
Mutation Testing Strategies using Mutant Classification

Mike Papadakis
Interdisciplinary Center for Security, Reliability

and Trust (SnT),
University of Luxembourg

michail.papadakis@uni.lu

Yves Le Traon
Interdisciplinary Center for Security, Reliability

and Trust (SnT),
University of Luxembourg

yves.letraon@uni.lu

ABSTRACT

Mutation testing has a widespread reputation of being a rather
powerful testing technique. However, its practical application
requires the detection of equivalent mutants. Detecting equivalent
mutants is cumbersome since it requires manual analysis,
resulting in unbearable testing cost. To overcome this difficulty,
researchers have proposed the use of mutant classification, an

approach that helps isolating equivalent mutants. From this
perspective, the present paper establishes and assesses possible
mutant classification strategies. The conducted study suggests that
while mutant classification can be useful in isolating equivalent
mutants, it fails to kill some mutants. Indeed, the experimental
results show that the proposed strategies achieve to kill
approximately 95% of the introduced killable mutants.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools

General Terms

Verification.

Keywords

Mutation Testing, Mutants’ Impact, Mutant Classification.

1. INTRODUCTION
Mutation testing aims at detecting software defects by injecting
artificial errors, called mutants, in the examined software [5],
[17]. This technique relies on the underlying assumption that
injecting and detecting mutants is already a strong adequacy
criterion that forces tests to be effective for finding real faults.
Mutants are introduced by making alterations to the source code
of the program under test based on a set of simple syntactic rules
called mutant operators.

Mutants are used to assess the ability of test cases to reveal them.
Researchers have provided evidence that mutants, despite being

artificially seeded, behave as realistic faults [3]. Thus, mutants can
be effectively used as a testing criterion. Such a criterion can be
established by requiring selected test cases to distinguish the
behavior of the mutated and the original program versions. In
practice, this requirement is fulfilled by comparing the programs’
outputs when executed with the selected test cases. A mutant is

said to be killed when it produces outputs that are different from
the original program while running the same test case. Otherwise,

it is called live. In terms of fault revealing power, the higher the
number of killed mutants, the higher the test case power.
However, while some mutants are killable, some mutants cannot
be killed. In that case, such mutants are qualified as equivalent. As
a result, an equivalent mutant forms a program version
functionally equivalent to the original one since no test case is
able to distinguish this mutant from the original program.

An equivalent mutant plays the role of a parasite in the testing
process. Indeed, while it is expected to be killable, it remains
always live. Even worse, a tedious effort could be uselessly
dedicated to improving tests with no hope of killing it (in a way

similar to covering infeasible statements or branches w.r.t. code
coverage criteria [16]). As a consequence, mutation testing
requires the removal of these mutants. However, discarding
equivalent mutants tackles an even harder problem, since judging
programs’ functional equivalence is known to be “undecidable”
[4]. As a result tedious manual analysis is required. It has been
empirically found that it takes approximately 15 minutes [22] to
identify an equivalent mutant in a real world application. Since, a

vast number of equivalent mutants exist the application cost of
mutation is escalated. As a consequence, the criterion used to stop
the testing process requires the identification of most if not all of
the existing equivalent mutants.

To decrease the undesirable effects of equivalent mutants,
heuristic methods appear to be promising. Schuler and Zeller [22]
suggested a method to automatically classify mutants into the
likely killable and the likely equivalent. The underlying idea of
this approach is to measure the effects, called impact, introduced
by mutants on the runtime program execution. It has been found
that mutants with higher impact are more likely to be killable than

those with less or no impact. Although mutant classification has
been suggested [22], it is not evident how it could be applied in
practice. Further, it is not evident what the practical benefit of its
utilization is. Going a step further, the present paper defines
strategies that take advantage of this classification. We call these
strategies as mutant classification strategies. These turn mutants’
impact as a guide towards improving a test suite.

The primary aim of the present work is to define and evaluate the
relative effectiveness of mutant classification strategies. In other
words, we address the question of how the mutation testing
process should be performed in order to take advantage of mutant

classification. To this end, we seek to identify how effective are
these strategies compared to the “traditional” mutation testing
approach i.e. testing by using all mutants.

