 0.122 0.181 0.155 0.238

Same number of products (F2 basis) F1 (to max.) 819.633 803 828 806.833 763 828

F3 (to min.) 369.9 276 440 665.13 510 889

F (to min.) 0.136 0.13 0.14 0.173 0.159 0.187

SPL SimuelES, PnP

Same pairwise coverage (F1 basis) F2 (to min.) 12.8 10 15 18.966 14 26

F3 (to min.) 680.666 567 813 1,234.8 940 1,656

F (to min.) 0.136 0.13 0.14 0.177 0.16 0.20

Same number of products (F2 basis) F1 (to max.) 1,439.033 1,429 1,446 1,411.066 1,367 1,445

F3 (to min.) 680.666 567 813 859.333 680 1,039

F (to min.) 0.172 0.169 0.177 0.214 0.182 0.302

DS Sample

Same pairwise coverage (F1 basis) F2 (to min.) 27.7 22 34 44.966 32 83

F3 (to min.) 887.966 700 1,106 1,469.8 1,024 2,716

F (to min.) 0.172 0.169 0.177 0.214 0.195 0.246

Same number of products (F2 basis) F1 (to max.) 2,382.9 2,328 2,428 2,236.366 2,093 2,362

F3 (to min.) 887.966 700 1,106 902.9 725 1,121

F (to min.) 0.132 0.130 0.133 0.155 0.142 0.173

Electronic Drum

Same pairwise coverage (F1 basis) F2 (to min.) 17,4 14 20 24.5 17 32

F3 (to min.) 1,079.6 872 1,255 1,645.533 1.165 2,210

F (to min.) 0.132 0.130 0.133 0.155 0.144 0.180

Same number of products (F2 basis) F1 (to max.) 3,665 3,628 3,693 3,585.133 3,458 3,661

F3 (to min.) 1,079.6 872 1,255 1,174.7 926 1,367

F (to min.) 0.138 0.133 0.144 0.191 0.166 0.234

Same pairwise coverage (F1 basis) F2 (to min.) 17.033 12 20 21.966 15 36

Smart Home v2.2
F3 (to min.) 1,537.466 1,195 1,836 3,016.533 1,974 5,184

F (to min.) 0.138 0.133 0.144 0.19 0.166 0.223

Same number of products (F2 basis) F1 (to max.) 6,056.666 5,973 6,107 5,976 5,756 6,087

F3 (to min.) 1,537.466 1,195 1,836 2,330.4 1,532 2,872

F (to min.) 0.135 0.128 0.138 0.167 0.152 0.188

Video Player

Same pairwise coverage (F1 basis) F2 (to min.) 13.866 11 16 16.5 14 24

F3 (to min.) 1,443.866 1,230 1,687 2,2236.5 1,858 3,339

F (to min.) 0.135 0.128 0.138 0.173 0.159 0.208

Same number of products (F2 basis) F1 (to max.) 7,428.766 7,739 7,468 7,341.233 6,925 7.471

F3 (to min.) 1,443.866 1,230 1,687 1907.433 1,467 2,444

F (to min.) 0.153 0.149 0.158 0.185 0.176 0.199

Same pairwise coverage (F1 basis) F2 (to min.) 17.166 14 21 20,733 18 25

Model Transformation
F3 (to min.) 2,829.366 2,353 3,319 4,325.166 3,588 5,304

F (to min.) 0.153 0.149 0.158 0.187 0.174 0.199

Same number of products (F2 basis) F1 (to max.) 12,788.1 12,657 12,902 12,595.3 12,262 12,815

F3 (to min.) 2,829.366 2,353 3,319 3,556.166 2,742 4,509

F (to min.) 0.154 0.151 1.158 0.186 0.172 0.217

Same pairwise coverage (F1 basis) F2 (to min.) 19.666 16 24 29.3 20 41

Coche Ecologico
F3 (to min.) 1,761.633 1383 2153 2,984,3 2,051 4,384

F (to min.) 0.154 0.151 1.158 0.188 0.167 0.207

Same number of products (F2 basis) F1 (to max.) 10,618 10,492 10,726 10,302 10,040 10,553

F3 (to min.) 1,761.633 1383 2153 2,016.333 1,631 2,404

4.3.3 Answering RQ2
We compared the multi-objective test generation approach

with a baseline technique using F1 and F2 as a basis com-
parison. In all the cases, the objectives are better fulfilled
by our approach, as demonstrated by the results of Section
4.3.2. Overall, for the same pairwise coverage, the approach

selects less products with a lower cost. For the same number
of products, the approach provides a higher pairwise cover-
age at a lower cost. In addition, the differences between
the objectives values reach by our technique and the values
reached by the baseline are statistically highly significant,
fact which demonstrates the effectiveness of the approach.



Figure 7: Distribution of the p-values for the com-
parison with random. For each comparison (F, F2

and F3 on F1 comparison basis and F, F1 and F3 on
F2 comparison basis), the 8 p-values (one per Fea-
ture Model) are represented with a boxplot. Each
p-value has been obtained by comparing the 30 val-
ues obtained on the 30 runs for each approach.

