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ABSTRACT 

Mutation testing has a widespread reputation of being a rather 
powerful testing technique. However, its practical application 
requires the detection of equivalent mutants. Detecting equivalent 
mutants is cumbersome since it requires manual analysis, 
resulting in unbearable testing cost. To overcome this difficulty, 
researchers have proposed the use of mutant classification, an 

approach that helps isolating equivalent mutants. From this 
perspective, the present paper establishes and assesses possible 
mutant classification strategies. The conducted study suggests that 
while mutant classification can be useful in isolating equivalent 
mutants, it fails to kill some mutants. Indeed, the experimental 
results show that the proposed strategies achieve to kill 
approximately 95% of the introduced killable mutants.   

Categories and Subject Descriptors 

D.2.5 [Testing and Debugging]: Testing tools 

General Terms 

Verification. 
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1. INTRODUCTION 
Mutation testing aims at detecting software defects by injecting 
artificial errors, called mutants, in the examined software [5], 
[17]. This technique relies on the underlying assumption that 
injecting and detecting mutants is already a strong adequacy 
criterion that forces tests to be effective for finding real faults. 
Mutants are introduced by making alterations to the source code 
of the program under test based on a set of simple syntactic rules 
called mutant operators. 

Mutants are used to assess the ability of test cases to reveal them. 
Researchers have provided evidence that mutants, despite being 

artificially seeded, behave as realistic faults [3]. Thus, mutants can 
be effectively used as a testing criterion. Such a criterion can be 
established by requiring selected test cases to distinguish the 
behavior of the mutated and the original program versions. In 
practice, this requirement is fulfilled by comparing the programs’ 
outputs when executed with the selected test cases. A mutant is 

said to be killed when it produces outputs that are different from 
the original program while running the same test case. Otherwise, 

it is called live. In terms of fault revealing power, the higher the 
number of killed mutants, the higher the test case power. 
However, while some mutants are killable, some mutants cannot 
be killed. In that case, such mutants are qualified as equivalent. As 
a result, an equivalent mutant forms a program version 
functionally equivalent to the original one since no test case is 
able to distinguish this mutant from the original program. 

An equivalent mutant plays the role of a parasite in the testing 
process. Indeed, while it is expected to be killable, it remains 
always live. Even worse, a tedious effort could be uselessly 
dedicated to improving tests with no hope of killing it (in a way 

similar to covering infeasible statements or branches w.r.t. code 
coverage criteria [16]). As a consequence, mutation testing 
requires the removal of these mutants. However, discarding 
equivalent mutants tackles an even harder problem, since judging 
programs’ functional equivalence is known to be “undecidable” 
[4]. As a result tedious manual analysis is required. It has been 
empirically found that it takes approximately 15 minutes [22] to 
identify an equivalent mutant in  a real world application. Since, a 

vast number of equivalent mutants exist the application cost of 
mutation is escalated. As a consequence, the criterion used to stop 
the testing process requires the identification of most if not all of 
the existing equivalent mutants. 

To decrease the undesirable effects of equivalent mutants, 
heuristic methods appear to be promising. Schuler and Zeller [22] 
suggested a method to automatically classify mutants into the 
likely killable and the likely equivalent. The underlying idea of 
this approach is to measure the effects, called impact, introduced 
by mutants on the runtime program execution. It has been found 
that mutants with higher impact are more likely to be killable than 

those with less or no impact. Although mutant classification has 
been suggested [22], it is not evident how it could be applied in 
practice. Further, it is not evident what the practical benefit of its 
utilization is. Going a step further, the present paper defines 
strategies that take advantage of this classification. We call these 
strategies as mutant classification strategies. These turn mutants’ 
impact as a guide towards improving a test suite.  

The primary aim of the present work is to define and evaluate the 
relative effectiveness of mutant classification strategies. In other 
words, we address the question of how the mutation testing 
process should be performed in order to take advantage of mutant 

classification. To this end, we seek to identify how effective are 
these strategies compared to the “traditional” mutation testing 
approach i.e. testing by using all mutants.  

The above intentions were investigated based on a set of moderate 
size industrial programs written in C and using the Proteum [6] 
mutation testing system. It has been found, that the examined 
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strategies are 5-10% less effective than testing based on all 
mutants. Despite this weakness, employing these strategies can 
lead to substantial benefits with respect to the equivalent mutants’ 
identification. Additionally, it has been found that the methods’ 
effectiveness loss is a straight consequence of the accuracy of the 

proposed classification schemes; therefore, pointing out possible 
directions for future research. 

