
Employing Second Order Mutation for Isolating First Order Equivalent Mutants

Marinos Kintis1, Mike Papadakis2 and Nicos Malevris3

SUMMARY

The equivalent mutant problem is a major hindrance to mutation testing. Being undecidable in general, it is only susceptible to

partial solutions. In this paper, mutant classification is utilized for isolating likely to be first order equivalent mutants. A new

classification technique, Isolating Equivalent Mutants (I-EQM), is introduced and empirically investigated. The proposed

approach employs a dynamic execution scheme that integrates the impact on the program execution of first order mutants with

the impact on the output of second order mutants. An experimental study, conducted using two independently created sets of

manually classified mutants selected from real world programs, revalidates previously published results and provides evidence

for the effectiveness of the proposed technique. Overall, the study shows that I-EQM substantially improves previous methods

by retrieving a considerably higher number of killable mutants, thus, amplifying the quality of the testing process.

Keywords; Mutation testing, Equivalent mutants; Higher Order mutation; Mutants’ Impact; Dynamic analysis

I. INTRODUCTION

Among the various software development phases, testing usually constitutes more than half of the cost of the overall

process. Hence, researchers are motivated to automate all the software testing activities in order to reduce its expenses.

Unfortunately, this is not possible for all software testing tasks. Since testing involves many “undecidable” problems [1],

its full automation is impossible. Therefore, developing effective heuristics and achieving higher levels of automation for

such problems is highly desirable.

Generally, the testing activity is performed by employing a set of test cases based on which the software’s behavior is

explored. Thus, the testing process attempts to find an adequate test set that forces the software to exhibit a wide range of

possible behaviors. In practice, this task is accomplished by the test adequacy criteria. Testing criteria impose a set of

requirements to be exercised by the selected tests. These requirements offer practical solutions to the adequacy of testing

i.e., when the testing process is stopped on the one hand, and guidance for constructing new tests is provided on the other.

Mutation testing involves the introduction of syntactic changes, called mutants, to the original program under test.

Thus, multiple versions, called mutant programs, are produced that are syntactically different from the original program.

Mutants are also termed according to their order, i.e., the number of syntactic changes made to the original program. The

term higher order mutants is used to express mutants belonging to any order higher than one. The term killed is used to

refer to a mutant that produces different output than the original program when they are both executed with the same test

case. The term live refers to the opposite situation. The criterion requires the production of test cases that are capable of

killing all generated mutants. Unfortunately, a significant number of mutants, termed equivalent mutants, cannot be killed

because they are functionally equivalent to the original program.

Mutation testing is considered to be a rather powerful method, able to subsume or prob-subsume [2] most of the

structural testing criteria [3], [4]. Additionally, empirical studies [5] suggest that mutation reveals more faults than most of

the structural testing criteria. In the studies made by Andrews et al., it has been shown that mutants exhibit a similar

behavior to real faults [6], [7]. Thus, if mutants can be killed, then programming faults might also be exposed. Although

1 Athens University of Economics and Business, Athens, Greece, Email: kintism@aueb.gr
2 Interdisciplinary Center for Security, Reliability and Trust, Luxembourg University, Email: michail.papadakis@uni.lu
3 Athens University of Economics and Business, Athens, Greece, Email: ngm@aueb.gr

powerful, mutation is not widely used for testing. This may be due to its excessive computational demands, i.e., mutation

testing requires a huge number of mutants to be executed with test cases. To circumvent this problem, researchers have

suggested various mutation approximation techniques [1], [8], [9] such as: selective mutation [1], [8], [10] and mutant

sampling [1], [8], [9]. These techniques aim at producing small mutant sets with similar power to the initial ones. The use

of mutation approximation approaches is essential in order to make mutation scalable. The Javalanche framework [11],

utilized in the present experimental evaluation, employs most of the mutation cost reduction advances.

Equivalent mutant instances introduce further difficulties to the mutation testing process. Their identification is

essential in order to measure the adequacy of the performed testing activity. Adequacy, with respect to mutation testing, is

measured by the ratio of the number of killed mutants to the entire number of introduced ones, reduced by the number of

equivalent mutants. This adequacy measure is called mutation score. In order to be practical, the mutation score should be

calculated automatically. In view of this, mutation should employ automated tools for generating and executing test cases

with mutants and suggesting the adequacy of the performed process. Of the abovementioned problems, the automated

production of test cases and the adequacy evaluation i.e., the elimination of equivalent mutants, are difficult to handle

“undecidable” problems [1], [12], [13].

Recent advances in the area [14-18] achieved to automate the test cases production quite effectively. However,

equivalent mutants’ identification still lacks such techniques. In an attempt to overcome the difficulties caused by

equivalent mutants, Schuler and Zeller [19], [20] suggested a technique, hereafter referred to as the coverage impact

method, able to isolate possible equivalent mutants. This method is based on the observation that mutants affecting the

program execution, are more likely to be killable than those that don’t do so. Realizing this observation, mutants can be

classified to those that affect the program’s execution and those that do not. In the study of Schuler and Zeller, the first

category was comprised of 75% of killable mutants. Thus, they concluded that practitioners should target this mutant set in

order to restrict the side effects caused by equivalent mutants. Although, such a practice provides a highly likely to be

killable mutant set, it was empirically found to consist of 56% of the total killable mutants, thus, losing a high number of

killable mutants. The approach described by the present paper expands the coverage impact method by aiming at

overcoming the abovementioned limitation.

The proposed technique uses second order mutants in order to isolate possible first order equivalent mutants. The

underlying idea is to determine the impact of a first order mutant on other mutants. Thus, it is argued that a killable mutant

is likely to impact the output of another mutant when both mutants are put together, i.e., forming a second order one.

Although, such a technique is not clearly competitive to the coverage impact method, it enables the correct classification of

different mutants. This fact motivated the design of a combined approach that utilizes both abovementioned techniques

with promising results.

The present work describes three variations of the proposed technique and empirically investigates their ability to

classify killable mutants. Additionally, it empirically validates the coverage impact method and compares it with the

proposed ones. Empirical evaluation, conducted on two independently selected sets of manually classified mutants,

confirms the coverage impact method’s published results and reveals that its combination with the proposed approaches is

capable of retrieving approximately 20% more killable mutants. In general, the paper’s contributions can be summarized

by the following three points:

• A novel dynamic method to effectively classify first order mutants using second order ones.

• A case study validating the coverage impact method and the proposed approaches. In particular, the coverage impact

method achieves a classification precision of 73% and a classification recall of 65%, while the proposed technique

realizes a precision score of 71% and a recall value of 81% respectively.

• A manually identified set of killable and equivalent mutants, which amplifies an existing benchmark set [19], [20]

and is made publicly available4 with the aim of enabling replication and comparative studies.

The rest of the paper is organized as follows: Sections II and III introduce the core concepts and describe the studied

mutant classification techniques. Sections IV and V present the utilized benchmarks and the experimental results. Sections

VI and VII discuss issues regarding the mutants’ impact and possible threats to validity. Section VIII refers to related work

and in Section IX conclusions and possible future directions are given.

II. MUTATION TESTING

This section introduces the equivalent mutant problem and describes the underlying concepts of the examined

techniques. First, a description of the problems caused by the existence of equivalent mutants is given. Next, the concepts

of first and higher order mutation are discussed. The concept of mutants’ impact is subsequently introduced. Finally, a

mutation testing tool that is employed by the present study, named “Javalanche” is described.

A. Equivalent mutants

Equivalent mutants introduce various difficulties in the mutation testing process. They are analogous to the infeasible

elements of structural testing [12], [16]. However, their side effects are more serious. This is due to their number, which is

high compared to the structural infeasible elements. Generally, the mutation testing process is composed of the following

steps: a) mutant creation, b) test case generation, c) mutant execution with the produced test cases, d) elimination of the

ineffective test cases (i.e., tests that do not kill any additional mutants) and e) mutation score evaluation. This process is

repeated iteratively (steps b, c and d), by producing and applying additional tests until reaching a predefined score

threshold.

Every step of this process is influenced by the presence of equivalent mutants. Indeed, such mutants will be created

without contributing to the testing process in step a. With respect to step b, the tester will spend effort aiming at killing

those non killable mutants. With respect to step c, these mutants will be executed with all the test cases wasting valuable

computational resources. Finally and more importantly, the mutation score is unknown in step e. Removing the equivalent

mutants is hence crucial to complete this last step with confidence.

Ideally, equivalent mutants should be eliminated during step a). To do so, the knowledge of their equivalence is

required. However, determining program equivalence, such as the equivalent mutant identification, has been shown to be

an “undecidable” problem in general [13]. Additionally, identifying manually one equivalent mutant requires

approximately 15 minutes [19], [20]. Since mutation introduces a vast number of mutants, manual identification is usually

impossible. Therefore, the present paper examines dynamic heuristics dealing with this problem. The employed heuristics

use the mutants’ impact [19-22] as a way to classify the live mutants as likely killable and likely equivalent ones. In other

words, it provides an automated method to decide whether mutants can be killed or not. Being dynamic, the examined

techniques necessitate information from mutant execution. Thus, they can be applied during step c. Application details of

this approach are given in Section III.

4 This set and the results of the present study are publicly available at: http://pages.cs.aueb.gr/~kintism/#stvr2012

B. First Order and Higher Order mutation

Mutation testing, also called mutation analysis, is a fault-based adequacy criterion. It operates by introducing mutants

into the program’s code and by comparing the differences they produce to the original program’s output. Mutants are

constructed by employing simple syntactic rules, termed mutant operators. By making one syntactic change at a time, first

order mutants (foms) are produced. By making two, three or n changes, second (soms), third (toms) and n order or

generally higher order (homs) mutants are formed. The production of differences in the program’s output by the introduced

mutants, establishes the criterion requirements. Conversely, the tester’s aim stemming from the criterion requirements is to

produce tests capable of killing all introduced mutants.

Considering higher order mutants has long been identified as an issue of the mutation analysis research. DeMillo et al.

[23] proposed the Coupling Effect as “Test data that distinguishes all programs differing from a correct one by only simple

errors is so sensitive that it also implicitly distinguishes more complex errors”. This definition was later extended by Offutt

[24] as the Mutation Coupling Effect Hypothesis, where first order mutants were defined as simple faults, whereas higher

order ones as complex. In view of this, empirical evidence was provided and showed that tests able to kill first order

mutants are also capable of killing over a 99% of second and third order ones [24]. As a consequence, the considered

mutants were limited only to first order ones.

Recently, Jia and Harman [25], [26] suggested using higher order mutation as a possible answer to the difficulties faced

by mutation testing. According to their study, there are a few but extremely valuable homs, termed “subsuming” homs.

