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Abstract— Fault localization methods seek to identify faulty program statements based on the information provided 

by the failing and passing test executions. Spectrum-based methods are among the most popular ones and assist 

programmers by assigning suspiciousness values on program statements according to their probability of being faulty. 

This paper proposes Metallaxis, a fault localization approach based on mutation analysis. The innovative part of 

Metallaxis is that is uses mutants and links them with the faulty program places. Thus, mutants that are killed mostly 

by failing tests provide a good indication about the location of a fault. Experimentation using Metallaxis suggests that 

it is significantly more effective than statement-based approaches. This is true even in the case that mutation cost-

reduction techniques, such as mutant sampling, are facilitated. Additionally, results from a controlled experiment 

show that the use of mutation as a testing technique provides benefits to the fault localization process. Therefore, fault 

localization is significantly improved by using mutation-based tests instead of block or branch-based test suites. 

Finally, evidence in support of the methods’ scalability is also given.  
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I.  INTRODUCTION 
Detecting, localizing and fixing bugs are essential software development activities. While software testing forms the main 

activity for detecting program defects, software debugging is the process of locating (diagnosing) and fixing the defective 

program parts. The fault localization process refers to the problem of identifying defective program parts given test execution 

failures. It has been recognized as one of the costlier parts of the debugging process, which justify the important research effort 

for automating the fault localization activity.  

When considering testing and fault detection, more than two decades of experiments on mutation testing have 

demonstrated that detecting artificial defects (e.g. seeded using mutation operators) allows effective detection of unknown, real 

ones, compared to more classical test selection criteria (e.g. based on code coverage). Test cases generated using mutations are 

good candidates for finding real faults [1], [2].  

When looking at diagnosis, mutants as relevant substitutes of real faults could be useful to improve fault localization 

activity. This raises the research questions of a) whether mutants could provide sufficient guidance for localizing known but not 

located faults i.e. faults that have already been detected by some tests but not located in the code and b) whether test cases that 

are able to kill mutants would enable accurate fault localization.  

Fault localization approaches assist the programmers by giving some advice either on the causes of the failures or on the 

program locations that are responsible for some program failures. Some approaches such as Dynamic Slicing [3], produce a set 

of program statements that influence the output of the program. Delta Debugging [4], [5], [6] isolates the causes of program 

failures by examining the state differences between passing and failing program executions. Other techniques, usually referred 



 

to as coverage-based, [7], [8] monitor the program execution to gain runtime information, based on which they specify a 

suspiciousness rank of the program statements. Researchers have used many coverage elements such as program statements 

[9], [10], [11] program branches [12], [8] program du-pairs [13] and possible combinations of them [8], [14]. Empirical 

evidence has shown that coverage-based fault localization approaches can be very effective and helpful [11], [15] in 

diminishing the debugging effort.  

Among the various coverage elements considered the fault diagnosis techniques, the most commonly-used ones are the 

program statements and branches. Still, the use of mutants in locating program faults has drawn little attention by researchers. 

This might attribute to the general belief that mutation testing is quite expensive and cannot scale [16]. However, recent 

advances have shown that mutation testing can be practical [16], [17] and can be applied on real world applications [16], [17], 

[18]. Many efficient and scalable mutation testing tools such as the MiLu [19] and Javalanche [20] have been built with 

promising results. Furthermore, integrating mutation analysis both for testing and fault localization activities may keep the 

fault diagnosis expenses at a low level.  

Mutation analysis works by introducing defects named mutants in the program under analysis. Mutation analysis relies on 

the assumption that most of the mutants form “realistic” faults, even if artificially seeded. Several empirical results, such as 

those of Andrews et al. [1], provide evidence that this assumption is reasonable. Therefore, the following question can be 

positioned: if mutants ‘detection results in revealing “unknown” faults, is the location of mutants able to assist with the 

localization of these faults? 

The present paper investigates this question, and eventually suggests the use of mutation analysis for fault localization. By 

utilizing mutants as alternatives to the structural code coverage, a novel mutation-based fault diagnosis approach can be 

defined. If validated, this approach may be used to kill two birds with one stone, meaning that mutation analysis could 

reconcile testing and diagnosis activities, which are usually targeting different objectives (fault detection and fault localization 

[21]). Minimizing the effort of the testing process requires the minimization/prioritization of the test cases while, minimizing 

the fault localization effort requires the maximization of the information provided by test execution.    

This paper proposes Metallaxis-FL, a fault localization approach based on mutation analysis. Metallaxis is the Greek word 

for mutation, in English it is used in the context of describing moth species basically when they change from worm to moth. 

The present paper forms an extension of the authors’ previous work on fault localization [22] and aims at investigating a) 

whether mutation analysis can improve the effectiveness of coverage-based fault localization techniques, b) whether the use of 

mutation testing adequacy criterion can provide a sufficient and suitable set of test cases to effectively support the fault 

localization activity and c) to determine whether mutation alternatives such as mutant sampling can be utilized to support the 

fault localization activity. The above questions were explored on a set of 11 benchmark programs by using their accompanied 

test suites and faulty versions.  

The remainder of this paper is organized as follows: Section II and III present the underlying concepts and detail the 

proposed approach. Its evaluation setup along with empirical results is described in Sections IV and V respectively. Sections 

VI and VII discuss the proposed technique and its relation to the literature. Finally, Section VIII identifies some threats to 

validity and Section IX concludes the paper and reports some possible future directions. 



 

II. MUTATION TESTING AND FAULTY STATEMENTS 
Provoking program failures forms the primary aim of the testing process. Programmers, when experiencing such failures 

move to the debugging phase that involves two main steps. The first one is to identify the faulty program places (diagnosis) 

and the second one is to fix the fault. Testers usually utilize adequacy or coverage criteria in order to assist them with the 

testing process. Fault diagnosis techniques prioritize the program places in order to help testers locating faults. This section 

summarizes the above concepts, which underlie the work presented in this paper. 

A. Code coverage  
Software testing process consists in checking the software’s behavior by executing a set of test cases. Test adequacy criteria 

(also called coverage criteria) are defined to help testers select a set of tests that is small but representative of the whole 

possible cases. This is achieved by possessing the requirement on the selected test cases to cover i.e. execute some specific 

program elements called test elements. In view of this, different program elements give rise to different criteria i.e. by setting 

them as test elements. Program elements like the program lines, basic blocks, decisions, du-pairs are some of the most popular 

ones used for testing. The present paper considers block and decision criteria, that require from the test cases to cover-execute 

all program blocks and decisions. Testing thoroughness with respect to a test criterion, here referred to as score or coverage 

level, is measured based on the ratio of the test elements exercised by the test cases to the total number of elements required by 

the test criterion.   

B. Mutation Analysis 
Mutation analysis is a fault-based technique. Thus, it introduces some defects named mutants in the program under 

analysis. Mutants are produced based on simple syntactic rules, called mutation operators. Mutation testing is performed by 

executing the mutant programs with a selected set of test cases and by examining the differences in behavior between the 

mutant and the original program versions. Thus, the mutants can be categorized as killed and live. Killed mutants designate 

those that result in outputs different from the original program version; while live are the unkilled mutants.  

Mutation is based on the hypothesis of the “competent programmer” i.e. the assumption that programmers produce 

programs that are nearly “correct” [23] and the “coupling effect” [23]. The coupling effect states “Test data that distinguishes 

all programs differing from a correct one by only simple errors is so sensitive that it also implicitly distinguishes more complex 

errors”. This assumption underlies the approach of the present paper in order to locate real-complex faults. By generating a 

mutant program, two versions of the same program exist: the original one, say O and the mutated one, say M. If making only 

one syntactic change to O produces M, it is called first order mutant. Otherwise it is called a higher order mutant [16]. This 

paper considers only first order mutants. Mutation can be used as a test adequacy criterion and referred to as mutation testing. 

This is accomplished by using mutants as test elements. Thus, assessing the ability of test cases; say t, to distinguish the 

mutated from the original program versions. This distinction is usually performed by comparing the programs outputs, such as 

O(t) ≠ M(t). It is common to have situations where such cases do not exist. In this case the mutant M is called equivalent. The 

killing mutants’ ratio is called mutation score and measures the adequacy of the test cases with respect to mutation testing. 