The reminder of this paper is organized as follows: Sections 2 and 
3 present the concepts underlying the present work and the mutant 
classification process. Section 4 presents and details the 
conducted experiment and its respective results. In Section 5 some 
related work is discussed. Finally, Section 6 concludes the paper.  

2. PROBLEM DEFINITION 
Using mutation as a testing criterion [17] requires a way of 
measuring the adequacy of testing. Generally, test adequacy can 
be measured based on the exact mutation score, which is defined 
as follows: Exact MS = #killed mutants / #Mutants-#Equivalent 

However, calculating the exact mutation score is hard due to the 
existence of the so called equivalent mutants [16]. An equivalent 
mutant degrades the computation of the mutation score, since it 
cannot be killed. To this end, practitioners have two choices: a) to 
manually analyze the live mutants, which in practice is very hard, 
if not infeasible and b) to approximate the exact mutation score. 
The later approach is based on the actual mutation score, which is 
defined as follows: Actual MS = #killed mutants / #mutants 

Using Actual MS has two main drawbacks. First, it requires from 

the tester to decide which value of the score is satisfactory for 
completing the process. Without a manual analysis, this choice is 
more or less arbitrary, resulting in a degraded confidence on the 
testing process. Second, it does not give any guidance to the tester 
on which mutants should be targeted first, to increase the score. 
To address these difficulties, the present paper examines the use 
of mutants’ impact [22], [21] as a possible way to automatically 
approximate the mutation score by identifying likely killable 
mutants. In other words, it allows deciding whether mutants can 

be killed or not. Therefore, the tester can concentrate only on 
these (likely killable) mutants. However, by doing so, what level 
of the exact mutation score can be reached? How many mutants 
will be manually analyzed? Answering the first question is 
important since it provides evidence about the strengths of these 
approaches. Answering the second question provides an insight 
regarding the required manual effort of the examined processes. 

3. MUTANT CLASSIFICATION 

3.1 Mutants’ Impact 
Schuler and Zeller [22] advocated that “if a mutant impacts 
internal program behavior, it is more likely to change external 
program behavior and thus impact the semantics of the program”. 
In other words, their idea is to compare the internal program 
behavior differences between the original and the mutant 
programs. These differences are attributed to the introduced 
mutants and referred to as the mutants’ impact. 

Generally, mutants with impact are more likely to be killable than 
mutants without impact [22]. Hence, mutants can be classified as 

likely killable, i.e. mutants with impact, and likely equivalent, i.e. 
mutants without impact. But, how can the mutants’ impact be 
determined? In other words, what to compare between the two test 
executions (i.e. the original and mutant executions) to effectively 
consider the mutant as likely killable? This question has already 

been investigated by the literature [22], [21] by considering 
various impact measures. These works have found that among the 
various examined measures, the coverage impact [22] is the most 
appropriate measure for mutant classification. Therefore, the 
present paper considers only mutant classification based on 

coverage impact. More details on how we calculate the coverage 
impact is given in the following section.  

3.2 Mutant Classification Schemes 
This paper considers mutant classification strategies based on 
coverage impact. Generally, impact on coverage is measured as 
the difference on the statement coverage between the original and 
mutant programs. Therefore, the coverage impact is a number that 
represents the maximum difference in covered statement between 

the original and the mutant program versions when executed with 
a set of tests.  

In this paper, coverage impact is calculated as suggested in [22], 
by counting how many times every program statement is executed 
per test case. Thus, for each test, the execution frequency of each 
statement per program method is computed. To this end, two 
variations of this metrics are used: 

Approach A (CA): The coverage impact on all the program 
methods. 

Approach B (CB): The coverage impact on all the program 
methods except the one containing the examined mutant. 

Generally, the CB approach targets on non-local impact while the 
CA approach targets on both local and non-local impact. The CB 
approach is based on the lines suggested in [22] and it is expected 
to give more accurate results than the CA. Using these metrics, 
the live mutants are classified in different categories: the likely 
equivalent (i.e. those with no impact) and the likely killable (i.e. 
those with impact).  