These mutants are harder to kill than most of the foms and thus, one should aim at them only, ignoring most of the foms. In

other studies [27], [28] it was shown that substantial benefits can be gained by using soms instead of foms. Empirical

results [9] show that sampling second order mutants based on various strategies produces tests with a 10% loss on the fault

revealing ability while reducing the number of the produced equivalent mutants by 80-90%. In the study presented in this

paper, second order mutants were employed in order to provide information about the first order ones they are composed

of. Thus, possible first order equivalent mutants can be identified by observing the behavior of the second order ones.

C. The Mutants’ Impact

The approaches studied in this paper were founded on an assertion, termed the mutants’ impact, regarding killable

mutants. The intuition behind the mutants’ impact is that mutants able to change some aspects of the program execution

are likely to be killable. In other words, given a test, if the executions of the original and a mutant program differ, then the

mutant is possibly killable. These differences are termed as the mutants’ impact. The question that is raised here is how to

identify these differences. To this end, dynamic program invariants, execution program traces and methods’ return values

have been proposed as possible ways of identifying program execution differences [19-22].

Mutants’ impact represents a difference in behavior between the original and the mutant programs. Such differences

appear during program executions and in particular after executing the mutated location up to the exit of the program [21].

Along these lines, impact on coverage measures the differences of the coverage in both the original and the mutated

program versions [19], [20]. Impact on return values, measures the differences in the values returned by the public

methods encountered during test execution [19], [20]. Impact on dynamic program invariants measures the number of

invariants that were violated by the introduction of mutants [22].

 Generally, it has been empirically found that mutants with impact are more likely to be killable than those with no

impact, regardless of the impact measure [19], [20]. However, different impact measures or their combinations generally

result in different mutant classifiers with variations in their effectiveness. Constructing a more effective classifier forms the

objective of the present paper, which proposes the use of higher order mutants as impact measures. Based on this novel

measure, different mutants with the abovementioned approaches can be classified appropriately.

D. Javalanche

The present study constitutes an extension of the coverage impact approach [19], [20]. In order to provide fairly

comparable results, the same subjects, mutant operators and tools as the study on the equivalent mutant classification [19],

[20] were used. Thus, the present study utilizes the Javalanche tool (version 0.3.6) [11] which implements the coverage

impact classification method.

Javalanche [11] is a publicly available mutation testing tool for Java programs. It enables the efficient application of

the mutation process by implementing a large number of optimizations in order to be scalable and efficient to real world

programs. Additionally, Javalanche has also been employed in many recent studies such as [17], [19-22]. Table I records

details about the utilized mutant operators supported by the tool and the present study.

III. MUTANT CLASSIFICATION

This paper suggests the use of a mutant classification approach in order to isolate equivalent mutants. The proposed

classification scheme utilizes second order mutants and the mutants’ impact in order to highlight the majority of the

killable mutants. This section addresses these techniques and concepts.

A. Mutation analysis using mutant clasifiers

Applying first order mutation testing entails the generation of a mutant set, referred to as the candidate mutant set.

Then, this set is executed with the employed tests in order to determine its adequacy. Those mutants that are killed are

removed from the candidate set of mutants. The remaining (live) mutants must then be analyzed in order to produce new

tests able to kill them. This process (test case production and test case evaluation) iteratively continues until all killable

mutants have been killed. In view of this, the ratio of the equivalent mutants to the candidate mutant set increases, as more

tests are added to the considered test suite. This is attributed to the fact that the number of equivalent mutants remains

constant while the number of killable ones decreases (since they are killed). Thus, if the live mutants could be

automatically classified as killable and equivalent, one could claim substantial benefits by analyzing only the killable ones

[19], [20], [22], [29]. In such a situation, two benefits arise. First, an accurate adequacy evaluation is employed. Second,

the test generation process can be effectively guided by only those killable mutants, hence saving considerable resources

during the process of trying to kill those non killable mutants.

TABLE I. MUTANT OPERATORS UTILIZED BY JAVALANCHE

Mutant Operators Description

replace numerical constant

Replaces a numerical constant instance by a value +
1, a value -1 or by 0.

negate jump condition Inserts the negation operator to logical conditional
instances.

replace arithmetic operator Replaces an arithmetic operator instance by another
one.

omit method calls Omits a method call and sets in its possition a default
value (the default value repalces the returned one).

Execute original
program and

mutants with the
test suite

Original	

Program Live

Mutants

Killed
Mutants

Test
Suite

Coverage Impact
Classifier

Possibly
Killable
Mutants

Possibly
Equivalent

Mutants
Generated	

First	
 Order	

Mutants

Mutant
Generation

(a)

Mutant Execution
(b)

Mutant	
 Classification	
 –	
 Coverage	
 Impact
(c)

HOM
Classifier

Mutant	
 Classification	
 –	
 HOM	
 Classifier
(d)

Possibly
Killable
Mutants

Possibly
Equivalent

Mutants

Figure 1. Mutant Classification Process. The live mutants are classified as Possibly Killable and Possibly Equivalent. The I-EQM process

works in two phases. First, the live mutants will be classified via the Coverage Impact Classifier and subsequently the produced Possibly Equivalent

Mutant set will be classified by the HOM Classifier. The highlighted first order mutant sets are the outcome of the I-EQM classification scheme.

Based on the above arguments, automated mutant classification approaches have been proposed in the literature. A

typical mutant classification process, steps a-c of Figure 1, involves the categorization of the set of live mutants into two

disjoint sets; the possibly killable mutants and the possibly equivalent ones. Before applying the classification scheme, the

set of live ones must be found, which means that the first order mutants of a program under test must be generated (Figure

1 (a)) and executed with the available tests (Figure 1 (b)). At this point, a set of killed and a set of live mutants is created.

Killed mutants do not add any value to the testing process and thus, they are discarded. The set of live mutants forms a

guide towards producing new tests and thus improving the quality of the testing process. However, this set is likely

composed of both equivalent and killable mutants. Therefore, the live mutants set is provided as input to the classification

system. The live mutants are then categorized as possibly killable and possibly equivalent ones (Figure 1 (c)). The testing

process is then continued based on the possibly killable mutant set.

B. Mutant clasification effectiveness measures

Mutant classification categorizes mutants as possibly killable and possibly equivalent ones. Being a heuristic method,

mutant classification may correctly classify some mutants, e.g. a killable mutant correctly classified as possibly killable

and fail on others, e.g. an equivalent mutant incorrectly classified as possibly killable.

To distinguish between the correctly and incorrectly classified mutants the following definitions are given, which are in

accordance to the respective ones used in information retrieval literature [30]:

• True Killable refers to the killable mutants that are correctly classified as possibly killable

• False Killable refers to the equivalent mutants that are incorrectly classified as possibly killable

• True Equivalent refers to the equivalent mutants that are correctly classified as possibly equivalent

• False Equivalent refers to the killable mutants that are incorrectly classified as possibly equivalent

To quantify the classification ability and to provide a comparison basis for the examined approaches, the following

measures were utilized. These metrics are usually employed in order to compare classifiers in information retrieval

experiments [30].

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒

𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒

𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒 + 𝑇𝑟𝑢𝑒 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝑇𝑟𝑢𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒 + 𝑇𝑟𝑢𝑒 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 + 𝐹𝑎𝑙𝑠𝑒 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝑭𝜷 = 1 + 𝛽2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The first two measures quantify the ability of the classifier to correctly classify killable mutants. Specifically, the

precision metric quantifies the ability of the classifier to categorize correctly killable mutants, whereas the recall value

measures the capability of the classifier in retrieving killable mutants. Thus, a high precision value indicates that the

classifier can sufficiently distinguish between killable and equivalent mutants, while a high recall value shows that the

classification scheme is able to recover the majority of the live killable mutants. The last two measures are used in order to

better compare the examined classifiers. The accuracy metric depicts the percentage of the correctly classified mutations.

The Fβ score5 constitutes a general metric which combines the precision and recall values into a single measure of overall

performance and enables different weighting between the two measures. Thus, by changing the value of β, different

performance scenarios could be investigated. For example, a scenario where the classification precision and recall are

equally balanced corresponds to a β value of 1. In this study three such scenarios are explored, which are described in

Section V.

Mutation testing requires the employed tests to be capable of killing all killable mutants. Mutant classification changes

this requirement to killing all possibly killable mutants. Thus, mutant classification can be seen as an approximation

method to mutation. The effectiveness of this approximation can be measured as the number of killable mutants that are

correctly classified as such, i.e., by the recall metric, since the testing process will be based only on these mutants. The

efficiency of the method can be measured by the number of equivalent mutants that are incorrectly classified as possibly

killable, since these mutants will be manually analyzed by the tester. Thus, the methods’ efficiency can be expressed by the

precision6 value of the classifier.

In general, high precision is difficult to be achieved, but extremely desirable for reasons of efficiency. However, if high

precision is not accompanied by a relatively high recall, the process might lose some rather valuable mutants. Since low

recall indicates that many killable mutants are ignored, such processes will experience losses of their strength. On the

contrary, high recall solely is easily achieved by classifying most or all undetected mutants as possibly killable. Therefore,

in such a case higher testing quality is achieved at considerable cost. Thus, a combination of high precision and high recall

is more suitable for a mutant classification scheme. In this manner, most of the killable mutants would be correctly

classified as such and at the same time testing based on the retrieved killable mutants is deemed adequate. In a different

situation, the classifier would be deficient as it would categorize many equivalent mutants as possibly killable ones (a case

5 For non-negative real values of β.
6 The percentage of the equivalent mutants that are incorrectly classified as possibly killable is actually (1 – precision). Thus, higher precision indicates

fewer equivalent mutants to be considered and hence, a higher efficiency.

of a classifier with low precision) or it would classify many killable mutants as possibly equivalent ones (a classifier with

low recall). Consequently, it is the reconciliation of a classifier’s precision and recall scores that stipulates its success.

C. Mutant Classification Using Code Coverage

Classifying mutants using code coverage has been empirically found to be superior to previously proposed classifiers,

such as those using dynamic invariants and return values [19], [20]. Following the suggestions of Schuler and Zeller [20], a

coverage measure is determined by counting the number of times each program statement is executed during a test run.

The comparison of the coverage measures of both the original’s and the mutated program’s execution results in the impact

measure (coverage difference) of the examined mutant [19], [20].

Mutants’ impact is defined based on the coverage impact as “the number of methods that have at least one statement

that is executed at a different frequency in the mutated run than in the normal run, while leaving out the method that

contains the mutation” [19]. This approach is also adopted here and referred to as the Coverage Impact Classifier.