The above intentions were investigated based on a set of moderate
size industrial programs written in C and using the Proteum [6]
mutation testing system. It has been found, that the examined

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’13, March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00.

strategies are 5-10% less effective than testing based on all
mutants. Despite this weakness, employing these strategies can
lead to substantial benefits with respect to the equivalent mutants’
identification. Additionally, it has been found that the methods’
effectiveness loss is a straight consequence of the accuracy of the

proposed classification schemes; therefore, pointing out possible
directions for future research.

The reminder of this paper is organized as follows: Sections 2 and
3 present the concepts underlying the present work and the mutant
classification process. Section 4 presents and details the
conducted experiment and its respective results. In Section 5 some
related work is discussed. Finally, Section 6 concludes the paper.

2. PROBLEM DEFINITION
Using mutation as a testing criterion [17] requires a way of
measuring the adequacy of testing. Generally, test adequacy can
be measured based on the exact mutation score, which is defined
as follows: Exact MS = #killed mutants / #Mutants-#Equivalent

However, calculating the exact mutation score is hard due to the
existence of the so called equivalent mutants [16]. An equivalent
mutant degrades the computation of the mutation score, since it
cannot be killed. To this end, practitioners have two choices: a) to
manually analyze the live mutants, which in practice is very hard,
if not infeasible and b) to approximate the exact mutation score.
The later approach is based on the actual mutation score, which is
defined as follows: Actual MS = #killed mutants / #mutants

Using Actual MS has two main drawbacks. First, it requires from

the tester to decide which value of the score is satisfactory for
completing the process. Without a manual analysis, this choice is
more or less arbitrary, resulting in a degraded confidence on the
testing process. Second, it does not give any guidance to the tester
on which mutants should be targeted first, to increase the score.
To address these difficulties, the present paper examines the use
of mutants’ impact [22], [21] as a possible way to automatically
approximate the mutation score by identifying likely killable
mutants. In other words, it allows deciding whether mutants can

be killed or not. Therefore, the tester can concentrate only on
these (likely killable) mutants. However, by doing so, what level
of the exact mutation score can be reached? How many mutants
will be manually analyzed? Answering the first question is
important since it provides evidence about the strengths of these
approaches. Answering the second question provides an insight
regarding the required manual effort of the examined processes.

3. MUTANT CLASSIFICATION

3.1 Mutants’ Impact
Schuler and Zeller [22] advocated that “if a mutant impacts
internal program behavior, it is more likely to change external
program behavior and thus impact the semantics of the program”.
In other words, their idea is to compare the internal program
behavior differences between the original and the mutant
programs. These differences are attributed to the introduced
mutants and referred to as the mutants’ impact.

Generally, mutants with impact are more likely to be killable than
mutants without impact [22]. Hence, mutants can be classified as

likely killable, i.e. mutants with impact, and likely equivalent, i.e.
mutants without impact. But, how can the mutants’ impact be
determined? In other words, what to compare between the two test
executions (i.e. the original and mutant executions) to effectively
consider the mutant as likely killable? This question has already

been investigated by the literature [22], [21] by considering
various impact measures. These works have found that among the
various examined measures, the coverage impact [22] is the most
appropriate measure for mutant classification. Therefore, the
present paper considers only mutant classification based on

coverage impact. More details on how we calculate the coverage
impact is given in the following section.

3.2 Mutant Classification Schemes
This paper considers mutant classification strategies based on
coverage impact. Generally, impact on coverage is measured as
the difference on the statement coverage between the original and
mutant programs. Therefore, the coverage impact is a number that
represents the maximum difference in covered statement between

the original and the mutant program versions when executed with
a set of tests.

In this paper, coverage impact is calculated as suggested in [22],
by counting how many times every program statement is executed
per test case. Thus, for each test, the execution frequency of each
statement per program method is computed. To this end, two
variations of this metrics are used:

Approach A (CA): The coverage impact on all the program
methods.

Approach B (CB): The coverage impact on all the program
methods except the one containing the examined mutant.

Generally, the CB approach targets on non-local impact while the
CA approach targets on both local and non-local impact. The CB
approach is based on the lines suggested in [22] and it is expected
to give more accurate results than the CA. Using these metrics,
the live mutants are classified in different categories: the likely
equivalent (i.e. those with no impact) and the likely killable (i.e.
those with impact).

3.3 Mutant Classification Strategies
Figure 1 presents a generic mutation testing process based on
mutant classifiers. This process involves the regular mutation
testing process’ steps by introducing the mutant classification
(step e). This step approximates the mutation score evaluation by
considering only the likely killable set. In order to be practical,
such a classification scheme must provide accurate estimations of
the actually killable mutants during the whole testing process.