4.3.4 Threats to Validity
The conducted experiments involve potential threats to

validity. First, there is a threat regarding the generalization
of the results reported in this study. Indeed, a different set
of FMs might output different results. We used a set of 8
FMs widely used in literature with different size and level
of complexity to reduce this threat and to ensure that the
FMs used form a good sample.

Additional threats can be identified due to a) to our im-
plementation, which might contains errors that can affect
the presented results and b) the performed experiments. To
overcome this issue, we divided our implementation into sub-
routines to minimize the potential errors and we make it
publicly available. We also repeated the conducted experi-
ments independently for 30 times to avoid any risk due to
random effects, like the fortunate selection of the (nearest)
optimal solution.

5. RELATED WORK
Test generation is an issue than has been investigated by

the research community since the last decades [8].
With respect to constraint solving, Johansen et al. [15]

proposed a covering array technique to generate the prod-
ucts covering all the t-wise interactions between features. In
the same lines, a search-based approach that achieves scal-
able but partial t-wise coverage has been introduced in [12].
Perrouin et al. [26] proposed a method based on the Alloy
SAT solver to generate t-wise test suites. Modeling the im-
portance of t-wise interactions have been proposed in [16] by
putting weights on interactions and measuring weight cover-
age. Like the approach presented in this paper, these meth-
ods have been applied in conjunction with a SAT solver but
aim at fulfilling only one objective at a time, i.e. either the
t-wise coverage or the weight coverage. Other work, e.g. [13,
14] used a SAT solver to only generate valid products. Here,
maximizing the 2-wise coverage of the generated products is
one of the 3 objectives to fulfill simultaneously. Moreover,
we combine constraint solving with search-based techniques.

Regarding evolutionary algorithms, Konak et al. [18] pro-
posed a tutorial on the use of these kind of methods for

multi-objective optimization purposes. Ensan et al. [9] pro-
posed a genetic algorithm approach where each gene is a
feature. The crossover can thus produce invalid products.
Furthermore, the explored space may contain invalid prod-
ucts. Their fitness function measures coverage by evaluating
the variability points to be bound and the constraints con-
cerned by the features of a product. In our approach, we use
a SAT solver to only explore the space containing products
valid towards the FM. The modeling of genes is performed at
the product level and the crossover and mutation operators
introduced avoid the introduction of invalid products.

Finally, in the context of multi-objective optimization,
Olaechea et al. [24] introduced a tool that supports multi-
objective goals in the configuration of features. The ap-
proach works on attributed feature models which provide
quality attributes to features. Their technique use an ex-
act solving of the multi-optimization problem and consider
FMs with one to 3 objectives, where the one with 3 ob-
jectives contains 12 features. In our approach, we use an
heuristic solving with 3 objectives to fulfill for all the FMs.
The advantage is that it allows to scale to large FMs.

6. CONCLUSIONS AND FUTURE WORK
Optimizing different objectives is a hard problem due to

the presence of conflicts between them. For example, mini-
mizing the number of tests is in conflict with the maximiza-
tion of their pairwise coverage since generally more tests
lead to higher coverage. To tackle this problem, the present
paper introduces a multi-objective genetic algorithm spe-
cially adapted for SPLs. Our approach combines genetic
algorithms and constraint solving techniques in a comple-
mentary way. Thus, it provides sets of products to test that
simultaneously optimize pairwise coverage and testing costs.
The work presented in this paper deals with the following
issues:
• Model the test generation problem for SPLs as

a search problem. The proposed approach models
products as genes and sets of products as individu-
als. It also suggests some possible operations on the
individuals and an objective function. Therefore, it
enables search-based approaches to solve the test gen-
eration problem.
• Use constraint solving technique to prune the

invalid products from the search space. This is
a crucial step towards enabling an efficient search pro-
cess. Our initial experiments show that it is almost
impossible to construct sets of valid products with-
out using a constraint solver. Even if this is possible,
since invalid products must be removed from the fi-
nal product sets, they only add barriers to the search
process. Thus, it is clear that removing the invalid
product greatly reduces the search space and busts the
effectiveness of the approach.
• Propose a genetic algorithm to solve the multi-

objective optimization problem. We propose a
generic algorithm for handling the test generation prob-
lem according multiple objectives for the context of
SPLs. The conducted study, do show that the ap-
proach is practically effective and feasible.

Reproducible tests has been identified as a central tenet
of testing [10]. Therefore, to enable the reproducibility of
our results, we make the source code of our approach and
the data used for the experiments publicly available at:



http://research.henard.net/SPL/SPLC_2013/.

Finally, future work includes the following points:

• Conducting additional experiments to further validate
the finding of the present paper.

• Investigating the effects of the parameters on the ef-
fectiveness and efficiency of the proposed approach.

• Investigating criteria for deciding when to stop the evo-
lution process.

• Applying our approach on real and large scale subjects
in order to better quantify the benefits of the approach.
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