D. First order Mutant Classification via Second order Mutation

The primary purpose of this paper is the introduction of a new mutant classification scheme, hereafter referred to as

HOM Classifier, which would further attenuate the effects of the equivalent mutant problem. The salient feature of the

suggested approach is the employment of higher order mutation in the classification process.

HOM Classifier categorizes mutants based on the impact they have on each other. In view of this, it produces pairs of

mutants by combining the examined (first order) mutant with others. The classifier works based on the intuition that since

equivalent mutants have a small effect on the state of the program, they should not have an apparent impact on the state of

another mutant. Hence, a possible equivalent mutant will have a minor impact on the execution and no observable impact

on the output of another mutant program. This leads to the HOM Classifier hypothesis.

1) Classifier Hypothesis

Let fom be a first order mutant, umut an unclassified mutant, umut.fom the second order mutant created by the

combination of the two corresponding mutants and Killable the set of killable mutants of the considered program under

test. The HOM Classifier hypothesis states that if the results of the executions of the first order mutant fom and the second

order mutant umut.fom differ, then the first order mutant umut is killable. More formally,

𝑜𝑢𝑡𝑝𝑢𝑡𝑂𝑓 𝑓𝑜𝑚, 𝑡𝑒𝑠𝑡 ≠ 𝑜𝑢𝑡𝑝𝑢𝑡𝑂𝑓 𝑢𝑚𝑢𝑡. 𝑓𝑜𝑚, 𝑡𝑒𝑠𝑡 ⇒ 𝑢𝑚𝑢𝑡 ∈ 𝐾𝑖𝑙𝑙𝑎𝑏𝑙𝑒

The above hypothesis forms the basis of the proposed classification scheme. Thus, if the condition of the above

formula holds then umut is classified as possibly killable. Otherwise, umut is classified as possibly equivalent. This

practice is presented in Figure 2. Although this condition may not always hold, the present study suggests that it can

provide substantial guidance on identifying killable and equivalent mutants.

2) Mutant Classification Process

The mutant classification process of the HOM Classifier requires three main inputs. These are requisites for the

evaluation of the HOM Classifier hypothesis condition.

• The first input is the set of the live-unclassified mutants that need to be classified. The mutants of this set will be

categorized as possibly killable or possibly equivalent based on the truth or the falsehood of the classification’s

predicate.

output

umut
first order mutant

…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

umut.fom
second order

mutant
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

fom
first order mutant

…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

Program
Under Test

…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

outputoutput

umut is
killable

output

Test1 Test2 Test3 Test4 Test5 Test6 . . . TestN

Figure 2. The unclassified first order mutant umut is classified as possibly killable based on its impact on other fom mutants.

• The second required input is the set of mutants, referred to as the classification mutant (CM) set that will be used

for constructing the sought mutant pairs. The mutant pairs are constructed by combining these mutants with the

unclassified ones.

• The final input of the classification process is the test suite, with which the second order mutants and their

corresponding first order ones will be executed.

Finally, the algorithm pertaining to the abovementioned classification process is presented in Figure 3. The algorithm

takes as inputs a) the set of the live-unclassified first order mutants, b) the set of the first order mutants of the classification

mutant set that will be used for the generation of the second order ones and c) the available test suite. The mutants’ impact

is defined as the number of first-order ones in the classification mutant (CM) set whose output is changed after being

combined with the live-unclassified mutant.

3) Classification Mutant (CM) set

Generally, the proposed classification technique determines the impact of mutants using other mutations referred to as

the classification mutant (CM) set. For example, in Figure 2, the CM set is the set of the fom mutants to be employed in

order to perform an effective classification process. The question that is raised here is which mutants are suitable for

supporting the mutant classification. Specifically, it has been found that not all mutations are of the same value in assessing

the mutants’ impact. Perhaps, by utilizing all the available mutants, one could get the best results. However, such an

approach is prohibitive, since it requires executing all mutants with all tests for each mutant to be classified.

Considering the above issue a necessary restriction was imposed on the utilized CM mutant set; only the mutations that

appear in the same class as the aimed unclassified mutant were considered. Thus, for each mutant to be classified, a

1. for each first order mutant umut in the live-unclassified set
2. for each first order mutant fom in the CM set
3. for each test case test in the test suite set
4. if the result of the execution of fom with test does not exist
5. execute fom with test and record the fom output
6. end if
7. generate the second order mutant umut.fom
8. execute umut.fom with test and record the umut.fom output
9. compare the ouputs of fom and umut.fom
10. if the ouputs differ
11. add umut to the set of “Possibly Killable Mutants”
12. continue to the next mutant of the live-unclassified set
13. end if
14. end for each
15. end for each
16. add umut to the set of “Possibly Equivalent Mutants”
17. end for each
18. return the set of “Possibly Killable Mutants”
19. return the set of “Possibly Equivalent Mutants”

Figure 3. HOM Classification process.

different CM set was used. This choice was based on the intuition that mutants that belong to the same class are more

likely to interact and be exercised by the same test cases. It is noted that since there is no test able to kill umut, if there is no

interaction between the mutants composing the second order one (umut and fom), then the outputs of fom and umut.fom

will be the same for all the employed tests.

4) HOM Classifier Variations

The work presented here considers three variations of the HOM Classifier, namely HOM Classifier (all foms), HOM

Classifier (killed foms) and HOM Classifier (same method foms). These approaches differ in the sets of mutants that will

be used for the creation of the second order ones. Recall that the employed CM set is the one composed of the mutants that

belong to the same class as the aimed unclassified mutant. The HOM Classifier (all foms) considers the whole CM set,

whereas the other approaches utilize only a specific subset. The HOM Classifier (killed foms) uses only those mutants that

have been killed by the employed tests while the HOM Classifier (same method foms) employs only those that appear in

the same method as the aimed unclassified mutant. The reason of using only the already killed mutants is that since these

mutants are more sensitive to the utilized tests (easy-to-kill) than the live ones, they will be more sensitive to the impact of

the examined ones too. Similarly, using mutants belonging to the same method as the examined mutant increases the

chances of these mutants to be coupled. Besides the reasons mentioned above, their application was empirically found to

be sound. Furthermore, constructing the sought second order mutants based on the killed mutant set or the mutants of the

same method results in reducing the overall computational cost of the technique due to the reduced number of mutant

combinations and their respective executions.

E. I-EQM Mutant Classification

 In addition to the previously described techniques, the possibility of employing a combined strategy is also

investigated. To this end, the Isolating Equivalent Mutants (I-EQM) classification scheme is proposed. The I-EQM

Classifier constitutes a combination of the Coverage Impact Classifier [19], [20] and the variations of the HOM Classifier.

The utilization of the Coverage Impact Classifier is based on its evaluation, which presented the best results among those

examined in previous studies [19], [20]. Specifically, it resulted in a classification precision of 75% and a recall value of

56%. In addition, the Coverage Impact Classifier manages to classify correctly most of the mutants that are correctly

classified by the rest of the examined approaches [19], [20]. Since the corresponding precision measure of the Coverage

Impact Classifier can be considered as an accurate one, i.e., it does not misclassify many equivalent mutants; effort should

be put into improving the recall measure. Achieving higher recall results in considering a larger number of killable

mutants, thus strengthening the testing process.

In order to effectively combine different classifiers, they must adhere to the following two requirements: First, the

precision of both classification schemes must be reasonably high. Second, they should classify different non-equivalent

mutants as possibly killable. In other words, both produced sets must be accurate and their intersection must be of small

size. As a result, the precision of the combined classifiers will not be greatly affected, whereas their recall will be

significantly improved. Combining classifiers has been attempted by Schuler and Zeller [19], [20] but without success.

The I-EQM classification process is summarized in Figure 1. After obtaining the set of Live Mutants (Figure 1 (a), (b)),

the Coverage Impact Classifier is employed in order to perform the first step of the I-EQM’s classification procedure

(Figure 1 (c)). This step will produce the set of the possibly killable and the possibly equivalent mutants of the Coverage

Impact Classifier. Next, the HOM Classifier is applied to the possibly equivalent mutant set that was previously generated

(Figure 1 (d)). This phase will create the set of the possibly killable mutants and the set of the possibly equivalent ones of

the HOM Classifier. The I-EQM Classifier’s resulting set of possibly killable mutants is the union of the possibly killable

mutant set of the Coverage Impact Classifier and the corresponding killable set of the HOM Classifier. The possibly

equivalent mutant set of the I-EQM Classifier is the one generated by the HOM Classifier. The aforementioned sets appear

highlighted in Figure 1. It should be noted that the order in which the Coverage Impact and HOM classifiers are applied to

the set of Live Mutants is indifferent, i.e., the resulting sets of the possibly killable and the possibly equivalent mutants

would be the same regardless of the application order of the two classifiers. This is due to the fact that the resulting set of

the possibly killable mutants will be composed of the mutants that are categorized as such by at least one of the combined

classifiers. The possibly equivalent mutant set will contain the mutants that are categorized as such by all the combined

classifiers. This can be also generalized to a classification process that includes more than two classifiers.

IV. SUBJECT PROGRAMS AND BENCHMARK MUTANT SETS

The evaluation of the examined classification schemes is based on a set of seven open-source projects. The motivation

behind their selection is twofold. First, some of these projects have been utilized in various mutation testing studies, such

as [17], [19], [20], [22] and thus, can be considered as benchmarks. Moreover, the previous mutant classification studies

[19], [20] consider the same program set, hence, a comparison between their approach and the ones proposed in the present

paper can be directly performed. Secondly, these programs constitute real-world examples and therefore would provide

valuable insights about the practical applicability and the efficacy of the examined mutant classification techniques. Details

about the subject program names, their respective description, program versions, lines of code and accompanied test cases

are recorded in Table II.

In order to investigate the effectiveness of the proposed approaches, the mutant set used by the previous mutant

classification approaches [19], [20] was employed, hereafter referred to as the “control mutant set 1”. The control mutant

set 1 is comprised of 140 manually classified mutants each one belonging to a different class of the subject programs, with

a total number of 20 mutants per test subject. To avoid overfitting or coincidental results, a second set of mutants was also

considered. The second set, referred to as the “control mutant set 2”, was independently constructed by the authors of

TABLE II. SUBJECT PROGRAM DETAILS

Subject Programs Description Version Lines Of Code Test Cases
ASPECTJa AOP extension to Java cvs: 2007-09-15 25,913 336
BARBECUE Bar code creator svn: 2007-11-26 4,837 153
COMMONS Helper utilities svn: 2009-08-24 19,583 1608
JAXEN XPath engine svn: 2008-12-03 12,438 689
JODA-TIME Date and time library svn: 2009-08-17 25,909 3497
JTOPAS Parser tools 1.0 (SIR) 2,031 128
XSTREAM XML object serialization svn: 2009-09-02 16,791 1122

a. Only the org.aspectj.ajdt.core package was considered.

the present paper in a similar fashion to the previous respective studies [19], [20]. Specifically, for each test subject, 10 live

mutants were randomly chosen for manual classification, each one belonging to a different class. Thus, the control mutant

set 2 is comprised of 70 manually classified mutants, with a total number of 10 mutants per test subject.