Towards defining possible mutation testing strategies that take
advantage of mutant classifiers and thus aim only at likely killable
mutants, two main issues arise. First, since mutant classification

requires the existence of some test cases before the classification
process, what should these tests be? Second, when should the
classification process be performed? The first issue is presented in
Figure 1 in the step b) when no process iterations have been
performed. The second issue is presented in the same figure in the
step e). Setting these two parameters are important for the
effectiveness of the examined strategies.

Considering the initially used test set, the present paper starts by
using statement coverage test sets. The reason for such a choice is
twofold. First, statement coverage forms the minimum testing
requirement that should be employed by a tester. Second,

achieving statement coverage ensures that all mutants will be
executed with tests, thus, enabling their classification [22]. Note
that if a mutant is not executed by any test, it has no impact. Thus,
it will be classified as equivalent, hindering the effectiveness of
the studied approaches.

e. Mutant Classification

Threshold

reached?

a. Create Mutants

b. Generate Test

Cases

c. Run Mutants

d. Eliminate ineffective

Test Cases

Killed

Mutants

Live

Mutants

Classify mutants

Likely

Equivalent

Likely

Killable

F

Program Under Test

Define threshold

T

Mutation testing

process

Figure 1. Mutation testing process using mutant classification

Generally, mutant classification relies on the ability of the
employed tests to trigger the mutants’ impact. Therefore, to
reduce the sensitivity of the strategy to the employed test, mutant
classification should be performed after the execution of each
utilized test. Thus, in each iteration of the process (Figure 1), all
live mutants are executed with all the employed test cases. This
process relies on mutant classification schemes (CA and CB) that
are presented in section 3.2. Therefore, two possible strategies are
considered and denoted as: CA, CB.

4. EMPIRICAL EVALUATION

4.1 Definition of the Experiment
The present study empirically investigates the use of mutant
classifiers within the testing process. The main points of interest
for this experiment are a) to study how the classification ability of
the examined mutant schemes changes when the employed test
suite evolves and b) to determine the relative effectiveness of the

mutant classification strategies. Knowing these issues helps
practitioners in choosing an appropriate strategy. Further, it
answers the general question of whether mutant’ classification can
form a valid alternative to testing by using all mutants.

The above issues are based on the following research questions:

RQ1: How the classification ability of the mutant classifiers is
affected by the increase in the actual mutation score?

RQ2: How effective are the examined strategies?

4.1.1 Subject Programs and Utilized tools
The present study uses six programs, Table 1, which come from
the SIR repository [7] and include five programs of the Siemens
suite [10]. It also includes an additional program (Space)
developed by the European Space Agency. These programs were
chosen because they were in C and are available along with their
accompanied test suite pools. Additionally, they have been
extensively used in empirical studies, involving mutation, such as

[10], [19], [18], [8], [3], [11]. They can thus, be considered as
benchmarks.

Each of these programs is associated to a comprehensive test pool

which was produced by several researchers using a combination
of techniques, including random, category-partition, all
statements, all edges and all definition-use pairs. More details
about the construction of the test suites can be found in Harder et
al. [8]. The associated test suite was produced independently of
the present study and consists of a large number of high quality
tests (since they were developed according to many testing
criteria) and thus, they are well suited for the conducted
experiment.

The Proteum [6] and gcov tools have been selected since they
have been successfully used in many software testing

experiments. Proteum is a mutation testing tool employing the
Agrawal et al. [2] mutation operators while, gcov is a widely used
GNU structural coverage tool. Regarding the implementation of
the examined approaches, Proteum was used for producing the
mutants and gcov for gathering the required statement coverage
information. A prototype was developed in order to compile
mutants, execute them, analyze the execution traces, determine
mutants’ impact and implement the examined strategies.

Mutation analysis requires vast computational resources to
produce and run the sought mutants. Therefore, to reduce the
experimental cost, only the mutant operators belonging to the

general class of “operators” [2] were considered. This class is
composed of 44 mutant operators which introduce discrepancies
on the various source code operators uses. Similar approaches
have also been undertaken in [3] and [18]. Additionally, since the
space program involves a huge number of mutants (22,500
mutants) 10% of them were used. The selection of these mutants
(10%) was performed based on their production order i.e. every
10th produced mutant was considered. The same approach was

also applied on similar studies such as [3] and [18]. In the present
paper, we focus on examining the effectiveness of the studied
strategies with respect to a set of mutants. Thus, the use of the
above restrictions affects only the initial set mutants and not their
impact assessment.