3.3 Mutant Classification Strategies  
Figure 1 presents a generic mutation testing process based on 
mutant classifiers. This process involves the regular mutation 
testing process’ steps by introducing the mutant classification 
(step e). This step approximates the mutation score evaluation by 
considering only the likely killable set. In order to be practical, 
such a classification scheme must provide accurate estimations of 
the actually killable mutants during the whole testing process.   

Towards defining possible mutation testing strategies that take 
advantage of mutant classifiers and thus aim only at likely killable 
mutants, two main issues arise. First, since mutant classification 

requires the existence of some test cases before the classification 
process, what should these tests be? Second, when should the 
classification process be performed? The first issue is presented in 
Figure 1 in the step b) when no process iterations have been 
performed. The second issue is presented in the same figure in the 
step e). Setting these two parameters are important for the 
effectiveness of the examined strategies.    

Considering the initially used test set, the present paper starts by 
using statement coverage test sets. The reason for such a choice is 
twofold. First, statement coverage forms the minimum testing 
requirement that should be employed by a tester. Second, 

achieving statement coverage ensures that all mutants will be 
executed with tests, thus, enabling their classification [22]. Note 
that if a mutant is not executed by any test, it has no impact. Thus, 
it will be classified as equivalent, hindering the effectiveness of 
the studied approaches.  
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Figure 1. Mutation testing process using mutant classification 

Generally, mutant classification relies on the ability of the 
employed tests to trigger the mutants’ impact. Therefore, to 
reduce the sensitivity of the strategy to the employed test, mutant 
classification should be performed after the execution of each 
utilized test. Thus, in each iteration of the process (Figure 1), all 
live mutants are executed with all the employed test cases. This 
process relies on mutant classification schemes (CA and CB) that 
are presented in section 3.2. Therefore, two possible strategies are 
considered and denoted as: CA, CB.  

4. EMPIRICAL EVALUATION 

4.1 Definition of the Experiment 
The present study empirically investigates the use of mutant 
classifiers within the testing process. The main points of interest 
for this experiment are a) to study how the classification ability of 
the examined mutant schemes changes when the employed test 
suite evolves and b) to determine the relative effectiveness of the 

mutant classification strategies. Knowing these issues helps 
practitioners in choosing an appropriate strategy. Further, it 
answers the general question of whether mutant’ classification can 
form a valid alternative to testing by using all mutants.    

The above issues are based on the following research questions: 

RQ1: How the classification ability of the mutant classifiers is 
affected by the increase in the actual mutation score? 

RQ2: How effective are the examined strategies?  

4.1.1 Subject Programs and Utilized tools  
The present study uses six programs, Table 1, which come from 
the SIR repository [7] and include five programs of the Siemens 
suite [10]. It also includes an additional program (Space) 
developed by the European Space Agency. These programs were 
chosen because they were in C and are available along with their 
accompanied test suite pools. Additionally, they have been 
extensively used in empirical studies, involving mutation, such as 

[10], [19], [18], [8], [3], [11].  They can thus, be considered as 
benchmarks. 

Each of these programs is associated to a comprehensive test pool 

which was produced by several researchers using a combination 
of techniques, including random, category-partition, all 
statements, all edges and all definition-use pairs. More details 
about the construction of the test suites can be found in Harder et 
al. [8]. The associated test suite was produced independently of 
the present study and consists of a large number of high quality 
tests (since they were developed according to many testing 
criteria) and thus, they are well suited for the conducted 
experiment.  

The Proteum [6] and gcov tools have been selected since they 
have been successfully used in many software testing 

experiments. Proteum is a mutation testing tool employing the 
Agrawal et al. [2] mutation operators while, gcov is a widely used 
GNU structural coverage tool. Regarding the implementation of 
the examined approaches, Proteum was used for producing the 
mutants and gcov for gathering the required statement coverage 
information. A prototype was developed in order to compile 
mutants, execute them, analyze the execution traces, determine 
mutants’ impact and implement the examined strategies.  

Mutation analysis requires vast computational resources to 
produce and run the sought mutants. Therefore, to reduce the 
experimental cost, only the mutant operators belonging to the 

general class of “operators” [2] were considered. This class is 
composed of 44 mutant operators which introduce discrepancies 
on the various source code operators uses. Similar approaches 
have also been undertaken in [3] and [18]. Additionally, since the 
space program involves a huge number of mutants (22,500 
mutants) 10% of them were used. The selection of these mutants 
(10%) was performed based on their production order i.e. every 
10th produced mutant was considered. The same approach was 

also applied on similar studies such as  [3] and [18]. In the present 
paper, we focus on examining the effectiveness of the studied 
strategies with respect to a set of mutants. Thus, the use of the 
above restrictions affects only the initial set mutants and not their 
impact assessment.  