Details about the considered mutant samples with respect to the examined programs and utilized mutant operators are

recorded in Tables III and IV. The “Considered Mutants” column of Table III refers to the number of considered mutants,

among those generated by the Javalanche framework. It must be mentioned that the considered mutants are those

employed by the present experiment and belong to the same classes as the manually classified ones. The first sub-column

presents the total number of the corresponding mutants, whereas the second one the number of mutants that are executed

by the available test cases. Finally, the “Manually Classified Mutations” column presents the number of the equivalent and

killable mutants among the manually classified ones. The columns of Table IV record the number of mutants, the number

of killable and equivalent ones per set and mutant operator, respectively. From Table IV, it can be observed that the

“replace numerical constant” and “replace arithmetic operator” operators produce more than 20% equivalent mutants than

the “negate jump condition” and “omit method calls” operators.

Interestingly, the two samples have different distributions of killable and equivalent mutants. The first one is composed

of 55% of killable mutants while the second one of 63%. Consequently, the second sample contains more killable mutants

(as a ratio) than the first sample when considering them with respect to each program or operator. The difference between

the two sets can be attributed to various factors such as the random selection, the sample sizes or the researchers

performing the classification. Since both sets were selected from the same programs, the population distribution can be

estimated based on both samples (Set1+Set2). Therefore, the examined population is estimated to be consisting of 58% of

TABLE III. MUTANT SAMPLES PROFILE W.R.T. SUBJECT PROGRAM

Subject
Programs

Considered Mutants Manually Classified Mutants

Number of
Mutants

Reached
Mutants

Killable Equivalent
Set1 Set2 Set1+Set2 Set1 Set2 Set1+Set2

ASPECTJ 6613 2878 15 (75%) 6 (60%) 21 (70%) 5 (25%) 4 (40%) 9 (30%)
BARBECUE 3283 1603 14 (70%) 9 (90%) 23 (77%) 6 (30%) 1 (10%) 7 (23%)
COMMONS 8693 8305 6 (30%) 6 (60%) 12 (40%) 14 (70%) 4 (40%) 18 (60%)
JAXEN 6619 3944 10 (50%) 7 (70%) 17 (57%) 10 (50%) 3 (30%) 13 (43%)
JODA-TIME 5322 4197 14 (70%) 7 (70%) 21 (70%) 6 (30%) 3 (30%) 9 (30%)
JTOPAS 1676 1402 10 (50%) 4 (40%) 14 (47%) 10 (50%) 6 (60%) 16 (53%)
XSTREAM 2156 1730 8 (40%) 5 (50%) 13 (43%) 12 (60%) 5 (50%) 17 (57%)
TOTAL 34362 24059 77 (55%) 44 (63%) 121 (58%) 63 (45%) 26 (37%) 89 (42%)

TABLE IV. MUTANT SAMPLES PROFILE W.R.T. MUTANT OPERATOR

Mutant
Operators

Number of mutants Killable mutants Equivalent mutants

Set1 Set2 Set1+Set2 Set1 Set2 Set1+Set2 Set1 Set2 Set1+Set2
replace numerical
constant 78 (56%) 48 (69%) 126 (60%) 34 (44%) 27 (56%) 61 (48%) 44 (56%) 21 (44%) 65 (52%)

negate jump
condition 12 (9%) 8 (11%) 20 (10%) 10 (83%) 7 (87.5%) 17 (85%) 2 (17%) 1 (12.5%) 3 (15%)

replace arithmetic
operator 7 (5%) 2 (3%) 9 (4%) 3 (43%) 1 (50%) 4 (44%) 4 (57%) 1 (50%) 5 (56%)

omit
method calls 43 (31%) 12 (17%) 55 (26%) 30 (70%) 9 (75%) 39 (71%) 13 (30%) 3 (25%) 16 (29%)

killable mutants and 42% of equivalent mutants. Recall that the examined population is the mutants that have been left

alive after their execution with the employed tests.

V. EVALUATION

The present study investigates a new aspect of higher order mutants, their ability to classify first order ones. This

attribute constitutes the basis of the HOM and the I-EQM Classifiers, described in Section III. The present section

describes the empirical evaluation of these approaches and directly compares them to the current state of the art, Coverage

Impact Classifier [19], [20]. Additionally, a revalidation of the Coverage Impact Classifier is also presented.

A. Research Objectives

The following research points summarize the primary purpose of the presented empirical evaluation:

• Can second order mutation provide adequate guidance in equivalent mutant isolation, i.e., how effective are the

HOM and I-EQM Classifiers in terms of their recall and precision metrics?

• Do the HOM and I-EQM Classifiers perform better than the Coverage Impact Classifier?

• How stable is the categorization ability of the HOM, I-EQM and Coverage Impact Classifiers across the two

different mutant sets? Are there any important differences between the two sets?

B. Experimental Setup

In order to deal with the aforementioned research points, the recall and precision values of the examined techniques

were determined. To this end, the HOM, I-EQM and Coverage Impact Classifiers are applied to both considered control

mutant sets with the aim of classifying them as possibly killable or possibly equivalent ones.

The conducted experiment7 uses the Javalanche mutation testing framework in order to produce and execute the sought

mutants. Javalanche was employed to generate the first order mutants of the classes that the mutants of the control mutant

sets belong to. These mutants were then executed with the available test cases8 and their coverage impact was determined.

For the application of the coverage impact technique, the tool’s default execution settings were used. For the rest of the

examined approaches, mutant execution options were set as follows: a) 100 seconds for timeout limit9 and b) execution of

7 The experiment was conducted on a single machine (CPU: i3 – 2.53GHz (2 processor cores), RAM: 3GB), running Windows 7 x64 and Oracle Java 6

with default jvm configuration (Javalanche by default sets the -Xmx option to 2048 megabytes).
8 The same tests as the previous studies [19], [20] were employed.
9 To avoid discrepancies caused by the introduced mutants, such as endless loops, a timeout limit was set. If mutant execution time exceeds this limit,

the mutant is treated as killed.

all tests with all mutants. Since Javalanche does not support second order mutation, the applied process for generating

second order mutants is presented in Figure 4. Initially, the source code of each first order mutant of the control mutant sets

was created manually. This resulted in a total of 210 different class versions. Next, Javalanche was employed to produce

mutants for each of these 210 classes. Note that this process yields second order mutants. Mutants belonging to the same

position10 as the examined one and were produced by the same mutant operator were discarded from the considered mutant

set. Should such an action not be applied, the impact of the examined mutant would be impossible to be assessed. Based on

this process, all the required mutant pairs, i.e., second order mutants, were generated. Each pair is composed of the

examined mutant and another one belonging to the same class. Finally, the HOM classification process, as presented in

Figure 3, was performed.

In summary, for each mutant of the control mutant sets, the following procedure was employed:

• The first order mutants of the appropriate class were generated and executed via the available test cases.

• The appropriate second order mutants were generated and executed via the available test cases.

• The outputs of the first order mutants and the second order ones were compared to classify the examined mutants.

The above process was performed for the HOM and I-EQM Classifiers for all their respective variants i.e., all foms,

killed foms and same method foms. Recall that the basic difference of these approaches is the set of second order mutants

they rely on. In the case of I-EQM Classifier, presented in Figure 1, the Coverage Impact Classifier classifies the examined

mutants as possibly killable and possibly equivalent ones; the mutants classified as possibly equivalent are subsequently

categorized based on the HOM Classifier.

A comparison between mutant classifiers was attempted based on the accuracy and the Fβ measure scores, metrics

usually used in comparing classifiers in information retrieval experiments [30]. These measures were utilized to validate in

a more typical manner the differences between the classifiers. In order to avoid the influence of outliers, the median values

were used. Regarding the Fβ measure, three possible scenarios are examined. Here, it should be noted that high recall

values indicate that more killable mutants are to be considered, hence leading to a more thorough testing process. High

precision indicates that fewer equivalent mutants are to be examined, leading to an efficient process. The first scenario

refers to the case where a balanced importance between the recall and precision metrics is desirable. This case is realized

by evaluating the Fβ measure with β = 1. The second scenario emphasizes on the recall value and is achieved by assigning

a value of β = 2. The last scenario, which is accomplished by using β = 0.5, weights precision higher than recall.

1. for each first order mutant umut of the control mutant sets
2. generate the first order mutants of umut that belong to the same class
3. for each generated second order mutant umut.fom

4. if its combined mutants affect the same source code position and are
 produced by the same mutant operator

5. remove umut.fom from the resulting set of second order mutants
6. end if
7. end for each
8. return the resulting set of second order mutants
9. end for each

Figure 4. Generation Process of Second Order Mutants.

10 Position refers to the exact part of the original source code that differs from the mutant programs.

In the present experiment, special care was taken to handle certain cases due to some inconsistencies of the utilized

tool. Specifically, it was observed that in the cases of execution timeouts, the tool gave different results when some

mutants were executed in isolation than together with others. To circumvent this problem, in the cases of the HOM and I-

EQM Classifiers, when mutants were categorized as possibly killable due to timeout conditions (if either the first order

mutant or the second order one results in a timeout) the corresponding mutants of the considered mutant pairs were

isolated and re-executed individually with an increased timeout limit. Similarly, in the case of the Coverage Impact, the

mutants that were classified differently with respect to the previous study [19], were re-executed in isolation with a greater

timeout limit. Although the previous study’s results [19] could be used, this would constitute a potential threat to the

validity of the comparison due to the different employed environments and the use of the control mutant set 2. Other

special considerations include issues concerning the comparison of the programs’ output. Note that such a comparison is

performed between every first order mutant and its respective second order one. Many programs had outputs dependent on

each specific execution. Execution outputs containing time information, e.g. Joda-Time and AspectJ test subjects, or

folder locations, e.g. the JTopas program, are some examples of such cases. To effectively handle these situations, the

execution dependent portions of the considered outputs were replaced with predefined values via the employment of

appropriate regular expressions.