Table 1 record details about the utilized subjects, including the
number of lines of code, the size of the accompanied test pool and
the number of examined mutants per subject programs.

Table 1. Subject programs

Subject

Program

Lines of

Code

Test Pool

Size

Number of

Mutants

Schedule 296 2650 661

Schedule2 263 2710 887

Tcas 137 1608 940

Totinfo 281 1052 1645

Replace 513 5542 3526

Space 5905 13585 2250

4.1.2 Experimental procedure
To address the stated RQs, we report the results derived from the
application of the proposed mutant classification strategies.
Initially, gcov was employed to construct sets of test cases
adequate with respect to basic block testing criterion per subject
program. These sets were constructed based on a random test case
selection from the accompanied test suite pools. All the selected
tests that do not increase the sets’ coverage with respect to their

selection order were removed from the sets. This was done in
order to discard redundant test cases that might coincidentally kill
mutants and influence the impact measures.

The experimental process: The experiment follows the mutation
strategies described in Section 3 and presented in Figure 1. The
statement based test suites were used as initial ones. After
executing all mutants with the statement based tests, live mutants
are classified either as “likely killable” or “likely equivalent” ones
according to the two classification approaches. Then, the first
mutant in the resulting ranked list of likely killable mutants
(mutant with the highest impact) is selected. If this mutant cannot

be killed by any test of the whole test suite pool, it is removed
from the “likely killable” list and the process continues with the
next mutant. In the opposite case, a test case able to kill the
selected mutant is chosen at random from the test suite pool.
Then, the process continues by executing this test case with all
live mutants and removing those that are killed by the newly
selected test. The mutant classification process is repeated until
none of the live mutants has impact (the likely killable mutants’

set becomes empty). To avoid any bias due to (1) the initially
selected test cases and (2) the random selection test cases that kill
the selected mutants, five independent repetitions of the
experiment were performed.

Generally, a mutant classifier is assessed based on its ability to
categorize mutants as killable. This assessment is based on the
following two measures:

Recall: the ratio of the correctly classified mutants as killable to
all the existing killable mutants.

Precision: the ratio of the correctly classified mutants as killable
to those classified as killable.

Determining recall and precision values: These values were
determined based on the mutants that were killed by the whole
test suite pools. This practice fulfills the purpose of the present
study which is to assess the effectiveness of the strategies when
used as alternatives to testing by using all mutants. Effectiveness
refers to the number of mutants killed by the utilized strategies.

Thus, our interest is on whether testing based on these strategies
results in killing approximately the same number of mutants than
testing by using all mutants. Since the same mutants and test pools
are used in both cases (testing based on the examined strategies
and by using the all mutants), the killable mutants who have been
left live after their exercise with the whole test suite pool are
common in both cases. Finally, it is noted that the same practice
has been undertaken in many similar empirical studies like [3],
[15] and [18].

To address RQ1, the respective recall and precision values were
calculated every time the classification process was performed,

(see Figure 1). Regarding RQ2, for each strategy and subject
program we recorded the ratio of the killed mutants to those that
can be killed by the whole test suite pool. When there are no
mutants with impact anymore, the above ratio expresses the
effectiveness measure of the process.

4.2 Results and discussion

4.2.1 Classification Ability (RQ1)
The ability of the proposed approach to classify mutants as likely
killable and equivalent ones was assessed based on its respective

recall and precision values. Figure 2 records these values
according to the CB classification approach (see Section 3.2 for
details) for all the subject programs. Due to lack of space, the
results of the CA were not plotted. From these graphs, it can be

Figure 2. Recall and Precision values vs actual mutation score per utilized program for the classification approach B (CB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.6 0.7 0.8 0.9 1

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Tcas Precision

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.8 0.85 0.9 0.95

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Schedule Precision

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Schedule2 Precision

Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.9 0.92 0.94 0.96 0.98 1

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Totinfo Precision

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.8 0.85 0.9 0.95 1

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Replace Precision

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.95 0.96 0.97 0.98 0.99 1

R
e

ca
ll/

P
re

ci
si

o
n

Actual Mutation Score

Space Precision

Recall

Table 2. Empirical results

Subject

Program
Method

#Tests
Actual

MS

% killable

mutants

killed

Precision Recall
Std.