A classical criticism of mutation is its high computation cost. Since a vast number of mutants have to be generated and 

executed with test cases, huge computational resources are needed. To overcome this problem researchers have suggested 

using various alternatives such as the “mutant sampling” [24] and the “selective mutation” [25]. In the “mutant sampling” 

approach, a small percentage of mutants is sampled and considered as being the whole mutant set. In the “selective mutation”, 



 

only mutants produced by specific operators are considered. Empirical evidence [25], [26] has shown that both of the above 

approaches are capable of constructing high quality test data. More details about mutation and its alternatives can be found in 

[17] and [24]. 

III. RANKING STATEMENTS USING CODE COVERAGE AND MUTATION ANALYSIS 
This section discusses the use of coverage and mutant test elements to assist the fault localization process. We call an “un-

located fault” a fault, which has been detected by at least one test case, but that, has still to be located. 

A. Coverage-based Fault Localization 
Research on fault localization suggests that utilizing the execution traces of the employed test suites can help in performing 

this process. These approaches referred to as coverage-based [8] record the executed-covered code elements of the passing and 

failing test cases. The main idea is that code elements executed by failing test cases are responsible for the failure. Thus, for 

each of the considered program elements a suspiciousness value is assigned. This value approximates the probability that a 

program statement is faulty and it is calculated based on the frequency that program elements appear in the failing and passing 

program executions. Then, the programmer is assisted to find a fault by inspecting these highlighted elements based on a 

decreasing suspiciousness order i.e. starting from the most suspicious one to the least one. 

One of the most popular coverage-based methods is Tarantula [10]. Tarantula technique uses program statements as 

coverage elements and computes their suspiciousness by using a formula similar to the one presented in Table I. It is noted that 

these values are within the range of [0-1]. Abreu et al. [9] investigated this issue and concluded that a similarity coefficient 

named Ochiai was the most effective one. Santelices et al. [8] also report that their experiments supported the use of this 

formula and hence, they used it in their approach. The Ochiai suspiciousness calculation formula for a code element e is 

presented in Table I. Its application is straightforward once the program execution traces are available, by measuring the 

number of failing and passing test cases that cover each one of the program statements. Then, for all the program statements, a 

suspiciousness value is calculated based on the Ochiai formula. Finally, the program statements are ranked according to their 

suspiciousness and they are reported to the user. 

TABLE I.  THE OCHIAI FORMULA 

 
Where: totfailed - the total number of test cases that fail, failed(e) - the number of test cases that 
cover the code element e and fail and passed(e) - the number of test cases that cover the code 
element e and pass. 

 

B. Mutation-based Fault localization 
The mutation-based fault localization approach identifies suspicious mutants and uses their location in order to identify the 

un-located fault statements. The identification of suspicious mutants is based on their behavior. A mutant M1 is said to have 

the same behavior with another mutant M2 if M1 and M2 are killed by the same test cases. The degree of similarity on the test 

cases that kill the mutants M1 and M2 define the behavior similarity of these mutants. Generally, the proposed approach is 

motivated by the following two observations:  

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑒) =
𝑓𝑎𝑖𝑙𝑒𝑑(𝑒)

1𝑡𝑜𝑡𝑓𝑎𝑖𝑙𝑒𝑑 ∗ (𝑓𝑎𝑖𝑙𝑒𝑑(𝑒) + 𝑝𝑎𝑠𝑠𝑒𝑑(𝑒))
	
  



 

• Mutants-faults located on the same program statements frequently exhibit a similar behavior.  

• Mutants-faults located in diverse program statements exhibit different behaviors. For a ‘hard-to-kill’ mutant, a test case 

that kills it is capable of killing the mutants located on the same statement.  

 Consider a scenario where the program under test contains an “un-located” fault. Based on the above observations, this 

fault behaves similarly to seeded faults applied at the same statement. At the same time faults seeded on other statements 

behave differently to the “un-located” one. Then, within this assumption the “un-located and seeded faults exhibit similar 

behaviors”, the identification of an “un-located” fault may be obtained thanks to a mutant fault at the same location. Next 

section (III.B) provides an example of the proposed approach illustrating the above scenario. 

The intuition behind the proposed approach is this implicit link between the behaviors of “un-located” faults with other 

local mutants. The behavior of the “un-located” faults is identified based on the passed and failed test cases. Mutants’ behavior 

is identified based on the utilized test cases that achieve to kill or not the considered mutants. The similarity between these two 

behaviors establishes the sought implicit link between the “un-located” faults and mutants. This can be performed 

straightforwardly by using the ways existing fault localization techniques quantify the similarity between the structural code 

elements (such as statements or decisions) and the “un-located” faults behavior. Therefore, by measuring the number of killed 

mutants by the passing and failing test executions, one can get an indication about the suspiciousness of those mutants. This 

can be computed by applying the Ochiai formula (Table I) with elements (e) representing the killed mutants. Following the 

lines of the spectrum fault localization approaches, killed mutants are treated as covered elements (e) while the live ones are 

ignored i.e. treated as uncovered elements. Hence, all the introduced mutants (e) regardless of the statement they belong to are 

assigned with a suspiciousness value. 

The Metallaxis approach considers only first order mutants and relies on the coupling effect in order to locate complex 

faults. The use of first order mutants helps assigning suspiciousness values to the program statements. Since mutants’ location 

is known, the suspiciousness values computed for the mutants can be assigned to their respective statements. However, since 

most of the program statements involve many mutants, each one having its own suspiciousness, which is the suspiciousness 

value of a program statement? In other words, there is a need to assign a suspiciousness value to a program statement based on 

the suspiciousness values of the mutants that are belonging to this statement. In this paper, the suspiciousness of a statement is 

equal to the maximum suspiciousness value of its respective mutants. This is in line with the fault localization methods, where 

the most suspicious coverage elements have to be investigated first. Furthermore, the intuition of the proposed approach is that 

the similarities between the behaviors of the faults and the mutants are attributed to their location. Depending on the utilized 

operators it is possible that some statements might not have any mutants. These statements are assigned with the worst 

suspiciousness value (the number of program statements). This practice ensures that these statements will be among the last 

ones to be inspected reflecting the inability of the approach to highly the faulty statement. Generally, the assignment of 

suspiciousness values on non-mutated statements can be performed based on the lines suggested by Santelices et al. [8]. Such 

statements (without suspiciousness) can be mapped with the values of the statements that are data or control dependent [8]. 

However, the need for this practice is not crucial in our case, since mutants operate on most of the program statements.  

 



 

C. An illustrative example 
Consider the example of Fig. 1, that illustrates the use of statements and mutants in localizing faults. This example shows: 

1. how the examined fault localization approaches work, 

2. a concrete scenario of mutant-fault localization using different types of mutants.  

To demonstrate how the examined fault localization approaches work, consider the example of Fig. 1, which has been 

taken from the work of Santelices et al. [8]. This example, program mid involves two faults named as Fault 1 and Fault 2. Fault 

1 (localized in statement 3) is due to extra code fragments (y < z � y < z - 1) and Fault 2 (localized in statement 7) is an 

assignment expression error (m = x � m = y). The example program has 13 statements (column Statements) and is tested with 

six test cases (top of the columns Test 1-6). Test columns record the covered test elements i.e. statements and mutants, by the 

respective test cases (denoted with “X” for executed statements and with “√” for the killed mutants). The columns labeled as 

“#Passed” and “#Failed”, record the number of passing and failing test cases (denoted as passed(e) and failed(e) in the Ochiai 

formula of Table I) that cover-kill each program statement-mutant. The column labeled as “Suspiciousness” record the 

suspiciousness scores (calculated by the Ochiai formula, Table I) per statement and mutant. The column labeled as “Rank” 

record the respective ranking for all the program statements. The upper part (above the black line) of the figure corresponds to 

the statement-based approach and the lower part of the figure corresponds to the mutation-based approach. 

Fault 1 (localized at statement 3) is detected by test cases 2 and 5 (bottom of the columns Test 1-6). This fault is ranked in 

the 6th position by the statement-based (upper part of the figure) fault localization method. The total number of test cases that 

fail is two and that passed is four. Since, the two failed test cases and the four passed test cases cover this statement, based on 

the Ochiai formula its suspiciousness is calculated as 0.58. Similarly, the suspiciousness of the statement 9 is calculated as 0.71 

since two failed and two passed test cases cover this statement. The mutation-based approach precisely localized the fault 

(ranked in the 1st position) based on the relational mutant operator i.e. it changes the instance of relational operators with the 

other ones. The utilized mutant elements are demonstrated in the column Mutants (left part corresponding to Fault1) and they 

are named as M1-M35. Since mutant M1 is killed by the two failing test cases and not by any of the passed, it has a 

suspiciousness value 1.0. Thus, the statement of M1 is reported as the most suspicious one.  