Table 1 record details about the utilized subjects, including the 
number of lines of code, the size of the accompanied test pool and 
the number of examined mutants per subject programs. 

Table 1. Subject programs 

Subject 

Program 

Lines of 

Code 

Test Pool  

Size 

Number of 

Mutants 

Schedule 296 2650 661 

Schedule2 263 2710 887 

Tcas 137 1608 940 

Totinfo 281 1052 1645 

Replace 513 5542 3526 

Space 5905 13585 2250 



4.1.2 Experimental procedure 
To address the stated RQs, we report the results derived from the 
application of the proposed mutant classification strategies. 
Initially, gcov was employed to construct sets of test cases 
adequate with respect to basic block testing criterion per subject 
program. These sets were constructed based on a random test case 
selection from the accompanied test suite pools. All the selected 
tests that do not increase the sets’ coverage with respect to their 

selection order were removed from the sets. This was done in 
order to discard redundant test cases that might coincidentally kill 
mutants and influence the impact measures.   

The experimental process: The experiment follows the mutation 
strategies described in Section 3 and presented in Figure 1. The 
statement based test suites were used as initial ones. After 
executing all mutants with the statement based tests, live mutants 
are classified either as “likely killable” or “likely equivalent” ones 
according to the two classification approaches. Then, the first 
mutant in the resulting ranked list of likely killable mutants 
(mutant with the highest impact) is selected. If this mutant cannot 

be killed by any test of the whole test suite pool, it is removed 
from the “likely killable” list and the process continues with the 
next mutant. In the opposite case, a test case able to kill the 
selected mutant is chosen at random from the test suite pool. 
Then, the process continues by executing this test case with all 
live mutants and removing those that are killed by the newly 
selected test. The mutant classification process is repeated until 
none of the live mutants has impact (the likely killable mutants’ 

set becomes empty). To avoid any bias due to (1) the initially 
selected test cases and (2) the random selection test cases that kill 
the selected mutants, five independent repetitions of the 
experiment were performed.  

Generally, a mutant classifier is assessed based on its ability to 
categorize mutants as killable. This assessment is based on the 
following two measures:  

Recall: the ratio of the correctly classified mutants as killable to 
all the existing killable mutants. 

Precision: the ratio of the correctly classified mutants as killable 
to those classified as killable. 

Determining recall and precision values: These values were 
determined based on the mutants that were killed by the whole 
test suite pools. This practice fulfills the purpose of the present 
study which is to assess the effectiveness of the strategies when 
used as alternatives to testing by using all mutants. Effectiveness 
refers to the number of mutants killed by the utilized strategies. 

Thus, our interest is on whether testing based on these strategies 
results in killing approximately the same number of mutants than 
testing by using all mutants. Since the same mutants and test pools 
are used in both cases (testing based on the examined strategies 
and by using the all mutants), the killable mutants who have been 
left live after their exercise with the whole test suite pool are 
common in both cases. Finally, it is noted that the same practice 
has been undertaken in many similar empirical studies like  [3], 
[15] and [18]. 

To address RQ1, the respective recall and precision values were 
calculated every time the classification process was performed, 

(see Figure 1). Regarding RQ2, for each strategy and subject 
program we recorded the ratio of the killed mutants to those that 
can be killed by the whole test suite pool. When there are no 
mutants with impact anymore, the above ratio expresses the 
effectiveness measure of the process.  

4.2 Results and discussion  

4.2.1 Classification Ability (RQ1) 
The ability of the proposed approach to classify mutants as likely 
killable and equivalent ones was assessed based on its respective 

recall and precision values. Figure 2 records these values 
according to the CB classification approach (see Section 3.2 for 
details) for all the subject programs. Due to lack of space, the 
results of the CA were not plotted. From these graphs, it can be  

 

 
Figure 2. Recall and Precision values vs actual mutation score per utilized program for the classification approach B (CB) 
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Table 2. Empirical results 

Subject 

Program 
Method 

#Tests 
Actual 

MS 

% killable 

mutants 

killed 

Precision Recall 
Std. 