Deviation
#Tests

Actual

MS

% killable

mutants

killed

Precision Recall
Std.

Deviation

Approach A (CA) Approach B (CB)

Tcas
Statement 7.2 48.43% 66.74% 53.59% 40.27% 3.58% 7.2 48.43% 66.74% 55.21% 40.27% 3.58%

Strategy 18.4 63.49% 87.51% 0.00% 0.00% 3.56% 18.2 64.96% 89.53% 0.00% 0.00% 5.05%

Schedule
Statement 2.6 70.44% 86.38% 32.41% 5.44% 2.65% 2.6 70.44% 86.38% 30.52% 4.99% 2.65%

Strategy 6.4 73.86% 90.58% 0.00% 0.00% 1.98% 6.4 73.80% 90.50% 0.00% 0.00% 2.80%

Schedule2
Statement 7.4 68.41% 86.93% 75.07% 38.74% 2.71% 7.4 68.41% 86.93% 87.66% 32.32% 2.71%

Strategy 14.4 76.35% 97.02% 0.00% 0.00% 2.65% 14.4 73.80% 93.78% 0.00% 0.00% 3.03%

Totinfo
Statement 6.8 83.09% 95.14% 49.09% 50.74% 2.63% 6.8 83.09% 95.14% 40.47% 15.20% 2.63%

Strategy 10.8 86.68% 99.25% 0.00% 0.00% 0.53% 8.8 83.90% 96.06% 0.00% 0.00% 2.59%

Replace
Statement 16.6 71.28% 88.37% 49.49% 49.13% 4.17% 16.6 71.28% 88.37% 52.18% 45.79% 4.17%

Strategy 36 79.04% 98.00% 0.00% 0.00% 0.35% 34 78.85% 97.76% 0.00% 0.00% 0.67%

Space
Statement 146.6 59.30% 96.16% 20.93% 47.67% 0.49% 146.6 59.30% 96.16% 20.93% 47.67% 0.49%

Strategy 160.6 69.99% 98.89% 0.00% 0.00% 0.23% 158 60.85% 98.66% 0.00% 0.00% 0.17%

Average
Statement 31.2 66.83% 86.62% 46.76% 38.67% 2.71% 31.20 66.83% 86.62% 47.83% 31.04% 2.71%

Strategy 41.1 74.90% 95.21% 0.00% 0.00% 1.55% 39.97 72.69% 94.38% 0.00% 0.00% 2.39%

deduced that both the recall and precision values are decreasing
when the actual mutation score increases. Additionally, it can be
clearly seen that both recall and precision are decreased with
approximately the same trend. Consequently, the classification

ability of the examined approaches is decreasing when the test
suite evolves i.e. new tests are added, according to these strategies.

At first sight, this trend might seem to be counter-intuitive due to

the fact that better tests should provide fewer classification
mistakes. To explain this situation we have to consider that: a)
mutant classification is performed on the live mutant set and not
the whole set of mutants, and b) that there is an amount of
equivalent mutants that have impact [22]. This situation is
depicted on Figure 3. Therefore, when the test suite evolves,
mutants with impact are killed. Recall, that the test suite evolves
by repeatedly aiming at the mutants (among the live ones) with

the highest impact. Thus, the produced tests kill those mutants
(with the highest impact). This results in decreasing the number of
the killable mutants with impact while leaving the number of
equivalent mutants with impact constant. Perhaps some killable
mutants will also have an impact due to the test suite evolution,
but this is a minor number as the present experiment shows.
Additionally, this is the case for equivalent mutants, which results
in increasing the error rate. As a consequence, both recall and
precision values are decreasing.

In practice, the decreasing trend explains why the effectiveness of
the examined approaches is lower to 100% (subsection 4.2.2

presents the effectiveness results). Since, the classification
precision is reduced when the test suite evolves; less guidance
towards killable mutants is provided. Actually, beyond a certain
point there is no guidance at all, fact suggesting that there are
applicable limits on the number of mutants that can be killed by
using the coverage impact.