Fault 2 (localized at statement 7) is detected by one test case and it is ranked in the 1st position by both fault localization 

methods. This statement is covered by one failing and one passed test cases and thus, the statement-based approach assigns a 

suspiciousness value 0.71. The Mutation-based approach localizes this fault by using the numerical constant increment and 

decrement mutants i.e. it add and subtracts a constant value to a program’s variable. The mutant elements used are presented in 

the column Mutants (right part corresponding to Fault2) and they are named as M1-M32. Based on the M17 and M18 mutants 

which are killed by one failing and one passed test cases the faulty statement is ranked in the 1st position and it has a 

suspiciousness values (0.71).  

As pointed out before, after the localization process, the programmer has to check the ranked statements in a decreasing 

suspiciousness order in order to find and fix the fault. Hence, if faulty statements appear at a higher position in the ranked 

order, this is preferable since less effort is required to find the error.  

Conclusively, Fig. 1 demonstrated a scenario of applying spectrum based fault localization methods. By using two faults, 

the process of assigning suspiciousness values to program statements based on both statement coverage and mutation analysis 

was also presented. 



 

 
Figure 1.  Fault localization example using program statements and mutants.  The upper part corresponds to a 

statement-based approach while the bottom part corresponds to the mutation-based one. The symbols X and √ denote that the 
test cases (columns) cover-kill the specified statement (rows)

IV. EXPERIMENTAL STUDY 
This section discusses the empirical setup and evaluation of the proposed approach. First, it describes the definition of the 

conducted experiment by setting out the research questions under investigation. Then, details about the selected subjects and 

tools are given. Finally, a description of the experimental setup and analysis is provided. 

 Fault1: Statement 3 (if ( y < z - 1))  Fault2: Statement 7 (m = y) 
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int m;  1 X X X X X X  4 2 0.58 6   1 X X X X X X  5 1 0.41 7 
m = z;  2 X X X X X X  4 2 0.58 6   2 X X X X X X  5 1 0.41 7 
if ( y < z )  3 X X X X X X  4 2 0.58 6   3 X X X X X X  5 1 0.41 7 

if ( x < y )  4 X     X  2 0 0.00 13   4 X X   X X  3 1 0.50 3 
m = y;  5        0 0 0.00 13   5  X      1 0 0.00 13 

else if ( x < z )  6 X     X  2 0 0.00 13   6 X    X X  2 1 0.58 2 
m = x;  7 X     X  2 0 0.00 13   7 X     X  1 1 0.71 1 

else  8  X X X X   2 2 0.71 2   8   X X    2 0 0.00 13 
if ( x > y )  9  X X X X   2 2 0.71 2   9   X X    2 0 0.00 13 

m = y;  10   X  X   1 1 0.50 8   10   X     1 0 0.00 13 
else if ( x > z )  11  X  X    1 1 0.50 8   11    X    1 0 0.00 13 

m = x;  12         0 0.00 13   12        0 0 0.00 13 
return m;  13 X X X X X X  4 2 0.58 6   13 X X X X X X  5 1 0.41 7 

}                            
                            

mid(int x, int y, int z){                            
int m;  1           13   1           13 

m = z;  2 
          

13 
 M1. z ! z+1 

2 
   √ √   2 0 0 

13 
           M2. z ! z-1    √ √   2 0 0 

if ( y < z  ) 

M1. < ! <= 

3 

 √   √   0 2 1.00 

1 

 M3. y ! y+1 

3 

 √   √   2 0 0 

13 

M2. < ! > √  √   √  3 0 0  M4. y ! y-1        0 0 0 
M3. < ! >= √ √ √  √ √  3 2 0.63  M5. z ! z+1        0 0 0 
M4. < ! == √ √   √ √  2 2 0.71  M6. z ! z-1  √   √   2 0 0 
M5. < ! !=   √     1 0 0             

M6. < ! true  √ √  √   1 2 0.82             
M7. < ! false √     √  2 0 0             

if ( x < y ) 

M8. < ! <= 

4 

       0 0 0 

13 

 M7. x ! x+1 

4 

       0 0 0 

13 

M9. < ! >      1  1 0 0  M8. x ! x-1        0 0 0 
M10. < ! >=      1  1 0 0  M9. y ! y+1        0 0 0 
M11. < ! ==        0 0 0  M10. y ! y-1        0 0 0 
M12. < ! !=      1  1 0 0             

M13. < ! true      1  1 0 0             
M14. < ! false        0 0 0             

m = y;  5 
          

13 
 M11. y ! y+1 

5 
 √      1 0 0 

13 
           M12. y ! y-1  √      1 0 0 

else if ( x < z ) 

M15. < ! <= 

6 

       0 0 0 

13 

 M13. x ! x+1 

6 

       0 0 0 

13 

M16. < ! > √     √  2 0 0  M14. x ! x-1        0 0 0 
M17. < ! >= √     √  2 0 0  M15. z ! z+1        0 0 0 
M18. < ! == √     √  2 0 0  M16. z ! z-1        0 0 0 
M19. < ! !=        0 0 0             

M20. < ! true        0 0 0             
M21. < ! false √     √  2 0 0             

m = x;  7 
          

13 
 M17. y ! y+1 

7 √     √  1 1 0.71 
1 

           M18. y ! y-1 √     √  1 1 0.71 
else  8           13   8           13 

if ( x > y ) 

M22. < ! >= 

9 

       0 0 0 

2 

 M19. x ! x+1 

9 

       0 0 0 

13 

M23. < ! <  √ √  √   1 2 0.82  M20. x ! x-1   √     1 0 0 
M24. < ! <=  √ √  √   1 2 0.82  M21. y ! y+1   √     1 0 0 
M25. < ! ==   √  √   1 1 0.5  M22. y ! y-1        0 0 0 
M26. < ! !=  √      0 1 0.71             

M27. < ! true  √      0 1 0.71             
M28. < ! false   √  √   1 1 0.5             

m = y;  10 
          

13 
 M23. y ! y+1 

10 
  √     1 0 0 

13 
           M24. y ! y-1   √     1 0 0 

else if ( x > z ) 

M29. < ! >= 

11 

       0 0 0 

3 

 M25. x ! x+1 

11 

       0 0 0 

13 

M30. < ! <  √      0 1 0.71  M26. x ! x-1        0 0 0 
M31. < ! <=  √      0 1 0.71  M27. z ! z+1        0 0 0 
M32. < ! ==        0 0 0  M28. z ! z-1        0 0 0 
M33. < ! !=  √      0 1 0.71             

M34. < ! true  √      0 1 0.71             
M35. < ! false        0 0 0             

m = x;  12           13  M29. x ! x+1 12        0 0 0 13            M30. x ! x-1        0 0 0 

return m;  13 
          

13 
 M31. m ! m+1 

13 √ √ √ √ √ √  5 1 0.41 
2 

           M32. m ! m-1 √ √ √ √ √ √  5 1 0.41 
}   P F P P F P         P P P P P F      



 

A. Experimental Objectives 

The present study seeks to empirically investigate the following research questions (RQs): 

• RQ1: How effective is the mutation-based fault localization approach? Is this approach more effective in assisting fault 

localization process than the statement-based one?  

• RQ2: What is the impact of test adequacy criteria on the effectiveness of mutation and statement based fault localization 

techniques? Comment, in this study Block, Branch and mutation adequate test suites were used. 

• RQ3: How is the effectiveness of mutation-based fault localization technique affected by using randomly selected mutant 

sets? Comment, in this study random sampling of 10%, 20%, 30%, 40% and 50% mutant sets were used. 

• RQ4: How effective is the mutation-based fault localization approach when it is applied on large software subjects?  