Deviation 
#Tests 

Actual 

MS 

% killable 

mutants 

killed 

Precision Recall 
Std. 

Deviation 

Approach A (CA) Approach B (CB) 

Tcas 
Statement 7.2 48.43% 66.74% 53.59% 40.27% 3.58% 7.2 48.43% 66.74% 55.21% 40.27% 3.58% 

Strategy 18.4 63.49% 87.51% 0.00% 0.00% 3.56% 18.2 64.96% 89.53% 0.00% 0.00% 5.05% 

Schedule 
Statement 2.6 70.44% 86.38% 32.41% 5.44% 2.65% 2.6 70.44% 86.38% 30.52% 4.99% 2.65% 

Strategy 6.4 73.86% 90.58% 0.00% 0.00% 1.98% 6.4 73.80% 90.50% 0.00% 0.00% 2.80% 

Schedule2 
Statement 7.4 68.41% 86.93% 75.07% 38.74% 2.71% 7.4 68.41% 86.93% 87.66% 32.32% 2.71% 

Strategy 14.4 76.35% 97.02% 0.00% 0.00% 2.65% 14.4 73.80% 93.78% 0.00% 0.00% 3.03% 

Totinfo 
Statement 6.8 83.09% 95.14% 49.09% 50.74% 2.63% 6.8 83.09% 95.14% 40.47% 15.20% 2.63% 

Strategy 10.8 86.68% 99.25% 0.00% 0.00% 0.53% 8.8 83.90% 96.06% 0.00% 0.00% 2.59% 

Replace 
Statement 16.6 71.28% 88.37% 49.49% 49.13% 4.17% 16.6 71.28% 88.37% 52.18% 45.79% 4.17% 

Strategy 36 79.04% 98.00% 0.00% 0.00% 0.35% 34 78.85% 97.76% 0.00% 0.00% 0.67% 

Space 
Statement 146.6 59.30% 96.16% 20.93% 47.67% 0.49% 146.6 59.30% 96.16% 20.93% 47.67% 0.49% 

Strategy 160.6 69.99% 98.89% 0.00% 0.00% 0.23% 158 60.85% 98.66% 0.00% 0.00% 0.17% 

Average 
Statement 31.2 66.83% 86.62% 46.76% 38.67% 2.71% 31.20 66.83% 86.62% 47.83% 31.04% 2.71% 

Strategy 41.1 74.90% 95.21% 0.00% 0.00% 1.55% 39.97 72.69% 94.38% 0.00% 0.00% 2.39% 

              
deduced that both the recall and precision values are decreasing 
when the actual mutation score increases. Additionally, it can be 
clearly seen that both recall and precision are decreased with 
approximately the same trend. Consequently, the classification 

ability of the examined approaches is decreasing when the test 
suite evolves i.e. new tests are added, according to these strategies. 

At first sight, this trend might seem to be counter-intuitive due to 

the fact that better tests should provide fewer classification 
mistakes. To explain this situation we have to consider that: a) 
mutant classification is performed on the live mutant set and not 
the whole set of mutants, and b) that there is an amount of 
equivalent mutants that have impact [22]. This situation is 
depicted on Figure 3. Therefore, when the test suite evolves, 
mutants with impact are killed. Recall, that the test suite evolves 
by repeatedly aiming at the mutants (among the live ones) with 

the highest impact. Thus, the produced tests kill those mutants 
(with the highest impact). This results in decreasing the number of 
the killable mutants with impact while leaving the number of 
equivalent mutants with impact constant. Perhaps some killable 
mutants will also have an impact due to the test suite evolution, 
but this is a minor number as the present experiment shows. 
Additionally, this is the case for equivalent mutants, which results 
in increasing the error rate. As a consequence, both recall and 
precision values are decreasing.     

In practice, the decreasing trend explains why the effectiveness of 
the examined approaches is lower to 100% (subsection 4.2.2 

presents the effectiveness results). Since, the classification 
precision is reduced when the test suite evolves; less guidance 
towards killable mutants is provided. Actually, beyond a certain 
point there is no guidance at all, fact suggesting that there are 
applicable limits on the number of mutants that can be killed by 
using the coverage impact.   