C. Results

The evaluation results of the Coverage Impact Classifier are recorded in Table V. The table presents the classification

precision and recall for the examined control mutant sets and test subjects. The columns named “Killable Set1”, “Killable

Set2”, “Equivalent Set1” and “Equivalent Set2” correspond to the sets of killable and equivalent mutants of the considered

control mutant sets. Their sub-columns present details about the number of the correctly and incorrectly classified mutants.

Finally, the precision and recall values of the classifier are recorded in the last two columns of the table. On average, the

Coverage Impact method achieves a precision of 72% and a recall of 66% for the control mutant set 1. It is noted that these

results were calculated by executing Javalanche with the settings described in the previous subsection. Hence, the

difference between them and the ones reported in the respective studies of Schuler and Zeller [19], [20] should be

attributed to the execution environment used for performing the present study. Regarding the second control mutant set,

the obtained precision score is 76% and the corresponding recall value is 64%.

The respective results of the HOM Classifier are recorded in Table VI and Table VII, for the corresponding control

mutant sets. Both tables have similar structure to Table V, except that each figure of each cell refers to a different variation

of the method. Thus, the first figure corresponds to the HOM Classifier (all foms) variation, the second one to the HOM

Classifier (killed foms) and the third one to the HOM Classifier (same method foms). The last two columns of each

TABLE V. MUTANT CLASSIFICATION USING THE COVERAGE IMPACT CLASSIFIER

Subject
Programs

Killable
Set1

Equivalent
Set1

Killable
Set2

Equivalent
Set2

Possibly killable
Set1

Possibly killable
Set2

True
Killable

False
Equiv.

True
Equiv.

False
Killable

True
Killable

False
Equiv.

True
Equiv.

False
Killable

Precision
%

Recall
%

Precision
%

Recall
%

ASPECTJ 13 2 0 5 6 0 0 4 72% 87% 60% 100%
BARBECUE 10 4 3 3 8 1 1 0 77% 71% 100% 89%
COMMONS 0 6 12 2 1 5 4 0 0% 0% 100% 17%
JAXEN 4 6 7 3 3 4 3 0 57% 40% 100% 43%
JODA-TIME 11 3 3 3 4 3 0 3 79% 79% 57% 57%
JTOPAS 8 2 10 0 2 2 6 0 100% 80% 100% 50%
XSTREAM 5 3 8 4 4 1 3 2 56% 63% 67% 80%
TOTAL 51 26 43 20 28 16 17 9 72% 66% 76% 64%

TABLE VI. MUTANT CLASSIFICATION USING THE HOM CLASSIFIER – CONTROL MUTANT SET 1

(DENOTING: ALL FOMS – KILLED FOMS – SAME METHOD FOMS)

Subject
Programs

Killable Set1 Equivalent Set1 Possibly killable Set1
True

Killable
False

Equivalent
True

Equivalent
False

Killable
Precision

%
Recall

%
ASPECTJ 8 8 4 7 7 11 2 2 4 3 3 1 73 73 80 53 53 27
BARBECUE 9 7 7 5 7 7 5 5 5 1 1 1 90 88 88 64 50 50
COMMONS 4 4 4 2 2 2 10 10 12 4 4 2 50 50 67 67 67 67
JAXEN 6 6 3 4 4 7 7 7 8 3 3 2 67 63 60 60 60 30
JODA-TIME 9 9 9 5 5 5 4 5 5 2 1 1 82 90 90 64 64 64
JTOPAS 3 3 3 7 7 7 10 10 10 0 0 0 100 100 100 30 30 30
XSTREAM 5 5 5 3 3 3 5 6 5 7 6 7 42 45 42 63 63 63
TOTAL 44 42 35 33 35 42 43 45 49 20 18 14 69 70 71 57 55 45

TABLE VII. MUTANT CLASSIFICATION USING THE HOM CLASSIFIER – CONTROL MUTANT SET 2

(DENOTING: ALL FOMS – KILLED FOMS – SAME METHOD FOMS)

Subject
Programs

Killable Set2 Equivalent Set2 Possibly killable Set2
True

Killable
False

Equivalent
True

Equivalent
False

Killable
Precision

%
Recall

%
ASPECTJ 5 5 4 1 1 2 3 3 3 1 1 1 83 83 80 83 83 67
BARBECUE 2 2 2 7 7 7 1 1 1 0 0 0 100 100 100 22 22 22
COMMONS 3 3 2 3 3 4 3 3 3 1 1 1 75 75 67 50 50 33
JAXEN 4 4 3 3 3 4 3 3 3 0 0 0 100 100 100 57 57 43
JODA-TIME 4 4 3 3 3 4 3 3 3 0 0 0 100 100 100 57 57 43
JTOPAS 1 0 0 3 4 4 6 6 6 0 0 0 100 0 0 25 0 0
XSTREAM 3 3 2 2 2 3 4 4 4 1 1 1 75 75 67 60 60 40
TOTAL 22 21 16 22 23 28 23 23 23 3 3 3 88 88 84 50 48 36

table present the precision and recall metrics per subject. It can be seen that, for the control mutant set 1, the HOM

Classifier (all foms) achieves a precision value of 69% and a recall value of 57%, the HOM Classifier (killed foms)

variation realizes a precision of 70% and a recall of 55% and the HOM Classifier (same method foms) variation a precision

of 71% and a recall of 45%, respectively. Considering the control mutant set 2, the precision of the HOM Classifier (all

foms) technique is 88% and the recall is 50%, the corresponding values of the HOM Classifier (killed foms) variation are

88% and 48%, and the ones obtained for the HOM Classifier (same method foms) are 84% and 36% respectively.

The I-EQM Classifier’s experimental evaluation is depicted in Table VIII and Table IX, which present details about the

precision and the recall metrics of the I-EQM’s variations for the examined control mutant sets. Note that the same

structure as Table VI and Table VII is used. For the control mutant set 1, the average precision of the I-EQM’s variation

that employs the HOM Classifier (all foms) method is 67% and its recall is 83%, the corresponding values of using the

HOM Classifier (killed foms) variation are 68% and 83% and the ones obtained by utilizing the HOM Classifier (same

method foms) are 69% and 81% respectively11. Finally, with respect to the second control mutant set, the I-EQM

Classifier’s variation that utilizes the HOM Classifier (all foms) technique realizes a precision score of 76% and a recall

value of 80%, the one that employs the HOM Classifier (killed foms) variation achieves a precision of 76% and a recall of

77%, whereas the variation that uses the HOM Classifier (same method foms) achieves a precision and recall value of 75%.

These results provide evidence that the HOM Classifier hypothesis is an appropriate mutant classification property.

Therefore, the employment of second order mutation can be beneficial in isolating equivalent mutants. Additionally, the

results of the HOM Classifier’s variations indicate that the utilization of only the killed first order mutants as the

classification mutant set (CM set) achieves approximately the same classification effectiveness as the employment of

11 The difference between these results and the previously published ones [29] is due to the Coverage Impact method’s re-evaluation; the previous
results were based on the reported results of Schuler and Zeller [19], whereas the new ones on the method’s re-evaluation (Section V.B.).

TABLE VIII. MUTANT CLASSIFICATION USING THE I-EQM CLASSIFIER – CONTROL MUTANT SET 1

(DENOTING: ALL FOMS – KILLED FOMS – SAME METHOD FOMS)

Subject
Programs

Killable Set1 Equivalent Set1 Possibly killable Set1
True

Killable
False

Equivalent
True

Equivalent
False

Killable
Precision

%
Recall

%
ASPECTJ 14 14 13 1 1 2 0 0 0 5 5 5 74 74 72 93 93 87
BARBECUE 12 12 12 2 2 2 2 2 2 4 4 4 75 75 75 86 86 86
COMMONS 4 4 4 2 2 2 8 8 10 6 6 4 40 40 50 67 67 67
JAXEN 6 6 5 4 4 5 6 6 7 4 4 3 60 60 63 60 60 50
JODA-TIME 13 13 13 1 1 1 2 3 3 4 3 3 76 81 81 93 93 93
JTOPAS 9 9 9 1 1 1 10 10 10 0 0 0 100 100 100 90 90 90
XSTREAM 6 6 6 2 2 2 3 4 3 9 8 9 40 43 40 75 75 75
TOTAL 64 64 62 13 13 15 31 33 35 32 30 28 67 68 69 83 83 81

TABLE IX. MUTANT CLASSIFICATION USING THE I-EQM CLASSIFIER – CONTROL MUTANT SET 2

(DENOTING: ALL FOMS – KILLED FOMS – SAME METHOD FOMS)

Subject
Programs

Killable Set2 Equivalent Set2 Possibly killable Set2
True

Killable
False

Equivalent
True

Equivalent
False

Killable
Precision

%
Recall

%
ASPECTJ 6 6 6 0 0 0 0 0 0 4 4 4 60 60 60 100 100 100
BARBECUE 8 8 8 1 1 1 1 1 1 0 0 0 100 100 100 89 89 89
COMMONS 3 3 2 3 3 4 3 3 3 1 1 1 75 75 67 50 50 33
JAXEN 5 5 5 2 2 2 3 3 3 0 0 0 100 100 100 71 71 71
JODA-TIME 5 5 5 2 2 2 0 0 0 3 3 3 63 63 63 71 71 71
JTOPAS 3 2 2 1 2 2 6 6 6 0 0 0 100 100 100 75 50 50
XSTREAM 5 5 5 0 0 0 2 2 2 3 3 3 63 63 63 100 100 100
TOTAL 35 34 33 9 10 11 15 15 15 11 11 11 76 76 75 80 77 75

all the generated first order mutants. Concerning the HOM Classifier (same method foms) technique, it is less effective

than the other two variations, but in most cases is more efficient due to the reduced size of the considered classification

mutant set (CM set). With these facts evident, since the HOM Classifier (killed foms) is more efficient than HOM

Classifier (all foms) its use is advisable. Finally, compared to the Coverage Impact Classifier, the HOM Classifier attains

lower precision and recall values, indicating that the Coverage Impact Classifier is a better one.

Considering the I-EQM Classifier’s results, it is evident that it forms an effective combinatory strategy. It achieves to

retrieve more than 80% of the killable mutants with a reasonably high precision of approximately 70% for each control

mutant set. This high retrieval capability is attributed to the ability of the HOM Classifier to classify different killable

mutants than the Coverage Impact Classifier. As a consequence, their combination enhances the corresponding recall

value by nearly 20%, meaning that approximately 20% more killable mutants are to be considered. To better compare

these two classifiers, Table X presents the classification precision and recall values of the Coverage Impact technique

when applied to the union of the control mutant sets and Table XI presents the same results for the I-EQM’s variations.