Taking into account RQ1 and showing that the effectiveness of fault localization techniques can be improved will benefit 

researchers in seeking ways to reduce the program debugging expenses. Answering RQ2 is important in order to show whether 

the use of testing adequacy criteria is practical for the fault localization process. This answer will indicate whether 

programmers should put effort on localizing faults directly after experiencing a failure or if they should produce some 

additional tests first. Additionally, since mutation based fault localization relies on the killed mutants, it is expected to be less 

effective when these tests are incapable of killing many mutants. Therefore, RQ2 will give an answer whether mutation-based 

localization approach is worthwhile when employing a basic testing approach such as block or branch coverage. Research 

questions RQ3 forms an attempts towards dealing with the computational demands of mutation analysis. By facilitating only 

few mutants, a practical answer to the computational cost of the method can be given. An investigation on the localization 

ability of these attempts is carried out. Finally, RQ4 explores the scalability of the mutation-based approach on larger 

programs. By showing that Metallaxis works well on large programs, the practicality of the approach is established.  

B. Subject Programs, faults and test suite pools 
The conducted experiment employed two sets of benchmark programs. The first set is composed of relatively small 

subjects and it was used in order to answer the RQs 1-3. The second one is composed of large subjects and it was used for 

exploring the scalability of the mutation-based approach (RQ4).  

The first benchmark set is known as the Siemens suite and has been widely used in mutation testing and fault localization 

experiments e.g. [4], [8], [11], [12], [14], [27]. In the rest of the paper, this program set is referred as the Siemens suite or as the 

benchmark set 1. The suite is composed of seven programs written in C and is accompanied by test suite pools and a set of 132 

faults. These programs were chosen due to their widespread use in the literature on the one hand and their availability along 

with their accompanied tests and fault sets from the Software-artifact Infrastructure Repository (SIR) at the University of 

Nebraska-Lincoln [28] on the other. During the experimentation, one fault was excluded from the considered set, since it did 

not result in any execution failure, a mandatory requirement of the fault localization methods. This action was also taken on 

other similar studies e.g. [8], [11], [27]. Additionally, to validate further the proposed approach, the present study employs 

another 100 faulty versions per subject program. These faulty program versions are produced by randomly selecting some 

mutants and are denoted as mutant-faults. Mutant-faults as alternatives to faults in examining the effectiveness of fault 



 

localization techniques were also used in the study of Baudry et al. [21]. The validity of this practice was later investigated by 

Ali et al. [15] and found “no evidence to suggest that the use of mutants for this purpose is invalid”.  

The program suite was initially employed in an empirical study by Hutchins et al. [29] for comparing various structural 

testing criteria. Later, it was extended and adapted appropriately from other researchers to support their experiments [30]. 

According to Hutchins et al. [29], the accompanied set of faults was manually produced by various researchers with the 

intention of introducing realistic faults. The accompanied test suites were produced based on a combination of both black and 

white box approaches such as random, category-partition, statements, decisions and definition-use pairs, with the aim of 

producing a comprehensive and suitable for empirical studies test suite. More details about the construction of the test suite 

pools can be found in Harder et al. [30]. 

The second set of benchmarks, referred to as benchmark set 2, is composed of four programs named as the Gzip, Space, 

Grep and Flex. These programs have also been used in fault localization studies like [31] and [32] and can be obtained from 

the SIR repository. Gzip functions as a utility for compressing files, Space as an interpreter for an array definition language 

(ADL), Grep as a utility for text searching and Flex as a lexical analyzer. For the present study the faulty versions of the Space 

(all versions), Gzip (v1), Flex (v2) and Grep (v3) programs were used. Unfortunately, not all the faults were detected by any 

test from their accompanied test suites when executed in the experimental environment. This is also reported by other studies 

using the same programs like [31] and [32]. Therefore, Gzip has 7, Grep has 8, Flex 13, and Space 34 faults that can be 

detected. For the case of Space among the 34 detected faults, 12 of them were chosen among those handled by Gcov i.e. some 

faults resulted in program failures which prevent Gcov to collect their traces. Thus, a total number of 40 faults were 

considered. Table II records details about the program lines of code (LOC), the size of the test pools, the number of faults and 

the number of mutant-faults per program for both of the utilized benchmark sets.   

TABLE II.  DESCRIPTION OF THE SELECTED SUBJECTS 

Benchmark Set Program Name LOC whole Test Suite Number of Faults Number of Mutant-Faults 

Set 1 

Schedule 296 2,650 9 100 
Schedule2 263 2,710 10 100 

Tcas 137 1,608 41 100 
Totinfo 281 1,052 23 100 

Printtokens 343 4,130 7 100 
Printtokens2 355 4,115 10 100 

Replace 513 5,542 32 100 

Set 2 

Gzip 6,576 214 16 - 
Space 9,564 13,585 38 - 
Grep 13,341 809 18 - 
Flex 14,120 567 20 - 

 

C. Utilized tools and implementation details  
The present study used the Proteum1 mutation testing system, by Maldonado et al. [33] in order to support the mutation 

analysis process. Proteum employs mutant operators specially designed for the unit test of C programs, implemented as 

suggested by the Agrawal et al. [34] study.  To gather the required tracing information, a prototype has been implemented on 

                                                             
1 Proteum/IM 2.0 was used by utilizing only the unit level operators. 



 

top of the Wet [35] framework in the same lines utilized in [14]. Wet works at machine code instructions’ granularity and thus, 

it collects the required information in terms of instruction instances. The Instruction terms are mapped to their respective 

program statements, which are identified based on their line numbers. The prototype implements both the statement-based and 

mutation-based approaches utilizing the Ochiai formula (given in Table I). Unfortunately, the use of Wet framework restricts 

the scalability of the proposed approach. To accomplish the scalability study, RQ4, executable statements and traces were 

collected using Gcov2. Gcov is a widely used profiler, also employed in some fault localization studies like [31]. 

The ATAC [36] coverage tool was used for the selection of the Block and Branch test sets from the accompanied test pools 

and Proteum [33] for the mutation ones. These tools have also been used in software testing experiments e.g. [1], [17], [26]. 

Details about the test selection process are given in the following subsection. 

D. Experimental Regime 
The following experiment was set to address the stated RQs.  

Regarding RQs 1-3, all the Siemens suite subjects, benchmark set 1, (including the faulty ones) were executed with all the 

available test cases in order to record the passing and failing executions of the whole test suite. Then, execution traces of all 

available test cases per subject program were collected. These traces were used in order to produce the statement-based fault 

localization results. The study of RQ1 and RQ3 was based on these results.  

With respect to the mutation-based approach (examined by RQ1), the entire set of utilized mutants were generated, 

compiled and executed against the whole provided test suite pool. This process determined the killed and live mutants per test 

case, information used by the proposed approach in order to compute mutant suspiciousness and produce mutation-based fault 

localization results. Mutant sampling approach (investigated by RQ3) was performed by selecting and generating at random, 

only a percentage of the whole set of mutants. Five different sampling ratios were studied (10%, 20%, 30%, 40% and 50%). In 

order to avoid any bias from the sampling process, 10 independent sets of mutants, per utilized ratio, were sampled. One of the 

aims of this study, regarding RQ2, is to investigate the ability of the examined fault localization methods in localizing a 

detected fault when using adequate (with respect to testing criterion) test sets. Thus, the utilized test sets should expose the 

considered fault and being adequate3 at the same time. This study considers block, branch and mutation testing criteria. In 

order to avoid any side effects through the random selection of test cases, 10 independent test sets were constructed per studied 

fault. The test sets were constructed from the available test suite pool using the procedure of Fig. 2. In this figure, the term 

score refers to the utilized criterion coverage, such as the block, or branch or the mutation score for the case of mutation. 

Additionally, 10 test sets per utilized fault were constructed based on random selection from the available test pool. Each one 

of these tests was able to expose its respective fault. These sets, denoted as Random, were of the same size with the mutation 

ones and used to determine whether they have similar effects on fault localization with the mutation ones.  

Regarding the scalability of the method, RQ4, the four larger programs, benchmark set 2, were used. For each of the 40 

faults considered, a maximum of ten test cases, five failing and five passing, were employed. This provided a good mix of 

passing and failed test cases. To this end, per examined fault, five failing test cases were randomly sampled. In some cases less 

than five failing tests exists. In these cases, all the available failing test cases were used. Similarly, five passing tests were 

randomly sampled from the respective test suite pools. In order to provide a challenging situation for the fault localization 

                                                             
2 Gcov is a GNU code coverage tool part of GCC 
3 A test set is considered to be adequate if it achieves the same level of coverage with the whole suite. 



 

approach, the selection of the passing test cases was performed by sampling among the cases that execute the faulty statement 

and are passing. In the lack of five such cases the sample was extended, up to five tests, by randomly choosing passing tests. 