In the columns “Precision” and “Recall” of Table 2, the respective 
values of these metrics are recorded per subject program and per 
employed method. The method “Statement” records the obtained 
results by the statement-based test suites. The “Approach A (CA)” 

and “Approach B (CB)” keep track of the results obtained by 
applying the classification process of Figure 1 by using the CA 
and CB classification schemes. Thus, it records the results of the 
test cases produced based on the studied strategies. These results 

indicate that the block test suites classify the live mutants on 
average with 47% precision value and 39% recall when using CA. 
In the case of CB, a 48% and 31% of precision and recall values is 
achieved. Here, it should be mentioned that recall and precision 
values of the examined strategies is 0 since all the killable mutants 
have been killed by applying the process of Figure 1.     

Live Mutants

Equivalent
Killable

Mutants with 
impact

Test suite evolution

Test suite evolution
 

Figure 3. Classifying mutants (live) using the classification 

strategies. When tests are added, the killable mutants with 

impact are killed. Therefore, the percentage of killable 
mutants with impact is decreasing.  

4.2.2 Approach Effectiveness (RQ2) 
This section considers the relative effectiveness of the examined 
strategies. The results are summarized in Table 2. This table 

records the number of tests, the actual mutation scores, the 
percentage of killable mutants killed by the strategies, the 
precision and the recall values of the employed methods i.e. 
“Statement” and “Strategy”, per classification scheme (Approach 



A (CA) and approach B (CB)) per subject program.  From the 
results of Table 2, it can be realized that a high variation on the 
effectiveness of the examined approaches between the subject 
programs is recorded. Generally, the use of the CA scheme 
achieves to kill a ratio from 87.51% to 99.25% of the mutants that 

can be killed by the test pool. The CB scheme achieve in the range 
of 89.53% to 98.66%. The effectiveness is lower than 100% due 
to mutants with no impact. Note that the proposed strategies aim 
only at mutants with impact.  

In most of the cases CA scores better than CB. This can be 
explained by examining the methods recall and precision values. 
Generally, it can be deduced that between two classifiers the one 
that has higher recall values even with lower precision values, is 
generally more effective. However, in none of the studied subject 
a mutation score was close to 100%. Achieving a score close to 
100% is highly desirable in some cases. Thus, the examined 

strategies are good for improving a test suite but only up to a 
certain limit. 

5. DISCUSSION 
The conducted study suggests that mutant classification strategies 
have a lower effectiveness when compared to testing by using all 
mutants. However, they have a decisive advantage which is their 
ability to isolate equivalent mutants [22] and [21]. Although the 
focus of the present study is to examine the effectiveness of these 

strategies, some conclusions regarding the equivalent mutants can 
be made. This is due to the employed tests which form a huge and 
comprehensive1 test pool [8]. Thus, it is expected that only a small 
number of killable mutants should be live after their execution 
with this test suite. To this end, we measure the ratio, among the 
mutants that cannot be killed by any test of the test pool, of 
mutants with impact to the total number. These ratios represent an 
approximation of the percentage of equivalent mutants 
encountered by the strategies.   

Generally, it is expected that a process based on a classifier with 
higher precision would be more efficient than one with lower 

precision. This is due to the more precise guidance that it provides 
towards killable mutants. The obtained results, confirm this 
argument on all the examined cases. Thus, CB is more precise 
than CA and hence it is expected to be more efficient. Indeed, the 
CB classification scheme encounters on average 14% such cases, 
while, CA encounters on average 17%. Recall that these 
percentages represent mutants with impact that cannot be killed. 
Hence, since mutants with impact are more likely to be killable 

than those without impact [22], it is expected that the exact ratios 
of the encountered equivalents mutants should be even smaller 
than the ones reported here. Overall, the conducted experiment 
suggests that, by using the proposed strategies, the manual work 
related to the identification of equivalent mutants can be greatly 
reduced (>20%). 

5.1 THREATS TO VALIDITY 
Generally, threats to the validity of the present experiment can be 

identified due to the use of the selected subjects. Thus, the 
representativeness of these subjects is questionable. Yet, all these 
subjects are benchmark programs which have been widely used in 
similar experiments [11]. The selected set of mutant operators 

                                                             

1 The test pools were constructed based on a combination of 
techniques [8], including random, category-partition, all 
statements, all edges and all definition-use pairs. 

introduces threats to the internal validity of this work. However, 
this set of mutants is a relatively large one since it is composed of 
44 operators and involves all the language operators. Other threats 
could be attributed to the use of software systems. Additionally, 
the employed process for determining the killable mutants may 

influence the reported results. Though, the objectives of this 
experiment were to explore the relative effectiveness of the 
examined approaches compared to strong mutation based on the 
same test suites and tools. Therefore, it is believed that the 
indicated threats are not of such importance. 