Note that the tables are structured in a similar manner as the previously described ones. On average, the Coverage Impact

method achieves a classification precision of 73% and a recall value of 65%. The I-EQM Classifier’s variation that uses

the HOM Classifier (all foms) approach realizes a precision score of 70% and a recall value of 82%, the one that employs

the HOM Classifier (killed foms) variation achieves a precision of 71% and a recall of 81% and the variation that utilizes

the HOM Classifier (same method foms) achieves a precision of 71% and a recall value of 79%. These results indicate that

all three variations realize a high recall value, with a maximum recall of 82%, while achieving a reasonably high precision

score, with a minimum of 70%. Concisely, the I-EQM method achieves a superior recall value, while attaining a small loss

TABLE X. MUTANT CLASSIFICATION USING COVERAGE IMPACT CLASSIFIER ON BOTH SAMPLES

Subject
Programs

Killable Set1+Set2 Equivalent Set1+Set2 Possibly killable Set1+Set2
True

Killable
False

Equivalent
True

Equivalent
False

Killable
Precision

%
Recall

%
ASPECTJ 19 2 0 9 68% 90%
BARBECUE 18 5 4 3 86% 78%
COMMONS 1 11 16 2 33% 8%
JAXEN 7 10 10 3 70% 41%
JODA-TIME 15 6 3 6 71% 71%
JTOPAS 10 4 16 0 100% 71%
XSTREAM 9 4 11 6 60% 69%
TOTAL 79 42 60 29 73% 65%

TABLE XI. MUTANT CLASSIFICATION USING I-EQM CLASSIFIER ON BOTH SAMPLES

(DENOTING: ALL FOMS – KILLED FOMS – SAME METHOD FOMS)

Subject
Programs

Killable Set1+Set2 Equivalent Set1+Set2 Possibly killable
Set1+Set2

True
Killable

False
Equiv

True
Equiv

False
Killable

Precision
%

Recall
%

ASPECTJ 20 20 19 1 1 2 0 0 0 9 9 9 69 69 68 95 95 90
BARBECUE 20 20 20 3 3 3 3 3 3 4 4 4 83 83 83 87 87 87
COMMONS 7 7 6 5 5 6 11 11 13 7 7 5 50 50 55 58 58 50
JAXEN 11 11 10 6 6 7 9 9 10 4 4 3 73 73 77 65 65 59
JODA-TIME 18 18 18 3 3 3 2 3 3 7 6 6 72 75 75 86 86 86
JTOPAS 12 11 11 2 3 3 16 16 16 0 0 0 100 100 100 86 79 79
XSTREAM 11 11 11 2 2 2 5 6 5 12 11 12 48 50 48 85 85 85
TOTAL 99 98 95 22 23 26 46 48 50 43 41 39 70 71 71 82 81 79

of its precision. In particular, the I-EQM technique realizes a gain of 16% over the Coverage Impact’s recall metric for a

loss of 2% on its precision.

The accuracy and the Fβ measure scores of the examined approaches with respect to control mutant sets 1 and 2 are

given in Figures 5 and 6. The left part of the figures presents the accuracy metric and the right one the examined Fβ

measure scores. Note that the reported results correspond to median values. In these figures, the ‘All Mutants’ series refers

to a naive classifier that categorizes all mutants as possibly killable. In such a case, it achieves a precision of 55% and 63%

for the control mutant set 1 and 2, respectively. In both sets, the recall value is equal to 100%. The I-EQM and HOM

methods refer to their respective killed foms variation method. It is noted that the all foms and killed foms variations were

found to have similar results. From the findings of Figure 5 referring to the accuracy measure, it can be observed that the I-

EQM classification technique is the most accurate one, followed by the Coverage Impact and the HOM classifiers, which

have similar performance, and lastly the ALL Mutants approach. Similar results are obtained for the control mutant set 2, as

shown in the left part of Figure 6.

As mentioned in Section V, by evaluating the Fβ measure with different values of β, three possible scenarios are

examined. Note that high recall values indicate a more thorough testing process, while high precision a more efficient one.

The first scenario, which considers recall and precision of equal importance, is represented by the F1 measure (β equal to

1). The corresponding results, depicted in the right part of Figures 5 and 6 suggest that the I-EQM approach performs

better than the rest. The second scenario, described by the F2 measure (β equal to 2), emphasizes on the recall value. It can

be seen that the I-EQM classification approach achieves by far better results than the Coverage Impact and HOM

techniques for both examined control mutant sets, but worse than the ALL Mutants classifier for the control mutant set 2.

This is expected, since the ALL Mutants categorizes all examined mutants as possibly killable. Finally, the last scenario,

Figure 5. Mutant classifiers comparison for control mutant set 1.

Figure 6. Mutant classifiers comparison for control mutant set 2.

which limits the selection of equivalent mutants, favors the precision metric over the recall one. For this case, described by

the F0.5 measure (β equal to 0.5), the I-EQM classifier achieves better results than the rest of the examined approaches for

the control mutant set 1. Regarding the control mutant set 2, the I-EQM classifier achieves approximately the same

(slightly worse) results with the Coverage Impact. However, in this case the winner is the HOM classifier.

Generally, the I-EQM classification method provides better results than the Coverage Impact one with respect to the

accuracy and all the considered scenarios. Despite the variation on the classification ability of the HOM approach between

the two samples, the I-EQM achieves a higher accuracy in both examined sets. This fact indicates that the two methods

detect-classify different mutants. Hence, their combination is effective. To this end, Figure 7 presents the overall, i.e., with

respect to the union of the control mutant sets, accuracy and Fβ measure scores of the classification approaches. Again, the

results refer to the killed foms variations of the I-EQM and HOM classifiers using median values. From the corresponding

findings, it can be argued that the I-EQM constitutes a better mutant classifier than the rest of the examined ones.

D. Stability of the Classifiers
In order to examine the stability of the considered classifiers across the test subjects, the standard deviation of the

precision and the recall metrics with respect to the union of the control mutant sets was calculated. Figure 8 displays these

findings; the columns of the charts depict the mean precision and recall values per utilized program, for each of the

examined approaches. The vertical bars represent the corresponding values that lie within one standard deviation of the

mean. Again, the presented results for the HOM and I-EQM techniques refer to the killed foms variation.

With regard to precision, the Coverage Impact technique presents the greatest variation among the examined methods

with a standard deviation of 21%. The HOM and I-EQM classifiers demonstrate similar variation levels of approximately

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Accuracy

Control Mutant Set1
Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

F1 F2 F0.5

Control Mutant Set1 Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Accuracy

Control Mutant Set2
Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

F1 F2 F0.5

Control Mutant Set2 Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

Figure 7. Mutant classifiers comparison for control mutant sets 1 and 2.

18%. With respect to the recall metric, the Coverage Impact approach experiences a variation level of 28%, while the

HOM and I-EQM classifiers 16% and 13%, respectively. From the presented data, it can be concluded that the I-EQM

approach tends to be more stable than the rest of the examined techniques. To visualize the variation among the precision

and recall values of the classifiers, Figure 9 presents two groups of boxplots for the corresponding measures. It can be seen

that the Coverage Impact and I-EQM techniques have a similar spread regarding their precision values with Coverage

Impact having a slight advantage. However, regarding the recall values, the I-EQM is clearly better.

Comparing the three classification approaches based on the results presented both here and in the previous subsection,

it becomes evident that the I-EQM technique manages to provide better recall values with a small loss of precision and

with the highest level of stability for the examined test subjects.

In order to investigate whether the previously described differences among the examined classifiers are statistically

significant, the Wilcoxon Signed Rank Test was employed per compared technique. The Wilcoxon Signed Rank Test is a

non-parametric test for two paired samples that tests whether or not the two populations from which the corresponding

samples are drawn are identical. A non-parametric test was utilized, instead of a parametric one, due to the fact that it is

based on no distributional assumptions for the considered data observations. A series of two-tailed hypothesis tests were

employed to investigate if the HOM and I-EQM classifiers have similar effectiveness to the Coverage Impact technique

regarding the precision and the recall metrics. For example the hypotheses that were tested in the case of the HOM

Figure 8. Mean and standard deviation values of the precision and recall metrics for both control mutants sets.

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Accuracy

Control Mutant Sets 1 + 2
Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

F1 F2 F0.5

Control Mutant Sets 1 + 2 Coverage Impact
HOM (killed foms)
I-EQM (killed foms)
All Mutants

0.00
0.20
0.40
0.60
0.80
1.00

Precision

Coverage Impact HOM I-EQM

0.00
0.20
0.40
0.60
0.80
1.00

Recall

Coverage Impact HOM I-EQM

Figure 9. Variation among the precision and recall values of the examined classifiers for both control mutants sets.

Classifier, regarding its precision metric, are the following:

• H0: The HOM and Coverage Impact classifiers perform the same with regard to the precision metric.

• H1: T he HOM and Coverage Impact classifiers perform differently with regard to the precision metric.

Similar hypotheses were tested with respect to the I-EQM Classifier and the recall metric. A significance level of α = 0.05

was employed for all conducted tests. Thus, the tests reject the null hypothesis H0 if a p-value smaller than α is obtained;

otherwise the null hypothesis is accepted. Table XII presents the corresponding findings. The first column of the table

refers to the considered effectiveness measures, the second one to the classification methods being compared and the last

one describes the obtained p-values (two-tailed). With respect to precision, the null hypothesis is rejected only in the case

of “HOM versus I-EQM”, i.e., concerning the precision metric, there is a statistically significant difference in the

effectiveness of the two classifiers. For the remaining cases, i.e., “CI versus HOM” and “CI versus I-EQM”, the null

hypothesis is accepted. Regarding the recall measure, the null hypothesis is rejected in the cases of “CI versus I-EQM” and

“HOM versus I-EQM”, thus, it can be concluded that there is sufficient evidence to establish a difference in the

effectiveness of the I-EQM Classifier with respect to the HOM and Coverage Impact methods. Finally, in the case of “CI

versus HOM”, the null hypothesis is accepted. Conclusively, these findings suggest there is statistically insufficient

evidence to establish a difference in the performance of the Coverage Impact and I-EQM classifiers regarding precision,

whereas there is a statistically significant difference in their performance regarding recall.