 

 
Input: Test suite pool score PoolScore of the aimed criterion  
Output: Adequate test set with respect to the aimed criterion  
Set CurrSet = [ ]; 
SetScore = 0; 
select one test case (TC) able to expose the considered fault and put it in the CurrSet. The 
selection was performed at random among the available tests that expose the considered fault; 
while ( SetScore < PoolScore ){ 

add to CurrSet a randomly selected test case (TC) from the pool 
Execute the CurrSet and determine its score (CurrScore) level 
if ( SetScore < CurrScore  ) 

 SetScore = CurrScore; 
else 

 remove TC from CurrSet;  
} 
return CurrSet; 

Figure 2.  Test selection Procedure  

Only the executable statements were ranked in the present experiment due to the function of the developed tool (see 

Section IV.C). Additionally, to avoid repeating the mutation analysis process for all considered faults the localization process 

was performed on the original (“correct”) program versions by treating the “correct” program as being faulty one and the faulty 

as being “correct”. This restriction was applied only on the programs of the benchmark set 1 in order to complete the 

experiment with reasonable resources (vast resources are typically needed by mutation analysis). Thus, it helped not to repeat 

the process for each considered fault (the number of faults considered by the benchmark set 1). It is noted that on the 

benchmark set 2 the fault localization process was performed on the faulty programs.   

Further, in this experiment, statements with the same suspiciousness value are ranked together at the upper of their ranks. 

For instance, statements 8 and 9 of the Fig. 1 have the highest suspiciousness value (0.71), for fault 1, but they are both 

assigned with a rank of 2 (instead of ranks 1 and 2). This is a typical approach in the literature in this kind of experiments e.g. 

[8], [11], [27]. 

Comparing the localization methods between the different programs, a score for diagnosis effectiveness should be adopted. 

The most commonly used score by the literature in such cases is the one proposed by Jones et al. [11] in evaluating the 

Tarantula fault localization system. The “score” measures the percentage of executed program statements that need not to be 

checked if statements are examined by the programmer in a decreasing suspiciousness order. The use of the “score” is based 

on the assumption that the programmer will inspect each program statement until finding the faulty one based on the order 

specified by the fault localization tool. Along these lines the “score” value is calculated based on the following formula: 

 

 

 

"𝑠𝑐𝑜𝑟𝑒" =
𝑡𝑜𝑡𝑎𝑙  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑  𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 − 𝑟𝑎𝑛𝑘

𝑡𝑜𝑡𝑎𝑙  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑  𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
	
  



 

In the above formula, rank indicates the position of the faulty statement in the ranked list produced by the fault localization 

method. Greater “score” values suggest that less program code needs inspection by the programmer in order to identify the 

sought fault. Similarly, the term cost refers to the ratio of a given rank of a faulty statement to the total number of executed 

statements. The effectiveness comparisons between the studied methods were performed using the Mann-Whitney ‘U’ test. 

Mann-Whitney ‘U’ test examines whether one of the compared approaches tends to have higher values than the other one and 

it is a non-parametric statistical hypothesis test. Thus, it does not make any assumptions about the underlying populations.  

Lastly, some additional concerns were made about the utilized faults and their localization. To avoid any biased introduced 

by the mutant-faults and the mutation based fault localization approach, the mutant-faults were removed from the considered 

mutant set utilized by the localization method. This practice is opposed to the mutation based fault localization since it 

decreases the number of mutants that it is uses and hence its effectiveness. In cases of faults that involve omitted statements, it 

was assumed that these faults are found if the programmer inspects a statement next to the missing statement. Otherwise, there 

will never be such a mutated or executed statement. Similar situation is experienced in the cases of faults occurring on non-

executable statements such as variable initializations or constant assignment statements. In such cases, the faulty statements 

will not result in the suspiciousness list (for both of the utilized approaches). Hence, it was assumed that these faults will be 

located whenever the programmer inspects a statement using the constant or the faulty defined variable.  

Conclusively, to address RQ1 the “score” measures according both the mutation-based and statement-based methods were 

obtained and compared. This was accomplished with the use of the whole test suite for all the studied faults and mutant-faults. 

To address RQ2, the effectiveness of the fault localization methods was analyzed based on the selected set of test cases. The 

experiment considers in total 1310 test sets (131 faults × 10 test sets) and 7,000 (700 mutant-faults × 10 test sets) test sets per 

utilized testing criterion. To address RQ3, results were derived based on the 50 randomly selected mutant sets (10 sets per 

sampling ratio). For each one of these mutant sets, its respective “score” values were evaluated by using the whole test suite 

for all the studied faults and mutant-faults. Finally, considering RQ4, the effectiveness values, on the benchmark set 2, is 

reported and analyzed.  

V. EXPERIMENTAL RESULTS 
This section reports results on performing statement and mutation based fault localization methods according to the process 

specified in the previous section.  

A. Effectiveness Evaluation – (RQ1) 
The effectiveness results of mutation and statement based approaches, with respect to RQ1, are summarized in the graphs 

of Fig. 3. The obtained results are categorized based on the assigned “scores”, practice also used in [14],  [15] and [27], in the 

following categories: 99-100%, 90-99%, 80-90%, 70-80%, 60-70%, 50-60%, 40-50%, 30-40%, 20-30%, 10-20%, 0-10%. 

Tables III and IV in the columns “StLoc whole-suite” and “MutLoc whole-suite” record the he percentage of faults (Table III) 

and mutant-faults (Table IV) found by the statement-based and mutation-based approaches per “score” range respectively. 

These results are cumulatively depicted in the graphs of Fig. 3. In these plots, y – axis records the percentage faults that are 

effectively localized while the x-axis the percentage ranges of statements that does not needing inspection by the programmer. 

It is noted that method curves (data points) appearing higher in the graphs reflect less effort by the programmer and thus, a 

better fault localization effectiveness. For example a programmer is able to effectively localize approximately 0.90 of the total 

faults when using the mutation-based and only 0.44 with statement-based approaches, by inspecting only a 10% of the 



 

programs’ code4. With respect to faults, mutation-based approach achieved to effectively localize the 0.41, 0.89 and 0.93 of 

faults in the 99%, 90% 80% categories while the statement based one 0.11, 0.44 and 0.60 respectively. With respect to mutant-

faults, mutation-based approach achieved to effectively localize the 0.30, 0.88 and 0.94 of mutant-faults while the statement 

based one 0.07, 0.50 and 0.64 respectively. These results indicate that the mutation-based approach outperforms the statement-

based one. This difference is of practical significance: the average “score” (average “score” values of all the examined faults) 

of the statement-based approach is equal to 77% while the mutation-based one 95% with respect to faults. Regarding mutant-

faults these values are 79% and 95% for the statement-based and the mutation-based methods respectively. 

Fig. 4 depicts the fault localization cost, i.e. the percentage of statements that need inspection by the programmer in order 

to effectively localize the sought faults, per fault and mutant-fault. It can be observed, from this graph, that the cost for 

localizing faults with mutation-based approach is lower in most cases. Additionally, the difference is considerable for most 

cases. Regarding the sample of the 131 faults, mutation-based approach performed better in the 108 cases, worst in 17 cases 

and had equal effectiveness in 6 cases. An examination of these 17 cases reveals that in 9 cases this difference was less than 

1%. Only in 4 cases the statement-based approach was better by more than 5% but no more than 11%. Considering the sample 

of 700 mutant-faults, mutation-based approach performed better in the 545 cases, worst in 113 cases and had equal 

effectiveness in 42 cases. These results suggest that whenever the statement-based approach achieves a better effectiveness this 

difference is not so important.  

 

  
Figure 3.  Effectiveness comparison of the mutation-based and statement-based fault localization methods using the 

whole test suite 

 

                                                             
4 The results consider only the executable statements not the whole program ones. 
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Figure 4.  Fault localization cost per utilized fault and mutant 

B. Testing criteria and fault localization – (RQ2) 
Fault localization techniques are dependent on both the employed elements and the utilized test cases. Consequently, it 

seems natural to expect that using testing criteria requiring more test cases (such as mutation testing) will assist the localization 

of faults. However, since the mutation-based fault localization method relies on the killed mutants, it is expected (intuitively) 

to experience a low effectiveness when many mutants are not killed by the employed tests. Thus, low quality test suites such as 

those coming from block and branch testing should greatly affect the effectiveness of the localization method.  