In the columns “Precision” and “Recall” of Table 2, the respective
values of these metrics are recorded per subject program and per
employed method. The method “Statement” records the obtained
results by the statement-based test suites. The “Approach A (CA)”

and “Approach B (CB)” keep track of the results obtained by
applying the classification process of Figure 1 by using the CA
and CB classification schemes. Thus, it records the results of the
test cases produced based on the studied strategies. These results

indicate that the block test suites classify the live mutants on
average with 47% precision value and 39% recall when using CA.
In the case of CB, a 48% and 31% of precision and recall values is
achieved. Here, it should be mentioned that recall and precision
values of the examined strategies is 0 since all the killable mutants
have been killed by applying the process of Figure 1.

Live Mutants

Equivalent
Killable

Mutants with
impact

Test suite evolution

Test suite evolution

Figure 3. Classifying mutants (live) using the classification

strategies. When tests are added, the killable mutants with

impact are killed. Therefore, the percentage of killable
mutants with impact is decreasing.

4.2.2 Approach Effectiveness (RQ2)
This section considers the relative effectiveness of the examined
strategies. The results are summarized in Table 2. This table

records the number of tests, the actual mutation scores, the
percentage of killable mutants killed by the strategies, the
precision and the recall values of the employed methods i.e.
“Statement” and “Strategy”, per classification scheme (Approach

A (CA) and approach B (CB)) per subject program. From the
results of Table 2, it can be realized that a high variation on the
effectiveness of the examined approaches between the subject
programs is recorded. Generally, the use of the CA scheme
achieves to kill a ratio from 87.51% to 99.25% of the mutants that

can be killed by the test pool. The CB scheme achieve in the range
of 89.53% to 98.66%. The effectiveness is lower than 100% due
to mutants with no impact. Note that the proposed strategies aim
only at mutants with impact.

In most of the cases CA scores better than CB. This can be
explained by examining the methods recall and precision values.
Generally, it can be deduced that between two classifiers the one
that has higher recall values even with lower precision values, is
generally more effective. However, in none of the studied subject
a mutation score was close to 100%. Achieving a score close to
100% is highly desirable in some cases. Thus, the examined

strategies are good for improving a test suite but only up to a
certain limit.

5. DISCUSSION
The conducted study suggests that mutant classification strategies
have a lower effectiveness when compared to testing by using all
mutants. However, they have a decisive advantage which is their
ability to isolate equivalent mutants [22] and [21]. Although the
focus of the present study is to examine the effectiveness of these

strategies, some conclusions regarding the equivalent mutants can
be made. This is due to the employed tests which form a huge and
comprehensive1 test pool [8]. Thus, it is expected that only a small
number of killable mutants should be live after their execution
with this test suite. To this end, we measure the ratio, among the
mutants that cannot be killed by any test of the test pool, of
mutants with impact to the total number. These ratios represent an
approximation of the percentage of equivalent mutants
encountered by the strategies.

Generally, it is expected that a process based on a classifier with
higher precision would be more efficient than one with lower

precision. This is due to the more precise guidance that it provides
towards killable mutants. The obtained results, confirm this
argument on all the examined cases. Thus, CB is more precise
than CA and hence it is expected to be more efficient. Indeed, the
CB classification scheme encounters on average 14% such cases,
while, CA encounters on average 17%. Recall that these
percentages represent mutants with impact that cannot be killed.
Hence, since mutants with impact are more likely to be killable

than those without impact [22], it is expected that the exact ratios
of the encountered equivalents mutants should be even smaller
than the ones reported here. Overall, the conducted experiment
suggests that, by using the proposed strategies, the manual work
related to the identification of equivalent mutants can be greatly
reduced (>20%).

5.1 THREATS TO VALIDITY
Generally, threats to the validity of the present experiment can be

identified due to the use of the selected subjects. Thus, the
representativeness of these subjects is questionable. Yet, all these
subjects are benchmark programs which have been widely used in
similar experiments [11]. The selected set of mutant operators

1 The test pools were constructed based on a combination of
techniques [8], including random, category-partition, all
statements, all edges and all definition-use pairs.

introduces threats to the internal validity of this work. However,
this set of mutants is a relatively large one since it is composed of
44 operators and involves all the language operators. Other threats
could be attributed to the use of software systems. Additionally,
the employed process for determining the killable mutants may

influence the reported results. Though, the objectives of this
experiment were to explore the relative effectiveness of the
examined approaches compared to strong mutation based on the
same test suites and tools. Therefore, it is believed that the
indicated threats are not of such importance.