E. Discussion
Comparing the Coverage Impact method’s results between the two sets, a slight increase in the precision metric of the

control mutant set 2 and a minor decrease in the corresponding recall value can be observed. These variations indicate that

the Coverage Impact’s classification ability is not greatly affected by different mutants. Considering the classification

results of the HOM Classifier’s, the aforementioned trend is also present, i.e., the precision of the control mutant set 2 is

increased while its recall is decreased. It must be mentioned that in this case the deviation is higher, indicating that HOM’s

classification ability is affected more by different mutants than the one of the coverage impact technique. Finally, the trend

observed for the previous classifiers is consistent with the differences between the results of the I-EQM technique, for the

two control mutant sets. Concerning its results, it is obvious that the I-EQM Classifier manages to enhance the recall of the

Coverage Impact technique for both the examined control mutant sets (Table VIII and Table IX), while maintaining its

TABLE XII. STATISTICAL SIGNIFICANCE BASED ON THE WILCOXON SIGNED RANK TEST

 Compared Techniques p-value
(two-tailed)

Pr
ec

is
io

n CI versus HOM 0.094

CI versus I-EQM 0.563

HOM versus I-EQM 0.031

R
ec

al
l CI versus HOM 0.469

CI versus I-EQM 0.016

HOM versus I-EQM 0.031

precision at a reasonably high level.

Another aspect of the presented results that should be noted relates to the HOM Classifier (same method foms)

approach. Examining further the records of Tables VI and VII, it becomes obvious that this approach suffers a decrease of

nearly 10% of its recall value compared to the ones of HOM Classifier (killed foms) and HOM Classifier (all foms)

techniques and approximately 20% compared to the one of the Coverage Impact method. Interestingly, the I-EQM (same

method foms) classification scheme, according to Table XI, suffers only a loss of 3% compared to the rest of the

approaches of the I-EQM Classifier and has an enhanced recall of nearly 15% compared to the Coverage Impact classifier.

These findings suggest that the majority of the misclassified killable mutants of the Coverage Impact Classifier can be

correctly classified by the HOM Classifier (same method foms) variation.

Generally, the application of the I-EQM Classifier on the studied subjects results in identifying the 81% of the live

killable mutants and 46% of the total instances of equivalent mutants. The Coverage Impact Classifier identifies the 65%

of the live killable mutants and 33% of the equivalent ones. These values suggest that by killing the identified killable

mutants, a mutation score12 such as 95.2% will be achieved for the Coverage impact technique and one of 97.4% for the I-

EQM Classifier. Therefore, it becomes obvious that a more thorough testing process is established by the I-EQM method.

However, this is borne with the overhead of analyzing 1.17% more equivalent mutants13.

VI. MUTANTS WITH HIGHER IMPACT

The behavior of the considered approaches with respect to higher impact values is also investigated. To this end, the

impact values of the examined mutants based on the Coverage Impact and the HOM classifiers are determined for both

examined control mutant sets. Note that the impact value of a mutant based on the Coverage Impact technique is defined

as “the number of methods that have at least one statement that is executed at a different frequency in the mutated run than

in the normal run, while leaving out the method that contains the mutation” [19]. The corresponding impact value of the

HOM Classifier is defined as the number of first-order mutants in the classification mutant (CM) set whose output has

changed after being combined with the live-unclassified mutant (Section III.D).

12These scores were evaluated by counting the mutants killed by the employed tests plus the identified killable mutants of the totally estimated killable
ones.
13 This number was evaluated by counting the identified equivalent mutants of the totally estimated number of equivalent ones.

Figure 10 presents the results of the Coverage Impact technique for both examined control mutant sets. The left part of

the figure provides information about the precision metric (y-axis) and how it changes according to different impact value

thresholds (x-axis). Based on different thresholds, different mutants are classified as possibly killable or possibly

equivalent. For instance, by employing a threshold value of 50, mutants with higher impact values will be classified as

possibly killable, otherwise they will be classified as possibly equivalent. From the left part of the figure it can be seen that

for impact values less than 20 the precision metric increases, while for impact values between 20 and 100 the opposite

holds. Note that the highest precision scores are obtained when the impact value thresholds are between 10 and 20. The

right part of the figure describes a plot between precision (y-axis) and the percentage of mutants with the highest impact

(x-axis); for example, an x1 value of 0.2 indicates that the 20% of these mutants are examined. Thus, lower values of the x-

axis represent mutants with higher impact values. It can be observed that, in general, the precision metric decreases as the

percentage of the examined mutants with the highest impact decreases. Consider the top 10% of the mutants with the

highest impact (i.e., x1 = 0.1), by examining only these mutants a precision value of approximately 70% is obtained. In

contrast, by examining the top 30%, a precision score of 80% is realized. These findings suggest that an analogy between

mutants with the highest impact and high killability ratios cannot be drawn.

Figure 10. Coverage Impact Classifier: Precision w.r.t. Impact values (left) and Mutants with the highest impact (right).

Figure 11 depicts the same results as Figure 10 but this time for the HOM Classifier. Examining the two figures, it is

apparent that the same trends exist.

In conclusion, it can be argued that mutants with the highest impact do not necessarily guarantee the highest killability

ratios. On the contrary, the results suggest that the precision metric for higher impact values decreases. This trend is in

accordance with the findings of Schuler and Zeller [19], [20], where the precision of the top 25% of the mutants with the

highest impact was found higher than the one obtained by examining only the top 15% (Table IX [19]). The presented

results indicate that the relation between impact and killability needs further investigation.

To investigate the differences between the control mutant sets 1 and 2, Figure 12 plots the Coverage Impact’s

classification precision (y-axis) with respect to the different impact value thresholds (x-axis). It must be noted that the

maximum impact value considered for this diagram is 12, since it is the maximum impact value of the control mutant set 2.

From this graph, it can be observed that for impact values of less than 8, both sets demonstrate a similar behavior. For

impact values greater than 8, the precision of the control mutant set 1 remains approximately the same, whereas the one of

the control mutant set 2 decreases. Overall, since the differences between the two sets are small, it is believed that the

above conclusion holds for both studied sets.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Pr
ec
is
io
n	

Impact	
 threshold	

Precision	
 w.r.t.	
 impact	
 values	

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Pr
ec
is
io
n	

Mutants	
 with	
 highest	
 impact	

Precision	
 w.r.t.	
 mutants	
 with	
 the	
 highest	
 impact	

VII. THREATS TO VALIDITY
This section discusses possible threats to the validity of the findings of the present study.

The internal validity concerns the degree of confidence in the causal relationship of the studied factors and the

observed results. One such factor is the utilization of the specified test subjects and the use of the Javalanche framework.

As mentioned before, their choice was mainly based on enabling a direct comparison between the proposed classification

techniques and the Coverage Impact Classifier. Since the employed subjects are large in size and of different application

domains, they are considered as appropriate. Furthermore, many recent empirical studies, such as [17], [19], [20], [22],

utilized Javalanche, thus increasing the confidence in its results.

The employed mutant operators constitute another possible issue. Different operator sets, e.g. Offutt et al. [10], might

give different classification results. However, the present study focuses on the mutants’ impact, which is believed to be an

attribute independent of the nature of the studied mutants [20]. Additionally, the present study replicates the findings of the

Coverage Impact technique [19], [20], thus it is natural to use the same mutants.

Another potential threat that falls into this category concerns the employed test suites. It is possible that different test

suites could produce different classification results. However, these tests were independently created by the developers of

the employed programs without using mutation testing. Further, the manually classified mutants were randomly chosen

Figure 11. HOM Classifier: Precision w.r.t. Impact values (left) and Mutants with the highest impact (right).

Figure 12. Coverage Impact Classifier: Precision w.r.t. Impact values for control mutant set 1 and 2.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 10	
 20	

Pr
ec
is
io
n	

Impact	
 threshold	

Precision	
 w.r.t.	
 impact	
 values	

0	

0.2	

0.4	

0.6	

0.8	

1	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

Pr
ec
is
io
n	

Mutants	
 with	
 highest	
 impact	

Precision	
 w.r.t.	
 mutants	
 with	
 the	
 highest	
 impact	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 2	
 4	
 6	
 8	
 10	
 12	

Pr
ec
is
io
n	

Impact	
 threshold	

Set1	
 vs	
 Set2	

Set1	

Set2	

among those that were executed and not killed by the employed tests. These two facts give confidence that the studied

methods can provide useful guidance in increasing the quality of the testing process.

The external validity of an experiment refers to the potential threats that inhibit the generalization of its results. The

generalization of a study’s results is difficult to be achieved due to the range of different aspects that the experimental

study must consider. The results presented in this paper are no exception, though effort has been made to attenuate the

effects of the aforementioned threats. First, the empirical evaluation of this study was based on a benchmark set of real-

world programs which has been used in similar research studies, such as [17], [19], [20], [22]. Second, the examined

programs vary in size and complexity. Finally, the evaluation of the proposed classification techniques was based on two

independently created sets of manually classified mutations, one created for the evaluation of the Coverage Impact

Classifier [19], [20] and the other one for the purposes of the present experimental study.

The construct validity refers to the means of defining the employed measurement of an experiment and the extent to

which it measures the intended properties. A possible threat is relevant to the manual classification of the mutants of the

examined control mutant sets. The mutants classified as non-equivalent pose no threat as the basis of their classification is

a test case able to “kill” them, whereas the mutants classified as equivalent could do so due to the complexity of the

involved manual analysis.

VIII. RELATED WORK

Dynamically isolating possible equivalent mutants with the aim of reducing their effects in the testing process is a

relatively new direction of the mutation testing research. One of the first attempts aiming at this issue is due to the work of

Adamopoulos et al. [31]. In their attempt, genetic algorithms were employed in order to overcome the difficulties of the

large numbers of the introduced mutants and equivalent ones. Their results suggested that it is possible to generate a small

set of killable mutants, valuable to the testing process. However, contrary to the present approach, this technique attempts

to produce killable mutants and not to isolate equivalent ones in order to help assessing the test adequacy.

Measuring the mutants’ impact as the way to assess mutations has been proposed by Schuler et al. [22] with the use of

dynamic program invariants. In their study, it was found that when mutants break dynamically generated invariants, they

are more likely to be killable. The use of coverage impact as an assessment measure of mutants, was initially suggested by

Grun et al. [21] and later extended by Schuler and Zeller [19], [20]. Empirical evaluation [19], [20] of the aforementioned

approaches based on the Javalanche [11] tool suggested that coverage impact is more efficient and effective in classifying

killable mutants. Therefore, the I-EQM approach, proposed in the present paper, uses and extends the coverage impact

method with the aim of ameliorating the method’s recall, i.e., retrieving most of the killable mutants. Details about the

coverage impact approach have been given in Section III.