The results concerning this issue, RQ2, are recorded in Tables III, IV and Fig. 5. Tables III and IV record the ratio of the 

effectively localized faults at various considered “score” ranges when using the Block (Block-suite), Branch (Branch-suite), 

Mutation (Mut-suite) and Random (Rand-suite) test suites by employing both statement (StLoc) and mutation (MutLoc) based 

fault localization methods. Similarly Table V records the total average score values for the examined methods and test suites. 

A cumulatively view of these data is plotted in the graphs of Fig. 5. Additionally, Tables III and IV record the obtained results 

for the whole suite (whole-suite). These results confirm the intuition that the use of ‘more effective at revealing faults’ testing 

criteria helps also the localization process. Both localization approaches experience significantly better score values when 

utilizing test suites adequate with respect to mutation than those based on Random, branch or block criteria. This situation 

holds in both the examined cases, regarding mutant-faults and faults.  

 

TABLE III.  PERCENTAGE OF LOCATED FAULTS W.R.T SCORE RANGES FOR THE BLOCK, BRANCH, RANDOM, 
MUTATION AND THE WHOLE TEST SUITES. 

Score StLoc 
Block-suite 

StLoc 
Branch-suite 

StLoc 
Mut-suite 

StLoc 
Rand-suite 

StLoc 
whole-suite 

MutLoc 
Block-suite 

MutLoc 
Branch-suite 

MutLoc 
Mut-suite 

MutLoc 
Rand-suite 

MutLoc 
whole-suite 

99-100% 4.05% 4.89% 9.31% 8.47% 10.69% 4.58% 6.64% 31.98% 26.34% 40.46% 
90-99% 25.50% 28.32% 34.96% 31.15% 32.82% 51.30% 54.96% 57.40% 56.41% 48.85% 
80-90% 10.31% 12.14% 9.31% 11.68% 16.03% 19.85% 17.56% 4.35% 8.93% 3.82% 
70-80% 5.95% 6.26% 6.26% 6.11% 6.87% 7.48% 7.71% 1.91% 2.52% 3.82% 
60-70% 8.93% 9.77% 9.47% 9.85% 8.40% 7.25% 7.18% 1.07% 2.14% 0.00% 
50-60% 13.59% 14.58% 10.38% 11.07% 9.92% 6.03% 2.98% 1.68% 1.91% 2.29% 
40-50% 7.02% 4.66% 2.98% 3.89% 4.58% 1.68% 1.91% 0.84% 0.76% 0.00% 
30-40% 2.67% 2.06% 2.21% 1.91% 0.76% 1.83% 0.92% 0.76% 0.99% 0.76% 
20-30% 9.62% 6.03% 6.72% 5.57% 3.05% 0.00% 0.15% 0.00% 0.00% 0.00% 
10-20% 9.92% 8.70% 7.25% 7.56% 6.87% 0.00% 0.00% 0.00% 0.00% 0.00% 
0-10% 2.44% 2.60% 1.15% 2.75% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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TABLE IV.  PERCENTAGE OF LOCATED MUTANT-FAULTS W.R.T SCORE RANGES FOR THE BLOCK, BRANCH, RANDOM, 
MUTATION AND THE WHOLE TEST SUITES. 

Score StLoc 
Block-suite 

StLoc 
Branch-suite 

StLoc 
Mut-suite 

StLoc 
Rand-suite 

StLoc 
whole-suite 

MutLoc 
Block-suite 

MutLoc 
Branch-suite 

MutLoc 
Mut-suite 

MutLoc 
Rand-suite 

MutLoc 
whole-suite 

99-100% 2.11% 2.37% 5.21% 4.30% 7.14% 2.86% 3.99% 20.73% 15.50% 30.14% 
90-99% 23.56% 24.43% 35.30% 33.23% 42.71% 37.03% 42.63% 59.03% 60.71% 57.71% 
80-90% 10.39% 13.01% 10.56% 13.31% 14.14% 15.40% 17.63% 5.40% 8.10% 6.57% 
70-80% 6.29% 7.33% 7.86% 9.51% 9.57% 15.53% 12.80% 6.66% 6.64% 1.57% 
60-70% 12.57% 13.53% 11.76% 10.17% 4.57% 13.29% 13.27% 5.86% 6.80% 3.43% 
50-60% 14.27% 12.49% 8.11% 9.83% 7.57% 10.57% 8.41% 2.33% 2.24% 0.43% 
40-50% 10.19% 8.79% 6.80% 3.63% 4.43% 4.07% 1.27% 0.00% 0.00% 0.14% 
30-40% 5.11% 5.39% 3.54% 5.47% 2.57% 1.26% 0.00% 0.00% 0.00% 0.00% 
20-30% 7.61% 7.11% 6.53% 4.87% 4.86% 0.00% 0.00% 0.00% 0.00% 0.00% 
10-20% 5.97% 3.81% 2.59% 3.33% 1.86% 0.00% 0.00% 0.00% 0.00% 0.00% 
0-10% 1.93% 1.74% 1.74% 2.34% 0.57% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

The most interesting finding of these results is that mutation-based localization approach out-performs the statement-based 

one in all cases, even when using block adequate test suites. Further, it was found that this difference is statistically significant5 

in all cases. Moreover, mutation-based approach is more effective with block suites than the statement-based one with the 

whole suite. Recall that the whole suite is a relatively huge and comprehensive one, see section IV.B for details. Another 

interesting finding was the noticeable improvement on the fault localization approaches effectiveness, especially that of the 

mutation-based one, when mutation adequate test suites are employed. The question that it is raised here is whether this 

improvement is attributed to the size of the utilized test sets and not to their adequacy. To examine this issue, the average size 

of the selected test sets per considered criterion was computed and presented in Table VII. From this table, it can be seen that 

there are considerably more tests with respect to mutation than with respect to Branch or Block. However, the results of Tables 

III, IV and Fig. 5, reveal that Mutation test sets have an advantage over the Random ones. Recall that Random test sets are of 

the same average size with the mutation ones. Further, this advantage is of statistical significance suggesting that mutation test 

suites are suitable for assisting fault localization. Considering whether mutation adequate test suites can be improved to assist 

further the fault localization process a comparison between the mutation test sets and the whole test suite was performed. The 

results of these hypothesis tests are recorded in Table VI and suggest that there is a statistical significance difference in the 

effectiveness of the mutation and the whole test sets. Therefore, there is room for improvement in the methods’ effectiveness 

by producing additional test cases. The question that remains is how could that be achieved.  

TABLE V.  AVERAGE SCORE VALUES OF THE FAULTS AND MUTANT-FAULTS OF THE STATEMENT-BASED AND 
MUTATION-BASED APPRAOCHES W.R.T THE BLOCK, BRANCH, RANDOM, MUTATION AND THE WHOLE TEST SUITES. 

 StLoc 
Block-suite 

StLoc 
Branch-suite 

StLoc 
Mut-suite 

StLoc 
Rand-suite 

StLoc 
whole-suite 

MutLoc 
Block-suite 

MutLoc 
Branch-suite 

MutLoc 
Mut-suite 

MutLoc 
Rand-suite 

MutLoc 
whole-suite 

Faults 63.34% 67.52% 72.55% 70.70% 76.61% 85.41% 87.38% 94.80% 93.31% 95.42% 
Mutant-Faults 63.64% 66.64% 72.72% 72.15% 78.98% 79.79% 83.03% 92.46% 91.39% 95.26% 

TABLE VI.  STATISTICAL COMPARISON (P-VALUES) OF MUTATION, RANDOM AND WHOLE TEST SUITES  

 MutLoc(Mut-suite) VS 
MutLoc(Rand-suite) 

StLoc(Mut-suite) VS 
StLoc(Rand-suite) 

MutLoc(Mut-suite) VS 
MutLoc(whole-suite) 

StLoc(Mut-suite) VS 
StLoc(whole -suite) 

Faults 0.0000 0.0143 0.0465 0.2330 
Mutant-Faults 0.0000 0.0061 0.0000 0.0000 

 

                                                             
5 Mann-Whitney U test was used with statistical significance difference: p < 0.0001 



 

 
Figure 5.  Effectiveness comparison of the mutation-based (MutLoc) and statement-based (StLoc) fault localization 

methods by utilizing Block, Branch and Mutation and Random test sets 

TABLE VII.  AVERAGE TEST SUITE SIZE 

Program Name Block Tests Branch Tests Mutation Tests 

Schedule 4.54 7.33 28.91 
Schedule2 5.66 8.24 35.23 

Tcas 5.46 9.34 74.65 
Totinfo 6.34 6.66 29.88 

Printtokens 9.57 10.54 33.09 
Printtokens2 8.62 11.02 28.17 

Replace 13.98 18.50 145.92 

C. Mutant sampling evaluation – (RQ3) 
Mutation analysis has been identified as a costly technique. To overcome its difficulties, various mutation alternative 

techniques have been proposed [24], [17]. The present study examines the use of mutant sampling in fault localization. Fig. 6 

presents the effectiveness results of the mutant sampling technique with sampling ratios 10%, 20%, 30% 40% and 50%. For 

evaluation reasons Fig. 6 also plots the results of the whole utilized mutant set (denoted as 100%) and the statement-based 

ones. The graphs of Fig. 6 suggest that all the examined ratios experience loss in their effectiveness compared to the whole 

mutant set. In the case of 10% this loss is more apparent than the rest utilized approaches, which have a similar effectiveness.  