6. RELATED WORK
The dynamic reduction of the side effects caused by equivalent
mutants is a new research topic that helps automating effectively
the mutation testing process. One such approach has been
suggested by Adamopoulos et al. [1] by using an evolutionary
method. In their approach, the evolution method seeks for both
mutants and test cases with the aim of selecting a small and
killable at the same time, set of mutants. Although this approach

achieves to produce killable mutant sets, it relies on the quality
and ability of selecting and the producing test cases and thus, the
adequacy of the testing process is uncertain. On the contrary, the
present approach tries to isolate equivalent mutants in an attempt
to both perform mutation testing efficiently and to assess the
adequacy of testing.

Schuler et al. [21] proposed the use of mutants’ runtime behavior
as a measure of the mutants’ killability likelihood based on
dynamic program invariants. In the same study, it was found that
mutants are likely killable when they break dynamically
introduced invariants. The idea behind this approach was then

used to assess mutations based on coverage impact [22] as
discussed in the present paper. Empirical comparison between the
abovementioned approaches [22] revealed that the impact on
coverage is more efficient and effective at assessing the killability
of mutants. Therefore, the present paper empirically investigates
the application of the coverage impact classification scheme
within the mutation testing process. Additionally, its application
effectiveness and efficiency were also examined.

Generally, the automatic identification of equivalent mutants has
been proven to be an “undecidable” problem [4]. As a result, no
approach able to detect all equivalent mutants can be defined.

Fortunately, heuristics for detecting some cases exist [17]. Offutt
and Pan [16] suggested another approach to identify equivalent
mutants with the combinational use of a constraint based
technique. Empirical evaluation of this technique reported that
45% of equivalent mutants can be identified on average. Other
approaches aiming at identifying equivalent mutants employ
program slicing [9] to assist the identification process. All the
aforementioned techniques target on detecting equivalent mutants,

but they don’t focus on their ability to be likely equivalent or
killable ones. Thus, these approaches are orthogonal to the
presently examined ones [22]. This allows employing them first to
detect equivalent mutants and then assess the remaining ones
based on their impact.

Another approach to tackle the equivalent mutants’ problem is by
using higher order mutants [12], [14], [13] and [18]. Generally,
the main idea underlying these approaches is to produce a set of
higher order mutants and use them as alternatives to the first order
ones. Higher order mutation testing strategies such as [13] and
[18] produce considerably less equivalent mutants, thus

alleviating the problems that they are introducing. Contrary to the

present approach, the higher order strategies produce mutant sets
containing a few equivalent mutants without aiming at isolating
them. A comparison between these approaches and the presently
proposed one is a matter open for further investigation.

7. CONCLUSION AND FUTURE WORK
The present paper empirically investigates the use of dynamic
strategies aiming at reducing the effects of equivalent mutants in
mutation testing. Towards this direction, mutant classification
strategies were defined and evaluated. The innovative part of the
proposed strategies is their ability to effectively produce and

evaluate test suites by considering only a small set of equivalent
mutants. Doing so gives the advantage of performing mutation by
manually analyzing only a small number of mutants.

The undertaken experiments showed that the use of coverage
impact can be beneficial towards the practical application of
mutation. The proposed strategies were found to be effective in
improving an existing test suite by reducing the effects of
equivalent mutants. However, the strategies fail to kill the 5% of
the killable mutants.

Classification ability was found to be dependent on the percentage
of mutants that are killed by the utilized tests. Surprisingly, when
a test suite evolves (based on mutation) the classification ability
(both recall and precision values) is decreasing. Hence, the
guidance provided by the classification process is also decreasing.

Future work includes conducting additional experiments to
statistically revalidate the findings of the present experiment.

Additionally, an evaluation of the proposed strategies with the use
of other impact measures, e.g. [14] is under investigation. Further,
a comparison between the examined approaches and other
mutation testing strategies [21] are also planned.

8. REFERENCES
[1] Adamopoulos, K., Harman, M. and Hierons, R.M. 2004.

How to Overcome the Equivalent Mutant Problem and
Achieve Tailored Selective Mutation Using Co-evolution. In
GECCO 2004, 1338-1349.

[2] Agrawal, H., DeMillo, R.A., Hathaway, B., Hsu, W., Hsu,
W., Krauser, E.W., Martin, R.J., Mathur, A.P. and Spafford,
E. 1989. Design of Mutant Operators for the C Programming
Language. Purdue University.