Heuristics able to detect some equivalent mutants do exist [12], [32], [33]. In such an attempt, Baldwin and Seyward

[32] suggested the use of compiler optimization techniques. Since program optimization produces equivalent program

versions, the original and the mutant programs can be optimized or de-optimized and eventually identify equivalent

mutants. Offutt and Craft [28] developed such techniques and based on their empirical evaluation found that a 10% of the

existing equivalent mutants could be automatically detected. This approach was later extended by Offutt and Pan [12]

using path analysis and a constraint based testing technique. In their evaluation, Offutt and Pan report that they achieved to

detect on average the 45% of the existing equivalent mutants. Other related approaches make use of program slicing [34]

or dependence analysis [35] to aid the tester identify equivalent mutants. All the equivalent mutant detection techniques,

mentioned thus far can be applied complementary to the mutant classification approaches proposed in the present paper.

Thus, these approaches can identify equivalent mutants and then I-EQM can be applied to the remaining uncategorized

mutants.

Mutation testing utilizing higher order mutants has been studied by Jia and Harman [26] who suggested that the use of

higher order mutants could be profitable. In view of this, they propose the use of search based optimization techniques in

order to construct hard-to-kill, higher order mutants. To this end, practical problems of mutation testing could be answered

by using only such higher order mutants. In a follow up work [36], [37] in order to better simulate real faults, higher order

mutants were constructed based on a multi objective evolutionary method. To this end, mutants that were both hard-to-kill

and syntactically similar to the original program were produced. Further, automated tools that enable testing based on

higher order mutants [38], [39] have also been suggested. A synopsis on higher order mutation and search based testing

can be found in the work of Harman et al. [40].

Second order mutation has been addressed in the literature as an alternative method to first order mutation [9], [28].

According to these approaches, equivalent mutants are considerably less likely to occur. Thus, their effects on the testing

process are reduced. Generally, the higher order mutation approaches that appeared in the literature try to produce mutant

sets with fewer equivalent mutants and not to isolate them. The approach presented in this paper is the first one, to the

authors’ knowledge, that uses higher order mutants in order to identify likely to be first order equivalent mutants.

IX. CONCLUSION

The practical application of mutation testing constitutes the primary aim of the present work. Towards this direction, a

dynamic method, Isolating Equivalent Mutants (I-EQM), able to isolate possible equivalent mutants was suggested. The

originality of the proposed technique stems from the fact that it leverages higher order mutation and the mutants’ coverage

impact. Specifically, the classification scheme utilizes second order mutation to classify a given set of first order mutants

as possibly killable or not. I-EQM extends previously proposed approaches [19], [20] with the aim of correctly classifying

a significantly greater number of killable mutants.

In summary, this paper presents: a) a novel dynamic method based on higher order mutation, able to classify first order

mutants as possibly killable or possibly equivalent ones. b) An empirical study based on a manually classified mutant set

replicating the coverage impact technique. Additionally, c) the empirical results reveal that I-EQM achieves the correct

classification of 81% of the killable mutants with a precision of 71%. Finally, d) a manually identified and publicly

available set of killable and equivalent mutants is provided. This set amplifies an existing benchmark set [19], [20] with

the aim of enabling further studies. In view of this, the first mutant set [19], [20] can be used to develop techniques and the

second one can be used to evaluate them.

The research presented in this paper seeks practical solutions to the application of mutation testing. It can be extended

by using a selective set of mutants. Such a set could provide even better and computationally inexpensive classification

results. Additionally, it can be used to classify higher order mutants i.e., n order mutants can be classified by using n+1

order mutation testing. Further directions include conducting additional experiments by employing different mutant sets

and subject programs to revalidate the findings of the present paper.

REFERENCES

[1] A. J. Offutt and R. H. Untch, “Mutation 2000: uniting the orthogonal,” in Mutation testing for the new century, Kluwer Academic Publishers,

2001, pp. 34-44.

[2] A. P. Mathur and W. E. Wong, “An Empirical Comparison of Data Flow and Mutation-based Test Adequacy Criteria,” Software Testing,

Verification and Reliability, vol. 4, no. 1, pp. 9-31, 1994.

[3] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental evaluation of data flow and mutation testing,” Softw. Pract. Exper., vol. 26,

no. 2, pp. 165-176, 1996.

[4] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University Press, 2008.

[5] N. Li, U. Praphamontripong, and A. J. Offutt, “An Experimental Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-uses and

Prime Path Coverage,” in Proceedings of the 4th International Workshop on Mutation Analysis (MUTATION’09), 2009, pp. 220-229.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing experiments?,” in Proceedings of the 27th

international conference on Software engineering, 2005, pp. 402-411.

[7] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using Mutation Analysis for Assessing and Comparing Testing Coverage

Criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608-624, 2006.

[8] Y. Jia and M. Harman, “An Analysis and Survey of the Development of Mutation Testing,” IEEE Transactions on Software Engineering, vol.

37, no. 5, pp. 649-678 2011.

[9] M. Papadakis and N. Malevris, “An Empirical Evaluation of the First and Second Order Mutation Testing Strategies,” in Software Testing,

Verification, and Validation Workshops (ICSTW), 2010 Third International Conference on, 2010, pp. 90-99.

[10] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental determination of sufficient mutant operators,” ACM Trans.

Softw. Eng. Methodol., vol. 5, no. 2, pp. 99-118, 1996.

[11] D. Schuler and A. Zeller, “Javalanche: Efficient Mutation Testing for Java,” Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering. ACM, pp. 297-298, 2009.

[12] A. J. Offutt and J. Pan, “Automatically Detecting Equivalent Mutants and Infeasible Paths,” Software Testing, Verification and Reliability,

vol. 7, pp. 165-192, 1997.

[13] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to testing,” Acta Informatica, vol. 18, no. 1, pp. 31-45, 1982.

[14] M. Papadakis and N. Malevris, “Automatically performing weak mutation with the aid of symbolic execution, concolic testing and search-

based testing,” Software Quality Journal, vol. 19, no. 4, pp. 691-723, 2011.

[15] M. Papadakis and N. Malevris, “Automatic Mutation Test Case Generation via Dynamic Symbolic Execution,” in Software Reliability

Engineering (ISSRE), 2010 IEEE 21st International Symposium on, 2010, pp. 121-130.

[16] M. Papadakis and N. Malevris, “Mutation based test case generation via a path selection strategy,” Information and Software Technology, vol.

54, no. 9, pp. 915-932, Sep. 2012.

[17] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” in Proceedings of the 19th international symposium on

Software testing and analysis, 2010, pp. 147-158.

[18] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. L. Traon, “From genetic to bacteriological algorithms for mutation-based testing: Research

Articles,” Softw. Test. Verif. Reliab., vol. 15, no. 2, pp. 73-96, 2005.

[19] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mutants,” in Software Testing, Verification and Validation (ICST), 2010 Third

International Conference on, 2010, pp. 45-54.

[20] D. Schuler and A. Zeller, “Covering and Uncovering Equivalent Mutants,” Software Testing, Verification and Reliability, 2012.

[21] B. J. M. Grun, D. Schuler, and A. Zeller, “The Impact of Equivalent Mutants,” in Software Testing, Verification and Validation Workshops,

2009. ICSTW ’09. International Conference on, 2009, pp. 192-199.

[22] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invariant violations,” Proceedings of the eighteenth

international symposium on Software testing and analysis. ACM, Chicago, IL, USA, pp. 69-80, 2009.

[23] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data Selection: Help for the Practicing Programmer,” Computer, vol. 11, no.

4, pp. 34-41, 1978.

[24] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Trans. Softw. Eng. Methodol., vol. 1, no. 1, pp. 5-20, 1992.

[25] Y. Jia and M. Harman, “Constructing Subtle Faults Using Higher Order Mutation Testing,” Proceedings of the 8th International Working

Conference on Source Code Analysis and Manipulation (SCAM’08). Beijing, China, pp. 249-258, 2008.

[26] Y. Jia and M. Harman, “Higher Order Mutation Testing,” Inf. Softw. Technol., vol. 51, no. 10, pp. 1379-1393, 2009.

[27] M. Polo, M. Piattini, and I. García-Rodríguez, “Decreasing the cost of mutation testing with second-order mutants,” Software Testing,

Verification and Reliability, vol. 19, no. 2, pp. 111-131, 2009.

[28] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating Mutation Testing Alternatives: A Collateral Experiment,” in Software Engineering

Conference (APSEC), 2010 17th Asia Pacific, 2010, pp. 300-309.

[29] M. Kintis, M. Papadakis, and N. Malevris, “Isolating First Order Equivalent Mutants via Second Order Mutation,” Software Testing,

Verification, and Validation, 2012 International Conference on, vol. 0, pp. 701-710, 2012.

[30] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge University Press, 2008.

[31] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to Overcome the Equivalent Mutant Problem and Achieve Tailored Selective

Mutation Using Co-evolution.,” GECCO (2), vol. 3103. Springer, pp. 1338-1349, 2004.

[32] D. Baldwin and F. G. Sayward, “Heuristics for Determining Equivalence of Program Mutations,” Yale University, New Haven, Connecticut,

1979.

[33] A. J. Offutt and W. M. Craft, “Using Compiler Optimization Techniques to Detect Equivalent Mutants,” Software Testing, Verification and

Reliability, vol. 4, no. 3, pp. 131-154, 1994.

[34] R. M. Hierons, M. Harman, and S. Danicic, “Using Program Slicing to Assist in the Detection of Equivalent Mutants,” Software Testing,

Verification and Reliability, vol. 9, no. 4, pp. 233-262, 1999.

[35] M. Harman, R. M. Hierons, and S. Danicic, “The Relationship Between Program Dependence and Mutation Analysis,” Proceedings of the 1st

Workshop on Mutation Analysis (MUTATION’00). San Jose, California, pp. 5-13, 2001.

[36] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher order mutation testing with genetic programming,” J. Syst. Softw.,

vol. 83, no. 12, pp. 2416-2430, 2010.

[37] W. B. Langdon, M. Harman, and Y. Jia, “Multi Objective Higher Order Mutation Testing with Genetic Programming,” Proceedings of the

2009 Testing: Academic and Industrial Conference - Practice and Research Techniques. IEEE Computer Society, pp. 21-29, 2009.

[38] J. Yue and M. Harman, “MILU: A Customizable, Runtime-Optimized Higher Order Mutation Testing Tool for the Full C Language,” in

Practice and Research Techniques, 2008. TAIC PART ’08. Testing: Academic & Industrial Conference, 2008, pp. 94-98.

[39] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-based test data generation,” Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering. ACM, Szeged, Hungary, pp. 212-222, 2011.

[40] M. Harman, Y. Jia, and W. B. Langdon, “A Manifesto for Higher Order Mutation Testing,” Proceedings of the 5th International Workshop

on Mutation Analysis (MUTATION’10). Paris, France, pp. 80-89, 2010.