By statistically comparing, Table VIII, the differences between the various sampling ratios it was found that only the 10% 

and 20% sampling ratios have statistically significant differences with the whole set of mutants. However, the 10% mutant 

sampling approach outperforms the statement-based one with great statistical significance (p-value <0.0001 with respect to 

both faults and mutant-faults). On average 10% mutant sampling achieved an effectiveness score of approximately 0.89 of the 

introduced faults while the statement-based one only the 0.77 of them. Considering mutant-faults, on average 0.89 and 0.79 

score values were obtained by 10% mutant sampling and statement-based approaches respectively. In view of this, it can argue 

that mutation alternative methods can be effectively utilized to assist the fault localization process.  

TABLE VIII.  STATISTICAL COMPARISON (P-VALUES) OF MUTATION AND MUTANT SAMPLING  

 100% VS 10% 100% VS 20% 100% VS 30% 100% VS 40% 100% VS 50% 

Faults 0.0002 0.0347 0.2308 0.5701 0.5429 
Mutant-Faults 0.0000 0.0071 0.2159 0.4721 0.7989 
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Figure 6.  Mutat sampling approaches in assisting fault localization   

D. Scalability of the approach – (RQ4) 
This section explores the ability of the mutation-based approach to localize faults when it is applied on large subjects as 

stated by RQ4. To this end, the mutation and statement based approaches were applied on the benchmark programs of set 2. 

The cumulative results of these approaches are summarized in the graph of Fig. 7. Following the same lines as in the 

previously presented results, the y – axis record the percentage faults that are effectively localized. The x-axis records the 

percentage ranges of statements that do not need inspection by the programmer. Thus, the mutation-based approach achieved 

to effectively localize the 0.25, 0.80 and 0.98 of faults in the 99%, 90% 80% categories while the statement-based one 0.08, 

0.35 and 0.43 respectively. These results indicate that the mutation-based approach outperforms the statement-based one. This 

difference is of practical significance: the average “score” (average “score” values of all the examined faults) of the statement-

based approach is equal to 79% while the mutation-based one 95%.  

The most interesting finding of the conducted experiment is that the mutation-based approach is capable of localizing faults 

on large programs without being affected by their size. Although there is no fair way to compare the results of the two sets, due 

to the differences in the construction of the test suites, an inspection of the figures 3, 5 and 7 reveal the effectiveness 

similarities between the two program sets. The approaches have a similar trend on both sets and clearly show the superiority of 

the mutation-based one. The similarities are more evident by considering the average “score” values of the sets. Thus, 

considering the set 1, Table V, results in values within the range from 85% to 95% for the various considered test suites while 

the set 2 in 95%. Additionally, in section V.B it was shown that there is a relation between test suite size and the fault 

localization effectiveness. Thus, a higher number of test cases results in a higher effectiveness on the fault localization. Since 

the set 2 contains much less test cases than the set 1 and the fault localization effectiveness of the mutation-based approach is 

almost the same in both sets, this is an indication that the mutation-based approach is more effective when applied on larger 

programs. In any case, it can be concluded that the mutation-based approach behaves similarly on both program sets and 

significantly better than the statement-based one.  

Figure 8 forms a box-plot representation of the effectiveness of the examined approaches. The plot contains four boxes per 

approach, one for each considered program. The y-axis records the fault localization “score”. By comparing the two 

approaches based on these results, it can be concluded that the mutation-based approach is clearly better than the statement-

based one in all the examined programs. It is not only more effective, but much more stable as well. A similar situation appears 

on all the studied subjects. Finally, by inspecting Fig. 8 it becomes evident that whenever the mutation method is more 
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effective, this indicates a huge difference. In the opposite situation i.e. when the statement-based approach a better, the 

difference of the two methods is not important. 

 

Figure 7.  Effectiveness comparison of the mutation-based and statement-based fault localization methods for the 
benchmark program set 2.  

 

Figure 8.  Effectiveness comparison of the mutation-based and statement-based fault localization methods for the 
benchmark program set 2.  

VI. DISCUSSION 
This paper presents the use of mutation analysis in assisting program debugging. Its key insight is the use of mutants for 

locating program faults. Generally, Metallaxis makes the assumption that mutants and faults located on the same program 

statement exhibit a similar behavior. Evidence in support of this assumption was given by the reported experiments where 

mutant-faults were effectively localized using other mutants located on the same statements. 

Generally, the provided empirical evidence strongly supports the conclusion that Metallaxis is able to locate program faults 

effectively. In fact, the results suggest that it significantly out-performs fault localization based on statement coverage. This 

difference is mainly attributed to the fact that when a fault is executed, it is not always manifested to a failure. Since coverage 

based fault localization techniques try to find program statements that correlate with failures, they fail to identify faults that are 

frequently executed but not exposed. Mutants have the advantage of handling this case effectively. This is attributed to the so-

called propagation requirement, i.e. in order to be killed; discrepancies introduced by mutants must impact the programs’ 

output. In practice, this makes a big difference since it does not treat each program statement equally. It actually, treats 
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program statements according to their sensitivity to impact the programs’ output. Based on this requirement, mutants are able 

to simulate well the faults’ behavior [2]. The same idea applies on the automated oracle generation, as proposed by Fraser and 

Zeller [37], where important oracles are considered only those that detect-kill mutants. Here, it must be noted that easy to kill 

mutants, i.e. killed by the most test cases that executed them, form substitutes to the coverage measures. Thus, the mutation 

approach is also capable of locating faults that are easy to expose when they are executed. Metallaxis has also some additional 

advantages over the statement-based approaches. This is its ability to captures the data flow information and therefore 

differentiate between program statements belonging on the same basic blocks. Hence, the approach is not dependent on the 

program structure, which usually results in assigning the same statement rankings (in the case of the statement based approach) 

to many statements. 

Fault localization is performed after the testing process and thus, the proposed approach has many opportunities to reuse 

information from the testing process. Conversely, if mutation was employed during the testing phase, then most and perhaps all 

computationally expensive analysis parts (mutant executions) will have already been performed. For example, in case of the 

higher order mutation, as proposed by Jia and Harman [16], or in the case of automated oracle generation, as proposed by 

Fraser and Zeller [37], or in case of the equivalent mutant isolation, as proposed by Kintis et.al [38], all required mutant 

executions will have been performed before the debugging process. Thus, the fault localization expenses will be negligible. 

Further, it should be mentioned that equivalent mutants do not pose any problem to the localization approach. Since these 

mutants are not killed, they are ignored by Ochiai calculation formula. Therefore, they can safely be discarded from the 

employed mutant set along with those killable mutants that were not killed by the utilized test cases. These actions are also 

performed at the testing phase.  

Finally, it is noted that the efficient introduction and execution of the sough mutants is a matter not addressed by the 

present paper and has been left open for future research. A possible solution could be the use of an incremental process. Thus, 

some mutants could be selected either at random or based on some of their characteristics i.e. their kind or their suspiciousness 

value as computed by lightweight fault localization approaches. Then, their suspiciousness can be calculated and report the 

user the statements with score 1. Thus, the programmer can start the debugging process before the whole process finished. In 

case the fault is not found then the process could continue with other mutants. 