6. RELATED WORK 
The dynamic reduction of the side effects caused by equivalent 
mutants is a new research topic that helps automating effectively 
the mutation testing process. One such approach has been 
suggested by Adamopoulos et al. [1] by using an evolutionary 
method. In their approach, the evolution method seeks for both 
mutants and test cases with the aim of selecting a small and 
killable at the same time, set of mutants. Although this approach 

achieves to produce killable mutant sets, it relies on the quality 
and ability of selecting and the producing test cases and thus, the 
adequacy of the testing process is uncertain. On the contrary, the 
present approach tries to isolate equivalent mutants in an attempt 
to both perform mutation testing efficiently and to assess the 
adequacy of testing.  

Schuler et al. [21] proposed the use of mutants’ runtime behavior 
as a measure of the mutants’ killability likelihood based on 
dynamic program invariants. In the same study, it was found that 
mutants are likely killable when they break dynamically 
introduced invariants. The idea behind this approach was then 

used to assess mutations based on coverage impact [22] as 
discussed in the present paper. Empirical comparison between the 
abovementioned approaches [22] revealed that the impact on 
coverage is more efficient and effective at assessing the killability 
of mutants. Therefore, the present paper empirically investigates 
the application of the coverage impact classification scheme 
within the mutation testing process. Additionally, its application 
effectiveness and efficiency were also examined.  

Generally, the automatic identification of equivalent mutants has 
been proven to be an “undecidable” problem [4]. As a result, no 
approach able to detect all equivalent mutants can be defined. 

Fortunately, heuristics for detecting some cases exist [17]. Offutt 
and Pan [16] suggested another approach to identify equivalent 
mutants with the combinational use of a constraint based 
technique. Empirical evaluation of this technique reported that 
45% of equivalent mutants can be identified on average. Other 
approaches aiming at identifying equivalent mutants employ 
program slicing [9] to assist the identification process. All the 
aforementioned techniques target on detecting equivalent mutants, 

but they don’t focus on their ability to be likely equivalent or 
killable ones. Thus, these approaches are orthogonal to the 
presently examined ones [22]. This allows employing them first to 
detect equivalent mutants and then assess the remaining ones 
based on their impact. 

Another approach to tackle the equivalent mutants’ problem is by 
using higher order mutants [12], [14], [13] and [18]. Generally, 
the main idea underlying these approaches is to produce a set of 
higher order mutants and use them as alternatives to the first order 
ones. Higher order mutation testing strategies such as [13] and 
[18] produce considerably less equivalent mutants, thus 

alleviating the problems that they are introducing. Contrary to the 



present approach, the higher order strategies produce mutant sets 
containing a few equivalent mutants without aiming at isolating 
them. A comparison between these approaches and the presently 
proposed one is a matter open for further investigation. 

7. CONCLUSION AND FUTURE WORK 
The present paper empirically investigates the use of dynamic 
strategies aiming at reducing the effects of equivalent mutants in 
mutation testing. Towards this direction, mutant classification 
strategies were defined and evaluated. The innovative part of the 
proposed strategies is their ability to effectively produce and 

evaluate test suites by considering only a small set of equivalent 
mutants. Doing so gives the advantage of performing mutation by 
manually analyzing only a small number of mutants.  

The undertaken experiments showed that the use of coverage 
impact can be beneficial towards the practical application of 
mutation. The proposed strategies were found to be effective in 
improving an existing test suite by reducing the effects of 
equivalent mutants. However, the strategies fail to kill the 5% of 
the killable mutants. 

Classification ability was found to be dependent on the percentage 
of mutants that are killed by the utilized tests. Surprisingly, when 
a test suite evolves (based on mutation) the classification ability 
(both recall and precision values) is decreasing. Hence, the 
guidance provided by the classification process is also decreasing. 

Future work includes conducting additional experiments to 
statistically revalidate the findings of the present experiment. 

Additionally, an evaluation of the proposed strategies with the use 
of other impact measures, e.g. [14] is under investigation. Further, 
a comparison between the examined approaches and other 
mutation testing strategies [21] are also planned. 
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