[3] Andrews, J.H., Briand, L.C. and Labiche, Y. 2005. Is
mutation an appropriate tool for testing experiments? In
Proceedings of the 27th international conference on Software
engineering (ICSE '05), 402-411.

[4] Budd, T.A. and Angluin, D. 1982. Two notions of
correctness and their relation to testing. Acta Informatica. 18,
1 (1982), 31-45.

[5] DeMillo, R.A., Lipton, R.J. and Sayward, F.G. 1978. Hints
on Test Data Selection: Help for the Practicing Programmer.
Computer. 11, 4 (1978), 34-41.

[6] Delamaro, M. and Maldonado, J.C. 1996. Proteum - A Tool
for the Assessment of Test Adequacy for C Programs. In
Proceedings of the Conference on Performability in
Computing Systems (PCS '96), 79–95.

[7] Do, H., Elbaum, S. and Rothermel, G. 2005. Supporting
Controlled Experimentation with Testing Techniques: An
Infrastructure and its Potential Impact. Empirical Softw.
Engg. 10, 4 (2005), 405-435.

[8] Harder, M., Mellen, J. and Ernst, M.D. 2003. Improving test
suites via operational abstraction. In Proceedings of the 25th
International Conference on Software Engineering (ICSE
'03), 60-71.

[9] Hierons, R.M., Harman, M. and Danicic, S. 1999. Using
Program Slicing to Assist in the Detection of Equivalent
Mutants. Software Testing, Verification and Reliability. 9, 4
(1999), 233-262.

[10] Hutchins, M., Foster, H., Goradia, T. and Ostrand, T. 1994.
Experiments of the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Proceedings of
the 16th international conference on Software engineering
(ICSE '94) 191-200.

[11] Jia, Y. and Harman, M. 2011. An Analysis and Survey of the
Development of Mutation Testing. IEEE Trans. Softw. Eng.
37, 5 (September 2011), 649-678.

[12] Jia, Y. and Harman, M. 2009. Higher Order Mutation
Testing. Inf. Softw. Technol. 51, 10 (2009), 1379-1393.

[13] Kintis, M., Papadakis, M. and Malevris, N. 2010. Evaluating
Mutation Testing Alternatives: A Collateral Experiment. In
Proceedings of the 2010 Asia Pacific Software Engineering
Conference (APSEC '10), 300-309.

[14] Kintis, M., Papadakis, M. and Malevris, N. 2012. Isolating
First Order Equivalent Mutants via Second Order Mutation.
In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation
(ICST '12), 701-710.

[15] Namin, A.S., Andrews, J.H. and Murdoch, D.J. 2008.
Sufficient mutation operators for measuring test
effectiveness. In Proceedings of the 30th international
conference on Software engineering (ICSE '08), 351-360.

[16] Offutt, A.J. and Pan, J. 1997. Automatically Detecting
Equivalent Mutants and Infeasible Paths. Software Testing,
Verification and Reliability. 7, 3 (1997), 165-192.

[17] Offutt, A.J. and Untch, R.H. 2001. Mutation 2000: uniting
the orthogonal. In Mutation testing for the new century.
Kluwer Academic Publishers, 34-44.

[18] Papadakis, M. and Malevris, N. 2010. An Empirical
Evaluation of the First and Second Order Mutation Testing
Strategies. In Proceedings of the 2010 Third International

Conference on Software Testing, Verification, and
Validation Workshops (ICSTW '10), 90-99.

[19] Papadakis, M. and Malevris, N. 2010. Automatic Mutation

Test Case Generation via Dynamic Symbolic Execution. In
Proceedings of the 2010 IEEE 21st International Symposium
on Software Reliability Engineering (ISSRE '10), 121-130.

[20] Papadakis, M. and Malevris, N. 2011. Automatically
performing weak mutation with the aid of symbolic
execution, concolic testing and search-based testing.
Software Quality Journal. 19, 4 (2011), 691-723.

[21] Schuler, D., Dallmeier, V. and Zeller, A. 2009. Efficient
mutation testing by checking invariant violations. In
Proceedings of the eighteenth international symposium on
Software testing and analysis. (ISSTA '09), 69-80.

[22] Schuler, D. and Zeller, A. 2012. Covering and Uncovering
Equivalent Mutants. Software Testing, Verification and
Reliability. (2012).