VII. THREATS TO VALIDITY 
Considering the results reported in the present paper, some threats to their validity have been identified.  

Regarding the internal validity i.e. unknown factors influencing the reported results, threats can be attributed on potential 

bugs in the utilized implementation. Specifically, the generation, compilation, execution and the comparison of the programs’ 

outputs in the experimental environment might have influenced the results. Errors affecting the generation, compilation and 

executions of mutants may result in mutants that do not compile, or run with tests and thus, being ignored. Errors affecting the 

execution and the programs’ output comparison may influence the decision of whether a mutant is being killed or not. To 

reduce these threats, several manual checks have been undertaken on all the utilized subjects. Additionally, the output 

comparison was performed on the same way in both faults and mutants enabling a common basis. Furthermore, Proteum has 

been widely used in mutation testing experiments, thus, giving confidence on the reported results. 

The utilized operators give rise to other possible threats. Different implementations of these operators or using of others 

may result in different behavior. However, the present study employed a wide range of mutant operators, refer to [34] for 



 

further details, which where developed for testing and independent to the present study. Another threat that can be identified is 

regarding the used artificial test suites. Since most of the test suites were artificially produced they might behave differently 

than those produced by humans. Yet, there is no evidence supporting such a claim. However, the researchers, created these 

tests independent to the present study, to support their experimentation [28], [29] and [30]. Further, these tests have been 

extensively used in literature. To reduce this threat, the present study considers RQ2, where a wide range of different test cases 

per studied program was used.  

Finally, performing fault localization on the “correct” and not on the faulty program may also influence the effectiveness of 

the approach. However, this practice was applied on all examined fault localization methods, so its effects imply on all the 

methods. Additionally, since it was not applied on the second benchmark set and its results are similar to the first set, it is 

believed that this threat is limited. 

Regarding the external validity of the study i.e. whether the reported results generalize, a relative threat can be recognized. 

The empirical study consists of 11 programs and their accompanied faults, hence it cannot be claimed that the results also 

apply on other programs. Different subjects, faults and types of faults such as concurrency bugs, may have an impact on the 

effectiveness of Metallaxis. Considering the appropriateness of using mutant-faults, it is noted that in the study of Ali et al. 

[15] found “no evidence to suggest that the use of mutants for this purpose is invalid”. Further studies are in need to reduce this 

validity threat. However, the Siemens suite form industrial programs widely used in this kind of experiments. Also, Space, 

Gzip, Grep and Flex programs are real word programs showing that the proposed approach is effective.  

Considering the construct validity i.e. threats attributed to the employed evaluation metrics, can be identified. Thus, the 

experimental evaluation based on the “Score” metric may not be appropriate. Parin and Orso [39] conducted a small case study 

investigating this issue. Their results suggest that programmers have difficulties in using the provided rankings. This metric has 

been employed due to its extensive use in literature and as a way to compare the examined approaches. Still, it is difficult to 

determine whether it is practically useful. Further studies are required to determine the appropriateness of this metric.  

VIII. RELATED WORK 
There are a relatively large number of fault localization approaches appearing in the literature. Here a brief discussion on 

the most representative of them is given.  

As it has already been described, Jones et al. [10] developed the Tarantula method and Abreu et al. [9] introduced the 

Ochiai formula. Both these advances were utilized by the proposed mutation-approach in order to include mutants. Additional 

approaches, employing different program elements such as program branches and definition use pairs are the ones of Marsi 

[13], Santelices et al. [8] and Yu et al.  [14]. Marsi [13] concluded that branches and definition use pairs are more effective 

than statements. However, Santelices [8] showed that there is no approach that performs better in all cases, hence, proposing a 

combination of methods. Based on their results, Yu et al. [14] proposed a different combination approach. Similarly, Wong et 

al. [7] proposed a set of coverage-based heuristics able to improve the effectiveness of Tarantula. In another approach, Abreu 

et al. [40] suggested using Bayesian reasoning in assigning suspiciousness values to the program spectra. This approach uses a 

probabilistic model and thus, it goes a step forward by handling multiple faults effectively. Baah et al. [32] employed 

probabilistic analysis in combination with the structural program dependences (program dependence graph), to assist fault 

localization. Yoo et al. [31] suggest using Information Theory to assist the “fault localization prioritization” problem.  



 

Another related approach which is not using coverage information is the Delta Debugging method [4], [5], [6]. This 

method recognizes and isolates input parts responsible for failures [6], recognizes chains of program states that lead to the 

failure [5] and links these chains with the faulty code. Recently, Burger and Zeller [41] proposed a combination of delta 

debugging and program slicing techniques to aid the whole debugging process. Their approach produces a test case that 

involves the minimum number of objects and method calls related to an examined failure, thus, assisting the programmers in 

reasoning about the failure. Jeffrey et al. [27] proposed a value profiling method to localize program faults. In this approach, 

variables at each program statement are assigned with different to the original execution values. These value replacements help 

identify the faulty statements by observing the programs’ outputs. 

Baudry et al. [21] suggested a different approach to assist fault localization. Instead of using existing tests in the 

localization process, they propose to generate and optimize the whole suite according to an introduced criterion. This criterion 

was shown to be able to improve the fault diagnosis accuracy. This approach is somehow orthogonal to the one proposed in 

this paper. If tests can be optimized with respect to fault localization, then the proposed approach can be assisted to drive such 

approaches and to hence, provide better results. 

The idea of using mutants to assist the fault localization process was first introduced in the authors prior work on fault 

localization [22], where it was advocated the use of mutation analysis for locating faults. The present paper expands the 

conducted experiments by considering four additional subjects (Flex, Grep, Gzip and Space) and a set of 700 mutant-faults. 

Generally, mutation analysis has been mainly used for testing purposes [17] and thus, very few approaches aim at program 

debugging using mutants. Such a debugging approach is attributed to Debroy and Wong [42] who suggested using mutants for 

automatically repairing program faults. The underlying idea of this work is to check whether a mutant of a faulty program has 

no failing test cases. In this case, the mutant is reported as a possible fix of the faulty program. Metallaxis-FL differs from this 

approach since it does not require finding a mutant that makes all the test cases pass. In fact, its purpose is not to fix bugs but to 

target the general case of fault localization i.e. it always suggests a possible suspiciousness ranking. Other related approaches 

include the work of Nica et al. [43]. In this approach, mutants were employed in order to generate tests and thus, to augment 

the utilized test suite. The augmented suite was then used for performing a model based fault diagnosis [43]. This work uses 

mutants as a means of test case generation and not for performing the fault localization process which is the main issue 

addressed by the present paper. 

IX. CONCLUSIONS AND FUTURE WORK 
Supporting both testing and fault localization activities with mutation analysis is the key-contribution of this paper. Mutants 

can be used first for guiding the production of test cases, therefore identifying program failures, and then in assisting the 

debugging process.  

The work presented in this paper provides a number of insights to the fault diagnosis research. Primary, it shows that 

mutants can be utilized for the effective localization of known but not located faults. Further, it validates this hypothesis in 

the cases of Block, Branch, Mutation adequate test sets and a relatively large and comprehensive test suite leading to the 

conclusion that mutants are suitable for both testing and debugging processes. Finally, the practical use of mutation-based 

approach via mutant sampling was also investigated and showed that the mutation-based fault localization method is still 

effective while used in a degraded situation, using few mutants. 

The major contributions made by the present paper can be summarized on the following points: 



 

• The application of mutation analysis in assisting the fault localization process. The obtained results suggest that mutation-

based fault localization is an effective technique, able to locate more than 80% of the utilized program faults by 

investigating at most 10% of the executable program code.  

• An experimental comparison of fault localization based on Block, Branch and Mutation based tests. Compared to the other 

criteria, mutation-based test cases significantly improve the effectiveness of the fault localization approaches.  

• An empirical investigation of the practical usage of mutation-based fault localization, with reduced cost by mutant 

sampling. With only 10% of the mutants, the approach is still more effective, statistically significant, than the statement-

based approach. 

Issues for further investigation include the use of weak mutation [24] as an alternative to mutation-based fault localization. 

Since weak mutation has been shown to be quite efficient [44] with respect to the test execution phase, utilizing it seems to be 

worthwhile. Additionally, the combination of the proposed approach with an automatic mutation-based test generation tool, 

such as [44], [45], [46] will be able to augment the utilized test suite and thus to assist the localization of program defects.  
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